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Abstract

Neural discourse models proposed so far
are very sophisticated and tuned specif-
ically to certain label sets. These are
effective, but unwieldy to deploy or re-
purpose for different label sets or lan-
guages. Here, we propose a robust neu-
ral classifier for non-explicit discourse re-
lations for both English and Chinese in
CoNLL 2016 Shared Task datasets. Our
model only requires word vectors and
simple feed-forward training procedure,
which we have previously shown to work
better than some of the more sophisticated
neural architecture such as long-short term
memory model. Our Chinese model out-
performs feature-based model and per-
forms competitively against other teams.
Our model obtains the state-of-the-art re-
sults on the English blind test set, which is
used as the main criteria in this competi-
tion.

1 Introduction

In the context of CoNLL 2016 Shared Task, we
participate partially in the English and Chinese
supplementary evaluation, which is discourse re-
lation sense classification (Xue et al., 2016). We
focus on identifying the sense of non-explicit dis-
course relations in both English and Chinese. Pre-
vious studies including the results from CoNLL
2015 Shared Task have shown that classifying the
senses of implicit discourse relations is the most
difficult part of the task of discourse parsing (Xue
et al., 2015). Therefore, we focus exclusively on
this particular challenging subtask.

We want our system to be robust such that the
system can be easily trained to handle different la-
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bel sets and different languages. Neural network
is attractive in this regard as we do not need hand-
crafted linguistic resources, which are not readily
available in all languages. The past neural network
models for this task focus on top-level senses (Ji
et al., 2016) or require parses (Ji and Eisenstein,
2015), redundant surface features (Rutherford and
Xue, 2014), or extensive semantic lexicon (Pitler
et al., 2009). The results from these systems are
not likely to extend to languages that do not have
as much linguistic resources as English. There-
fore, we come up with a neural network model that
requires no parses and specific model tuning. The
only extra ingredient is word vectors, which are
easily obtained through large amount of unanno-
tated data.

Our past studies have indicated that feedforward
neural networks outperform more complicated
models such as long-short term memory models
and perform comparably with systems with tradi-
tional surface features in this task (Rutherford et
al., 2016). But we want to test our results further.
We wonder whether our best feedforward architec-
ture can be adopted to deal with a totally different
language and a different label set put forth specif-
ically for this shared task. We also want to know
whether our model is robust against the slightly
out-of-domain blind datasets.

The performance numbers from the experi-
ments alone hardly provide us with insight into
implicit discourse relations. We compare and con-
trast the two approaches in more detail to learn
what we gain and lose by using each approach.
The fundamental difference between our approach
and the baseline is that our approach does not use
surface features or semantic lexicons. We want to
know the advantage one gains from shifting the
paradigm from discrete surface features to contin-
uous features. Are the errors made by two types of
systems complementary?
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Our system is ranked the first on the English
dataset and the third on the Chinese dataset. The
accuracy on the English blind test set is 0.3767,
and the accuracy on the Chinese blind test set is
0.6338. The performance on the test sets even ex-
ceeds the one on the development sets, which sug-
gest the robustness of our model.

2 Model description

The Arg1 vector a1 and Arg2 vector a2 are com-
puted by applying element-wise pooling function
f on all of the N1 word vectors in Arg1 w1

1:N1
and

all of the N2 word vectors in Arg2 w2
1:N2

respec-
tively:

a1
i =

N∑
j=1

w1
j,i

a2
i =

N∑
j=1

w2
j,i

Inter-argument interaction is modeled directly
by the hidden layers that take argument vectors
as features. Discourse relations cannot be deter-
mined based on the two arguments individually.
Instead, the sense of the relation can only be deter-
mined when the arguments in a discourse relation
are analyzed jointly. The first hidden layer h1 is
the non-linear transformation of the weighted lin-
ear combination of the argument vectors:

h1 = tanh(W1 · a1 + W2 · a2 + bh1)

where W1 and W2 are d × k weight matrices and
bh1 is a d-dimensional bias vector. Further hidden
layers ht and the output layer o follow the standard
feedforward neural network model.

ht = tanh(Wht · ht−1 + bht)
o = softmax(Wo · hT + bo)

where Wht is a d × d weight matrix, bht is a d-
dimensional bias vector, and T is the number of
hidden layers in the network.

We think that this model architecture should
be effective because we have run extensive stud-
ies and experiments on many configuration and
architectures (Rutherford et al., 2016). We have
experimented and tuned most components: pool-
ing functions for the argument vectors, the type of
word vectors, and the model architectures them-
selves. We found the model variant with two
hidden layers and 300 hidden units to work well
across many settings. The model has the total of
around 270k parameters.

3 Experiments

Word vectors English word vectors are taken
from 300-dimensional Skip-gram word vectors
trained on Google News data, provided by the
shared task organizers (Mikolov et al., 2013; Xue
et al., 2015). We trained our own 250-dimensional
Chinese word vectors on Gigaword corpus, which
is the same corpus used by the 300-dimensional
Chinese word vectors provided by the shared task
organizers (Graff and Chen, 2005). We found
the 250-dimensional version to work better despite
fewer parameters.
Training Weight initialization is uniform random,
following the formula recommended by Bengio
(2012). Word vectors are fixed during training.
The cost function is the standard cross-entropy
loss function, and we use Adagrad as the optimiza-
tion algorithm of choice. We monitor the accuracy
on the development set to determine convergence.
Implementation All of the models are imple-
mented in Theano (Bergstra et al., 2010; Bastien
et al., 2012). The gradient computation is done
with symbolic differentiation, a functionality pro-
vided by Theano. The models are trained on CPUs
on Intel Xeon X5690 3.47GHz, using only a single
core per model. The models converge in minutes.
The implementation, the training script, and the
trained model are already made available 1 .
Baseline The winning system from last year’s
task serves as a strong baseline for English. We
choose this system because it represents one of the
strongest systems that utilizes exclusively surface
features and extensive semantic lexicon (Wang
and Lan, 2015). This approach uses a MaxEnt
model loaded with millions of features.

We use Brown cluster pair features as the base-
line for Chinese as there is no previous system for
Chinese. We use 3,200 clusters to create features
and perform feature selection on the development
set based on the information gain criteria (Ruther-
ford and Xue, 2014). We end up with 10,000 fea-
tures total.

4 Results and Discussion

The English results are summarized in Table 1.
The English baseline we use is from the win-
ning system from last year’s task (Wang and Lan,
2015). Our system is more accurate than the base-
line on the two test sets but not on the develop-

1https://github.com/attapol/nn discourse parser
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Figure 1: Model architecture

Development set Test set Blind test set
Sense Baseline Ours Baseline Ours Baseline Ours

Comparison.Concession 0 0 0 0 0 0
Comparison.Contrast 0.098 0.1296 0.1733 0.1067 0 0
Contingency.Cause.Reason 0.4398 0.3514 0.3621 0.4 0.2878 0.3103
Contingency.Cause.Result 0.2597 0.1951 0.1549 0.1722 0.2254 0.1818
EntRel 0.6247 0.5613 0.5265 0.4892 0.5471 0.5516
Expansion.Alternative.Chosen alternative 0 0 0 0 0 0
Expansion.Conjunction 0.4591 0.3874 0.3068 0.2468 0.3154 0.2644
Expansion.Instantiation 0.2105 0.4051 0.3261 0.4962 0.1633 0.25
Expansion.Restatement 0.3482 0.3454 0.2923 0.3483 0.3232 0.2991
Temporal.Asynchronous.Precedence 0 0.0714 0 0 0 0.125
Temporal.Asynchronous.Succession 0 0 0 0 0 0
Temporal.Synchrony 0 0 0 0 0 0
Accuracy 0.4331 0.4032 0.3455 0.3613 0.3629 0.3767
Most-frequent-tag Acc. 0.2320 0.2844 0.2136

Table 1: F1 scores for English non-explicit discourse relation. The bold-faced numbers highlight the
senses where the classification of our model and the baseline model might be complementary.

ment set. Both systems only learn the top six or
seven senses because the other senses constitute
only around 5% of the training set, which might
not be enough when compared to the complexity
of the task.

Our system outperforms the most frequent tag
baseline and Brown cluster pair baseline by 7%
and by 3% (absolute) respectively in the CDTB
datasets (Table 2). Our system only learns to dis-
tinguish between EntRel, Conjunction, and Ex-
pansion, which are the top three most frequent
senses in the training set. The fourth most fre-
quent class, Causation, constitute only around 200
instances in the training set, which is too small for
machine learning approaches.

Generally, we would expect the performance on
the in-domain test set to be worse than the perfor-
mance on the in-domain development set. How-
ever, we do not observe this trend in the Chinese
evaluation. This suggests that our model shows

some robustness. Similarly, we would expect the
performance on the slightly-out-of-domain test set
to be worse than the performance on the in-domain
test set. This is also not the case for the English
data, which suggests robustness of the model.

What is the trade-off in terms of the perfor-
mance? The results suggests that the two ap-
proaches are partially complementary at least for
English. For example, our system does signifi-
cantly better on Expansion.Instantiation, but the
surface feature system does significantly better on
Expansion.Conjunction (Table 1). This suggests
that surface feature approach still holds some ad-
vantage over the neural network approach that we
propose here. In the next section, we compare the
errors each of the systems more quantitatively.

5 Error Analysis

Comparing confusion matrices from the two ap-
proaches help us understand further what neural
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Development set Test set Blind test set
Sense Baseline Ours Baseline Ours Baseline Ours
Alternative 0 0 0 0 0 0
Causation 0 0 0 0 0 0
Conditional 0 0 0 0 0 0
Conjunction 0.7830 0.7928 0.7911 0.8055 0.7875 0.7655
Contrast 0 0 0 0 0 0
EntRel 0.4176 0.4615 0.5175 0.5426 0.0233 0.0395
Expansion 0.4615 0.4167 0.2333 0.4333 0.2574 0.5104
Purpose 0 0 0 0 0 0
Temporal 0 0 0 0 0 0
Accuracy 0.6634 0.683 0.6657 0.7047 0.6437 0.6338
Most-frequent-tag Acc. 0.6176 0.6351 0.7914

Table 2: F1 scores for Chinese non-explicit discourse relation.
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Conjunction + #+ #+
Restatement +
Result # #
Reason +

Table 3: Confusion pairs made by our neural net-
work (#) and the baseline surface features (+) in
English.

networks have achieved. We approximate Bayes
Factors with uniform prior for each sense pair
(ci, cj) for gold standard g and system p:

P (p = ci, g = cj)
P (p = ci)P (g = cj)

We tabulate all significant confusion pairs (i.e.
Bayes Factor greater than a cut-off) made by each
of the systems (Table 3). This is done on the de-
velopment set only.

The distribution of the confusion pairs suggest
that neural network and surface feature systems
complement each other in some way. We see that
the two systems only share two confusion pairs in
common.

Temporal.Asynchronous senses are confused
with Conjunction by both systems. Temporal
senses are difficult to classify in implicit dis-
course relations since the annotation itself can be
quite ambiguous. Expansion.Instantiation rela-
tions are misclassified as Expansion.Restatement
by surface feature systems. Neural network sys-
tem performs better on Expansion.Instantiation

than surface feature systems probably because
neural network system can tease apart Expan-
sion.Instantiation and Expansion.Restatement.

6 Conclusions

We present a robust neural network model, which
is easy to deploy, retrain, and adapt to other lan-
guages and label sets. The model only needs word
vectors trained on large corpora, which are avail-
able in most major languages. Our approach per-
forms competitively if not better than traditional
systems with surface features and MaxEnt model
despite having one or two orders of magnitude
fewer parameters. Our results suggest that sim-
ple feedforward architecture can be more powerful
than more sophisticated neural architectures un-
dertaken by other systems in this shared task.
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