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A data-oriented (empiricist) alternative to the currently pervasive (nativist) Principles and Pa- 
rameters approach to the acquisition of stress assignment is investigated. A similarity-based 
algorithm, viz. an augmented version of Instance-Based Learning is used to learn the system 
of main stress assignment in Dutch. In this nontrivial task a comprehensive lexicon of Dutch 
monomorphemes is used instead of the idealized and highly simplified description of the empirical 
data used in previous approaches. 

It is demonstrated that a similarity-based learning method is effective in learning the complex 
stress system of Dutch. The task is accomplished without the a priori knowledge assumed to pre- 
exist in the learner in a Principles and Parameters framework. 

A comparison of the system's behavior with a consensus linguistic analysis (in the framework 
of Metrical Phonology) shows that ease of learning correlates with decreasing degrees of marked- 
ness of metrical phenomena. It is also shown that the learning algorithm captures subregularities 
within the stress system of Dutch that cannot be described without going beyond some of the 
theoretical assumptions of metrical phonology. 

1. Introduction 

1.1 Metrical Phenomena and Theory 
Machine learning of metrical phenomena  is an interesting domain  for exploring the 
potential  of particular machine learning techniques. First of all, the assignment of stress 
in monomorphemic  words,  the subject of this paper, has been fairly well studied in 
metrical phonology. Within this framework,  the stress patterns of numerous  languages 
have been described in considerable detail. Thus, a solid theoretical f ramework as 
well as elaborate descriptions of the linguistic data are available. Moreover,  learning 
metrical phenomena  has been cast in terms of the Principles and Parameters approach 
(Chomsky 1981), which provides  both the basic parameters  along which possible stress 
systems may  vary, and makes strong claims about  the allegedly innate knowledge of 
the natural  language learner. 
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Secondly, the domain of metrical phenomena can be studied as a (relatively) in- 
dependent problem domain (unlike other domains such as, for instance, linguistic 
pragmatics, that typically have multiple dependencies with other domains like syn- 
tactic and/or  semantic phenomena). 

Thirdly, metrical phenomena exhibit a number of interesting characteristics that 
make them well suited for testing the capacity of machine learning algorithms to gen- 
eralize as well as handle irregularities. On the one hand, stress assignment appears 
to be governed by a number of solid generalizations. For instance, we found that in 
a lexicon of 4868 Dutch polysyllabic monomorphematic words (for details see Sec- 
tion 2.1), approximately 80% are regular according to a generally accepted metrical 
analysis (Trommelen and Zonneveld 1989, 1990). The remaining 20% have to be dealt 
with in terms of idiosyncratic marking (such as, for instance, exception features or 
simply a marking of the irregular pattern in the lexicon). On the other hand, the do- 
main exhibits a large number of local ambiguities, or, in other words, it can be said to 
be noisy. For instance, of the items in the aforementioned lexicon, a metrical encoding 
(using syllable weights--see below) was performed and it revealed that only 44 of the 
89 attested combinations of syllable weights were unambiguous with respect to stress 
assignment. 

In sum, it can readily be seen that the microcosm of metrical phonology is en- 
dowed with generalizations as well as irregularities, a phenomenon characteristic of 
the macrocosm of the linguistic system in general. 

1.2 Machine Learning of Metrical Phenomena 
Recently, computational learning models that specifically address the problem of learn- 
ing the regularities of stress assignment have been proposed. These include Gupta and 
Touretzky (1994), Dresher and Kaye (1990), Dresher (1992), and Nyberg (1991). We will 
briefly review these models in this section. 

Dresher and Kaye (1990) and Nyberg (1991) approach the learning problem from 
the angle of the Principles and Parameters framework (Chomsky 1981), and they ex- 
plicitly incorporate the constructs of that theory into their models. It is assumed in 
this approach that the learner comes to the task of language learning equipped with 
a priori knowledge incorporated in a universal grammar that constrains him or her 
to entertain only useful generalizations. More specifically, the a priori knowledge con- 
sists of a finite set of parameters, the values of which have to be fixed by the learner. 
Starting from a finite set of parameters, each with a finite set of possible values, the 
number of possible grammars that can be developed by the learner is restricted to a 
finite set. 

Computational models such as Dresher and Kaye's (1990) add a learning theory 
to the (linguistic) notion of universal grammar. This learning theory specifies which 
aspects of the input data are relevant to each parameter, and it determines how the 
data processed by the learner are to be used to set the values of the parameters. 
Eventually, the learner will be able to stress input words, and in doing so will build 
metrical structures and perform the structure-sensitive operations defined by metrical 
theory. 

Gupta and Touretzky (1994) tackle the problem of learning linguistic stress from a 
different angle: a simple two-layer perceptron is used as the learning device. In their 
perceptron model there is no explicit representation of the notion of parameter or the 
process of parameter setting in any sense. Their system does not aim at setting the 
correct values of parameters given a learning theory especially designed to do so: "the 
learning theory employed consists of one of the general learning algorithms common 
in connectionist modelling." (p. 4) Moreover, their system does not build metrical 
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representations in the sense proposed in metrical theory when determining the stress 
pattern of a particular word. Thus, learning in the perceptron is not related in any 
obvious way to setting the values of parameters that specify the precise geometry of 
metrical trees. Nor is producing the stress pattern of a particular word related in any 
obvious way to the construction of a metrical tree and to structure-sensitive metrical 
operations. 

The learning material for Gupta and Touretzky's perceptron consists of the stress 
patterns of 19 languages. 1 It appears that the learning times for the stress patterns 
vary according to several dimensions: they describe six dimensions that act as deter- 
minants of learnability. For instance, it will take longer for the perceptron to learn the 
stress pattern of a language that incorporates the factor 'inconsistent primary stress' 
than to learn a language that does not show that feature. These factors or--so to 
speak--'parameters' do not coincide with the parameters proposed in metrical theory. 
However, it is pointed out that there is a close correspondence between ease of learn- 
ing in the perceptron (as measured by learning times) and some of the markedness 
and (un)learnability predictions of metrical theory. 

The simulations of Gupta and Touretzky show that data-oriented acquisition of 
stress assignment is possible. Moreover, in observing the perceptron learn stress sys- 
tems, a number of factors are discovered that appear to determine the learning process. 
This account of the behavior of the model is termed a 'pseudo-linguistic' theory, and 
some interesting parallels with metrical phonology are drawn. The crucial point is, 
however, that the perceptron is not equipped with a priori knowledge about the do- 
main, nor with a specifically designed learning theory. 

There are some drawbacks to the simulations presented by both Dresher and Kaye 
and Gupta and Touretzky. One of the main objections is that they use highly simplified 
versions of the linguistic data, i.e. small samples encoded using syllable weight only, 
and without attention to irregularities. Such highly stylized characterizations of stress 
systems may well capture the core of a language system, but a processing model that 
aims at learning the stress system of a language should go further. It should also deal 
with the noise in the actual linguistic data, the irregularities, and the plain exceptions. 
Gupta and Touretzky (1994:27) appear to be aware of this limitation in their approach: 

"It could be argued that a theoretical account is a descriptive formalism, 
which serves to organize the phenomena by abstracting away from the 
exceptions in order to reveal an underlying regularity, and that it is 
therefore a virtue rather than a failing of the theoretical analysis that it 
ignores "performance" considerations. However, it becomes difficult to 
maintain this with respect to a processing model that uses the 
descriptive formalism as its basis: the processing or learning account still 
has to deal with actual data and actual performance phenomena." 

The research reported in this paper aims at exploring the potential of a learning algo- 
rithm that shares the data-oriented (empiricist) mode of learning with the perceptron 
used in the simulation experiments discussed above, instead of the nativist approach 
exemplified by the research of Dresher and Kaye (1990). The learning material con- 
sists of a lexicon that contains a substantial amount of the attested monomorphemic 
multisyllabic words of Dutch (see Section 2.1). In this learning material, the details 

1 These are the stress patterns of the languages also used by Dresher and Kaye (1990). They represent a 
selection of the possible stress systems along a variety of metrical dimensions. 
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of the stress system are not simplified to arrive at a regularized description of the 
system. Instead, it actually contains the patterns we may expect a language learner to 
be confronted with. 

First, we show that a data-driven alternative to the Principles and Parameters 
approach is feasible, given a set of examples of a language, in this case Dutch. It 
is shown that (i) the major generalizations governing main stress assignment can be 
acquired as well as the major classes of subregularities; and (ii) that the kind of a 
priori knowledge assumed in the Principles and Parameters approach appears to be 
unnecessary, even to the extent that the less 'theoretical bias' encoded in the input, the 
better the learning results are. More specifically, experimental results unequivocally 
indicate that a phonemic input encoding yields superior results to an encoding in 
which only the phonological notion of syllable weight is represented. 

Secondly, the correspondences of our learning results with metrical theory will be 
studied: the results of the simulations reveal interesting correlations between learn- 
ability by the artificial learner, and markedness in a metrical framework. 

Finally, the algorithm's own classification of the test words is analyzed. The algo- 
rithm discovers subregularities in the data that are not expressible in metrical terms. 
Instead it uses the phonemic material presented to form subcategories that act as 
homogeneous classes with respect to stress assignment. This finding suggests that 
metrical theory could benefit from proceeding to incorporate segmental information 
in order to arrive at a more complete description of the data. 

The remainder of the paper will be organized as follows: we will first present the 
most relevant facts about and a metrical analysis of the stress system of Dutch. Next 
the artificial learning algorithm will be introduced, followed by a discussion of the 
experimental results. 

2. The  Prob lem D o m a i n  

2.1 Basic Facts about  D u t c h  Stress Patterns 
In this section we will introduce the problem domain, i.e. main stress assignment in 
Dutch monomorphemic words. 2 In order to do this, we will first discuss the general 
characteristics of main stress assignment in Dutch and will then proceed to a metrical 
analysis that adequately captures the generalizations governing the domain. 

For the purpose of the experiments to be presented in this paper, we compiled 
a corpus containing 4,686 polysyllabic monomorphemic words. This corpus was ex- 
tracted from the CELEX 3 lexical database (Burnage 1990), which contains 130,778 lem- 
mas and 399,186 wordforms and was compiled on the basis of the INL corpus of 
present-day Dutch (more than 42 million words in a variety of text types). As such, 
our corpus constitutes a representative sample of Dutch monomorphemes. 

In Table 1 and Table 2 these data are divided into bisyllabic and longer words. 
Within each table, words are divided as to the phonological makeup of their two final 
syllables, or more precisely their two final rhymes; syllable-initial consonants are not 
represented. The pattern o stands for syllables containing a schwa, optionally followed 
by a consonant word-finally. 4 VV denotes a long vowel in an open syllable, while VC 

2 We are well aware that metrical theory embraces more than main stress assignment in underived 
words. Yet, as will become clear from this section, this is a far from trivial problem for Dutch. 
Therefore we limit our attention to this task. 

3 Copyright Centre for Lexical Information, Max Planck Institute for Psycholinguistics, Nijmegen, The 
Netherlands. 

4 For a discussion of the phonemic status of schwa vs. schwa resulting from reduction, see, for example, 
Trommelen and Zonneveld (1989), Kager (1989), and Zonneveld (1993). 

424 



Walter Daelemans, Gert Durieux, and Steven Gillis The Acquisition of Stress 

Table 1 
Stress patterns in bisyllabic words. 

Pattern PEN FIN Row 
Total 

# MA Example # MA Example 
IPA Transcription IPA Transcription 

Translation Translation 

~-~ o / / o / / o 
VV-o 470 R tafel ('table') 0 / / 470 

/ta:fol/ 
VC-~ 494 R amper ('hardly') 0 / / 494 

/(zrnpor/ 
VXC-o 35 R waarde ('value') 0 / / 35 

/wa:rdo/ 

o-VV 0 / / 7 R revue ('review') 7 
/r~vy:/  

VV-VV 201 R lelie ('lily') 64 LF, [-ex] cadeau ('present') 265 
/le:li:/ /kctdo:/ 

VC-VV 189 R armoe ('poverty') 40 LF, [-ex] spondee ('spondee') 229 
/ ctrmu:/ /sp3nde:/ 

VXC-VV 17 R extra ('extra') 3 LF, [-ex] tournee ('tour') 20 
/~kstra:/ /tu:rne:/ 

0-VC 0 / / 9 R rebel ('rebel') 9 
/robcl/  

VV-VC 177 R epos ('epic') 135 [-ex] bizar ('bizarre') 312 
/e:pos/ /bi:zctr/ 

VC-VC 135 R cactus ('cactus') 101 [-ex] trompet ('trumpet') 236 
/k0~kt~ts/ /tr0mp~t/ 

VXC-VC 8 R oorlog ('war') 5 [-ex] transfer ('transfer') 13 
/o:rl0x/ / transfer/  

o-VXC 0 / / 21 R reflex ('reflex') 21 
/rofl~ks/ 

VV-VXC 45 I climax ('climax') 384 R alarm ('alarm') 429 
/kli:mctks/ /a:lctrm/ 

VC-VXC 43 I potlood ('pencil') 334 R albast ('alabaster') 377 
/potlo:t/ /ctlbctst/ 

VXC-VXC 6 I argwaan ('suspicion') 20 R punctuur ('puncture') 26 
/(n3~wa:n/ /p~nkty:r/  

stands for a closed syllable containing a short vowel  followed by a single consonant.  
Since Dutch lacks short vowels in open syllables, a single intervocalic consonant  is 
taken to be ambisyllabic when  following a short vowel, thus yielding a VC-pattern 
(cf. van der Hulst  1984). The pat tern VXC abbreviates both a long vowel  followed by at 
least one consonant  and a short vowel  followed by at least two consonants. This type 
of syllable is usually restricted to final position. The column labels ANT, PEN, and 
FIN denote  antepenultimate, penultimate, and final stress respectively. These columns 
provide information about  the frequency of each type of stress for each phonological  
pattern. The columns headed by  the label MA will be discussed later; they need not 
concern us at this point. 

From these tables it appears  that the three possible stress patterns occur with 
different frequency: PEN is the most  frequent  pat tern (52.96% of all words),  ANT is 
the least frequent  pat tern (7.46% of all words),  and FIN is in between (39.58% of all 
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patterns). A first glance at both tables might suggest almost arbitrary variation of main 
stress. But a number of near exceptionless generalizations can be formulated (see also 
Kager 1989): 

(i) Main stress is restricted to a three-syllable window from the right-hand 
word edge. 

(ii) Syllables containing a schwa are never stressed; moreover, stress almost 
always falls on the immediately preceding syllable. 

(iii) Antepenultimate main stress may occur if the penult is a VV-syllable, but 
apart from only a few exceptions, never with a VC-syllable. 

Apart from these observations, there are a number of general tendencies worth 
mentioning. 

(i) 

(ii) 

(iii) 

Final VXC syllables tend to attract main stress, in both bisyllabic and 
longer words. 

In other bisyllabic words, penultimate stress is the dominant pattern, 
although final stress is more common in VX-VC words than in words 
ending in an open syllable. 

In trisyllabic and longer words, VC-final words tend to have stress on the 
antepenultimate syllable, if the penult is open, and stress on the penult if 
it is closed. For VV-final words, penultimate stress is the dominant 
pattern, regardless of the structure of the penult; final stress in these 
words does occur, but is more uncommon than antepenultimate stress. 

Given this description of the data, the challenge for a theoretical analysis is both 
to capture the relevant generalizations in a natural way and to provide a principled 
account for the relative markedness of nondominant patterns. We will turn to an 
analysis that meets both requirements. 

2.2 A Metrical Analysis of Dutch Stress Assignment 
The theoretical analysis of main stress assignment we will present in this section is 
cast in the framework of metrical phonology, a branch of nonlinear phonology that 
is concerned with phonological constituency and the prominence relations that hold 
between categories at various hierarchical levels, s Dutch stress has been the subject 
of a lively discussion during the last decade (for an overview see Trommelen and 
Zonneveld [1989] and Kager [1989]). We will briefly sketch the analysis of Trommelen 
and Zonneveld. It 'is not only the most fully articulated tree-based analysis of Dutch 
stress to date, but also represents what has since become the consensus view. 6 

The focus will be on how the regularities of the stress system are captured and 
how markedness is related to nondominant patterns. We will pay special attention to 
those places where Dutch deviates from the universal 'default.' 

5 For an introduction to metrical phonology, see, e.g., Goldsmith (1990) and van der Hulst and Smith 
(1982). 

6 Although in more recent work by Kager (1989) and Zonneveld (1993) the analysis is restated in a 
formalism using bracketed grids (see Halle and Vergnaud [1987]), the main insights from Trommelen 
and Zonneveld (1989) concerning the nature and amount of lexical markings needed are retained. 
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2.2.1 Syllable Structure and Foot-Building. In Tables 1 and 2 four different rhyme 
templates were distinguished, o, VV, VC and VXC, and it was shown that each one 
exhibited different stress properties. In various analyses of Dutch these types have 
been referred to as superlight (o), light (VV), heavy (VC), and superheavy (VXC). It is 
not uncommon that stress systems are sensitive to syllable structure, and languages 
that distinguish between light and heavy syllables are known as quantity-sensitive. 
Yet the particular distinction proposed for Dutch merits some further discussion since 
cross-linguistically, a VV rhyme counts as heavy whenever a VC rhyme does--an 
observation that does not seem to hold for Dutch. In a tree-based framework, syllable 
weight has been related to the degree of branching of the rhyme, in the following 
manner (see Example 1). In what follows, cr will be used as the label of a syllable 
node, and O and R are abbreviations for Onset and Rhyme, respectively. N stands for 
Nucleus and when opposed to N, C is used to denote Coda. 

Example 1 

a. b. c. 

A A A  
0 R 0 R 0 R 

I I h, I b,  
Co V Co V V Co V C 

The dividing line between light and heavy syllables is usually drawn between (a) and 
(b). However, in her study of Dutch syllable structure, Trommelen (1983) argues that 
for Dutch a further distinction is needed, in which the rhyme is analyzed as consisting 
of a peak (also called nucleus), containing the vocalic part, and a coda, containing any 
remaining consonants. Further, she argues that Dutch rhymes can exhibit the structures 
shown in Example 2, where (c) and (d) are restricted to the word edge: 

Example 2 

a. b. c. d. 
R R R R 

N N C N C N C 

A I I I A A I 
V V V C V C C V V C 
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Since Dutch lacks short vowels in open syllables, mere branching of the rhyme is insuf- 
ficient to establish a weight distinction between syllables. Trommelen (1983) therefore 
proposes that in Dutch this notion has to be replaced by that of direct vs. indirect 
branching of the rhyme. Thus a rhyme that branches directly into a peak and a coda 
counts as heavy, whereas a branching peak only does not. In other words, the weight 
distinction in Dutch between light and heavy syllables seems to coincide with the dis- 
tinction between open and closed syllables. 

In a further elaboration of Trommelen's analysis, Kager and Zonneveld (1986) 
focus on 'superheavy' and 'superlight' syllables. The excess consonant(s) in superheavy 
syllables are analyzed as an extrasyllabic appendix, which is restricted to domain 
edges. More importantly, word-final schwa syllables are given the same treatment, 
based on arguments distinct from their stress properties. The net effect of this analysis 
is that preceding consonants are pushed onto the previous rhyme, making this rhyme 
(super)heavy. 

The relevance of these observations for stress assignment lies in their impact on 
foot formation. The rules for foot formation are the following: 

• Construct maximally binary feet, going from right to left. 

• Feet are labeled s-w. 

Quantity-sensitivity (Q.S.) in the sense defined above allows the reformulation of a 
universal restriction for Q.S. languages, i.e. that heavy syllables cannot occur in weak 
foot position (Hayes 1981), in the following manner: 

• Closed syllables may not occur in recessive (weak) foot position. 7 

This restriction leads to the creation of monosyllabic feet over VC and VXC syllables. 
Some relevant examples are shown in Example 3. 

Example 3 

s A w l  I Aw I I I 
pre si dent pi ja ma gi bral tar 

presiDENT piJAma GiBRALtar 

/pre:si:dEnt/ /pi:ja:ma:/ /yi:braltar/ 

"president . . . .  pyjamas . . . .  Gibraltar" 

2.2.2 Word Tree Labeling. Whereas the foot-building conventions above have been 
relatively uncontroversial since Kager (1985), word-tree formation has raised consid- 
erably more controversy. We will now discuss Trommelen and Zonneveld's (1990) 
proposal, the approach that we will adhere to in what follows. 

7 This formulation was first made by Kager (1985). 
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Their starting point is to build a uniformly right-branching right-dominant word 
tree that locates main stress on the final foot. s This makes the right predictions for VV 
and VXC final words, i.e. words having stress on the penultimate and final syllable 
respectively. Obviously, to generate stress on other positions, additional mechanisms 
are needed. Antepenultimate stress, which is the dominant pattern in -VV-VC final 
words, cannot be achieved if stress consistently falls within the final foot. Conversely, 
to account for final stress in VV-final words, a monosyllabic foot seems required to 
provide a landing site for the end rule. 

The devices that seem called for are the following: on the one hand, the possibility 
of assigning a lexically prespecified monosyllabic foot (henceforth abbreviated as LF) 
to cover the VV-final words with final stress, and on the other hand, extrametrical- 
ity to handle antepenultimate stress. Extrametricality amounts to making an element 
invisible to stress rules and is restricted to domain edges under the Peripherality Con- 
dition (Hayes 1981). Since in VC-final words final stress is not the dominant pattern, 
assignment of [+ex] for this type of word should be rule-governed, rather than an 
exceptional marking. The rules for word tree formation then are the following: 

• Mark a final VC-rhyme as extrametrical before foot formation applies. 

• Construct a right-branching word tree, labeled uniformly w-s. 

This leads to the following trees for the regular patterns, where the word tree is 
drawn above the horizontal marks. Note that in 'gibraltar' the final syllable is marked 
as extrametrical before foot formation applies, and only later incorporated as a weak 
foot member by a universal convention of Stray Syllable Adjunction (Hayes 1981). 

Example 4 

/ N  
W S 

T x  "1" 
S W 

pre si dent 

/ N  / N  
W S W S 

T T x  "T 
s w s (w) 

pi ja ma gi bral (tar) 

presiDENT piJAma GiBRALtar 

/pre:si:dEnt/ /pi:ja:ma:/ /vi:braltar/ 

"president . . . .  pyjamas . . . .  Gibraltar" 

8 T h i s  r u l e  is t h e r e f o r e  o f t e n  r e f e r r e d  to  as  t he  E n d  Rule ,  
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Nondominant patterns are handled with three exception features: a lexical foot (LF) 
for VV-finals with final stress, [+ex] for W-finals with antepenultimate stress, and 
[-ex] for VC-finals with final stress. The trees in Example 5 illustrate the analysis for 
these marked patterns: 

Example 5 

A A 
w S W S s \ 

/~ ,  T / N  / ~  T 
s w s w (w) s w 

pa ra plu  ca  na (da) c o  lo  ne l  

LF [+ex] [-ex] 

paraPLU CAnada koloNEL 

/pa:ra:ply:/ /ka:na:da:/ /ko:lo:nEI/ 

"umbrel la" "Canada" "co lone l"  

This situation is clearly not ideal, for several reasons: first, it is hard to account for 
degrees of markedness when three exception mechanisms are at play. For example, 
final stress is more common in VX-VC words than it is in VX-VV words, yet relating 
this to [-ex] vs. LF respectively does not bring out this contrast. Another objection 
comes from stress shifts and mispronunciations. Van Marle (1978) adduces various 
kinds of evidence, of which the most illuminating examples are words like 'rococo.' 
Rococo is attested both with final stress (as in 'paraPLU') and with antepenultimate 
stress (as in 'CAnada'). Under the current account, it is hard to explain how the loss 
of the LF feature in the case with final stress would automatically imply adoption 
of the [+ex] feature, to yield antepenultimate stress, rather than producing the un- 
marked penultimate pattern. A third problem is that by making a final VC syllable 
consistently extrametrical, the important generalization about its footing behavior both 
word-finally and word-internally is lost. 

The solution Trommelen and Zonneveld (1990) propose for these problems is that, 
in principle, nothing prevents extrametricality from applying 'late,' i.e. after foot for- 
mation. Extrametricality would then affect the word tree only, and leave the foot 
formation rules untouched. A further modification they propose is to mark all final 
VX syllables as extrametrical, including final VV. The cases handled correctly by the 
end rule are still regular, since final VXC syllables are exempt from extrametricality. 
Also, because extrametricality is not allowed to percolate from a nonhead position, 
for W-final words the default is still penultimate stress. The trees in Example 4 are 
modified now, to yield the trees in Example 6 for the regular cases: 
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Example 6 

A 
w S 

A T 
S w 

pre si dent 

, A  
w S 

T A 
s (w) 

pi ja (ma) 

×'k 
w s (w) 

T T T 
gi bral (tar) 

pre s iDENT piJAma G i B R A L t a r  

/pre:si:d~nt/ /pi:ja:ma:/ /¥i:braltar/ 

"president . . . .  pyjamas"  "Gibraltar" 

For the marked patterns, lexical feet are retained, but exceptional extrametricality is no 
longer needed, since antepenultimate stress now results from such an idiosyncratically 
specified foot. The other problems are solved, since the opposition between VX-VC 
and VX-VV words amounts to the difference between LF and [-ex] vs. [-ex] by 
itself. Stress shifts of the type 'rocoCO'-'ROcoco' are explained by loss of the feature 
[-ex] only, where LF is retained (compare the trees for 'paraPLU' and 'CAnada' in 
Example 7 below). Hence, in their final analysis the patterns in Example 5 are analyzed 
as in Example 7. 

Example 7 

A A A 
W S S (W) W S 

A T A T / ~  T 
S W S W S W 

pa ra plu ca na (da) co lo nel 

LF LF [-ex] 

[-ex] 

pa r aPLU CAnada  k o l o N E L  

/pa:ra:ply:/ /ka:na:da:/ /ko:lo:ntl/ 

"umbrella" "Canada . . . .  colonel"  

We can now return to Table 1 and Table 2. In the columns headed MA ('Metrical 
Analysis'), the lexical markings of the various patterns are indicated. In these tables, 
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R stands for regular, LF for a lexically prespecified foot, [-ex] for an exception to 
rule-governed extrametricality, and I for unexplained exceptions that need full lexical 
marking. It appears that out of the 4868 words in our lexicon, 81.1% are regular (R), 
6.96% are exceptions to the extrametricality condition ([-ex]), 4.07% require a specified 
lexical foot (LF) and 5.24% a combination of the two preceding features (LF, [-ex]), 
and finally 2.59% are plain exceptions (I). These five categories can be scaled according 
to their markedness within the metrical framework: the regular case (R) is of course 
the least marked, the irregular (I) the most marked. In between these extremes, one 
single exception feature is less marked than two exception features, i.e., items that 
need an LF and a [-ex] are more marked than items that are either marked as LF or 
[-ex]. 

In this section we have sketched a metrical analysis of the Dutch stress system 
that captures the relevant generalizations in a natural way and provides a principled 
account for the relative markedness of nondominant patterns. The dominant patterns 
are rule-generated, while deviations from this pattern are handled by two types of 
lexical marking. Cumulation of these markings accounts for degrees of exceptionality 
and explains why stress shifts do not always move in the direction of the dominant 
pattern. 

In the analysis, it was pointed out that Dutch is fairly idiosyncratic in a number 
of ways: first, the weight distinction between VV and VC is odd from a universal 
perspective, and secondly, extrametricality in Dutch influences the word tree only. 
Furthermore, Dutch makes liberal use of lexical markings, and this has led Kager 
(1989) to conclude that Dutch, while not being a free stress language, occupies a 
middle ground between free and fixed stress systems. 

3. The Learning Algorithm 

Assigning stress to a word can be interpreted as a classification problem: given a 
pattern (a set of feature-value pairs describing a word), the task of the system is to 
decide whether stress is on the final (FIN), penultimate (PEN), or antepenultimate 
(ANT) syllable. In other words, the system has to decide whether the word belongs to 
category FIN, PEN, or ANT. Notice that we are only trying to predict main stress; for 
predicting secondary stress or different stress levels, a more elaborate category system 
has to be used. 

3.1 Instance-Based Learning 
The data-oriented algorithm we used is a variant of Instance-Based Learning (IBL, 
Aha, Kibler, and Albert 1991). IBL is a framework and methodology for incremental, 
supervised, similarity-based learning. 

Supervised. The system is trained by presenting a number of patterns 
with their classification. 

Incremental. Training material can be added one item after the other, 
without a need to retrain the system (unlike, e.g., backpropagation in 
connectionist networks, where batch learning is used). 

Similarity-Based. The system bases its category prediction on the 
similarity of an unseen test pattern to the training patterns to which it 
was exposed earlier. The distance metric used to compare the similarity 
of patterns is therefore the most important aspect of the algorithm. 
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In research described elsewhere (Gillis et al. 1992; Daelemans et al. 1993), we 
experimented with two additional learning algorithms: Backpropagation of Errors in 
Feedforward Networks (Rumelhart, H;mton, and Williams 1986), and Analogical Mod- 
eling (Skousen 1989). Although there are small differences in the learning behavior of 
systems trained with these different learning algorithms on the task of stress assign- 
ment, the overall performance of the systems was highly similar. We therefore decided 
to limit our attention to IBL, which is the simplest and most transparent of the three 
learning algorithms. 

The distinguishing feature of IBL is the fact that no explicit abstractions are con- 
structed on the basis of the training examples during the training phase. A selection of 
the training items themselves is used to classify new inputs. IBL shares with Memory- 
Based Reasoning (Stanfill and Waltz 1996) and Case-Based Reasoning (Riesbeck and 
Schank 1989) the hypothesis that much of intelligent behavior is based on the imme- 
diate use of stored episodes of earlier experience rather than on the use of explicitly 
constructed abstractions extracted from this experience (e.g. in the form of rules or de- 
cision trees). In the present context of learning linguistic tasks, the hypothesis would 
be that much of language behavior is based on this type of memory-based processing 
rather than on rule-based processing. In linguistics, a similar emphasis on analogy to 
stored examples instead of explicit but inaccessible rules, is present in the work of, 
among others, Derwing and Skousen (1989). 

IBL is inspired to some extent by psychological research on exemplar-based cate- 
gorization (as opposed to classical and probabilistic categorization, Smith and Medin 
[1981], Nosofsky, Clark, and Shin [1989]). Finally, as far as algorithms are concerned, 
IBL finds its inspiration in statistical pattern recognition, especially the rich research 
tradition on the nearest-neighbor decision rule (see, e.g., Devijver and Kittler [1982] 
for an overview). 

3.2 The Algorithm 
It is useful to distinguish between a learning component and a performance component 
when describing learning systems. The performance component carries out the re- 
quired task (in this case predicting the stress category of unseen words), and the 
learning component changes the system in response to the examples presented (in 
the case of IBL by simply storing the examples) such that the accuracy of the system 
increases. 

3.2.1 Training. During training, pre-categorized training items are presented in an in- 
cremental fashion to the learning component. A training item is a sequence of feature- 
value pairs (for instance, a sequence of the weights associated with a word's syllables) 
with its category (in this case, the stress category of a word). If the pattern was not 
encountered earlier, a new memory record is created, listing the pattern and initializ- 
ing its category distribution (a record showing for each possible category the number of 
times the pattern was associated with this category in the training set). As the same 
pattern may represent different words, depending on the encoding used, the category 
distribution contains probabilistic information about the category of ambiguous pat- 
terns (patterns that are assigned different categories in the training set). If the training 
pattern was encountered earlier during training, its category distribution is updated. 

3.2.2 Testing. The operation of the performance component of the IBL algorithm is 
quite simple: for each test item (a sequence of feature-value pairs to be assigned a 
category), we check whether it is present in memory. If this is the case, the category 
assigned most often to this pattern (as evidenced in its category distribution) is as- 
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signed to the test item. If the test item has not yet been encountered, its similarity 
to all patterns kept in memory is computed, and a category is assigned based on the 
category of the most similar item(s). 

Similarity is measured using a distance metric: two patterns are similar if their 
distance in pattern space is small. If there is only one best match, the most frequent 
category in its category distribution is used. If there is a tie between two or more 
patterns in memory, their category distributions are combined (summed) before the 
most frequent category is selected as the category predicted for the test item. 

The performance of an IBL classifier crucially depends on the selection of training 
items to be kept in memory and the distance metric used. In the experiments described 
here, we 'remembered' all training items. The distance metric will be elaborated on in 
what follows. 

The most straightforward distance metric would be the one in equation (1), where 
X and Y are the patterns to be compared, and rS(xi~yi) is the distance between the 
values of the i-th feature in a pattern with n features. 

// 

A(X, Y) = ~ (5(xi, Yi) ( 1 )  

i=1 

Distance between two values is measured using equation (2) for numeric features and 
equation (3) for symbolic features. 

~5(xi, Yi) --  ]xi - Yi[ (2) 
m a x / -  mini 

rS(xi,Yi) = 0 if X i = Yi, else 1 (3) 

When computing the distance between numeric values, dividing by the difference 
between the maximum and minimum values of a feature scales numeric features with 
different lower and upper bounds to comparable differences between 0 and 1. 

3.2.3 Information Gain. When using a geometrical distance metric for numeric fea- 
tures (geometrical distance between two patterns in pattern space), or an overlap 
metric for symbolic features (number of features with equal values in both patterns), 
all features are interpreted as being equally important. But this is of course not nec- 
essarily the case. We extended the basic IBL algorithm proposed by Aha, Kibler, and 
Albert (1991) with a technique for automatically assigning a different importance to 
different features. Our approach to the problem of weighing the relative importance 
of features is based on the concept of Information Gain (IG, also used in learning 
inductive decision trees [Quinlan 1986]), and first introduced (as far as we know) in 
IBL in Daelemans and van den Bosch (1992) in the context of a syllable segmenta- 
tion task. The idea is to interpret the training set as an information source capable of 
generating a number of messages (the different categories) with a certain probability. 
The information entropy of such an information source can be compared in turn for 
each feature with the average information entropy of the information source when the 
value of that feature is known. 

Database information entropy is equal to the number of bits of information needed 
to know the category given a pattern. It is computed by the formula in (4), where Pi 
(probability of category i) is estimated by its relative frequency in the training set. 

H ( D )  = - ~ Pi log 2 Pi  (4) 
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For each feature (position in the patterns), we now compute what the information 
gain is in knowing its value. To do this we have to compute the average information 
entropy for this feature and subtract it: from the information entropy of the database. 
To compute the average information entropy for a feature, we take the average infor- 
mation entropy of the database restricted to each possible value for the feature. The 
expression D[f=v] refers to those patterns in the database that have value v for feature 
f; V is the set of possible values for feature f. 

H(D~]) = ~ H(D[f=v,]) ID~ vdI (5) 
viEV 

Information gain is then obtained by equation (6) and scaled to be used as a weight 
for the feature during similarity matching. 

G(,f) = H(D) - H(D[f]) (6) 

The distance metric in equation (1) is then modified to take into account the informa- 
tion gain weight associated with each feature. 

n 

A(X, Y) = ~ Gie(xi, yi) (7) 
i = 1  

To retain the incremental character of IBL, we updated the information gain weights 
with every new training item. For the present task, the weights hardly change after 
about 100 training patterns, and further changes have no effect on performance. 

4. Experiment 

Having introduced the problem domain and the learning algorithm, we are ready 
to discuss the results of the experiment on stress assignment. For this task, words 
(training and test patterns) were represented by three different feature-value pair en- 
codings, which will be discussed in the next section. Output of the system consists of 
a prediction of the category (FIN, ANT, or PEN) of the input word. Actually, more 
detailed information is provided: by using the category distribution described earlier, 
for each possible category, a value between 0 and 1 representing the probability that 
the word has this category can be provided. However, no use was made of this in 
the experiment. A single output category is selected for each pattern: the one with the 
highest probability or a random choice in case of a tie. 

The main aims of the experiment are (i) to assess the role of the encoding used, and 
more specifically, to investigate the impact of 'theoretical bias' in the input encodings 
on the learning success, and (ii) to relate the learning performance of the algorithm to 
the metrical analysis of the previous section. 

4.1 Method 
The method used in this experiment consisted of a ten-fold cross-validation experiment 
(Weiss and Kulikowski 1991). In this set-up, the database is partitioned ten times, each 
with a different 10% of the dataset as the test part. The remaining 90% is used as the 
training part. 

For each of the ten simulations in our experiment, the test part was used to test 
generalization performance. The size of the training set was varied from 500 to 4000 
items randomly chosen from the training part in order to assess the system's learning 
performance. 
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4.2 Data and Data Encoding 
In the experiment we used the lexicon of 4868 Dutch multisyllabic monomorphemes 
introduced in Section 2. In order to use test sets of equal magnitude in the ten-fold 
cross validation experiments, 8 items were randomly selected from the lexicon and 
withdrawn from the experiment, so that 10 test sets of 486 items were constructed. 

In order to investigate the impact of the input encodings, three encoding schemes 
were implemented. In each instance only the three last syllables are encoded. 

Encoding 1. Strings of syllable weights of the last three syllables of a 
word, i.e., the kind of encoding judged to be necessary and sufficient for 
learning a quantity-sensitive language (Dresher and Kaye 1990; Gupta 
and Touretzky 1993); 

Encoding 2. The phonemic information contained in the rhyme 
projections of the last three syllables; 

Encoding 3. A plain phonemic transcription of the word. 

Encoding 1 is based on the notion of syllable weight and uses a single feature for 
each syllable. Since in metrical phonology syllable weight is a function of the degree of 
branching of the rhyme, the set of values chosen should discriminate among different 
rhyme types. We used numerical values, ranging from one to five, to set up a weight 
scale (see Section 2.2.1 for a discussion of the weight scale) in the following manner: 9 

1 = superlight rhymes (rhymes containing a schwa, a); 
2 = light rhymes (a long vowel in an open syllable, VV); 
3 = heavy rhymes (a short vowel followed by a single consonant, VC); 
4 = superheavy rhyme of the type VCC; 
5 = superheavy rhyme of the type VVC. 

The word agenda ('agenda,' IPA transcription:/a:-y~nda:/) is encoded as the sequence 
'2 3 2', i.e., a light syllable (2) followed by a heavy one (3) and a light one (2). Thus in 
this encoding only three features are used. The value of the first feature is the syllable 
weight of the antepenultimate syllable, the value of the second feature, the weight of 
the penultimate syllable, and the value of the third the weight of the final syllable. 

Encoding 2 provides a phonemic encoding of the rhyme and uses two features 
per syllable, one for the nucleus and one for the coda. It coincides with the previous 
encoding in the sense that it too provides the necessary information on which syl- 
lable weight is based, albeit without abstracting over phonemic detail as was done 
in Encoding 1. Thus the encoding for the word agenda ('agenda') looks as follows: 
a: - ~n a: _.10 The first syllable has nucleus / a : /  and an empty coda, denoted with a 
dash; the second syllable n u c l e u s / ~ / a n d  c o d a / n / .  The last syllable has nuc leus /a : /  
and an empty coda. Thus, in the second encoding, six features are used. The first two 
features stand for the nucleus and the coda of the antepenultimate syllable, the next 
two features stand for the nucleus and the coda of the penultimate syllable, and the 
last two features stand for the nucleus and the coda of the final syllable. The values 
of the features are the phonemes or phoneme strings that occupy these respective 
positions in the word. 

9 See Visch and Kager (1984) for a discussion of why VVC should be "heavier" than VCC. 
10 The actual encodings are in DISC format (see Burnage [1990]), which has the advantage that each 

phoneme is transcribed by means of a single symbol. 

437 



Computational Linguistics Volume 20, Number 3 

Table 3 
Sample encodings using the three encoding schemes. 

Encoding Number Targe t  Word Encoding 

1 PEN agenda 2 3 2 
2 PEN agenda a: - ~n a: - 
3 PEN agenda - a: - "~sn d a: - 

Encoding 3 extends the rhyme encoding by adding a feature for the onset of each 
syllable. As such, it consists of a complete phonemic encoding of the last three syllables. 
Thus, each of the last three syllables of a word is represented by three features, the 
values of which represent the phonemes that fill the onset, nucleus, and coda slot of 
the syllable. For instance, the encoding for the word agenda ('agenda') looks as follows: 
- a: - ~cn d a: - .  The onset of the first (or antepenultimate) syllable is empty, hence a 
dash in the encoding, the nucleus i s / a : / ,  and the coda is empty. The second syllable 
consists of o n s e t / ~ / ,  n u c l e u s / c / ,  and coda / n / .  The last syllable consists of onset 
/ d / ,  nuc leus / a : / ,  and an empty coda. 

The three encodings for the word agenda ('agenda) are given in Table 3. 
It should be noted that the more detailed the representation is (Encoding 3 being 

the most detailed), the less ambiguous the training patterns are. On the other hand, the 
more detailed the encoding, the more irrelevant features are presented to the learning 
system (the data are noisier from the point of view of linguistic theory). Onsets are 
of little or no use for stress assignment according to metrical analyses, but they are 
present in the third encoding, thus adding (allegedly) irrelevant information. 

The success rate of the algorithm is obtained by calculating the average accuracy 
(number of test pattern categories correctly predicted) over the ten test sets in the 
ten-fold cross validation experiment. 

4.3 Results 
4.3.1 Analysis of General Performance. In this section we will discuss the perfor- 
mance of the algorithm at a general level. The most striking result is that IBL, when 
trained with phonemic encodings (Encoding 2 and Encoding 3), yields significantly 
better results than when trained with Encoding 1, the weight string representation. 

In Figure 1 results for the three encodings are plotted. Overall peak success scores 
for the three encodings lie between 80% and 90%, ranging from 81.26% for Encoding 1 
and 88.11% for Encoding 2 to 88.81% for Encoding 3. Considering the fact that in a 
theoretical analysis about 80% of the data was considered regular and that perfect 
predictions are beyond reach for the Dutch stress system, these figures indicate that 
the algorithm has picked up the regularities governing the field, and this for all three 
encodings. This does not mean, however, that the three encodings are equally good. 

First of all, the results for Encoding I are significantly lower than those for the two 
other encodings. An analysis of variance (ANOVA) performed over the pooled results 
per encoding shows a highly significant difference between the results for the three 
encodings (F(2~ 237) = 286.0978, p < .0001). Paired t-tests indicate that there is a highly 
significant difference between the results for Encoding 1 and the two other encodings 
(Encoding 1-Encoding 2: t = 20.1985, df = 158, p < .0001; Encoding 1-Encoding 
3: t = 22.7998, df = 158, p < .0001). In the same vein the difference between the 
results for the second and the third encodings were calculated, showing a significant 
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Figure  1 
General  compar i son  of success  rates. 

difference between the two, i.e., Encoding 3 yields significantly higher success rates 
than Encoding 2 (t = 2.2792, df = 158, p < .02). 

A comparison of the peak success scores in the three conditions reveals that En- 
coding 1 scores significantly less well than the other two (Encoding 1-Encoding 2: 
X 2 = 149.803, p < .01; Encoding 1-Encoding 3: X 2 = 181.955, p < .01), while the peak 
score for Encoding 3 is not significantly better than the peak score for Encoding 2 
(X 2 = 2.27, p > .05). This shows that the weight string encoding leads to significantly 
poorer results than the two other encodings. 

A second piece of evidence comes from an analysis of the performance of the 
classifier with regard to the specific target categories. In Table 4 the peak success 
scores for the individual target categories are displayed. 1~ 

11 In this table the highest success score per target category is displayed regardless of the number of 
training items involved to reach this peak score. For instance, the highest score for the target category 
'penultimate stress' is reached with 3000 items in the Encoding 1 condition, 3500 items in the 
Encoding 3 condition, and 4000 items in the Encoding 2 condition. Since we are not mainly concerned 
with an analysis of the learning curves in these various conditions, these differences will not be of any 
further concern. 
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Table 4 
Highest success rates for the three encodings relative to 
target categories. 

Encoding Number FIN PEN ANT 

1 74.90 93.60 53.19 
2 87.94 92.20 61.77 
3 89.00 92.93 62.05 

These results show that stress on the penultimate syllable, which is the case for 
52.96% in the corpus used for training, is learned best with peak success rates varying 
from 92.20% for Encoding 2 to 93.60% for Encoding 1. Stress on the antepenultimate 
syllable, which is found in only 7.46% of the lexicon used for training, seems much 
harder to predict, with peak success rates ranging from 53.19% for Encoding 1 to 
62.05% for Encoding 3. Stress on the final syllable (39.58% of the corpus) is predicted 
correctly in 74.9% of the cases for Encoding 1, in 87.94% for Encoding 2, and in 89.0% 
for Encoding 3. 

Thus, Encoding 1 was shown to lead to lower success rates in the global compar- 
ison of the experimental results. The data per target category provide the following 
picture. It is still the case that the peak performances of Encoding 2 and Encoding 
3 do not differ significantly for the three target categories. Moreover, they are both 
significantly better than Encoding 1 for stress on the final and the antepenultimate 
syllable. However, Encoding 1 yields equally high (even better) results than the two 
other encodings when the penultimate syllable is the target category. 

In order to fully appreciate the results for penultimate stress, we tested whether 
IBL shows a tendency to select the most frequent class as an appropriate response, and 
to overgeneralize that response, a phenomenon not uncommon for statistical learning 
algorithms. In Figure 2 we plot out the number of times penultimate stress (PEN), 
the most frequent stress pattern, is predicted by IBL (the total test set consists of 2575 
words with PEN as their category). The graph clearly shows that the three encodings 
have a tendency to generate more PEN responses than there are actual PEN targets 
in the test set from the very start (training set of 500 items). However, it also clearly 
shows that Encoding 1 does not behave as Encoding 2 and Encoding 3: in contrast 
with the two other encodings, the number of PEN predictions increases to arrive at 
more than 3000 PEN predictions from a training set size of 2000 items onward. This 
means that the algorithm has found a generalization, and overgeneralizes it because of 
the low discriminatory ability of the encoding used: at the same time that Encoding 1 
shows an increase of PEN answers, Encoding 2 and Encoding 3 seem to offer enough 
information to make more fine-grained distinctions, so that the overgeneralization of 
the PEN response is minimized. 

Another way of showing this same effect is by analyzing the confusion matrices. 
We selected the results of the ten-fold cross-validation experiments with a training set 
of 4000 items, i.e., the largest training set. Confusion matrices were drawn from these 
results (see Table 5). These matrices should be read as follows: the vertical dimension 
gives the target category and the horizontal dimension the predicted category. So, the 
first matrix (with the data from IBL trained with Encoding 1) shows in its upper row 
the classification of the words that have final stress (FIN). It appears that the classifier 
predicted this outcome correctly in 70.37% of the cases (upper left cell). However, 
IBL also predicted the outcome penultimate stress (PEN) in 25.26% of the words and 
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Number of PEN classifications. 

Table 5 
Confusion matrices for IBL trained with 4000 items 
(row percentages between brackets, rows represent 
targets, columns predicted classifications). 

Encoding 1 FIN PEN ANT 

FIN 1354 (70.37) 486 (25.26) 84 (4.37) 
PEN 105 (4.08) 2408 (93.51) 62 (2.41) 
ANT 45 (12.47) 138 (38.23) 178 (49.30) 

Encoding 2 FIN PEN ANT 

FIN 1692 (87.94) 194 (10.08) 38 (1.98) 
PEN 148 (5.75) 2369 (92.00) 58 (2.25) 
ANT 45 (12.47) 95 (26.31) 221 (61.22) 

Encoding 3 FIN PEN ANT 

FIN 1710 (88.88) 181 (9.41) 33 (1.71) 
PEN 152 (5.90) 2379 (92.39) 44 (1.71) 
ANT 53 (14.68) 84 (23.27) 224 (62.05) 

antepenult imate stress (ANT) in 4.37% of the words (two remaining cells in the top 
row). This means that 25.26% of the words that should receive final stress actually 
were classified as words  with penult imate stress. 
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If IBL performed without any misclassifications, the confusion matrix would look 
perfectly diagonal. But that is not the case: from the confusion matrices in Table 5 
it appears that for a training set of 4000 items, the rows representing stress on the 
penultimate syllable are almost perfect (no exorbitant migration to other cells on the 
same row). For the targets FIN and ANT (respectively, the first and third rows in 
the matrices) this does not hold to the same extent. Moreover, there is a remarkable 
difference between Encoding 1 on the one hand and Encodings 2 and 3 on the other 
hand with respect to the misclassification of words that have FIN and ANT as their 
target categories. Significantly, more items arrive in the PEN category when IBL uses 
Encoding 1 than when Encoding 2 or Encoding 3 are used. 

A third analysis that shows this overgeneralization looks as follows. We calculated 
Tanimoto's dichotomy coefficient (Gower 1985) for each individual target category. 
This statistic compares the number of words in the lexicon that have a particular target 
category, in this case PEN, with the predictions of IBL for those words. Thus it takes 
into account the proportion of agreements between the targets and the predictions. 
The measure is standardized by all possible patterns of agreements and disagreements. 
For the target category PEN the dichotomy coefficient equals .720 for Encoding 1, .815 
for Encoding 2, and .827 for Encoding 3. Hence, the overgeneralization of the PEN 
category is reflected in the lower value of the dichotomy coefficient for Encoding 1 as 
compared with Encoding 2 and Encoding 3. 

In this section we showed that an encoding of the input material using weight 
strings (Encoding 1) yields inferior results as compared with an encoding that uses 
a phonemic representation. This finding was substantiated both at the level of the 
general performance of the classifier and at the level of the individual target categories. 
In Encoding 1, the weight string representation was seen to find the most frequent 
pattern, viz. stress on the penultimate syllable, and this pattern was overgeneralized 
(with no recovery when more training items were used). This overgeneralization was 
not nearly as pronounced in Encodings 2 and 3. 

A comparison of Encoding 2 (rhyme projections) and Encoding 3 (full phonemic 
representation) shows that in general Encoding 2 yields slightly worse results than 
Encoding 3, but the peak performance of both encodings does not manifest a statisti- 
cally significant difference. 

In the following sections we will analyze the results of the classifier in view of the 
metrical analysis of the Dutch data presented in Section 2. 

4.3.2 Analysis of the Acquisition of General Tendencies. In Section 2.1 an overview 
of the stress patterns in our lexicon was provided. Three near exceptionless general- 
izations were pointed out. The first generalization, viz. stress is restricted to a three- 
syllable window from the right-hand word edge, could of course not be tested because 
of the format of the training material. The other two generalizations constitute a good 
test of how well IBL traced the main regularities governing the domain. A first test 
concerns the exceptionless generalization that a syllable containing a schwa is never 
stressed, and that words with a final schwa syllable get penultimate stress almost with- 
out exception. IBUs predictions for words with a final schwa syllable are presented in 
Table 6. 

IBL clearly caught the generalization that if the final syllable contains a schwa, 
stress lands on the penultimate syllable. More than 99% of these words are classified 
correctly. It (over)generalized this rule also to cases in which the schwa syllable has 
an empty onset, in which case stress is on the antepenultimate syllable instead of the 
penultimate. As can be appreciated from the results, the three encodings do not differ 
significantly. 
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Table 6 
Success scores for words with a final schwa syllable. 

Encoding Number Error Correct % Correct 

1 9 1316 99.32 
2 8 1317 99.40 
3 8 1317 99.40 

Table 7 
Prediction of antepenultimate stress relative to the content of the 
penultimate syllable. 

Structure of Penult Lexicon Encoding 1 Encoding 2 Encoding 3 

-VV- 313 255 264 297 
-VC- 7 4 6 0 
-a- 41 25 24 25 
-VXC- 0 0 0 2 

A second general tendency relates to the content of the penultimate syllable of 
words that receive antepenultimate stress. Antepenultimate stress may occur in a VV- 
penult but not in a VC-penultimate syllable. In Table 7 we show the number of words 
adhering to each pattern in the lexicon and the number of words that receive ante- 
penultimate stress in the three encoding conditions. 

IBL definitely captured this regularity in the data: in the three experimental con- 
ditions the number of ANT responses for a VC penult is extremely limited, while the 
number of ANT responses for a VV penult is the common case. 

These findings suggest that IBL detected the strong generalizations governing the 
domain. In the following section we will investigate whether this also holds for the 
cases distinguished in the metrical analysis. 

4.3.3 Analysis of Learning and Markedness. In the theoretical analysis we pointed 
out that approximately 80% of the data were regular according to a metrical analysis. 
Deviations from the regular pattern were handled by marking the deviant words in 
the lexicon. It was argued that only two exception features were required, viz. [-ex], 
for exceptions on the extrametricality condition, and LF for prespecified lexical feet. It 
was also pointed out that degrees of markedness followed from cumulation of these 
two features, yielding the following markedness scale: R(egular) < [-ex] or LF < [-ex] 
and LF < I(rregular). When we classify the words in our lexicon relative to the lexical 
marking they need and plot the results for each class, a highly illuminating picture 
(Figure 3) appears. 

A first observation that can be made from Figure 3 is that the regular cases (R) are 
learned almost perfectly using the three encodings. However, there is still an important 
difference among the success scores of Encoding 1 (99.24%) and Encoding 2 (92.88%) 
and Encoding 3 (92.90%). Encoding 1 yields a significantly higher success score than 
the two other encodings (p < .01 in the x2-test). In other words, an encoding in terms 
of syllable weight proves to be almost completely predictive for handling the regular 
cases, even without intermediate structures such as feet and word trees. 

Encodings 2 and 3 are less successful for the regular cases. However, for the 
marked categories, the weight string encoding (Encoding 1) does not even attain a 
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success score of 10%. Encodings 2 and 3 are far more successful in this respect. This is 
most  impressive for words  that are marked  as exceptional to extrametricali ty ([-ex]):  
performance increases f rom 0.89% for Encoding 1 to 75.2% for Encoding 2, and even 
to 78.1% for Encoding 3. Taken together, the results for the marked  classes of words  
explain the observed global performance differences between Encoding I and the other  
two encodings. 

As for the comparison of Encodings 2 and 3, Figure 3 shows that Encoding 3 
consistently scores higher, but  none of the comparisons of the success scores yields a 
statistically significant difference. 

An analysis of the learning results for Encodings 2 and 3 from the perspective of 
the metrical markedness  scale reveals an interesting correspondence.  The less marked  
a class of words  is according to the metrical analysis, the better the class is learned in 
the experiments:  

Markedness  Scale: R < [ -ex]  or LF < LF, [ - ex ]  < I 
Learning Performance R < [ -ex]  < LF < LF, [ -ex]  < 112 

12 All comparisons reveal a statistically highly significant difference, p < .01, as measured by the x2-test. 
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Table 8 
Results for VV-final words relative to their metrical analysis. 

Syllable Stress Marking # Words Encoding 2 Encoding 3 
Pattern 

VV-VV PEN R 201 96.52 89.55 
FIN [-ex], LF 64 56.25 54.69 

VC-VV PEN R 188 98.94 97.34 
FIN [-ex], LF 40 75.00 80.00 

VXC-VV PEN R 17 100 100 
FIN [-ex], LF 3 66.67 66.67 

-VV-VV PEN R 212 75.47 81.60 
ANT LF 124 66.94 73.39 
FIN [-ex], LF 91 52.75 59.34 

-VC-VV PEN R 126 92.06 96.83 
FIN [-ex], LF 34 67.65 64.71 

-VXC-VV PEN R 1 100 100 
FIN [-ex], LF 2 100 100 

Hence, the regular cases are learned best, while the success rate for the irregular 
words is lowest. In between, the words that require one single marking are learned 
better than those that require two markings. Thus, the markedness relations between 
those classes of words are reflected in the success scores. In the metrical analysis, no 
predictions are made about the relative degree of markedness of [-ex] versus LE Yet 
in our experiments Encoding 2 and Encoding 3 agree that [-ex] words are easier to 
learn than LF words. 

These results lead us to conclude that there is a close overall correspondence 
between markedness as a function of the number of lexical markings needed for par- 
ticular classes of words and the learnability of those words: for unmarked classes of 
words, the learning algorithm reaches a superior success score than for the marked 
classes, and performance decreases as the number of markings increases. 

Does this close correspondence between markedness in the metrical framework 
and learnability in the computational context also hold when we scrutinize the results 
for specific types of words? To examine this in detail, we will look at different types 
of words as was done in Tables 1 and 2. 

For the o-final words success rates for the regular pattern are 99.39% for Encoding 2 
and 99.47% for Encoding 3. The handful of exceptions that require full lexical marking 
(I) were all wrongly classified as regular (R), so that for superlight syllables a drastic 
difference in performance exists between words on different ends of the markedness 
scale. 

For words ending in superheavy syllables too, alternation exists only between 
R(egular) and I(rregular) patterns. The regular ones (final stress) are predicted with 
96.80% accuracy for Encoding 2 and 96.35% for Encoding 3. The irregular patterns 
reach success scores of 55.83% for Encoding 2 and 61.67% for Encoding 3, again yield- 
ing a highly significant difference. 

For words ending in light or heavy syllables, the situation is slightly more in- 
volved; here the R(egular) pattern alternates with different kinds of marked patterns, 
depending on the form of the prefinal syllable. In the following tables we select 
those types from Table 1 in which the regular pattern alternates with cases that need 
[-ex], LF, or a combination of both. Thus, in Table 8 and Table 9 alternations between 
R(egular) and I(rregular) are left out. 
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Table 9 
Results for VC-final words relative to their metrical analysis. 

Syllable St ress  Marking # Words Encoding 2 Encoding 3 
Pattern 

VV-VC PEN R 177 75.71 75.71 
FIN [-ex] 134 78.36 79.10 

VC-VC PEN R 135 77.78 79.26 
FIN [-ex] 101 80.20 81.19 

VXC-VC PEN R 8 50.00 62.50 
FIN [-ex] 5 60.00 80.00 

-VVoVC ANT R 170 67.06 63.53 
PEN LF 64 61.19 69.84 
FIN [-ex] 67 73.02 68.66 

-VC-VC PEN R 36 88.24 88.23 
FIN [-ex] 12 66.67 91.67 

When we look at the data for W-final  words, the correspondence between relative 
markedness and learnability holds across the board. For bisyllabic words, performance 
for the regular case varies between 90 and 100%, whereas final stress, which needs 
two exception features, is predicted with success rates ranging from 55 to 80%. The 
differences between both categories are statistically significant in each case ( p < .01 in 
the X 2 test). For trisyllabic and longer words, the -VV-VV-type is the most interesting 
one, because the regular pattern (PEN) alternates with two different marked patterns, 
i.e. ANT, which results from a lexical foot and FIN, which needs both LF and [-ex]. 
For both Encoding 2 and Encoding 3 the regular pattern is learned best, followed by 
the one that needs a single lexical marking. The most marked pattern is the hardest 
to predict. For -VC-VV words, the regular case is once again learned better than the 
marked one. Thus, the results for individual VV-final word types corroborate the cor- 
respondence between markedness from a theoretical perspective and ease of learning 
for the algorithm. 

For the VC-final words this correspondence does not seem to hold. The marked 
pattern [-ex] is predicted better than the regular pattern in most cases. This might be 
related to the fact that unlike with the VV-final words, the contrast between regular 
and marked involves only a single lexical marking. Yet, the high success rate for 
final stress ([-ex] words), which was already pointed out in Section 4.3.1, merits 
further discussion, because it seems to imply that the phonemic encodings permit the 
algorithm to capture relevant generalizations governing the presence of [-ex]. 

Closer scrutiny of the results reveals that the high performance for [-ex] words can 
be attributed to the fact that the algorithm has discovered subregularities in the data 
that are tied to segmental information and hence cannot be captured using syllable 
weight alone. For instance, the high success scores for final stress in VC-final words is 
due to a considerable extent to the fact that almost half of these words (48%) h a v e / ~ /  
in their final syllable. Success rates for predicting final stress for these words are 92.90% 
for Encoding 2 and 95.74% for Encoding 3, while the success rates for this group as a 
whole (i.e., including those with PEN and ANT stress) are 82.82% for Encoding 2 and 
84.66% for Encoding 3. The IBL algorithm also seems to have discovered the more 
general subregularity in the lexicon with respect to words ending in /~ / ,  viz. they 
almost unanimously prefer final stress (88% vs. 9.53% PEN and 2.46% ANT on a total 
of 325 words). This strikingly homogeneous behavior of words w i t h / ~ / i n  their final 
syllable is reflected in a success rate of 88% for Encoding 2 and 89.53% for Encoding 3. 
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For the regular (superheavy) words in this class, the success rate was as high as 93.21% 
for Encoding 2 and 94.44% for Encoding 3. 

While this illustrates how the segmental information in Encodings 2 and 3 enables 
the algorithm to learn marked patterns, these subregularities sometimes cut across 
the metrical classification based on syllable weight. This phenomenon can also be 
illustrated for other types of words: words with / e : /  in their final syllable have a 
strong preference for final stress (96.67%), irrespective of whether the final syllable is 
closed (i.e. superheavy, and hence R) or open (and hence requiring both LF and [-ex] 
in the theoretical analysis). The regular words are stressed with 97.62% accuracy for 
both encodings and the marked ones with approximately 90%, yielding a total success 
rate of 94.29% for Encoding 2 and 94.76% for Encoding 3. 

The breadth of the ability to trace subregularities in the data based on segmental 
information is further illustrated by the following example: 25% of VC-final words 
h a v e / u : / i n  their final syllable. Of these words 48.08% have stress on the penultimate 
syllable and 44.23% have stress on the antepenultimate syllable. Yet the success rate 
for this class of words is 81.54% for Encoding 2 and 83.46% for Encoding 3, which 
is more than expected given the distribution of target categories. It appears (again) 
that the algorithm discovered finer distinctions within this set of words. A particularly 
striking one concerns Latinate words i n / i : u : m / ( i . e . , / i : / i n  the penultimate syllable 
and / u : m / i n  the final syllable). These words have antepenultimate stress in 95.24% 
of the cases, and a success rate of 95.24% (both encodings) for this type of words 
indicates that the algorithm has successfully captured this minor generalization. 

In summary, we found a correspondence between markedness in the metrical 
framework and ease of learning by the algorithm. This correspondence was first ob- 
served on a global level, where the regular cases in the metrical analysis were learned 
more accurately than the marked cases for which the metrical analysis proposes lex- 
ical markings. The correspondence was also found to a large degree at the level of 
individual word types. 

4.3.4 Summary of Results. The experiment set out to investigate the ability of IBL 
to acquire main stress assignment in Dutch monomorphemic words. The system was 
largely successful in this enterprise: its general performance attained a success score of 
almost 90%. The experimental findings clearly indicate that the major generalizations 
in the domain were captured (i) although the learning material was noisy to a consid- 
erable extent, and (ii) without using the tree-building operations deemed necessary in 
learning theories in the framework of metrical phonology. 

In order to investigate the effects of the knowledge provided to IBL in the train- 
ing examples, three encodings were used in the experiment, varying in the degree of 
'theoretical bias.' The encoding incorporating the metrical notion 'weight,' as repre- 
sented in the weight string encoding, was less successful overall than the encodings 
in terms of the actual phonemic content of the words. This finding shows that im- 
portant information was lost in the abstraction of syllable weights from the phonemic 
content. The relative poverty of the weight string representation, which is interpreted 
as necessary and sufficient for stress assignment in metrical phonology, resulted in an 
overprediction of the most frequent pattern. The phonemic encodings, which make 
less or no abstraction of the segmental details, were less prone to overgeneralize the 
most frequently observed pattern in the input. 

The performance of the algorithm shows some interesting relationships with a met- 
rical analysis. On a general level, the success rates of IBL correlated with a markedness 
scale that was defined in terms of the idiosyncratic marking of words. Regular words 
from a metrical perspective do not require specific marking, and they were learned 
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very successfully. Irregular words, the other extreme on the markedness scale, showed 
the lowest success rates. In between these two extremes, words that require one fea- 
ture are more easily learned than words that require two features. This correspondence 
between relative markedness and relative ease of acquisition is consistent with Gupta 
and Touretzky's (1994) results. 

When tracing the correspondence between relative markedness and ease of learn- 
ing down to the level of individual types of words, the analysis was quite successful 
again: for o-final, VXC-final and VV-final words, the stress pattern of regular words 
is more accurately predicted than the stress pattern of marked words. Moreover, the 
more marked a type of word is in metrical terms, the lower the success rate for that 
type turns out to be. 

The sole exception to this correspondence was the class of VC-final words. For 
these words, a marked pattern, viz. the [-ex] type, was found to be as easily (or even 
more easily) learned than the regular type. To explain this deviant finding, the process- 
ing of the system was traced. It turned out that the algorithm detected subregularities 
in the data. These subregularities could be defined in terms of characteristic segments 
in particular positions in the word, or clusters of segments. This is why VC-words 
with final stress that are marked in the metrical analysis actually turn out to be fairly 
regular, as judged from the learning results. 'Markedness' in metrical phonology is 
defined relative to an analysis in which segmental information is abstracted away in 
the derivation of syllable weight. But the subregularities detected by the algorithm 
were shown to be defined in terms of segmental information, especially vowel quality. 
Moreover, they cut across the metrical classification in terms of syllable weight, and, 
hence, markedness as conceptualized here. 

The finding that, on the one hand, a metrical analysis reveals the dominant patterns 
in the data, but, on the other hand, does not capture important subgeneralizations in 
the domain, may be considered as an indication that metrical analyses should pay 
more attention to segmental information than is the case at present. Our research 
shows some directions in which such a quest can proceed. 

5. Conc lus ion  

Dresher and Kaye (1990:146) argue that "A rich and highly structured theory of UG 
[Universal Grammar] is otiose if the same results can be achieved by simpler means." 
What might these alternatives be? A possible alternative is a data-oriented one, which 
can be described as follows: it appears that stress patterns are sensitive to sequences 
of syllables and syllable weights. We could simply map strings of weighted syllables 
(weight strings) into sequences of stresses (stress strings). In this way a record would 
be kept of the stress strings associated with each weight string. This alternative was 
suggested by Church (1992) 13 and by Dresher and Kaye (Dresher and Kaye 1990; 
Dresher 1992). Dresher (1992) concludes the discussion of this alternative by stating 
that it is empirically inadequate: "It would be unable to project its grammar to assign 
stress to weight strings not yet encountered" (Dresher 1992: 301). 

In this paper we investigated a learning device that incorporates the very simple 
data-driven alternative described above. The memory of an Instance-Based Learning 
(IBL) system is a kind of table in which representations of words are associated with 

13 Church (1992), in a reaction to Dresher (1992) proposes lookup in a table of syllable weight strings 
(associated with their stress string) as an alternative approach. However, he glosses over the problem 
of ambiguity and noise, and of how to arrive at a syllable weight representation on the basis of the 
spelling of words. 
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stress assignments. However, by using simple similarity-based reasoning, the algo- 
rithm can generalize beyond the data on which it was trained. 

We showed that IBL was able to acquire a considerable portion of the regularities 
governing the stress system of Dutch. This finding is in agreement with a similar en- 
terprise undertaken by Gupta and Touretzky (1994), who used a simple perceptron as 
their data-driven approach, and shows that the tree-building operations proposed in 
learning theories for metrical phonology are not necessary for learning stress assign- 
ment. 

We also investigated two other aspects of the learning process. First of all, in the 
learning experiments described in the literature thus far, only stereotyped representa- 
tions of the stress patterns of languages have been used as learning material. In this 
study we used a lexicon of 4868 attested monomorphemes. This lexicon showed all 
the general characteristics of the intricate Dutch stress system, but it also contained a 
fair amount of noise: exceptional words from a metrical point of view as well as plain 
irregular cases. It was shown that IBL discovered the regularities despite the noise. 

Secondly, we investigated the effect of using different representations for the train- 
ing material of the learner on the learning results. The input encodings reflected the 
amount of 'theoretical bias' or a priori knowledge that a learner could be provided 
with. More specifically, a weight-string encoding is considered to be necessary and suf- 
ficient in the literature for learning a quantity-sensitive language such as Dutch. We 
contrasted such an encoding of our learning material with an encoding that consisted 
of rhyme projections, and with a plain phonemic representation (that included syllable 
boundaries). It turned out that the phonemic representations yield significantly better 
results than the encoding in terms of syllable weights. This implies that a data-driven 
approach to the task of acquiring main stress assignment is feasible even without the 
a priori knowledge incorporated in weight-strings. 

Taken together, our results suggest that the representations and operations speci- 
fied by metrical theory may be neither necessary nor sufficient for learning stress as- 
signment. More specifically, information about segmental content may warrant more 
attention in metrical phonology. More generally, the results weaken Dresher and Kaye's 
(1990) argument for the necessity of a principles and parameters approach to the ac- 
quisition of stress. 
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