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space and generates another sequence of target words from the vector. In those NMT models,
sentences are simply treated as sequences of words without any internal structure. In this
article, we focus on the role of the syntactic structure of source sentences and propose a novel
end-to-end syntactic NMT model, which we call a tree-to-sequence NMT model, extending a
sequence-to-sequence model with the source-side phrase structure. Our proposed model has an
attention mechanism that enables the decoder to generate a translated word while softly aligning
it with phrases as well as words of the source sentence. We have empirically compared the
proposed model with sequence-to-sequence models in various settings on Chinese-to-Japanese
and English-to-Japanese translation tasks. Our experimental results suggest that the use of
syntactic structure can be beneficial when the training data set is small, but is not as effective as
using a bi-directional encoder. As the size of training data set increases, the benefits of using a
syntactic tree tends to diminish.
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1. Introduction

Machine translation has traditionally been one of the most complex language processing
tasks, but recent advances of neural machine translation (NMT) make it possible to
perform translation using a simple end-to-end architecture. In the Encoder-Decoder
model (Cho et al. 2014b; Sutskever, Vinyals, and Le 2014), a recurrent neural network
(RNN) called an encoder reads the whole sequence of source words to produce a fixed-
length vector, and then another RNN called a decoder generates a sequence of target
words from the vector. The Encoder-Decoder model has been extended with an attention
mechanism (Bahdanau, Cho, and Bengio 2015; Luong, Pham, and Manning 2015), which
allows the model to jointly learn soft alignments between the source words and the
target words. Recently, NMT models have achieved state-of-the-art results in a variety
of language pairs (Wu et al. 2016; Zhou et al. 2016; Gehring et al. 2017; Vaswani et al.
2017).

In this work, we consider how to incorporate syntactic information into NMT.
Figure 1 illustrates the phrase structure of an English sentence, which is represented
as a binary tree. Each node of the tree corresponds to a grammatical phrase of the
English sentence. Figure 1 also shows its translation in Japanese. The two languages
are linguistically distant from each other in many respects; they have different syntactic
constructions, and words and phrases are defined in different lexical units. In this
example, the Japanese word “ ” is aligned with the English word “movie.” The
indefinite article “a” in English, however, is not explicitly translated into any Japanese
words. One way to solve this mismatch problem is to consider the phrase structure of
the English sentence and align the phrase “a movie” with the Japanese word “ .”
The verb phrase of “went to see a movie last night” is also related to the eight-word
sequence “ .”

Since Yamada and Knight (2001) proposed the first syntax-based alignment model,
various approaches to leveraging the syntactic structures have been adopted in statis-
tical machine translation (SMT) models (Liu, Liu, and Lin 2006). In SMT, it is known
that incorporating source-side syntactic constituents into the models improves word
alignment (Yamada and Knight 2001) and translation accuracy (Liu, Liu, and Lin 2006;
Neubig and Duh 2014). However, the aforementioned NMT models do not allow one to
perform this kind of alignment.

To take advantage of syntactic information on the source side, we propose a syn-
tactic NMT model. Following the phrase structure of a source sentence, we encode the

Figure 1
The phrase structure of the English sentence “Mary and John went to see a movie last night” and
its Japanese translation.
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sentence recursively in a bottom–up fashion to produce a sentence vector by using a
tree-structured recursive neural network (RvNN) (Pollack 1990) as well as a sequen-
tial RNN (Elman 1990). We also introduce an attention mechanism to let the decoder
generate each target word while aligning the input phrases and words with the output.

This article extends our conference paper on tree-to-sequence NMT (Eriguchi,
Hashimoto, and Tsuruoka 2016) in two significant ways. In addition to an English-
to-Japanese translation task, we have newly experimented with our tree-to-sequence
NMT model in a Chinese-to-Japanese translation task, and observed that a bi-directional
encoder was more effective than our tree-based encoder in both tasks. We also provide
detailed analyses of our model and discuss the differences between the syntax-based
and sequence-based NMT models. The article is structured as follows. We explain the
basics of sequence-to-sequence NMT models in Section 2 and define our proposed tree-
to-sequence NMT model in Section 3. After introducing the experimental design in
Section 4, we first conduct experiments on two different tasks of {Chinese, English}-
to-Japanese translation on a small scale and a series of analyses to understand the
underlying key components in our proposed method in Section 5. Moreover, we report
large-scale experimental results and analyses in the English-to-Japanese translation task
in Section 6. In Section 7, we survey recent studies related to the syntax-based NMT
models and conclude in Section 8 by summarizing the contributions of our work.

2. Sequence-to-Sequence Neural Machine Translation Model

2.1 Model Description

The sequence-to-sequence NMT models are built based on the idea of an Encoder-
Decoder model, where an encoder converts each input sequence xxx = (x1, x2, · · · , xn) into
a vector space, and a decoder generates an output sequence yyy = (y1, y2, · · · , ym) from
the vector, following the conditional probability of Pθ(yj|yyy<j,xxx). Here n is the input
length, m is the output length, and θ denotes the model parameters. Figure 2 shows
an illustration of the sequence-to-sequence NMT model.

The encoder computes the forward i-th hidden state
−→
hhh s

i ∈ Rd×1 by using an RNN
as follows:

−→
hhh s

i =
−−−→
RNNenc

(−→
hhh s

i−1, Emb(xi)
)

(1)

hj
~

hn hjh2h1

dj

…
…

…

αj(i)

yj

…
…h1s s s t t

t

Figure 2
The overview of the sequence-based neural machine translation model.
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where
−→
hhh s

i−1 ∈ Rd×1 and Emb(xi) ∈ Rd×1 denote the previous hidden state and the word
embedding of the i-th input word xi, respectively. Applying the RNN function until the
end of the source sequence, we obtain the last hidden vector

−→
hhh s

n representing a source
sentence vector. In addition to the forward RNN units, we similarly compute backward
RNN units as follows:

←−
hhh s

i =
←−−−
RNNenc

(←−
hhh s

i+1, Emb(xi)
)

(2)

where we have another set of the backward RNN parameters. When using a bi-
directional encoder in NMT models, the i-th source hidden state HHHi ∈ R2d×1 is computed
as the concatenation of the forward and backward RNN units, which is denoted by
HHHi = [

−→
hhh s

i ;
←−
hhh s

i ]. We consider the i-th forward hidden state
←−
hhh s

i as the i-th source hidden
state hhhs

i , when the encoder is implemented as a forward RNN-based encoder.
The RNN units, RNNenc in Equation (1), are often implemented with gated recurrent

units (GRUs) (Cho et al. 2014b) or long short-term memory (LSTM) units (Hochreiter
and Schmidhuber 1997; Gers, Schmidhuber, and Cummins 2000), and we use LSTM
units in this article. Each LSTM unit contains four types of gates and two different types
of hidden states, that is, a hidden unit hhht ∈ Rd×1 and a memory cell ccct ∈ Rd×1 at the time
step t.

We also compute the j-th hidden state hhht
j ∈ Rd×1 ( j ≥ 2) in the decoder by using

another RNN as follows:

hhht
j = RNNdec

(
hhht

j−1, Emb(yj−1)
)

(3)

where hhht
j−1 ∈ Rd×1 and Emb(yj−1) ∈ Rd×1 are the previous hidden state and the word

embedding of the (j− 1)-th output word yj−1, respectively. We initialize the hidden state
hhht

1 and the cell unit ccct
1 with the last hidden state and the cell unit from the encoder

(hhht
1 = hhhs

n and ccct
1 = cccs

n).
When generating the outputs from the hidden states, the decoder is allowed to

access the hidden states in the encoder and computes a context vector from the source
hidden states and attention weights by the attention mechanism (Bahdanau, Cho, and
Bengio 2015; Luong, Pham, and Manning 2015). The context vector dddj ∈ Rd×1 at the time
step j is computed as follows:

dddj =
n∑

i=1

αααj(i)hhh
s
i (4)

αααj(i) =
exp(hhhs

i · hhh
t
j )

n∑
k=1

exp(hhhs
k · hhh

t
j )

(5)

where hhhs
i · hhh

t
j is the inner product of hhhs

i and hhht
j and is utilized as the similarity score

between the vectors. αααj(i) denotes the weight score of how relevant the i-th source state
is to the word prediction at the j-th target state.
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We prepare a new hidden state h̃hh
t
j ∈ Rd×1 to compute the j-th output conditional

probability by using the softmax function as follows:

P(yj|yyy<j,xxx) = softmax
(

WWW1h̃hh
t
j + bbb1

)
(6)

h̃hh
t
j = tanh

(
WWW2

[
hhht

j ;dddj

]
+ bbb2

)
(7)

where WWW1 ∈ R|Vt|×d, WWW2 ∈ Rd×2d, bbb1 ∈ R|Vt|×1, and bbb2 ∈ Rd×1 are weight matrices and
bias vectors, respectively, and |Vt| stands for the target vocabulary size. [hhht

j ;dddj] ∈ R2d×1

is the concatenation of hhht
j and dddj. Introducing the input-feeding method proposed by

Luong, Pham, and Manning (2015) to incorporate state h̃hh
t
j into the RNN states, we

replace the decoder function in Equation (3) with the following equation:

hhht
j = RNNdec

([
hhht

j−1; h̃hh
t
j−1

]
, Emb(yj−1)

)
(8)

where [hhht
j ; h̃hh

t
j−1] ∈ R2d×1 is a concatenated vector. We also have confirmed the effective-

ness of the input-feeding method in our preliminary experiments.

2.2 Training Model Parameters

We use a sentence-level parallel corpus Dtrain = {(xxx1,yyy1), ...., (xxxN,yyyN )} to train the NMT
model parameters θθθ. The objective function of the NMT models is defined as the sum of
the log-likelihood values of the translation pairs as follows:

J(θθθ) = 1
|D|

∑
(xxx,yyy)∈D

log P(yyy|xxx) (9)

= 1
|D|

∑
(xxx,yyy)∈D

m∑
j=1

log P(yj|yyy<j,xxx) (10)

The model parameters θθθ are learned through stochastic gradient descent (SGD).

3. Tree-to-Sequence Neural Machine Translation

The tree-to-sequence NMT model is a variant of the Encoder-Decoder model. On the
source side, a tree-based encoder is constructed to represent the syntactic structure
as well as sequential data. The tree-based encoder is a hybrid of the sequence-based
encoder and a binary tree-based encoder modeled, respectively, with the RNN and an
RvNN. Whereas the RNN-based encoder computes the uni-directional information on
input sentences along the time series and discards the explicit syntactic information,
the tree-based encoder directly leverages the syntactic structures of the sentences to
compute phrase vectors. The overview of the tree-to-sequence NMT model is shown in
Figure 3.
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Figure 3
The overview of the tree-based neural machine translation model.

3.1 Tree-Based Encoder

The source sentence xxx = (x1, x2, · · · , xn) is parsed to obtain a binary parse tree by an
external parser at a preprocessing step, as shown in Figure 1. Following the parse tree,
the tree-based encoder calculates the k-th phrase hidden state hhh(phr)

k ∈ Rd×1 by using an
RvNN function as follows:

hhh(phr)
k = RvNN(hhhleft

k ,hhhright
k ) (11)

where hhhleft
k ∈ Rd×1 and hhhright

k ∈ Rd×1 denote the hidden states of the left and right child

nodes of the parent node hhh(phr)
k , respectively. As the i-th leaf node hhhleafi corresponds to

the i-th input word, the leaf nodes are initialized with the sequential units (hhhleafi = hhhs
i )

computed by the sequence-based encoder. Starting from the leaf node vectors, we re-
cursively use the RvNN function until the root node of the parse tree hhh(phr)

root is computed.
Consequently, we have two sentence vectors to represent the source-side input sentence:
hhh(phr)

root and hhhs
n.

We use the Tree-LSTM units proposed by Tai, Socher, and Manning (2015) in place
of the RvNN units in Equation (11). The Tree-LSTM unit is a generalized LSTM unit that
holds the k-th phrase hidden state hhh(phr)

k ∈ Rd×1 for the k-th parent node computed as
follows:

iiik = σ(UUU(i)
l hhhleft

k +UUU(i)
r hhhright

k + bbb(i)) (12)

fff l
k = σ(UUU(fl )

l hhhleft
k +UUU

(fl)
r hhhright

k + bbb(fl )) (13)

fff r
k = σ(UUU(fr )

l hhhleft
k +UUU(fr )

r hhhright
k + bbb(fr )) (14)

oook = σ(UUU(o)
l hhhleft

k +UUU(o)
r hhhright

k + bbb(o)) (15)
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c̃cck = tanh(UUU(c̃)
l hhhleft

k +UUU(c̃)
r hhhright

k + bbb(c̃)) (16)

ccc(phr)
k = iiik � c̃cck + fff left

k � cccleft
k + fff right

k � cccright
k (17)

hhh(phr)
k = oook � tanh(ccc(phr)

k ) (18)

where iiik, fff l
k, fff r

k, oooj, c̃ccj ∈ Rd×1 denote the input gate, the forget gates for the left and right
child units, the output gate, and a state for updating the memory cell, respectively.
cccleft

k and cccright
k are the memory cells for the left and right child units, and UUU(·)

(·) ∈ Rd×d

and bbb(·) ∈ Rd×1 represent a weight matrix and a bias vector, respectively. Unlike the
conventional sequence-to-sequence models, because the tree-based encoder explicitly
models the corresponding phrase nodes represented as a syntactic tree, our proposed
model is expected to be more sensitive about not only an input sentence but also its
structure, which may be helpful to resolve ambiguity in the sentence.

Our proposed tree-based encoder is a natural extension of the conventional sequen-
tial encoder because Tree-LSTM is a generalization of the chain-structured LSTM (Tai,
Socher, and Manning 2015). Our encoder differs from the original Tree-LSTM in the
calculation of the LSTM units for the leaf nodes, where we first compute word-level
encoding with a (uni-directional) sequential encoder and then use the encodings as leaf
nodes that are the inputs for the Tree-based encoder for phrase nodes. The motivation
is to construct the phrase nodes in a context-sensitive way, which, for example, allows
the model to compute different representations for multiple occurrences of the same
word in a sentence because the sequential word-level encodings are computed in the
context of the previous units. This ability contrasts with the original Tree-LSTM units,
in which the leaves are composed only of the word embeddings without any contextual
information.

3.2 Decoding Method with Tree-Based Encoder

Introducing the tree-based encoder to the sequence-based NMT model, we have two
types of last hidden states hhhs

n and hhh(phr)
root computed from the sequence-based encoder

and the tree-based encoder, respectively. The initial hidden state hhht
1 of the decoder is

computed by using another Tree-LSTM function formulated as Equations (12)–(18) and
its parameters as follows:

hhht
1 = TreeLSTM

(
hhhs

n,hhh(phr)
root

)
(19)

When a sentence fails to be parsed at the preprocessing step, we compute only the
sequential hidden units and set hhh(phr)

root to a zero vector (hhh(phr)
root = 000). The tree-based encoder

leverages a parse tree if a sentence can be parsed; otherwise, the tree-based encoder
works equally as the existing sequence-based encoder.

After obtaining the j-th hidden state hhht
j in the decoder following Equation (8), we

introduce a new attention scoreααα(tree)
j (i) for the tree-based encoder. Here, the j-th context
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vector ddd(tree)
j is calculated as follows:

ddd(tree)
j =

n∑
i=1

ααα
(tree)
j (i)hhh(leaf )

i +
2n−1∑

i=n+1

ααα
(tree)
j (i)hhh(phr)

i (20)

ααα
(tree)
j (i) =

exp(hhhi · hhht
j )

2n−1∑
l=1

exp(hhhl · hhht
j )

(21)

where hhhi denotes the i-th source hidden state, including the sequential hidden state
hhhs

i = hhh(leaf )
i (i < n + 1) and the i-th non-leaf phrase hidden state hhh(phr)

i (i > n). Note that
a binarized tree with n leaf nodes has (n− 1) non-leaf nodes. This attention mechanism
lets the decoder access both of the sequential hidden states and the syntactic hidden
states of the hybrid encoder, and the tree-to-sequence model learns which type of units
is highly weighted through training. Similar to the sequence-to-sequence NMT model
introduced in Section 2, we compute the j-th output conditional probability, following
Equations (6) and (7). Here, the context vector of dddj is replaced with ddd(tree)

j computed by
Equation (20).

3.3 Sampling-Based Approximation to the NMT Models

The computational cost in the softmax layer in Equation (6) occupies most of the training
time because the cost increases linearly with the size of the vocabulary. A variety of
approaches addressing this problem have been proposed, including negative sampling
methods such as BlackOut sampling (Ji et al. 2016) and noise-contrastive estimation
(NCE) (Gutmann and Hyvärinen 2012), and binary code prediction (Oda et al. 2017).
BlackOut has been shown to be effective in training RNN language models even with
one-million-word vocabulary on CPUs.

The NMT models are trained as RNN-based conditional language models in Equa-
tion (10), and we apply the BlackOut sampling technique to the NMT models. We
redefine the objective function as follows:

J(θθθ) = 1
|D|

∑
(xxx,yyy)∈D

|yyy|∑
j=1

log p̃( yj | yyy<j,xxx) +
∑
k∈SK

(
1− log p̃( yk | yyy<j,xxx)

) (22)

p̃( yj | yyy<j,xxx) =
qj exp(sj

j)

qj exp(sj
j) +

∑
k∈SK

(
qk exp(sk

j )
) (23)

where |yyy| denotes the length of each target sentence yyy, and y k and SK denote a negative
sample word and a smaller vocabulary that holds K negative samples drawn from the
original large vocabulary (|Vt|) by using a sampling distribution (Q(y)). The j-th output
word yj is not included in SK. qj is computed as qj ∝ 1

Q(yj )
. sk

j represents the score for the
k-th word in the vocabulary |Vt| at the j-th step. At each word prediction step in the
training, BlackOut estimates the conditional probability in Equation (6) for the target
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word and K negative samples using a weighted softmax function. sssk
j is computed as

follows:

sk
j = wwwkh̃hh

t
j + bk (24)

where wwwk and bk are the k-th row of WWW1 and the k-th element of bbb1. The negative samples
are drawn from the unigram distribution raised to the power β ∈ [0, 1] (Mikolov et al.
2013):

Q(w) ∝ pβunigram(y) (25)

The unigram distribution pβunigram(y) is estimated on the training data and β is a hy-
perparameter. BlackOut is closely related to NCE (Gutmann and Hyvärinen 2012) and
achieves better perplexity scores than the original softmax and NCE in RNN language
models. The advantages of Blackout over the other methods are discussed in Ji et al.
(2016). When using BlackOut, the original full softmax formula can be applied at test
time, and there are no additional model parameters for BlackOut.

4. Experimental Design

4.1 Experimental Settings

Chinese-to-Japanese. We used the Asian Scientific Paper Excerpt Corpus (ASPEC)
(Nakazawa et al. 2016) for the Chinese-to-Japanese translation provided by the Work-
shop of Asian Translation 2015 (WAT2015). Following the official preprocessing steps,1

we tokenized the data by using KyTea (Neubig, Nakata, and Mori 2011) as a Japanese
segmenter and Stanford Segmenter as a Chinese word segmenter.2 We discarded a sen-
tence pair when either of the sentences had more than 50 words. We used the Stanford
Parser (Levy and Manning 2003)3 as an external parser and parsed the Chinese sen-
tences. We did not use any more specific information output by the parsers such as
phrase labels. If a sentence fails to be parsed, it is re-parsed by a simpler probabilistic
context-free grammar parser. We used a script4 to convert the parse trees to their
corresponding binary trees because our tree-to-sequence model assumes binary trees as
inputs. We used the first 100,000 parallel sentences from the training data to investigate
the effectiveness of the proposed NMT model. The vocabularies were composed of the
words appearing in the training data more than or equal to N times. We set N = 2 for
Japanese and N = 3 for Chinese. The out of vocabulary words were mapped to the
special token “unk,” and we inserted another special symbol “EOS” at the end of all
the sentences. The vocabulary sizes of Chinese and Japanese are 29,011 and 32,640,
respectively. Table 1 shows the statistics on the data set of the Chinese-to-Japanese
translation task.

1 http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/automatic_evaluation_systems/tools.html,
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/automatic_evaluation_systems/
automaticEvaluationZH.html.

2 We used a FULL SVM model of KyTea (jp-0.4.2-utf8-1.mod) and a Chinese Penn Treebank model of
Stanford Segmentor version 2014-06-16 as suggested in WAT 2015.

3 The Stanford Parser version is 2017-06-09 with a Chinese-Factored model.
4 We used TreeBinarizer.java available in https://github.com/stanfordnlp/CoreNLP.
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Table 1
Statistics on the Chinese-to-Japanese data set in the ASPEC corpus. The number of “Sentences”
shows the sum of the “Parsed (Chinese-Factored)” sentences and the “Parsed (PCFG)” sentences.

Sentences Parsed (Chinese-Factored) Parsed (PCFG)
Train 100,000 95,647 4,353
Development 2,090 1,779 311

Table 2
Statistics on the English-to-Japanese data set in ASPEC corpus. The number of “Sentences” is
equal to the total number of the “Parsed successfully” sentences and the “Parsed
unsuccessfully” sentences.

Sentences Parsed successfully Parsed unsuccessfully
Large Train 1,353,635 1,346,946 6,689
Small Train 100,000 99,541 459
Development 1,790 1,779 11
Test 1,812 1,801 11

English-to-Japanese. We used the ASPEC corpus (Nakazawa et al. 2016) for the English-
to-Japanese translation task provided by WAT2015. We used Enju (Miyao and Tsujii
2008), a head-driven phrase structure grammar (Sag, Wasow, and Bender 2003) parser
for English, and the tokenization in English follows the Enju parser.5 The English corpus
was lowercased. We followed the official preprocessing for the Japanese corpus as in
the Chinese-to-Japanese experimental settings. We used Enju only to obtain a binary
phrase structure for each source-side sentence. We removed the sentence pairs in which
either of the sentences is longer than 50 words. Enju returns either success or failure after
parsing an English sentence. When the Enju parser fails to parse a sentence, it is treated
as a sequence of words in the proposed model.6 Table 2 shows the statistics on the data
set of English-to-Japanese translation task.

We build a small training corpus by extracting the first 100,000 parallel sentences
from the training data in the English-to-Japanese translation task. The vocabularies were
constructed with the words appearing in the training data no less than N times as well
as in the Chinese-to-Japanese translation task. We set N = 2 and N = 5 for the small
and large training data set, respectively. The out of vocabulary words were mapped
to “unk,” and “EOS” was inserted at the end of each sentence. The vocabulary sizes
of English and Japanese are (87,796; 65,680) and (25,456; 23,509) in the large and small
training data set, respectively. When training the models on the large data set, we follow
the same parameter setting except that our proposed model has 512-dimensional word
embeddings and d-dimensional hidden units (d ∈ {512, 768, 1,024}). K is set to 2,500.
When utilizing beam search to generate a target sentence for a source sentence at test
time, we selected the optimal beam width found on the development data set.

5 Contrary to Stanford Parser, Enju returns a binarized tree.
6 When the Enju parser fails to parse a sentence because of “sentence length limit exceeded,” we let the sen-

tence be parsed again with an additional option of “-W 200” to increase the limit size of sentences up to 200.
We found one sentence in both the development data and test data that is parsed again with the option.

276



Eriguchi, Hashimoto, and Tsuruoka Incorporating Source-Side Phrase Structures into NMT

We evaluated the models by two automatic evaluation metrics, RIBES (Isozaki
et al. 2010) and BLEU (Papineni et al. 2002) following WAT 2015. We used the KyTea-
based evaluation script for the translation results.7 The RIBES score is a metric based
on rank correlation coefficients with word precision, and this score is known to have
stronger correlation with human judgments than BLEU in translation between English
and Japanese, as discussed in Isozaki et al. (2010). The BLEU score is based on n-gram
word precision and a brevity penalty for outputs shorter than the references.

4.2 Training Details

We conduct experiments with the sequence-to-sequence NMT model as a baseline
and our proposed model described in Sections 2 and 3, respectively. Each model has
256-dimensional hidden units and word embeddings. The biases, softmax weights, and
BlackOut weights are initialized with zeros. The hyperparameter β of BlackOut is set to
0.4 as recommended by Ji et al. (2016). The number of negative samples K in BlackOut
was set to K ∈ {500, 2000}. Here, we shared the negative samples of each target word in
a sentence in training time, following Hashimoto and Tsuruoka (2017).

Following Józefowicz, Zaremba, and Sutskever (2015), we initialize the forget gate
biases of LSTM and Tree-LSTM with 1.0. The remaining model parameters in the NMT
models in our experiments are uniformly initialized in [−0.1, 0.1]. The model param-
eters are optimized by plain SGD with the mini-batch size of 128. The initial learning
rate of SGD is 1.0. When the development loss becomes worse per epoch, we halve the
learning rate from the next epoch until it converges. When INF/NAN values appear in a
mini-batch during training, we skip the mini-batch training. Gradient norms are clipped
to 3.0 to avoid exploding gradient problems (Pascanu, Mikolov, and Bengio 2012).

4.3 Beam Search with Penalized Length

We use beam search to decode a target sentence for an input sentence xxx and calculate
the sum of the log-likelihood values of the target sentence yyy = (y1, · · · , ym) as the beam
score:

score(xxx,yyy) =
m∑

j=1

log p(yj|yyy<j,xxx) (26)

Decoding in the NMT models is a generative process and depends on the target lan-
guage model given a source sentence. The score becomes smaller as the target sentence
becomes longer, and thus the simple beam search does not work well when decoding a
long sentence, as reported in Cho et al. (2014a), Pouget-Abadie et al. (2014), and Koehn
and Knowles (2017).

We apply a method to utilize statistics on sentence lengths in beam search. Assum-
ing that the length of a target sentence correlates with the length of the source sentence,

7 http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/automatic_evaluation_systems/
automaticEvaluationJA.html.
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we redefine the score of each candidate as follows:

score(xxx,yyy) = Lengthxxx,yyy +
m∑

j=1

log p(yj|yyy<j,xxx) (27)

Lengthxxx,yyy = log p(length(yyy)|length(xxx)) (28)

where Lengthxxx,yyy denotes the penalty for the conditional probability of the target sentence
length length(yyy) given the source sentence length length(xxx). Once the EOS token is
predicted in a top candidate during beam search, the length penalty score is added to it.
The beam search with the length penalty score lets the model generate a sentence while
considering the expected length of the target sentence given a source sentence whose
length is length(xxx) on the statistics. In our experiments, we computed the conditional
probability p(length(yyy)|length(xxx)) in advance, following the statistics collected in the first
1.5 million sentences of the English-to-Japanese training data set and all the 0.7 million
sentences of the Chinese-to-Japanese training data set. We allow the decoder to generate
up to 300 and 150 words in the Chinese-to-Japanese and English-to-Japanese translation
tasks, respectively.

We used the beam search to generate a target sentence for a source sentence at test
time. We set the beam width to 20, unless otherwise stated.

5. Experimental Results and Discussion on Small Data Sets

In this section, we first report the experimental results on small data sets for Chinese-to-
Japanese and English-to-Japanese translation tasks. To understand the effectiveness of
our proposed methods, we conduct a series of analyses on the proposed beam search,
sequential LSTM units for the tree-based encoder, and the model capacity.

5.1 Experimental Results on Small Data Sets

Tables 3 and 4 summarize the experimental results of translation accuracy in the
Chinese-to-Japanese and English-to-Japanese translation tasks, respectively. Each table
reports the values of perplexity, RIBES, BLEU, and the training time on the development
data with the NMT models. We conducted the experiments with our proposed methods
and the baseline of the sequence-to-sequence model using BlackOut and the original
softmax. We generated each translation by our proposed beam search with a beam
size of 20. In both tables, we report the experimental results obtained by feeding the
reversed inputs into the sequence-to-sequence NMT models (shown as “w/ reverse
inputs” in tables), and by utilizing the bi-directional encoders. We ran the bootstrap re-
sampling method (Koehn 2004) and observed a statistical significant difference on both
RIBES and BLEU scores between the proposed method and the sequence-to-sequence
NMT model with reversed inputs in all the settings. The symbol † indicates that our
proposed model significantly outperforms the sequence-to-sequence NMT model both
without and with reversed inputs except the model “w/ bi-directional encoder” in the
corresponding settings on K (p < 0.05).

As the negative sample size K increases, we can see that both the proposed
model (Tree-to-Sequence NMT) and the sequence-to-sequence NMT models (Sequence-
to-Sequence NMT, Sequence-to-Sequence NMT w/ reverse inputs, and Sequence-to-
Sequence NMT w/ bi-directional encoder) improve the translation accuracy in both
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Table 3
Evaluation results on the development data in the Chinese-to-Japanese translation task.
K denotes the size of negative samples in the BlackOut sampling method. Here, we implemented
the sequence-to-sequence NMT model (Luong, Pham, and Manning 2015).

K Perp. RIBES BLEU

Tree-to-Sequence NMT 500 13.4 76.7 25.5
2,000 13.3 77.8 26.9

Tree-to-Sequence (softmax) —- 11.3 78.0 27.0
Sequence-to-Sequence NMT 500 13.2 76.9 25.9

w/ reverse inputs 500 14.7 75.8 25.0
w/ bi-directional encoder 500 12.7 77.5 27.1

Sequence-to-Sequence NMT 2,000 12.8 77.4 26.7
w/ reverse inputs 2,000 15.7 77.1 26.2
w/ bi-directional encoder 2,000 13.8 78.6 27.8

Sequence-to-Sequence NMT (softmax) —- 11.8 78.0 26.8
w/ reverse inputs —- 13.8 77.1 26.2
w/ bi-directional encoder —- 11.7 78.8 28.3

Table 4
Evaluation results on the development data using the small training data in the
English-to-Japanese translation task. The training time per epoch is also shown, and K is the
number of negative samples in BlackOut. Here, we implemented the sequence-to-sequence
NMT model (Luong, Pham, and Manning 2015). The last column “Time” reports the training
time (min./epoch).

K Perp. RIBES BLEU Time

Tree-to-Sequence NMT 500 16.2 75.8† 24.8† 7.0
2,000 16.9 75.9 24.9 8.9

Tree-to-Sequence NMT (softmax) —- 15.4 76.4 25.6† 117.2
Sequence-to-Sequence NMT 500 16.9 75.3 24.0 5.4w/ reverse inputs 500 18.8 74.7 23.0

w/ bi-directional encoder 500 15.5 76.5 25.9 7.8
Sequence-to-Sequence NMT 2,000 19.0 76.0 24.7 7.3w/ reverse inputs 2,000 21.3 75.4 23.9

w/ bi-directional encoder 2,000 15.9 77.1 26.9 9.4
Sequence-to-Sequence NMT (softmax) —- 16.1 76.2 24.9 112.1w/ reverse inputs —- 17.2 75.3 24.0

w/ bi-directional encoder —- 14.9 76.8 26.8 130.2

of the evaluation metrics. The gains in the Chinese-to-Japanese translation task are
+1.1 RIBES and +1.4 BLEU for the proposed model, and +0.5 RIBES, +0.8 BLEU for
the sequence-to-sequence model, +1.3 RIBES and +1.2 BLEU for the reversed inputs
model, and +1.1 RIBES and +0.7 BLEU for the bi-directional NMT model; we also
observe similar trends in the English-to-Japanese translation task. Because the BlackOut
sampling is an approximation method for softmax, the models are expected to obtain
better accuracy when the negative examples (K) increase. Compared to the results
obtained by the models using the softmax layer, the tree-to-sequence NMT model with
K = 2,000 achieves a competitive score in the Chinese-to-Japanese translation task. We
also found that better perplexity does not always lead to better translation scores with
BlackOut, as shown in Table 3. One of the possible reasons is that BlackOut distorts
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the target word distribution by the modified unigram-based negative sampling where
frequent words can be treated as negative samples multiple times at each training step.

As to the results of the sequence-to-sequence NMT models, reversing the word
order in the input sentence decreases the scores in Chinese-to-Japanese and English-to-
Japanese translation, which contrasts with the results of other language pairs reported
in previous work (Sutskever, Vinyals, and Le 2014; Luong, Pham, and Manning 2015).

The rightmost column of Time in Table 4 reports the training time (min.) per epoch
of each NMT model. Although the result of softmax is better than those of BlackOut
(K = 500, 2,000), the training time of softmax per epoch is about 13 times longer than
that of BlackOut even with the small data set.8 By taking syntactic information into
consideration, our proposed model improves the scores, outperforming the sequence-
based NMT models with reverse inputs in both tasks. The gains of BLEU are larger in
the English-to-Japanese translation task than in the Chinese-to-English task. However,
extending the sequential encoder to the bi-directional one improves both evaluation
scores by taking a slightly additional time for training.

5.2 Effects of Beam Search with Length Penalty

Table 5 shows the results on the development data of our proposed method with
BlackOut (K = 2,000) by the simple beam search and our proposed beam search. The
beam size is set to {10, 15, 20} in the simple beam search, and to 20 in our proposed
search. The brevity penalty value in BLEU denotes the ratio of the hypothesis length
over the reference length. We can see that our proposed search outperforms the simple
beam search in BLEU score without losing the score of RIBES. Unlike RIBES, the BLEU
score is sensitive to the beam size and becomes lower as the beam size increases. We
found that the brevity penalty had a relatively small impact on the BLEU score in the
simple beam search as the beam size increased. Our search method works better than
the simple beam search by keeping long sentences in the candidates with a large beam
size.

5.3 Discussion on Small Data Sets

Here, we conduct detailed analyses to explore what kind of component is the key in the
proposed methods.

Effects of the Sequential LSTM Units. We investigated the effects of the sequential LSTM
units at the leaf nodes in our proposed tree-based encoder. Table 6 shows the result
on the development data of our proposed encoder and that of an attention-based tree-
based encoder without sequential LSTM units. For this evaluation, we used the 1,779
sentences that were successfully parsed by Enju because the encoder without sequential
LSTM units always requires a parse tree. The results show that our proposed encoder
considerably outperforms the encoder without sequential LSTM units, suggesting that
the sequential LSTM units at the leaf nodes contribute to the context-aware construction
of the phrase representations in the tree.

8 We applied Qiao et al. (2017)’s approach, which effectively uses the cache to speed up the computations
of matrices on CPUs.
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Table 5
Effects of the beam search on the Chinese-to-Japanese and English-to-Japanese development
data.

Beam size BLEU (brevity penalty) RIBES
Chinese-to-Japanese

Proposed beam search 20 27.0 (0.92) 78.0

Standard beam search
10 25.4 (0.85) 77.4
15 25.1 (0.84) 77.9
20 24.9 (0.83) 77.8

English-to-Japanese

Proposed beam search 20 25.6 (0.93) 76.4

Standard beam search
10 24.8 (0.89) 76.2
15 24.8 (0.88) 76.4
20 24.6 (0.87) 76.4

Table 6
Effects of the sequential LSTM units in our proposed tree-based encoder on the development
data, including parsed data, in the Chinese-to-Japanese and English-to-Japanese translation
tasks.

RIBES BLEU
Chinese-to-Japanese
with sequential LSTM units 78.0 27.0
without sequential LSTM units 71.0 23.0

English-to-Japanese
with sequential LSTM units 76.4 25.7
without sequential LSTM units 71.7 20.8

Effects of Model Capacity. Here, we conduct a control experiment of model parameters
to investigate whether the proposed tree-to-sequence NMT model has the benefit of
more parameters than the sequence-to-sequence NMT model does. We set the hidden
and embedding dimension sizes of the sequence-to-sequence NMT model to d = 269
and d = 272 in the Chinese-to-Japanese and English-to-Japanese translation tasks, re-
spectively, to make the number of parameters of the model equal to that of the tree-
to-sequence NMT model. The numbers of parameters of the models are 25.6M and
21.4M in the setup. Table 7 reports the results on both evaluation scores, and we used
the proposed beam search method with a width of 20. As a result in the English-to-
Japanese translation task, the proposed model obtained better RIBES and BLEU scores
than the sequence-to-sequence NMT model both with and without reversed input with
the same number of parameters. On the other hand, the same significant improvement
is observed only over the sequence-to-sequence NMT model with reversed inputs in the
Chinese-to-Japanese translation task.

Comparison with Dependency-to-Sequence NMT models. Here, we have the comparison of
the performance with a syntax-based NMT model, which incorporates source depen-
dency trees into the encoder. We used the dependency-to-sequence NMT architecture
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Table 7
Comparison of the MT performance between the sequence-to-sequence NMT models and the
tree-to-sequence NMT models with the same model sizes. We mark a score with † and ‡ to show
the significant improvement over the Sequence-to-Sequence NMT model with reverse inputs
and both Sequence-to-Sequence NMT models (p < 0.05), respectively. A statistical significance
test was performed by using the bootstrap re-sampling method (Koehn 2004).

RIBES BLEU
Chinese-to-Japanese

Tree-to-Sequence NMT 78.0† 27.0†

Sequence-to-Sequence NMT 77.8 26.7
w/ reverse inputs 77.2 26.2

English-to-Japanese

Tree-to-Sequence NMT 76.4‡ 25.6‡

Sequence-to-Sequence NMT 75.8 24.9
w/ reverse inputs 75.8 24.6

proposed by Hashimoto and Tsuruoka (2017), where the model architecture is consid-
ered as a one-layered graph convolutional neural network and the source input texts
with its predicted dependency are used to generate a translation. Following the setup
of Hashimoto and Tsuruoka (2017), we first pretrained the dependency-to-sequence
NMT model in a dependency parsing task and then trained it in a machine translation
task. We used the same experimental settings and training procedures described in
Section 4. Table 8 reports the performance of a dependency-to-sequence NMT model
and the proposed tree-to-sequence NMT model. We let the decoder output the transla-
tion on the development data set by using the beam search with penalty length with a
beam width of 20. We confirmed that the proposed tree-to-sequence NMT model out-
performs the dependency-to-sequence NMT model on RIBES and BLEU scores in both
translation tasks.

Table 8
Comparison with other syntax-based approaches which leverages source syntax structures.

RIBES BLEU
Chinese-to-Japanese

Proposed: Tree-to-Sequence NMT 77.8 26.9
Dependency-to-Sequence NMT 77.5 25.5reimplementation of Hashimoto and Tsuruoka (2017)

English-to-Japanese

Proposed: Tree-to-Sequence NMT 76.0 23.9
Dependency-to-Sequence NMT 74.9 22.9reimplementation of Hashimoto and Tsuruoka (2017)
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Table 9
Evaluation results on the test data in the English-to-Japanese translation task.

NMT Model RIBES BLEU
Tree-to-Sequence NMT model (d = 512) 81.66 35.05
Tree-to-Sequence NMT model (d = 768) 81.83 35.73
Tree-to-Sequence NMT model (d = 1,024) 81.94 35.57
Ensemble of the above three models 83.27 38.00
Sequence-to-Sequence NMT model (d = 512) 81.60 34.64reimplementation of Luong, Pham, and Manning (2015)
Seq-to-Seq NMT with bi-directional LSTM encoder (Zhu 2015) 79.70 32.19
+ Ensemble, unk replacement 80.27 34.19
+ System combination, 3 pre-reordered ensembles 80.91 36.21
Seq-to-Seq NMT with bi-directional GRU encoder (Lee et al. 2015) 81.15 35.75+ character-based decoding, Begin/Inside representation

SMT Model
Baseline: Phrase-based SMT model 69.19 29.80
Baseline: Hierarchical Phrase-based SMT model 74.70 32.56
Baseline: Tree-to-String SMT model 75.80 33.44
Tree-to-String SMT model (Neubig and Duh 2014) 79.65 36.58
+ Seq-to-Seq NMT Rerank (Neubig, Morishita, and Nakamura 2015) 81.38 38.17

6. Experimental Results and Discussion on Large Data Set

6.1 Experimental Results on Large Data Set

Table 9 shows the experimental results of RIBES and BLEU scores achieved by the
trained models on the large data set.9 The results of the other systems are the ones re-
ported in Nakazawa et al. (2015). All of our proposed models show similar performance
regardless of the value of d. Our ensemble model is composed of the three models with
d = 512,768, and 1,024, and it shows the best RIBES score among all systems. As for
the time required for training, our implementation needs about 8 hours to perform one
epoch on the large training data set with d = 512. It would take about 8 days without
using the BlackOut sampling.10

Comparison with the NMT Models. Compared with our reimplementation of the
sequence-to-sequence NMT model (Luong, Pham, and Manning 2015), we did not
observe a significant difference from the tree-to-sequence model (d = 512). The model
of Zhu (2015) is an NMT model (Bahdanau, Cho, and Bengio 2015) with a bi-directional
LSTM encoder, and uses 1,024-dimensional hidden units and 1,000-dimensional word
embeddings. The model of Lee et al. (2015) is also an NMT model with a bi-directional
GRU encoder, and uses 1,000-dimensional hidden units and 200-dimensional word
embeddings. Both models are sequence-based NMT models. Our single proposed
model with d = 512 outperforms Zhu (2015)’s sequence-to-sequence NMT model with
a bi-directional LSTM encoder by +1.96 RIBES and by +2.86 BLEU scores.

9 We found two sentences that end without EOS with d = 512, and then we decoded them again with the
beam size of 1,000 following (Zhu 2015).

10 We run the experiments on multi-core CPUs; 16 threads on Intel Xeon CPU E5-2667 v3 @ 3.20 GHz.
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Comparison with the SMT models. The baseline SMT systems are phrase-based, hierar-
chical phrase-based, and tree-to-string systems in WAT 2015 (Nakazawa et al. 2015),
and the system submitted by Neubig, Morishita, and Nakamura (2015) achieves the
best performance among the tree-to-string SMT models. Each of our proposed mod-
els outperforms the SMT models in RIBES and achieved almost as high performance
as Neubig, Morishita, and Nakamura (2015)’s system in BLEU.

6.2 Qualitative Analysis in English-to-Japanese Translation

We illustrate the translations of test data by our model with d = 512 and several at-
tention relations when decoding a sentence. In Figures 4 and 5, an English sentence
represented as a binary tree is translated into Japanese, and several attention relations
between English words or phrases and Japanese words are shown with the highest
attention score α. The additional attention relations are also illustrated for comparison.
We see that the target words softly aligned with source words and phrases.

In Figure 4, the Japanese word “ ” means “liquid crystal,” and it has a high
attention score (α = 0.41) with the English phrase “liquid crystal for active matrix.”
This is because the j-th target hidden unit sssj has the contextual information about the
previous words yyy<j including “ ” (“for active matrix” in English).
The Japanese word “ ” is softly aligned with the phrase “the cells” with the highest
attention score (α = 0.35). In Japanese, there is no definite article like “the” in English,
and it is usually aligned with null, as described in Section 1.

In Figure 5, in the case of the Japanese word “ ” (“showed” in English), the atten-
tion score with the English phrase “showed excellent performance” (α = 0.25) is higher
than that with the English word “showed” (α = 0.01). The Japanese word “ ” (“of” in
English) is softly aligned with the phrase “of Si dot MOS capacitor” with the highest
attention score (α = 0.30). It is because our attention mechanism takes each word of
the previous context of the Japanese phrases “ ” (“excellent performance”
in English) and “ ” (“Si dot MOS capacitor” in English) into
account and softly aligned the target words with the whole phrase when translating the
English verb “showed” and the preposition “of.” Our proposed model can thus flexibly
learn the attention relations between English and Japanese.

We observed that our model translated the word “active” into “ ,” a synonym
of the reference word “ .” We also found similar examples in other sentences,
where our model outputs synonyms of the reference words, for instance, “ and “ ”
(“female” in English) and “NASA” and “ ” (“National Aeronautics and Space
Administration” in English). These translations are penalized in terms of BLEU scores,

The liquid crystal for active matrix was injected into the cells .

[Translation]
活性  マトリックス  の  液晶  を  セル  内  に  注入  し  た  。

[Reference]
セル  に  は  アクティブ  マトリックス  用  液晶  を  注入  し  た  。

(α=0.07)
(α=0.41)

(α=0.77) (α=0.31)

(α=0.24) (α=0.35)

(The liquid crystal for active matrix was injected into the cells.)

CoNLL用

Figure 4
A translation example of a short sentence and the attention relations by our proposed model.

284



Eriguchi, Hashimoto, and Tsuruoka Incorporating Source-Side Phrase Structures into NMT

ACL_CameraReady用

SiO2 films showed excellent performance even at 430℃ or less , and the memory effect of Si dot MOS capacitor was confirmed .

[Translation]
(SiO2 films showed excellent performance even at 430℃ or less, and the memory effect of Si dot MOS capacitor was confirmed.)
ＳｉＯ２ 膜 は ４３０ ℃ 以下 で も 優れ た 性能 を 示 し ， Ｓｉ ドット ＭＯＳ コンデンサ の メモリ 効果 を 確認 し た 。

[Reference]
ＳｉＯ２ 膜 は ，４３０ ℃ 以下 で も 優れ た 性能 を 示 し ，Ｓｉ ドット ＭＯＳ コンデンサ の メモリ 効果 を 確認 し た 。

(α=0.45)

(α=0.71)

(α=0.51)
(α=0.25)

(α=0.01)
(α=0.41)

(α=0.73) (α=0.30) (α=0.26)

Figure 5
A translation example of a long sentence and the attention relations by our proposed model.

but they do not necessarily mean that the translations were wrong. This point may be
supported by the fact that the NMT models were highly evaluated in WAT 2015 by
crowd sourcing (Nakazawa et al. 2015).

6.3 Error Analyses on Sequence-to-Sequence and Tree-to-Sequence NMT Models

To investigate what kinds of errors are harmful in the NMT models, we took 100
examples randomly from the development data in the English-to-Japanese translation
task and classified the error types found in the generated translations obtained by
the sequence-to-sequence NMT model and tree-to-sequence NMT models described in
Section 6. In Table 10, we can see that both NMT models suffered from the word-level
undertranslation and wrong translation issues with the highest error ratio. As for the
phrase-level undertranslation and wrong translation, the tree-to-sequence NMT model
successfully decreased the number of the errors. However, the sequence-to-sequence
NMT model has fewer errors of repetition than the tree-to-sequence NMT model.
The reason for this can be that the phrase-based attention mechanism enhances the
decoder to generate a translation for specific phrases. The phrase-based repetitions are
not trained through teacher forcing training, where the models are allowed to because
optimized on a word-scale translation rather than a phrase-scale.

Table 10
Error types of sequence-to-sequence NMT model (Seq-to-Seq NMT) and the proposed
tree-to-sequence NMT model (Tree-to-Seq NMT) on development data and each error ratio (%).
Note that the different types of errors can be found in the same translations.

Seq-to-Seq NMT (%) Tree-to-Seq NMT (%)
Undertranslation (word) 29 (38.2%) 29 (42.6%)
Undertranslation (phrase) 16 (21.1%) 8 (11.8%)
Wrong translation (word) 22 (28.9%) 17 (25.0%)
Wrong translation (phrase) 2 (2.6%) 0 (0.0%)
Repetition 7 (9.2%) 14 (20.6%)
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Table 11
Translation error examples generated by the sequence-to-sequence NMT model and the
translation changes when manually fixing source sentences.

In Table 11, we show some examples of the phrase-level undertranslation and
wrong translation outputs by the sequence-to-sequence NMT model and investigate
how using a syntactic tree helps the proposed model to resolve ambiguity in the in-
put sentence as discussed in Section 3.1. Our proposed tree-to-sequence NMT model
correctly translated the original source sentence “First, after static electricity of human
body is released a Eathernet card is fixed.” into “ , ,

(“First, after static electricity of human body is released, an
Eathernet card was fixed.” in English). By using the English parser, the parsed tree
clearly identifies that the source sentence is composed of two main large-scale phrase
components of “after static electricity of human body is released” and “a Eathernet card
is fixed.” In order to investigate if feeding an obvious readable source sentence gives
positive effect to the sequence-to-sequence NMT model, we manually fix the original
source sentence in the three types of A, B, and C described in Table 10. However, the
outputs are not correctly translated even after manually adding the comma after the
word “released” to make the sentence boundary clear as shown in the source sentence A
or after dynamically modifying the sentence structure as shown in the source sentences
B and C.

6.4 Analysis of Attention Mechanism in Tree-to-Sequence NMT Model

Chinese-to-Japanese Translation. Figure 6 is a translation example on the development
data set obtained by using our proposed model introduced in Section 5 and shows the
attention relations between the source words or phrases and the target words with the
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エネルギー
サービス

産業 推進

[Translation]

エネルギー  サービス  産業  の  推進  に  つ  い  て  言及  し  た  。

[Reference]
エネルギー  サービス  事業  の  推進  に  言及  し  た  。

提及　　能源　　服务　　产业　　的　　推动　　。

(α=0.41)

(α=0.41)

(α=0.72)

(α=0.05)

(α=0.93)

( Promotion of energy service industry was mentioned. )

提及 能源 服� ��  的  推�  。

( Promotion of energy service industry was mentioned. )

Figure 6
A translation example of a short sentence and the attention relations given by our proposed
model.

highest attention score α. The source Chinese sentence is represented as a binary tree.
We let our trained model generate a translated sentence in Japanese. Some target words
are related to the source phrases with higher attention scores than the source words; for
instance, the first generated target Japanese word “ (energy)” is related to
the phrase “ (promotion of energy industry)” with a higher attention score
α = 0.66 than the translated word “ (energy)” with α = 0.22. Our attention mech-
anism also aligns one Japanese word “ (promotion)” with the source word “ ”
with the highest attention score α = 0.95, and we can see that the attention mechanism
in our proposed model flexibly learns which of the source words and phrases should be
attended to more.

When generating a sentence, the attention mechanism provides the attention scores
to the source units. We therefore counted the source targets with the five highest at-
tention scores at each generated word to verify which of the source words or phrases
are attended to more frequently in the Chinese-to-Japanese translation task. Table 12
shows the trends of the attention destinations toward either the source words or source
phrases in both translation tasks. In the case of the Chinese-to-Japanese translation task,

Table 12
Percentages of the destinations of the attention mechanism to source words (Wrd) or phrases
(Phr) by using the proposed tree-to-sequence NMT models described in Sections 5 and 6. The
percentages are obtained on the Chinese-to-Japanese and English-to-Japanese development data,
respectively.

Chinese-to-Japanese English-to-Japanese

Small Data set Large Data set

Wrd (%) Phr (%) Wrd (%) Phr (%) Wrd (%) Phr (%)
α > 0.2 18.9 5.5 11.2 10.8 9.1 8.1
α > 0.4 10.6 2.4 5.3 3.6 3.4 2.3
α > 0.6 6.1 1.0 2.9 2.5 1.5 0.5
α > 0.8 2.6 0.3 1.3 0.8 0.3 0.0
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there exist a total of the 71,422 generated words on the development data. Here, the
source words dominate the attention destinations rather than the source phrases at any
thresholds of α with large difference. Our trained model uses the syntactic information
but pays more attention to source words than source phrases. One possible reason is
that both Chinese and Japanese share many Chinese characters, and thus it would be
easy to perform word-by-word translation by aligning words of the same meanings.

We utilized the tree-to-sequence NMT models described in Section 5 with the
BlackOut sampling method (K = 2,000) and in Section 6 with K = 2,500 for the English-
to-Japanese translation. Here, the total numbers of generated words on the development
data are 48,169 and 47,869 words by using the NMT models trained on the small training
data and the large training data described in Table 2, respectively. Compared to the
Chinese-to-Japanese translation task, the percentages of the source phrases as a desti-
nation become close to the source words at any α > n(n = 0.2, 0.4, 0.6, 0.8) within 2%
for both cases. The attention mechanism in the English-to-Japanese translation is more
frequently used to pay attention to the source phrases. As the training data increase,
we can see that the source phrases are less likely to be paid attention to at each threshold
of α.

7. Related Work

Kalchbrenner and Blunsom (2013) were the first to propose an end-to-end NMT model
using convolutional neural networks (CNNs) for a source encoder and using RNNs for
a target decoder. The encoder-decoder model can be seen as an extension of their model,
and it replaces the CNNs with RNNs using GRU units (Cho et al. 2014b) or LSTM
units (Sutskever, Vinyals, and Le 2014). Sutskever, Vinyals, and Le (2014) have shown
that making the input sequences reversed is effective in a French-to-English translation
task, and the technique has also proven effective in translation tasks between other
European language pairs (Luong, Pham, and Manning 2015). All of the NMT models
mentioned here are based on sequential encoders. The attention mechanism (Bahdanau,
Cho, and Bengio 2015) has promoted the NMT models onto the next stage so that NMT
models generate longer translated sentences by softly aligning the target words with
the source words. Luong, Pham, and Manning (2015) refined the attention model so
that it can dynamically focus on local windows rather than the entire sentence. They
also proposed a more effective attention path in the calculation of the NMT models.

To incorporate structural information into the NMT models, Cho et al. (2014a)
proposed to jointly learn structures inherent in source-side languages but did not report
improvement of translation performance. These studies motivated us to investigate the
role of syntactic structures explicitly given by existing syntactic parsers in the NMT
models. Incorporating the syntactic structures into the NMT models has been actively
studied recently. Chen et al. (2017) have extended our work by using bi-directional
RNNs and RvNNs. Bastings et al. (2017) apply graph CNNs to encode the dependency
trees. The previous work relies on syntactic trees provided by parsers and has a demerit
of introducing parse errors into the models, whereas another trend is to learn and
enhance latent structures or relations between any input units in source sentences in
the NMT models (Bradbury and Socher 2017; Vaswani et al. 2017; Yoon Kim and Rush
2017). Hashimoto and Tsuruoka (2017) and Tran and Bisk (2018) reported an interesting
observation that the latent parsed trees learned through the training are not always
consistent with those obtained by the existing parsers, which suggests that there might
exist a favorable structure of a source sentence depending on a task of interest.
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Although it is relatively easy to encode a source syntactic tree into a vector space,
decoding a target sentence with a parse tree is known as a challenging task and has been
recently explored in sentence generation tasks (Dong and Lapata 2016) and language
modeling tasks (Dyer et al. 2016). Wu et al. (2017) and Eriguchi, Tsuruoka, and Cho
(2017) have proposed hybrid models that jointly learn to parse and translate by using
target-side dependency trees, and Aharoni and Goldberg (2017) serialize a target parse
tree to a sequence of units in order to apply it to the sequence-to-sequence NMT
model. As we can see in the recent active studies of syntax-based approaches in the MT
area, we believe that incorporating structural biases into NLP models is a promising
research direction.

8. Conclusion

We propose a syntactic approach that extends the existing sequence-to-sequence NMT
models. We focus on source-side phrase structures and build a tree-based encoder
following the parse trees. Our proposed tree-based encoder is a natural extension of
the sequential encoder model, where the leaf units of the tree-LSTM in the encoder
can work together with the original sequential LSTM encoder. Moreover, the proposed
attention mechanism allows the tree-based encoder to align not only the input words
but also the input phrases with the output words. Experimental results show that the
English-to-Japanese translation task benefits from incorporating syntactic trees more
than the Chinese-to-Japanese translation task, and using the bi-directional encoder
better improves the translation accuracy and achieves the best scores in both tasks.
As the training data set becomes larger, we observed that the tree-to-sequence gives
the smaller improvements on the WAT 2015 English-to-Japanese translation task. Our
analyses on the tree-to-sequence models reveal different trends with the sequence-to-
sequence models, and we have also shown that our proposed model flexibly learns
which source words or phrases are attended to.
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