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We propose a question answering (QA) approach for standardized science exams that both
identifies correct answers and produces compelling human-readable justifications for why those
answers are correct. Our method first identifies the actual information needed in a question
using psycholinguistic concreteness norms, then uses this information need to construct answer
justifications by aggregating multiple sentences from different knowledge bases using syntactic
and lexical information. We then jointly rank answers and their justifications using a reranking
perceptron that treats justification quality as a latent variable. We evaluate our method on 1,000
multiple-choice questions from elementary school science exams, and empirically demonstrate
that it performs better than several strong baselines, including neural network approaches. Our
best configuration answers 44% of the questions correctly, where the top justifications for 57%
of these correct answers contain a compelling human-readable justification that explains the
inference required to arrive at the correct answer. We include a detailed characterization of
the justification quality for both our method and a strong baseline, and show that information
aggregation is key to addressing the information need in complex questions.

1. Introduction

To encourage an emphasis on the task of explainable inference for question answering
(QA), Clark (2015) introduced the Aristo challenge, a QA task focused on developing
methods of automated inference capable of passing standardized elementary school
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science exams while also providing human-readable explanations (or justifications)
for those answers. Science exams are an important proving ground for QA because
inference is often required to arrive at a correct answer, and, commonly, incorrect
answers that are high semantic associates of either the question or correct answer are
included to “lure” students (or automated methods) away from the correct response.
Adding to the challenge, not only is inference required for science exams, but several
kinds of inference are present. In an analysis of three years of standardized science
exams, Clark et al. (2013) identified three main categories of questions based on the
methods likely required to answer them correctly. Examples of these questions can be
seen in Table 1, highlighting that 65% of questions require some form of inference to be
answered correctly.

We propose a QA approach that jointly addresses answer extraction and justifica-
tion. We believe that justifying why the QA algorithm believes an answer is correct is,
in many cases, a critical part of the QA process. For example, in the medical domain,
a user would not trust a system that recommends invasive procedures without giving
a justification as to why (e.g., “Smith (2005) found procedure X healed 90% of patients
with heart disease who also had secondary pulmonary complications”). A QA tool is
clearly more useful when its human user can identify both when it functions correctly
and when it delivers an incorrect or misleading result—especially in situations where
incorrect results carry a high cost.

To address these issues, here we reframe QA from the task of scoring (or reranking)
answers to a process of generating and evaluating justifications for why a particular
answer candidate is correct. We focus on answering science exam questions, where
many questions require complex inferences, and where building and evaluating answer
justifications is challenging. In particular, we construct justifications by aggregating

Table 1
Categories of questions and their relative frequencies as identified by Clark et al. (2013).
Retrieval-based questions (including is–a, dictionary definition, and property identification
questions) tend to be answerable using information retrieval methods over structured
knowledge bases, including taxonomies and dictionaries. More complex general inference
questions make use of either simple inference rules that apply to a particular situation, a
knowledge of causality, or a knowledge of simple processes (such as solids melt when heated).
Difficult model-based reasoning questions require a domain-specific model of how a process
works, like how gravity causes planets to orbit stars, in order to be correctly answered. Note that
we do not include diagram questions, as they require specialized spatial reasoning that is
beyond the scope of this work.

Category Example

Retrieval Q: The movement of soil by wind or water is called:
(35%) (A) condensation (B) evaporation

(C) erosion (D) friction

General Q: Which example describes an organism taking in nutrients?
Inference (A) A dog burying a bone (B) A girl eating an apple
(39%) (C) An insect crawling on a leaf (D) A boy planting tomatoes in the garden

Model-based Q: When a baby shakes a rattle, it makes a noise. Which form of energy was
Inference changed to sound energy?
(26%) (A) electrical (B) light

(C) mechanical (D) heat

408



Jansen et al. Framing QA as Building and Ranking Intersentence Answer Justifications

multiple sentences from a number of textual knowledge bases (e.g., study guides [SGs],
science dictionaries), which, in combination, aim to explain the answer. We then rank
these candidate justifications based on a number of measures designed to assess how
well-integrated, relevant, and on-topic a given justification is, and select the answer that
corresponds to the highest-ranked justification.

The specific contributions of this work are:

1. We propose a method to construct answer justifications through
information aggregation (or fusion). In particular, we aggregate multiple
sentences into hierarchical graph structures (called text aggregation
graphs) that capture both intrasentence syntactic structures and
intersentence lexical overlaps. Further, we model whether the
intersentence lexical overlap is between contextually relevant keywords
critical to the justification, or other words that may or may not be relevant.
Our empirical analysis demonstrates that modeling the contextual
relevance of intersentence connections is crucial for good performance.
These requirements highlight the fundamental differences between
selecting a single answer sentence or short passage in an answer sentence
selection task (Severyn and Moschitti 2012, 2013; Severyn, Nicosia, and
Moschitti 2013, inter alia), and the task of generating complete answer
justifications through information aggregation.

2. We introduce a latent-variable ranking perceptron algorithm that learns to
jointly rank answers and justifications, where the quality of justifications is
modeled as the latent variable.

3. We evaluate our system on a large corpus of 1,000 elementary science
exam questions from third to fifth grade, and demonstrate that our system
significantly outperforms several strong learning-to-rank baselines at the
task of choosing the correct answer. Further, we manually annotate answer
justifications provided by the best baseline model and our intersentence
aggregation method, and show that the intersentence aggregation method
produces good justifications for 57% of questions answered correctly,
significantly outperforming the best baseline method.

4. Through an in-depth error analysis we show that most of the issues
encountered by the intersentence aggregation method center on solvable
surface issues rather than complex inference issues. To our knowledge,
this is the largest evaluation and most in-depth error analysis for
explainable inference in the context of elementary science exams.

The article is structured as follows. We review related work in Section 2. We intro-
duce the overall architecture of our QA system in Section 3. We describe our approach
of identifying which words in the question are relevant for inference in Section 4.
Building upon this knowledge, in Section 5 we introduce text aggregation graphs as the
underlying representation for multisentence justifications, and characterize the types of
connections captured by text aggregation graphs in Section 6. In Section 7 we introduce
our latent-variable ranking perceptron, which jointly learns to identify good justifica-
tions and correct answers. Sections 8, 9, and 10 empirically demonstrate performance,
discuss the results, and analyze the error classes observed, respectively. We conclude in
Section 11.
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2. Related Work

In one sense, QA systems can be described in terms of their position along a formality
continuum ranging from shallow models that rely on information retrieval, lexical
semantics, or alignment to highly structured models based on first-order logic.

On the shallower end of the spectrum, QA models can be constructed either from
structured text, such as question–answer pairs, or unstructured text. Alignment models
(Berger et al. 2000; Echihabi and Marcu 2003; Soricut and Brill 2006; Riezler et al. 2007;
Surdeanu, Ciaramita, and Zaragoza 2011; Yao et al. 2013) require aligned question–
answer pairs for training, a burden that often limits their practical usage (though Sharp
et al. [2015] recently proposed a method for using the discourse structure of free text as a
surrogate for this alignment structure). Lexical semantic models such as neural-network
language models (Yih et al. 2013; Jansen, Surdeanu, and Clark 2014; Sultan, Bethard,
and Sumner 2014), on the other hand, have the advantage of being readily constructed
from free text. Fried et al. (2015) called these approaches first-order models because
associations are explicitly learned, and introduced a higher-order lexical semantics QA
model where indirect associations are detected through traversals of the association
graph. Other recent efforts have applied deep learning architectures to QA to learn non-
linear answer scoring functions that model lexical semantics (Iyyer et al. 2014; Hermann
et al. 2015). However, although lexical semantic approaches to QA have shown robust
performance across a variety of tasks, a disadvantage of these methods is that, even
when a correct answer is selected, there is no clear human-readable justification for that
selection.

Closer to the other end of the formality continuum, several approaches were pro-
posed to not only select a correct answer, but also provide a formally valid justification
for that answer. For example, some QA systems have sought to answer questions by cre-
ating formal proofs driven by logic reasoning (Moldovan et al. 2003a, 2007; Balduccini,
Baral, and Lierler 2008; MacCartney 2009; Lewis and Steedman 2013; Liang, Jordan, and
Klein 2013) answer-set programming (Tari and Baral 2006; Baral, Liang, and Nguyen
2011; Baral and Liang 2012; Baral, Vo, and Liang 2012), or connecting semantic graphs
(Banarescu et al. 2013; Sharma et al. 2015). However, the formal representations used in
these systems (e.g., logic forms) are both expensive to generate and tend to be brittle
because they rely extensively on imperfect tools such as complete syntactic analysis
and word sense disambiguation. We offer the lightly structured sentence representation
generated by our approach (see Section 5) as a shallower and consequently more ro-
bust approximation of those logical forms, and show that they are well-suited for the
complexity of our questions. Our approach allows us to robustly aggregate information
from a variety of knowledge sources to create human-readable answer justifications.
It is these justifications that are then ranked in order to choose the correct answer,
using a reranking perceptron with a latent layer that models the correctness of those
justifications.

Covering the middle ground between shallow and formal representations, learn-
ing to rank methods based on tree-kernels (Moschitti 2004) perform well for various
QA tasks, including passage reranking, answer sentence selection, or answer extrac-
tion (Moschitti et al. 2007; Moschitti and Quarteroni 2011; Severyn and Moschitti 2012,
2013; Severyn, Nicosia, and Moschitti 2013; Tymoshenko and Moschitti 2015, inter
alia). The key to tree kernels’ success is their ability to automate feature engineering
rather than having to rely on hand-crafted features, which allows them to explore a
larger representation space. Further, tree kernels operate over structures that encode
syntax and/or shallow semantics such as semantic role labeling (Severyn and Moschitti
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2012), knowledge from structured databases (Tymoshenko and Moschitti 2015), and
higher-level semantic information such as question category and focus words (Severyn,
Nicosia, and Moschitti 2013). Here, we similarly use structural features based on syn-
tax, enriched with additional information about how the answer candidate, the ques-
tion, and the aggregated justification relate to each other. A key difference between
our work and methods based on tree kernels is that rather than selecting a contiguous
segment of text (sentence or paragraph), our justifications are aggregated from multiple
sentences, often from different documents. Because of this set-up, we explore content
representations that continue to use syntax, but are combined with robust strategies for
cross-sentence connections. Further, because our justification search space is increased
considerably thanks to the ability to form cross-sentence justifications, we restrict our
learning models to linear classifiers that learn efficiently at this scale. However, as
discussed, tree kernels offer distinct advantages over linear models. We leave the adap-
tation of tree kernels to the problem discussed here as future work.

Information aggregation (or fusion) is broadly defined as the assembly of knowl-
edge from different sources, and has been used in several NLP applications, including
summarization and QA. In the context of summarization, information aggregation
has been used to assemble summaries from non-contiguous text fragments (Barzilay,
McKeown, and Elhadad 1999; Barzilay and McKeown 2005, inter alia), whereas in QA,
aggregation has been used to assemble answers to both factoid questions (Pradhan et al.
2002) and definitional questions (Blair-Goldensohn, McKeown, and Schlaikjer 2003).
Critical to the current work, in an in-depth open-domain QA error analysis, Moldovan
et al. (2003b) identified a subset of questions for which information from a single source
is not sufficient, and designated a separate class within their taxonomy of QA systems
for those systems that were capable of performing answer fusion. Combining multiple
sources, however, creates the need for context disambiguation—an issue we tackle
through the use of question and answer focus words.

Identifying question focus words, a subtask of question decomposition and iden-
tifying information needs, was found relevant for QA (especially factoid) early on
(Harabagiu et al. 2000; Moldovan et al. 2003b, inter alia) mainly as a means to identify
answer types (e.g., “What is the capital of France?” indicates that the expected answer
type is City). Recently, Park and Croft (2015) have used focus words to reduce semantic
drift in query expansion by conditioning on the focus words when expanding non-focus
query words. Similarly, here, we use focus words (from both question and answer) to
reduce the interference of noise in both building and ranking answer justifications. By
identifying which words are most likely to be important for finding the answer, we
are able to generate justifications that preferentially connect sentences together on these
focus words. This results in justifications that are better able to remain on-context, and
as we demonstrate in Section 8, this boosts overall performance.

Once the candidate answer justifications are assembled, our method selects the
answer that corresponds to the best (i.e., highest-scoring) justification. We learn which
justifications are indicative of a correct answer by extending ranking perceptrons (Shen
and Joshi 2005) that have been previously used in QA (Surdeanu, Ciaramita, and
Zaragoza 2011) to include a latent layer that models the correctness of the justifications.
Latent-variable perceptrons have been proposed for several other NLP tasks (Liang et al.
2006; Zettlemoyer and Collins 2007; Sun et al. 2009; Hoffmann et al. 2011; Fernandes,
Dos Santos, and Milidiú 2012; Björkelund and Kuhn 2014), but to our knowledge, we
are the first to adapt them to reranking scenarios.

Finally, we round out our discussion of question answering systems with a com-
parison to the famous Watson QA system, which achieved performance on par with the

411



Computational Linguistics Volume 43, Number 2

human champions in the Jeopardy! game (Ferrucci 2012). Several of the ideas proposed
in our work are reminiscent of Watson. For example, our component that generates
text aggregation graphs (Section 5) shares functionality with the Prismatic engine used
in Watson. Similar to Watson, we extract evidence from multiple knowledge bases.
However, there are three fundamental differences between Watson and this work. First,
whereas Watson includes components for evidence gathering and scoring (we call these
justifications), it uses a fundamentally different strategy for evidence generation. Sim-
ilar to most previous work, the textual evidence extracted by Watson always takes the
form of a contiguous segment of text (Murdock et al. 2012),1 whereas our justifications
aggregate texts from different documents or knowledge bases. We demonstrate in this
work that information aggregation from multiple knowledge bases is fundamental
for answering the science exam questions that are our focus (Section 8). Second, our
answer-ranking approach jointly ranks candidate answers and their justifications using
a latent-variable learning algorithm, whereas Watson follows a pipeline approach where
first evidence is generated, then answers are ranked (Gondek et al. 2012). We show
in Section 8 that jointly learning answers and their justifications is beneficial. Last
but not least, Watson was implemented as a combination of distinct models triggered
by the different types of Jeopardy! questions, whereas our approach deploys a single
model for all questions. Our analysis in Section 10 suggests that there are limits to our
simple approach: We measure a ceiling performance for our single-model approach of
approximately 70%. To surpass this ceiling, one would have to implement dedicated
domain-specific methods for the difficult problems left unsolved by our approach.

3. Approach

The architecture of our proposed QA approach is illustrated in Figure 1, and proceeds
in a stage-like fashion.

Prior to the QA task, in an offline process, we decompose sentences from six corpora
into a lightly structured graphical representation (“graphlets”) that splits sentences on
clausal and prepositional boundaries (Section 5). As shown later, this is fundamental to
the creation and evaluation of answer justifications. All other stages of the framework
occur online.

The QA pipeline receives as input questions with multiple choice answers, similar
to the questions shown in Table 1, and proceeds as follows. First, the questions are fed
into a focus word extractor (Section 4) that produces a weighted list of the keywords
from both the question and answer candidates, sorted in descending order of their
likely relevance to the information needed in the question. These keywords are used by
the sentence aggregation component (Section 5) to create an exhaustive list of potential
answer justifications for each answer candidate. These answer justifications are in the
form of text aggregation graphs (TAGs), each composed of two to three graphlets
produced by the preprocessing step.

After the sentence aggregation step, each of the multiple choice answers has a long
list of candidate justifications. Because of the large number of candidate justifications
created for each question–answer pair (typically tens or hundreds of thousands), we
filter the list to include only the top k justifications based on an inexpensive score,

1 Watson also generates “structured evidence,” which is obtained by converting texts to structured
representations similar to logic forms, which are then matched against structured databases for answer
extraction. However, this “logical representation of a clue and then finding the identical representation”
in a database resulted in “confident answers less than 2% of the time” (Ferrucci 2012).
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Figure 1
Our QA approach, which centers on the construction of answer justifications as text aggregation
graphs, and ranking them using a model that treats the justification quality as a latent variable.

implemented as the sum of the weights of the focus words present in each justification.2

Using the focus words, we extract a number of features from each candidate justi-
fication, which measure how well the justification answers the question (Section 6),
and present this information to a latent-variable perceptron ranker (Section 7). This
learning framework learns which answer candidate is correct based on the candidate
justifications, while also jointly learning to rank justification quality as a latent variable,
selectively elevating good answer justifications to the top of the list.

The candidate answer with the highest-scoring justification is taken to be the correct
answer. Although the justification is expressed in the form of a text aggregation graph
to make it easier to assemble and evaluate, we use the original sentences from the
knowledge base used to construct that text aggregation graph as a human-readable
justification for why that answer candidate is correct.

4. Focus Word Extraction

Questions often contain text that is not strictly required to arrive at an answer and that
can introduce noise into the answering process. This is particularly relevant for science
exams, where questions tend to include a narrative or example for the benefit of the
reader, and this extra text can make determining a question’s information need more
challenging. For example, the question in Table 2 could be simplified to What tools can
be used to measure speed?, but instead grounds the question in an example about turtles
walking along a path. As a first step in answering, we need to identify whether the focus

2 We keep ties in this filtered list, which, because of the simplicity of the score, may increase the size of the
filtered lists considerably. For example, if k = 25, it is common that the filtered list includes between 100
and 1, 000 candidate justifications.
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Table 2
Focus word decomposition of an example question, suggesting the question is primarily about
measuring the speed of walking, and not about turtles or paths. (Correct answer: “a stopwatch
and meter stick.”) For a given word: Conc refers to the psycholinguistic concreteness score, Tag
refers to the focus word category (FOCUS signifies a focus word, EX an example word, ATYPE
an answer-type word, and ST a stop word), Score refers to the focus word score, and Weight
refers to the normalized focus word scores.

Words What tools could determine the speed of turtles walking along a path ?
Conc 2.0A 4.6C 1.3A 2.1A 1.4A 3.6 1.7A 5.0C 4.1 2.1A 1.5A 4.4C
Tag ST ATYPE ST ST ST FOCUS ST EX FOCUS ST ST EX
Score – 1 – – – 14 – 2 14 – – 3
Weight – 0.03 – – – 0.41 – 0.06 0.41 – – 0.09

of the question is about speed, turtles, walking, or paths, so that we can appropriately
constrain our intersentence aggregation, and decrease the chance of generating noisy or
unrelated justifications.

Note that the focus word terminology was first introduced in the context of fac-
toid QA, where it represents the question word or phrase that is indicative of the
expected answer type, which is then used to constrain the search for candidate an-
swers (Harabagiu et al. 2000; Moldovan et al. 2003b). For example, capital is the focus
word in the question What is the capital of France? This information is used to constrain
the search for answers to entities that are of names of cities. In contrast, such words
(e.g., tools for the previous exam question) are often of low importance for multiple
choice science exams, as this information is already implicitly provided in the multiple
choice answers. Instead, our task is to identify the central concept the question is testing
(e.g., measuring speed), and to eliminate words that are part of an example or narrative
(e.g., turtle, path) that are unlikely to contribute much utility (or, may introduce noise) to
the QA process. However, because at a high level focus words identify the information
need of a question, which is what we aim to do as well, we continue to use the same
terminology in this work.

Our approach borrows from cognitive psychology, which suggests that elementary
school students tend to reason largely with concrete concepts (i.e., those that are easy
to mentally picture), because their capacity for abstract thinking develops much more
slowly into adulthood (e.g., Piaget 1954). Recently Brysbaert et al. (2014) collected a
large set of psycholinguistic concreteness norms, rating 40,000 generally known English
lemmas on a numerical scale from 1 (highly abstract) to 5 (highly concrete). We have
observed that highly abstract words (e.g., expertise: 1.6, compatible: 2.3, occurrence: 2.6)
tend to be part of a question’s narrative or too abstract to form the basis for an ele-
mentary science question, whereas highly concrete words (e.g., car: 4.9, rock: 4.9, turtle:
5.0) are often part of examples. Words that are approximately 50% to 80% concrete (e.g.,
energy: 3.1, measure: 3.6, electricity: 3.9, habitat: 3.9) tend to be at an appropriate level
of abstraction for the cognitive abilities of elementary science students, and are often
the central concept that a question is testing.3

Making use of this observation, we identify these focus words with the following
algorithm. The algorithm is implemented as a sequence of ordered sieves applied in

3 Although these concreteness thresholds may be particular to elementary science exams, we hypothesize
that the information need of a question tends to be more abstract than the examples grounding that
question. We believe this intuition may be general and applicable to other domains.
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Table 3
Syntactic patterns used to detect answer type words. Square brackets represent optional
elements.

Pattern Example

(SBARQ (WHNP (WHNP (WDT) (NN)) [(PP)]... What kind of energy ...
(SBARQ (WHNP (WP)) (SQ (VBZ is) (NP)... What is one method that ...
(S (NP (NP (DT A) (NN)) (SBAR (WHNP (WDT that)) ... A tool that ..
(S (NP (NP) (PP)) (VP (VBZ is) ... The main function of ... is to ...

decreasing order of precision (Lee et al. 2013). Each of the five sieves attempts to assign
question words into one of the following categories:4

1. Lists and sequences: Lists in questions generally contain highly important
terms. We identify comma delimited lists of the form X, Y, ..., <and/or>

Z (e.g., sleet, rain, and hail). Given the prevalence of questions that involve
causal or process knowledge, we also identify from/to sequences (e.g.,
from a solid to a liquid) using paired prep from and prep to Stanford
dependencies (De Marneffe and Manning 2008).

2. Focus words: Content lemmas (nouns, verbs, adjectives, and adverbs)
with concreteness scores between 3.0 and 4.2 in the concreteness norm
database of Brysbaert et al. (2014) are flagged as focus words.

3. Abstract, concrete, and example words: Content lemmas with
concreteness scores between 1.0 and 3.0 are flagged as highly abstract, and
those with concreteness scores between 4.2 and 5.0 are flagged as highly
concrete. Named entities recognized as either durations or locations (e.g.,
In New York State) are flagged as belonging to examples.

4. Answer type words: Answer type words are flagged using both four
common syntactic patterns shown in Table 3, as well as a short list of
transparent nouns (e.g., kind, type, form).

5. Stop words: A list of general and QA-specific stop words and phrases, as
well as any remaining words not captured by earlier seives, are flagged as
stop words.

Scoring and weights: We then assign a score to each question word based on its per-
ceived relevance to the question as follows. Stop words are not assigned a score, and are
not included in further processing. All answer type words are given a score of 1. Words
flagged as abstract, concrete, or example words are sorted based on their distance from
the concreteness boundaries of 3.0 (for abstract words) or 4.2 (for concrete words), where
words closer to the concreteness boundary tend to be more relevant to the question,
and should receive higher scores. These words are then given incrementally increasing
scores starting at 2 for the most distant word, and increasing by one until all words in

4 This same process is used to extract focus words for each of the multiple choice answer candidates,
though it is generally much simpler given that the answers tend to be short.
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this category have been assigned a score. To create an artificial separation between focus
words and the less relevant words, and to encourage our intersentence aggregation
method to preferentially make use of focus words, we assign all focus words a uniform
score 10 points higher than the highest-scoring abstract, concrete, or example word.
Finally, list words—the most important category—receive a uniform score one higher
than focus words. The scores of all words are converted into weights by normalizing
the scores to sum to one. An example of the scoring process is shown in Table 2.

It is important to note that the proposed focus word extraction algorithm is simple
and leaves considerable room for improvement. We hypothesize that better algorithms
could be implemented by switching to a learning-based approach. However, the simple
unsupervised algorithm proposed requires no data annotations, and it captures the
crucial intuition that some words in the question contribute more towards the overall
information need than others. We demonstrate that this has a considerable impact on the
performance of our overall QA system in the ablation studies discussed in Section 8.4.4.

5. Text Aggregation Graphs

Semantic drift, or the tendency for a graph traversal to drift to unrelated topics, consti-
tutes a major hurdle for lexical semantic QA models. This was noted recently by Fried
et al. (2015), who proposed an approximation of inference for QA as the traversal of
a graph that connected concepts (words or lexicalized syntactic dependencies) along
lexical semantic associations. Although this method is robust and performs better than
approaches relying on alignment or embedding models alone, it does not have a good
way of keeping an inference on-context when traversing the concept association graph.
Moreover, even when a correct answer is selected, these methods operate on sets of
probabilities over word distributions, and are unable to provide a compelling human-
readable explanation to the user as to why a given answer is correct.

To address these issues, we propose to construct multisentence answer justifications
using a sentence aggregation method that combines the robustness of word-level con-
nections with sentence-level context. Our approach works in two steps, both of which
are performed offline (i.e., before the actual QA process). First, we decompose sentences
that are likely to justify science exam answers (e.g., from knowledge bases such as
study guides) into smaller units based on clausal and prepositional phrase boundaries.
Intuitively, this allows us to maintain sufficient context to control semantic drift, while
mitigating the sparsity of complete sentences. Following previous QA terminology, we
call these smaller units, which represent clauses or prepositional phrases, information
nuggets (Voorhees 2003). We connect two information nuggets within the same sentence
if there are any syntactic dependencies that connect any words in these nuggets. We call
the resulting graph of these information nuggets, which represents an entire sentence,
a graphlet. Figure 2 shows a number of example graphlets. Formally, we transform
sentences into graphlets using the following algorithm:

1. Parse knowledge base sentences: All knowledge base sentences are
syntactically parsed using the Stanford CoreNLP toolkit (Manning et al.
2014).

2. Decompose sentences into information nuggets: For each sentence,
beginning at the root of the dependency graph, we traverse the
dependency graph and segment the sentence into nuggets along clausal
complements (ccomp, xcomp), adverbial and relative clause modifiers
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A meter stick is a common instrument for
measuring length or distance. 

JJ_common NN_instrument

NN_meter NN_stick VB_measure

LIST

NN_length

NN_distance

Speed is measured over a known distance using a 
stopwatch.

VB_measure

NN_speed JJ_known NN_distance

NN_stopwatch

Speed is represented as distance divided by time.

VB_represent

NN_speed NN_distance

EXAMPLE

VB_divide NN_time

Students can calculate speed by measuring distance with
a meter stick and measuring time with a clock.

NN_student VB_calculate NN_speed

VB_measure NN_distance VB_measure NN_time

NN_meter NN_stick

INSTRUMENT

NN_clock

INSTRUMENT

A stopwatch can be used to measure time .

NN_stopwatch

VB_measure NN_time

Figure 2
Five example graphlets for five sentences that could be aggregated together in different
combinations to justifiably answer the question What tools could determine the speed of turtles
walking along a path? (Answer: stopwatch and meter stick). Each graphlet contains one or more
information nuggets (gray boxes) composed of one or more terms. For example, the graphlet for
the sentence A stopwatch can be used to measure time contains two information nuggets. Edges
between nuggets within a graphlet are shown with arrows, where a subset of these edges are
labelled (e.g., EXAMPLE, INSTRUMENT), and the rest are unlabelled.

(advcl, rcmod), reduced non-finite verbal modifiers (vmod), and a subset
of empirically determined prepositional phrases.5

3. Segment nuggets into terms: Each nugget is segmented into one or
more terms. A term is nominally a single word, but we join both noun
compounds and lists into single terms. Noun compounds (e.g., meter stick
in Figure 2) are detected using the nn dependency tag, and lists of words
(e.g., sleet, rain, hail, or snow) are detected through the same patterns used
by the focus word extractor (see Section 4).

4. Construct graphlets: Two nuggets within a graphlet are connected if any
of the words in one nugget have links in the syntactic dependency tree
with words in the other nugget.

5 The full list of prepositional dependencies along which we split is: prep with, prep through,
prep from, prep to, prep as, prep into, prep by, prep in, prep such as, prep because of,
prep over, prep on, prep between, prepc as, prepc by, prepc of, prepc with, prepc after,
prepc for, prepc before, prep before, prep after, prep during, prepc during,
prepc because of, prep without, and prepc without.
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5. Label a subset of the graphlet edges: In general, to increase robustness,
edges between nuggets are unlabeled. The exceptions to this are a small
set of high-confidence labels: the label definition derived from the
semi-structured dictionary resources that distinguish between a defined
word and its definition, and the labels instrument, process, example,

temporal, and contrast derived from prepositional dependencies.6

6. Remove stop-words: Finally, we remove any stop words, as well as words
that are not nouns, verbs, or adjectives. Any nuggets that are empty after
this filtering are removed.

After the sentences have been transformed into graphlets, we construct candidates
for multi-sentence justifications by connecting sentences with any lexical overlap be-
tween information nuggets. We currently connect up to three graphlets into constructs
we call text aggregation graphs (TAGs), where each TAG corresponds to one potential
answer justification. Figure 3 shows an example of two TAGs. Note that a TAG contains
multiple levels of structure: (a) clause-level structure within nuggets, (b) sentence-level
structure within graphlets, and (c) intersentence structure within TAGs.7 We will exploit
this information in the next section, where we design features to capture the fitness of a
TAG as a justification for a given answer.

6. Text Aggregation Graph Features

Once candidate answer justifications have been reframed as text aggregation graphs,
the TAGs for each answer candidate need to be ranked such that a good justification
for the correct answer will be ranked above all other answer justifications for incorrect
answers. We describe the features that we extract from TAGs for this ranking in this
section, and the latent ranking algorithm in Section 7.

6.1 Features

We developed a set of TAG features that capture both the type of connections between
the graphlets in a TAG and how well the TAG as a whole relates to the corresponding
question–answer pair. The features can be broadly grouped into count features and
mass features. Count features count the integer number of instances of a given event
in a TAG—for example, the number of nuggets that are entirely focus words. Mass
features sum the weights of focus words (as computed in Section 4)—for example,
summing the weight of all question or answer focus words found either within a single
graphlet, or across the entire TAG.

6 More specifically, in our method the instrument label corresponds to the dependencies prep with,
prep through, and prep by. The label process corresponds to the dependencies prep from, prep to,
prep into, prep because of, and prepc because of. The example label corresponds to prep as,
prepc as, prep such as, and prepc such as. The temporal label corresponds to prep before,
prepc before, prep after, prepc after, prep during, and prepc during. Finally, the contrast label
corresponds to prep without and prepc without.

7 Currently, the graphlets and TAGs make use of lexical and syntactic structure only. Although this
provides a robust representation of much of the structure in text, in a future system we would also like to
explore adding semantic role and discourse information in our graphlets. Both of these have been shown
to be useful, albeit for simpler QA tasks. (Surdeanu, Ciaramita, and Zaragoza 2011; Jansen, Surdeanu,
and Clark 2014).
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Speed is measured over a known distance using a 
stopwatch.

VB_measure #

NN_speed * JJ_known NN_distance #

NN_stopwatch *

Students can calculate speed by measuring distance with
a meter stick and measuring time with a clock.

NN_student VB_calculate NN_speed *

VB_measure # NN_distance # VB_measure # NN_time

NN_meter NN_stick *

INSTRUMENT

NN_clock

INSTRUMENT

A meter stick is a common instrument for
measuring length or distance. 

JJ_common NN_instrument

NN_meter NN_stick * VB_measure #

LIST

NN_length

NN_distance #

A stopwatch can be 
used to measure time.

NN_stopwatch *

VB_measure # NN_time #

Speed is represented as distance 
divided by time.

VB_represent

NN_speed * NN_distance #

EXAMPLE

VB_divide NN_time #

Figure 3
Two example TAGs that justifiably answer the question What tools could determine the speed of
turtles walking along a path for the answer a stopwatch and meter stick. Asterisks (*) denote that a
given term is either a question or answer focus word, and pounds (#) denote terms that are not
found in the question or answer, but which are shared between graphlets. Links between the
graphlets in a given TAG are highlighted. (Top) A two-sentence TAG, where the edges between
graphlets connect on a focus word (speed) and other words shared between the graphlets
(distance, measure). (Bottom) A three-sentence TAG, where the edges between graphlets connect
entirely on shared words between the graphlets (distance, measure, time) that are not focus words.

A full list of the features and their descriptions can be found in Table 4. The features
are grouped into three categories: TAG-level, nugget-level, and bridge features. The
TAG-level features use focus words to evaluate the likelihood that an entire justification
is relevant to the question and answer candidate. Nugget-level features provide a finer-
grained measure of how well the individual sentences in a justification relate to each
other by quantifying both how fully they are connected (e.g., are all the words in a nugget
matched with words in other nuggets, or only some), and what type of words they
connect on (e.g., focus words, or other words not found in the question but shared between
sentences). Separate features encode whether a nugget is all focus words, all shared
words, all unmatched words, or any partial combination of these three categories.
Finally, we define a graphlet that contains both question and answer focus words as a
bridge graphlet, in that its content tends to span or bridges the question and answer, and
include a set of bridge features for evaluating this subset of highly relevant graphlets.

6.2 Modeling Different TAG Types Using Domain Adaptation

Good justifications for an answer may take a variety of forms, from those with little
lexical overlap due to the “lexical chasm” (Berger et al. 2000) between question and
answer, to those with a great deal of overlap. For example, of the two TAGs shown in
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Table 4
Features used to score candidate answer justifications represented as TAGs.

Feature Description

TAG-level features
numFocusQ Number of unique Q focus words present in the TAG
numFocusA Number of unique A focus words present in the TAG
massFocusQ Sum of the unique Q focus word weights present in the TAG
massFocusA Sum of the unique A focus word weights present in the TAG
numRepeatedFocus Number of focus words contained in more than one graphlet, with repetition
numOtherAnswerF Negative predictor: the number of focus words from other multiple choice answers

included in the current TAG
minConcShared The minimum psycholinguistic concreteness score (i.e., abstractness) of any shared

word in the TAG

Nugget-level features
numNugF Number of nuggets that are entirely focus words
numNugFS Number of nuggets that contain only focus words and shared words
numNugFSO Number of nuggets that contain focus, shared, and other unmatched words
numNugFO Number of nuggets that contain only focus words and other words
numNugS Number of nuggets that contain only shared words
numNugSO Number of nuggets that contain only shared words and other words
numNugO Number of nuggets that contain only other words
numDefinedFocus Number of nuggets containing only focus words with outgoing definition edge
numDefinedShared Number of nuggets containing only shared words with outgoing definition edge
numQLinksFocus Number of nuggets containing only focus words that have an incoming labeled link

(e.g., definition, instrument, process, temporal)
numQLinksShared Number of nuggets containing only shared words that have an incoming labeled link
numNuggetMultiF Number of nuggets that contain more than one focus word

Bridge features
massMaxBridgeScore Bridge graphlets are graphlets that contain at least one focus word from both the
massMinBridgeScore question and answer, signifying that they are highly relevant to the question and the
massDeltaBridgeScore corresponding answer. A graphlet’s bridge score is the sum of this focus word mass.

We calculate the minimum, maximum, and delta (max − min) bridge scores across
all graphlets within a TAG

Figure 3, in the first TAG both sentences connect on question focus words, whereas in
the second TAG the graphlets only connect on other non-focus words.

Understanding the connections between sentences in a TAG serves as a robust
proxy to modeling discourse structures (e.g., whether the second sentence elaborates
on the concepts introduced in the first), which has been previously shown to increase
both open-domain and science-domain QA performance (Jansen, Surdeanu, and Clark
2014). This is important in the context of feature representations because we conjecture
that some features may be important across all the ways a justification can connect
(so these features should be jointly modeled across connection types), whereas others
are specific to certain connection types (so they should be modeled separately by type).
As shown in Section 8, this hypothesis is strongly empirically supported.

To model this phenomenon, we adapt a technique from the field of domain adap-
tation (Daumé III 2007). First, we label each of the sentences within a TAG based
on whether they contain question focus words and/or answer focus words. We then
characterize the entire TAG by determining whether the words shared between sen-
tences are question focus words, answer focus words, or other non-focus words. This
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Figure 4
Connections between sentences are characterized based on lexical overlap between graphlets.
Here, each box represents a two-sentence TAG, with graphlets stacked vertically. The presence of
question or answer focus words is marked with Q or A, and the presence of other non-focus
words shared between the two graphlets is marked with X. Lexical overlap within a category is
highlighted.

leads to 14 possible connection types, depicted in Figure 4.8 Second, following Daumé’s
method, we generate 15 versions for each of the features introduced in Section 6.1: a
generic one that is type independent, and 14 that are affixed by each of the connection
types. For example, for a given feature such as numFocusQ, we create 15 copies: num-
FocusQ, numFocusQ1 ... numFocusQ14, where the subscript (when present) indicates a
specific connection type. For a TAG of connection type i, only values for the type-specific
feature numFocusQi as well as the general feature numFocusQ are populated—all other
numFocusQj features are set to a value of zero. This allows the learning algorithm in the
next section to learn whether each feature generalizes across connection types, or not.
As shown in Finkel and Manning (2010), this approach is equivalent to a joint model
with a hierarchical prior.

The features introduced in Table 4 apply to justifications containing any num-
ber of sentences, but characterizing justifications that are longer than two sentences
is not straightforward, as the number of connection types (Figure 4) would become
prohibitively large. We handle three-sentence justifications by treating each as a set of
three two-sentence TAGs, and characterize each two-sentence connection individually.
In the case where two groups of sentences have the same connection type, we take
the highest scoring version of each overlapping feature. Although this method would
extend to justifications of arbitrary length, justifications longer than three sentences are
not currently generated by our system.

7. Learning Model

We perform answer selection by focusing on ranking answer justifications rather than
actual answers. Our algorithm (detailed in Algorithm 1) determines the best answer to
a given question by first finding the highest-scoring TAG (i.e., justification) out of all the

8 In practice, for a configuration that allows TAGs of one or two sentences, we have 15 connection types,
including the 14 two-sentence connection types, plus a single-sentence type. We ignore the
single-sentence type in this discussion for simplicity, though it is included in our model.
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TAGs for each of its candidate answers, and then selecting the corresponding answer
candidate. This introduces an additional complication during training: Although we
know which answer candidate is correct, the actual quality of any given TAG is hidden.
That is, many TAGs that connect a correct answer to the question do so in the wrong
context, producing a poor justification. Conversely, even an incorrect answer can be
connected back to the question; otherwise the multiple choice test itself would be too
easy.

We address this issue with a reranking perceptron (Shen and Joshi 2005; Surdeanu,
Ciaramita, and Zaragoza 2011) extended with a latent layer that models the correctness
of the justifications. During training, we take advantage of the assumption that, with
enough knowledge coverage, the best TAG for a correct answer will be better than the
best TAG for an incorrect one. As a result, our algorithm optimizes two goals jointly:
choosing a good answer for a given question, and justifying it with a human-readable
TAG that connects sentences from our knowledge bases.

7.1 Learning Algorithm

The input to the reranking algorithm consists of a corpus of n training questions,
Q, where each qi ∈Q has a set of m candidate answers, A (in the particular case
of the multiple choice test, these are the four multiple choice answers). Each aj ∈ A
for a given qi has a set of TAGs, Xi,j, which connect qi to aj. Crucially, for a correct
answer, we assume that there is at least one valid TAG xc ∈ Xi,j that justifies the cor-
rectness of the chosen answer. This assumption is similar to the one made by Hoffmann
et al. (2011), who assumed that, for a binary relation extraction task, for each training
relation between two entities, e1 and e2, there exists at least one correct sentence that
supports the extraction of the given relation among the sentences that contain both
e1 and e2.

Algorithm 1 Learning algorithm for the latent reranking perceptron. We consider,
without loss of generality, that the correct answer appears at position 1 in training.

1: Input:
T – the number of training epochs
Q – the set of n training questions, each of which has m answer candidates
Xi,j – the set of all TAGs connecting a question qi with a candidate answer aj

2: Output: ΘΘΘ – parameter vector
3: ΘΘΘ = 000
4: for t← 1 –to– T do
5: for i← 1 –to– n do
6: k = arg maxj=1,...,m F(qi, aj)
7: if k 6= 1 then
8: for x← P(qi, a1) do
9: ΘΘΘ = ΘΘΘ + Φ(x)

10: end for
11: for x← P(qi, ak) do
12: ΘΘΘ = ΘΘΘ− Φ(x)
13: end for
14: end if
15: end for
16: end for
17: return ΘΘΘ
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The learning algorithm is formalized in Algorithm 1. The two fundamental building
blocks of the algorithm are the functions P and F. Intuitively, the function P identifies
which justifications (or TAGs) for a given answer best explain the answer according to
the current model. For example, for the question Which organism is a producer? and the
answer grass, a good justification selected by function P is a TAG that connects the two
sentences: Producer is an organism that produces its own food and is food for other organisms:
usually a green plant. and Grass is a green, leafy plant that often covers the ground. Because P
implements a latent operation (i.e., which justification is correct?), its goodness evolves
together with the learned model. Note that, at this stage, we do not control how many
justifications are produced by function P for a given answer other than constraining
it to select at least one. The function F computes the overall score of a given answer by
simply averaging the scores of the justifications chosen by P.

More formally, for a given question qi and candidate answer aj, P chooses a subset of
TAGs from Xi,j that are deemed correct, according to the current model. F marginalizes
over these TAGs to compute the overall score of the answer aj:

F(qi, aj) =

∑
x∈P(qi,aj ) Θ · Φ(x)

|P(qi, aj)|
(1)

where the score of a given TAG, x, is computed as the dot product between the param-
eter vector ΘΘΘ and the vector produced by a feature function, Φ, which operates over
individual TAGs.

Given the functions P and F that control the latent operation of choosing valid
answer justifications, the algorithm proceeds similarly to the reranking perceptron
(Shen and Joshi 2005). If a prediction (i.e., a choice for the correct answer for a given
question [line 6]) is incorrect (line 7), the algorithm updates its parameter vector, ΘΘΘ, by
adding all valid justifications of the correct answer as produced by P (line 9), and
subtracting all TAGs considered valid for the current top answer (line 12).

The fundamental operation here is thus the implementation of P. For their classifi-
cation task, Hoffmann et al. (2011) implement this function as an edge-cover problem,
which guarantees that the overall score for the correct label (similar to our F function)
is maximized and at least one sentence supports the correct classification. For our
reranking task, we found that a conservative interpretation of this at least one idea,
where exactly one justification is chosen, performed the best.9 That is, P returns only
the top TAG with the highest score according to the dot product with the current ΘΘΘ. We
discuss the other extreme, that is, using all TAGs, in Section 8.4.4 (when taken to this
level, the latent layer is essentially disregarded entirely, assuming that each TAG for a
correct answer is correct, and that each TAG for an incorrect answer is incorrect). As
discussed there, this performed far worse.

Inference: During inference, the algorithm ranks all candidate answers for a given
question in descending order of their score (as given by F, but using the averaged
parameter vector, ΘΘΘavg) and returns the top answer.

Practical concerns: Two practical issues were omitted in Algorithm 1 for clarity, but
improved performance in practice. First, we used the averaged percetron at inference

9 In fact, we found that performance consistently dropped as the number of justifications chosen by P
increased.
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time (Collins 2002). That is, instead of using the latest ΘΘΘ after training, we averaged all
parameter vectors produced during training, and used the averaged vector, ΘΘΘavg, for
inference.

Second, we used a large-margin perceptron, similar to Surdeanu, Ciaramita, and
Zaragoza (2011). In particular, we update the model not only when the predicted answer
is incorrect (line 5), but also when the current model is not confident enough—that is,
when the predicted answer is correct, but the difference in F scores between this answer
and the second predicted answer is smaller than a small positive hyper parameter τ.

8. Experiments

8.1 Data

Questions: We assembled a corpus of 1,000 third to fifth grade standardized elementary
school science exam questions, consisting of 346 publicly available questions gathered
from standardized exams in 12 states, as well as 654 closed questions from an exam-
generating service. All questions are multiple choice with four possible answer can-
didates. Questions vary in length from 1 to 6 sentences, and the four multiple choice
answer candidates are generally either single words or short phrases. Because of the
small size of this corpus, our models were evaluated using 5-fold crossvalidation, with
three folds for training, one for development, and one for test.

Knowledge bases: Sentences from six text resources served as input for TAG genera-
tion. Five of these resources are in the science domain and include two state-specific
science exam study guides, a teacher’s manual, a children’s science dictionary, and a
set of exam review flashcards. Each of these in-domain resources was selected to be at
a third-to-fifth grade knowledge level, and contained between 283 and 1,314 sentences
(for a total of 3,832 in-domain sentences). The Simple Wiktionary10 was included as a
large open-domain dictionary resource written at knowledge level similar to that of the
exam questions. Starting with over 24,000 definitions, we filtered these to include only
definitions for nouns, verbs, and adjectives, for a total of 17,473 sentences after filtering.

8.2 Tuning

We tuned the following hyperparameters once on the development data to optimize
both performance and stability.

Number of candidate justifications: Each of the multiple choice answers can have a
large number of candidate justifications. To reduce runtime and assist learning, we filter
this initial list of TAGs to include only a subset of TAGs with a high focus word mass.
We kept all justifications tied for focus mass with the justification in 25th place, resulting
in a variable number of TAGs for each QA pair. For our data set, the mean number of
TAGs for each QA pair was 141.

Perceptron hyperparameters: We investigated the perceptron hyperparameters using a
coarse grid search and found a stable optimum with 10 epochs, a τ of 1.0, burn in of 5
epochs (i.e., the weight updates were not added to the average weights for the first five

10 http://simple.wiktionary.org.
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epochs), and a learning rate (which dampened the updates to the weight vector) of 0.1.
Because model results can vary depending on the random seed used for initialization,
rather than using a single perceptron we use an ensemble of 50 perceptron models
initialized with random weights. These models are combined in a simple voting scheme,
where each model casts a single vote for each question (distributing the vote only in the
case of ties).

Feature normalization: To minimize the effect of outliers in the feature space, we
log-transformed the feature values, and then rescaled each feature independently to
lie within the range of −1 to 1, using the formula normalized = lower + (original −
min) (upper−lower)

(max−min) , where upper and lower are the desired boundaries for the normalization
(1 and −1, respectively), max and min are the maximum and minimum values for
the corresponding feature across the training data set, and normalized is the result of
normalizing original. Note that during testing it is possible to see feature values outside
of their known [min, max] interval, which means that after normalization their values
will fall outside the [−1, 1] interval. We do not do any additional post-processing for
these values.

8.3 Baselines

We include the following baselines:

Random: Selects an answer randomly.

Candidate retrieval (CR): Ranks answers using an approach similar to the baseline
model in Jansen et al. (2014), which uses features that measure cosine similarity over
tf-idf vectors (e.g., Manning et al. 2008, ch. 6) to rank answer candidates in a “learning
to rank” framework. Traditionally, with retrieval systems, short answers to questions
are dynamically constructed from larger parent documents, and the top-scoring answer
(defined as the answer with the highest tf-idf score between that answer candidate and
a query vector made from the question) is taken to be the winner. Here we adapt this
setup to multiple choice exams by: (a) using query vectors that contain words from
both the question and multiple choice answer candidate, and (b) generating features
from the top tf-idf score for each answer candidate in a given question, which are then
combined in the learning-to-rank framework. We then take the short passage retrieved
by the system as a justification for why that answer candidate is correct.

Documents are constructed across the six knowledge bases by dividing each cor-
pus by subsection (for texts), by definition (for dictionaries), or by flashcard. We im-
plemented the document indexing and retrieval system using Lucene.11 Each sliding
window of N sentences in a given document served as a potential answer justification.
Using the development questions, we empirically determined that a two-sentence win-
dow performed best, though performance did not significantly differ for window sizes
between one and five sentences. This model generates two features: a cosine similarity
score between the query vector and the best-scoring candidate answer justification
in a given corpus, and a linear model that combines this cosine similarity with the
cosine similarity between the query vector and the entire document, blending both
local (answer justification) and global (document) context.

11 http://lucene.apache.org.
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Because our six corpora are of different genres (study guide, teachers guide, dic-
tionary, flashcards), domains (science-domain vs. open-domain), and lengths (300 to
17,000 sentences), we implement six separate tf-idf models, each containing documents
only from a single corpus. We then combine the two retrieval features from each model
(12 features total) into a ranking perceptron (Shen and Joshi 2005; Surdeanu, Ciaramita,
and Zaragoza 2011) to learn which knowledge bases are most useful for this task. This
ensemble retrieval model produces a single score for each multiple choice answer candi-
date, where the top-scoring answer candidate is selected as the winner. The top-scoring
answer justifications from each of the six retrieval models then serve as justifications.

Jansen et al. (2014): The best-performing combined lexical semantic (LS) and CR model
of Jansen et. al (2014), which was shown to perform well for open domain questions.
Similar to the CR model, we adapted this model to our task by including six separate
recurrent neural network language models of Mikolov et al. (2013, 2010), each trained
on one of the six knowledge bases. Two features that measure the overall and pairwise
cosine similarity between a question vector and multiple choice answer candidate
vector are included. The overall similarity is taken to be the cosine similarity of the
composite vectors of both the question and answer candidate, obtained by summing the
vectors for the individual words within either the question or answer candidate vectors,
then renormalizing these composite vectors to unit length. The pairwise similarity is
computed as the average pairwise cosine similarity between each word in the question
and answer candidate. Two features from each of the six LS models are then combined
with the two features from each of the CR models (24 features total), as above, using
a ranking perceptron, with the top-scoring answer candidate taken as correct. Because
the LS features do not easily lend themselves to constructing answer justifications, no
additional human-readable justifications were provided by this model.

8.4 Results

Here we first investigate the performance of two variants of the TAG model with respect
to justification length. We then compare the best-performing model with the baselines,
and show that the TAG and CR models can be combined to increase performance.
We use the standard implementation for precision at 1 (P@1) (Manning, Raghavan,
and Schütze 2008) and a tie-aware implementation of mean reciprocal rank (MRR)
(McSherry and Najork 2008).

8.4.1 Justification Length. Table 5 shows the performance of the TAG model as a function
of increasing justification length. Here, the kG models contain exclusively justifications
of length k (we explore TAGs of varying length later in this section). Short two-sentence
(or two-graphlet) TAGs significantly outperform single-sentence TAGs, with single-
sentence (1G) TAGs starting at 35.3% P@1, increasing to 38.2% for two-sentence (2G)
TAGs, then decreasing slightly to 37.8% for three-sentence (3G) TAGs. In previous
work, we observed that for a variety of word-level graphs and traversal algorithms,
QA performance tends to rapidly peak when aggregating two or three words, then
slowly decreases as more words are aggregated because of “inference drift” in the graph
traversal process (i.e., following the connections from breakfast → hashbrowns → potato
→ field would potentially connect questions about breakfast to information about potato
or even soccer fields) (Fried et al. 2015).

Though our sentence aggregation model contains far more structure than the
higher-order LS graphs of Fried et al. (2015), and is represented at the level of the
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Table 5
Performance as a function of justification length in sentences (or, the number of graphlets in a
TAG) for two models: one aware of connection-type, and one that is not. Bold font indicates the
best score in a given column for each model group.

Model P@1 P@1 MRR MRR
Impr. Impr.

Normal

1G 35.33 – 59.26 –
2G 38.16 8.0% 61.33 3.5%
3G 37.78 6.3% 61.14 3.2%

Connection-type aware (Daumé)

1GCT 34.80 – 58.86 –
2GCT 39.91 14.7% 62.53 6.2%
3GCT 38.53 10.7% 61.65 4.7%

sentence or graphlet rather than individual lemmas, we hypothesize based on this
previous work that we may be observing the beginning of the same characteristic
peak in performance reported there. Because runtime increases exponentially with the
number of sentences included in a TAG, it quickly becomes intractable to test this with
TAGs containing more than three graphlets.

Extending the model to include a knowledge of the connection type (or the type
of lexical overlap, see Section 6.2) between sentences in a given TAG using Daumé’s
method (Daumé III 2007) increases performance, suggesting that different kinds of
connections are best identified through different feature patterns. Here, the connection-
type aware 2GCT model outperforms the regular 2G model by nearly 2% P@1 (absolute),
increasing performance to 39.9%—an increase of +14.7% (relative) over using only
single-sentence TAGs.12

8.4.2 Combined Models. Where Table 5 lists models that contain justifications of static
length, Fried et al. (2015) showed that combining paths of different lengths into a single
classifier can increase performance. The performance of TAG models that combine
justifications of different lengths, as well as the baseline models, is shown in Table 6.

Baselines: Where the lexical semantics model of Jansen et al. (2014) outperformed their
CR baseline by +36% (relative) on a large corpus of open-domain questions from Yahoo
Answers, here on elementary science exams, the lexical semantic features decrease
performance. Our conjecture is that the performance difference is due to the difference
in the size of the corpora used to train the lexical semantic model—where Jansen
et al. trained their lexical semantic model using Gigaword, here we are limited by the
relatively small size of our text resources. Jansen et al. (2014) reported that a domain-
specific version of their lexical semantic model performed poorly when trained on a

12 Each of the 50 models in the ensemble reranker is initialized with random weights, causing the small
performance difference between 1G and 1GCT.
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Table 6
Performance of the baseline and best-performing TAG models, both separately and in
combination. TAG justifications of different short lengths were found to best combine in single
classifiers (denoted with a +), where models that combine the CR baseline or long (3G) TAG
justifications best combined using voting ensembles (denoted with a ∪). Bold font indicates the
best score in a given column for each model group. Asterisks indicate that a score is significantly
better than the highest-performing baseline model (* signifies p < 0.05, ** signifies p < 0.01). The
dagger indicates that a score is significantly higher than the score in the line number indicated in
superscript (p < 0.01). All significance tests were implemented using one-tailed non-parametric
bootstrap resampling using 10,000 iterations.

# Model P@1 P@1 MRR MRR
Impr. Impr.

Baselines

1 Random 25.00 – 52.08 –
2 CR 40.20 – 62.49 –
3 Jansen et al. (2014) 37.30 – 60.95 –

Combined models with justifications of variable lengths (Single classifier)

4 1G + 2G 38.69 – 61.43 –
5 1GCT + 2GCT 42.88†4 +6.7% 63.94% +2.3%

Combined models that include the CR baseline (Voting)

6 CR ∪ 1GCT ∪ 2GCT ∪ 3GCT 43.15* +7.3% 64.51* +3.2%
7 CR ∪ (1GCT + 2GCT) ∪ 3GCT 44.46** +10.6% 65.53** +4.9%

biology textbook and subset of Wikipedia, and others have since shown that lexical
semantic models perform poorly with small amounts of training data (Sharp et al. 2015).

Combined models: Single-classifier models containing both 1G and 2G TAGs were
generated for both the normal and connection-type-aware models. The 1G + 2G model
performs only slightly better than 2G alone, but when the models are connection-type
aware, there is greater benefit to combining the different path lengths—the connection-
type-aware 1GCT + 2GCT model (line 5) increases performance to 42.9% P@1 (compare
with the static-length 2GCT performance of 39.9%).

As the CR baseline and the TAG models are performing inherently different tasks
(information retrieval and information aggregation, respectively), we are able to combine
them in a voting model in order to create a full system that contains the benefits of each.
The voting models that incorporate both the CR baseline and TAG models across all
justification lengths are included on lines 6 and 7. Both models significantly increase
performance over the CR baseline, with the voting model that couples 1GCT + 2GCT
as a single classifier (and single vote) performing better than when 1GCT and 2GCT
vote separately. This best-performing model reaches 44.5% P@1, increasing performance
over the CR baseline by +10.6% (relative). This set of experiments demonstrates that
our approach of jointly ranking answers and justifications is complementary to a strong
information retrieval baseline, and significantly improves performance at the task of
selecting the correct answer.
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Table 7
Example justifications from the CR baseline and their associated ratings.

Question

What is the interaction between the producer and the consumer in a food chain?
[A] The consumer eats the producer for energy.
[B] The consumer does not interact directly with the producer.
[C] The producer eats other producers for energy.
[D] The producer eats the consumer for energy.

Rating Example Justification

Good A primary (1st) consumer eats producers (plants). A secondary (2nd) consumer
eats primary consumers. [Barrons SG]

Half The food chain starts with a producer (a plant) and ends with a decomposer.
[Flashcards]

Topical A herbivore is an organism that depends on plants for most of its food and
energy. [Science Dictionary]

Offtopic When a plate moves suddenly a great amount of energy is released. These
waves cause damage... [Virginia SG]

8.4.3 Justifications. The previous experiments demonstrate that our method performs
well at identifying correct answers. But how well does it perform at the task of justifying
those answers? We evaluated justification performance for both the best baseline (CR)
and the best performing TAG model that is independent of CR (i.e., 1GCT + 2GCT).
Where TAG justifications took the form of the sentences being aggregated, justifications
for the CR model were taken to be the highest-scoring short passages from each of the
six knowledge bases. As the CR model was tuned to a retrieval size of two sentences
to maximize P@1 performance, each CR justification was two sentences in length.13 To
facilitate easy comparison, because the CR model provides six justifications (one from
each knowledge base), we evaluate the top six scoring TAG justifications.

The correctness of justifications was independently annotated by two of the authors.
Any detected conflicts were resolved post hoc by the two annotators working together.
Answer justifications were rated on a four-point scale, based on their ability to provide
a convincing justification to the user as to why a given answer choice was correct (see
Table 7 for CR examples, and Figure 5 for a TAG example). Justifications rated as good
describe the inference required to arrive at the correct answer. Those rated as half
contained at least a portion of an explanation of the inference, but missed some critical
aspect required to answer the question, like discussing producers but not consumers
in Table 7. The two final ratings are for justifications that did not address the inference
– topical justifications do not address the question but discuss a similar topic, where
offtopic justifications are unrelated to the question.

We evaluated the top-rated answer justifications using an at least one method. With
this method, performance reflects the highest rating attained by at least one of the six
justifications for a given question. For example, for a question to be classed as good,
at least one of the six answer justifications must be rated as good. At least one answer

13 Documents for the dictionary and flashcard corpora typically contained only a single sentence, and so
answer justifications from these corpora are often shorter than two sentences.
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Question Which organism is a producer? (GR:5)
Focus Word(s) (NN producer, 0.92) (NN organism, 0.08)
Answers (A) frog (B) mushroom (C) grass (D) lizard

Correct Answer grass
Focus Word(s) (NN grass, 1.00)

Grass is a green, leafy plant that often 
covers the ground. 

[Wiktionary]

NN_grass *

VB_cover NN_ground

NN_producer *

Producer is an organism that produces its own food and
is food for other organisms: usually a green plant. 

[Science Dictionary]

VB_produce NN_food JJ_green # JJ_leafy NN_plant #

DEFINITION

NN_food NN_organism * JJ_green # NN_plant #

NN_organism *

Figure 5
An example TAG and justification rated as good. The two sentences connect on non-focus
“other” shared words (e.g., green, plant) that are not found in the question or answer, but that are
highly related to the focus words.

justification performance is listed in Table 8. For the TAG model, 56.7% of the questions
had at least one justification rated as good, outperforming CR justifications by 11.4%
(absolute).

This experiment supports our original intuition that justifications must be aggre-
gated from multiple resources. Although the small window of sentences from the CR
model is sufficient to justifiably answer many questions, a large number of questions re-
quire knowledge to be aggregated from non-adjacent sentences within a given corpus, or
from sentences in different corpora altogether, to compose convincing answer justifica-
tions. While the CR model leaves many of these questions with only partial justifications
(34.9% of justifications are rated as half ), the TAG model is able to aggregate sentences
from multiple sources, and finds complete good justifications for many of the questions
only partially answered by the CR model.

8.4.4 Ablation Studies. To verify the contribution of the components of our system, we
include the following ablation studies:

Latent perceptron: The complete removal of the latent layer (i.e., using the average
of all TAG scores to score the candidate answer, and performing perceptron updates

Table 8
At least one justification performance for both CR and TAG models, reflecting the highest rating
attained by at least one of the top six justifications for a given question.

Rating CR TAG

Good 45.3% 56.7%
Half 34.9% 20.7%
Topical 11.9% 14.4%
Offtopic 7.9% 8.2%
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with all TAGs) decreases the performance of the best performing TAG model (1GCT +
2GCT) from 42.88 to 35.43 P@1. Alternatively, we experimented with using the sum of
the TAG scores and the maximum TAG score as the candidate score, while still doing
updates with all TAGs. These configurations decreased performance to 34.46 and 38.09
P@1, respectively. This demonstrates the importance of modeling justification quality as
a latent variable.

Focus words: Focus words are used both to find relevant sentences to aggregate into
answer justifications, as well as to characterize those justifications when expressed as
TAGs. Replacing focus words with uniform weights for all content words (NN, VB, JJ)
in a question reduces performance of the 1G+2G model from 38.69 to 33.89 P@1. For the
connection-type-aware model (1GCT + 2GCT), performance decreases from 42.88 to 40.03
P@1. This supports our observation that science exam questions contain several layers
of information (e.g., the underlying question, and the example the question is grounded
in), each contributing different utility to the QA process.

Graphlet structure: Graphlets segment sentences based on clausal and prepositional
boundaries to facilitate evaluating how well two sentences connect using structures
larger than a word but more fine-grained than the entire sentence. In other words,
graphlets are the key structure in our representation of answer justifications because
they drive both intra- and intersentence connections in a TAG. Eliminating this struc-
ture (i.e., considering each sentence as a bag of words, which is equivalent to a graphlet
with a single nugget) substantially reduces the performance of the 1G + 2G model from
38.69 to 28.90 P@1 and the performance of the 1GCT + 2GCT model from 42.88 to 28.08
P@1.

8.5 From Latent Perceptron to Latent Neural Networks

Neural networks (NNs) have recently received much attention in many NLP tasks and
have been shown to be quite effective in certain question answering tasks (Bordes,
Chopra, and Weston 2014; Iyyer et al. 2014; Bordes et al. 2015; Iyyer et al. 2015; Dong
et al. 2015; Wang and Nyberg 2015; Yih et al. 2015; He and Lin 2016; Suggu et al. 2016).
To determine if a deep learning approach would benefit our system, we explored pro-
viding our text aggregation graph features and the candidate retrieval scores to a neural
ranking architecture. Under this framework we were also able to straightforwardly ex-
periment with including vectorized representations (i.e., embeddings) of the question,
candidate answer, and corresponding justification, in hopes of accommodating some of
the lexical variation in natural language.

Neural network systems have varied dramatically in terms of their primary archi-
tecture (feed-forward, convolutional, recurrent, etc.) as well as their shape (number
of hidden layers, number of nodes in a given layer, etc.). Recently, however, Iyyer
et al. (2015) found that in their QA task, a simple network that averaged the word
embeddings of the questions and the answer candidates outperformed a much more
complex tree recurrent NN. Chen and Manning (2016) have recently validated this
observation in a different QA task. We based our NN on this simpler system, adapting
it to our task by including not only an averaged vector for the question and answer,
but also an averaged vector for the answer justification. Additionally, we include our
connection-type aware structural TAG features (cf. Table 4) and the CR features in the
network input. The network architecture is shown in Figure 6.
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Output	Layer

Dense	Layers

…

Question Answer Justification

TAG	Features

…

Averaged	
Embeddings

… …

CR	Scores

Figure 6
The architecture for the neural network variation of our TAG system. We use a fully connected
feed-forward network that takes as input the content words (i.e., nouns, verbs, and adjectives)
from the question, candidate answer, and corresponding justification. For each of these, we
create a composite vector by averaging the embeddings of the individual words. We then
concatenate these three composite vectors, as well as the TAG features and the CR scores, to
form the input layer to the network. The output of the network is a single, real-valued score for
the candidate answer justification.

For learning, we use the hinge ranking loss function (Collobert et al. 2011) and
update using stochastic gradient descent. During training, for each question we pair
the correct answer candidate with each of the incorrect candidates, creating three pairs.
For each of these pairs, we score both the correct answer candidate and the incorrect
answer candidate and then compute the loss:

L = max(0, m− F(q, acorrect) + F(q, aincorrect)) (2)

where F(q, acorrect) is the score of the correct answer candidate, F(q, aincorrect) is the score
of the incorrect answer candidate, and m is the margin.

There are two important aspects of the proposed architecture:

a) The latent layer—that is, identifying good justifications to use for a given
answer, which we implement by modifying stochastic gradient descent to
keep track of the latent aspect. Specifically, to maintain the latent variable
aspect of our ranking perceptron in our ranking neural network, we adapt
Equation (1) to use a feed-forward pass through the network to determine
the score of a given TAG (rather than the inner product of the features
and the parameter vector), and continue to use the implementation of P
that uses only the TAG with highest score. In this way, for each pair of
candidate answers we have two justifications (one for the correct answer
and one for the incorrect), and so perform a model update (i.e.,
backpropagation) for each.

b) The combination of embeddings with explicit features that come from the
CR system and the TAG features. This strategy of mixing latent and
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explicit features has been demonstrated to be successful in other NLP
tasks (Chen and Manning 2014; Suggu et al. 2016).

Despite their advantages, neural networks have many hyperparameters that need
to be tuned. Continuing the inspiration of Iyyer et al. (2015), we lightly turned the net-
work on development, both in terms of network shape as well as additional parameters.
Doing so, we arrived at a network that has a single dense layer with length 100 followed
by the output layer of length one.14 For our word embeddings, we used a recurrent
neural network language model (Mikolov et al. 2010, 2013) trained over a concatenation
of all of our in-domain elementary science resources (i.e., the study guides, flashcards,
and dictionaries) to generate embeddings with 200 dimensions.15

All network nodes use the sigmoid activation function, which performed better
and was more stable to variations in the hyperparameters than the rectified linear unit
activation. Additionally, we used an L2 regularization of 1.0 and a dynamic learning
rate that began at 1.0 and decayed by half each time the performance on validation
decreased. Though we experimented with dropout, there did not seem to be a consistent
improvement, so our final models do not include it. We used 50 epochs for training with
early stopping if the validation performance decreased and failed to regain its previous
best after 10 epochs. Similar to the perceptron, we found that the network performance
varied with the random seed. To mitigate the effects of this variation, we report scores
from an ensemble of five networks, each with a different random seed, where the trained
networks each voted for a single answer choice, splitting their vote only in the event of
a tie.

Neural Network Results. The final performance for the neural network variants of our
proposed system as well as the CR baseline are shown in Table 9. Once again, we
observe that the performance of the combined model (CR + TAG + embeddings, line 4)
is better than the performance of the CR model by itself (line 1) or CR + embeddings
(line 3). However, here this difference is not significant. This suggests that representing
the justification as a simple bag of words with latent feature representations is not
as effective as representing them with features derived from the structure of the text
aggregation graph, even with the non-linear capabilities of the neural network.

Additionally, we find that the neural network variants perform worse overall than
the latent ranking perceptron models and the voting ensemble (cf. Table 6). This could be
due to the fact that the TAG and CR features we are supplying to the neural network are
already abstracted many levels from raw text inputs, and so the NN approach benefits
less from the non-linearity of the NN. Another likely reason for the NN performing
worse than the perceptron is that neural architectures need larger quantities of training
data in order to properly generalize. Notably, in the recent Allen Institute for Artificial
Intelligence Kaggle challenge,16 a large contest with 170 participating teams that also
required answering multiple choice elementary and middle school science questions,
none of the top-performing participants obtained better results with neural networks.
The participants’ analyses suggested that this is largely because of a lack of training

14 We experimented with some deeper networks and several hidden layer sizes (both larger and smaller).
15 We also experimented with using embeddings trained over English Gigaword (Graff et al. 2003) because

that resource is much larger and would potentially yield more robust word representations. However, we
found that the performance was consistently worse, which we suspect is due to the difference in the
domains.

16 https://www.kaggle.com/c/the-allen-ai-science-challenge.

433



Computational Linguistics Volume 43, Number 2

Table 9
Performance of the Latent Ranking Neural Network models. Models with CR include the
candidate retrieval scores as input, models with TAG use the features from the best performing
TAG model (1GCT+2GCT), and models with embeddings include an average embedding for each
of the questions, the answers, and the text from which the justification graphlet was derived.
Significance tests were performed using bootstrap resampling with 10,000 iterations, but none of
the differences between the neural network models and the CR baseline were significant.

# Neural Network Models P1 MRR

1 CR 40.74% 62.56%
2 CR + TAG 40.52% 62.48%
3 CR + embeddings 38.74% 61.61%
4 CR + TAG + embeddings 41.82% 63.11%

data. Finally, the space of possible neural network architectures is large, and the network
we report here is fairly simple. Although it could be the case that given a more complex
architecture (i.e., with a recurrent or convolutional network, optimizers, and learned
rather than pre-trained embeddings) we could obtain even higher numbers than those
reported here, with complex architectures, issues resulting from the limited training
data would likely be worsened. We leave that exploration to future work.

Incorporating Embeddings into the Perceptron. Though the embedding-based neural archi-
tecture (as implemented) was not successful, following a reviewer suggestion we also
experimented with adding the precomputed text embeddings as additional features
for the latent ranking perceptron. In this way, the feature vector for each TAG, Φ(x),
contains the original features as well as an averaged embedding for each of the question,
answer, and justification texts. This provides an additional 600 features, as we are
using 200-dimensional embedding vectors. We included these extra features in our
best performing single TAG model, the connection-type aware 1G+2G model shown
in Table 6, line 5. The resulting model performed worse (39.36% P@1 compared with
42.88% P@1 without the embeddings). This shows that, although distributed represen-
tations of words have many benefits (including robustness to lexical variation), their
incorporation into a learning model is not necessarily trivial, and we leave that study to
future work.

9. Discussion

To further characterize the performance of our QA approach, we address the following
questions:

How does performance compare with methods using manually constructed knowl-
edge bases? The TAG system automatically aggregates sentences from six free-text
corpora first by building graphlets from those sentences using syntactic dependencies,
then connecting those graphlets together into multisentence text aggregation graphs
that are then used to both answer questions and provide a compelling human-readable
justification for the selected answers. Recently, Khashabi et al. (2016) demonstrated
that graphs for elementary science QA can also be constructed using a semistructured
knowledge base of tables. In this formalism, dozens of themed tables are manually
or semi-automatically constructed, each around a particular theme. A table’s theme

434



Jansen et al. Framing QA as Building and Ranking Intersentence Answer Justifications

is encoded in its columns—that is, a table for the color of objects contains two rows,
one for the object of interest (e.g., “leaf”), and another for its color (e.g., “green”), while
separate instances (e.g., leaf—green, trunk—brown) are encoded as different rows. Each
table has between two and five columns.

The TableILP algorithm answers questions by chaining facts between different table
rows, starting from a row that contains question terms, then traversing to a new table
row that contains some lexical overlap with the previous row(s), until answer terms
are found. The TAG and TableILP systems are conceptually similar, with the central
differences being: (1) The TableILP table row is roughly equivalent to a TAG graphlet
with flat structure, and limited to two to five information nuggets containing only single
terms; (2) TAG graphlets are read automatically from free text corpora, where TableILP
tables are largely manually constructed, with methods to automate this construction
being actively developed; and (3) the traversal algorithms are different, with TableILP
graph building being modeled as an integer linear programming (ILP) problem that
finds paths that maximize QA performance.

The TableILP system reported by Khashabi et al. (2016) contains 69 tables containing
a total of 7,600 rows, with 64 of these tables (approximately 5,000 rows) designed around
material in the study guides and a development corpus, and the remaining 2,600 rows
distributed among four automatically constructed tables. On a corpus of 200 questions
drawn from the 1,000 questions used here, TableILP achieved a score of 45.6% P@1,17

compared with the 44.6% P@1 from the best-performing TAG model in Table 6. The
performance difference between these systems is likely not statistically significant.18

We view these systems as complementary, converging, and with each capable of
exploring different aspects of graph-based inference for science QA. Although the TAG
focuses on automatically building graphs from free text, this is currently a challenging
and noisy process, and as we have shown in Table 5 and Fried et al. (2015), highly
susceptible to inference drift as the amount of information required to be aggregated
becomes large. On the other hand, building graphs from manually constructed knowl-
edge bases allows us to investigate the graph-building process in isolation, reducing
inference drift due to noise, and further moving this area forward.

How does performance vary by grade level? The question corpus contains third,
fourth, and fifth grade questions. A human with a level of knowledge equivalent
to a fourth grade science student might be expected to show better performance for
the simpler third grade questions, and decreasing performance as question difficulty
increases from fourth to fifth grades. Table 10 shows P@1 performance by grade level
for both the CR and best performing TAG model (1GCT + 2GCT). The TAG model shows
decreasing performance as question difficulty increases, dropping from 49% for third
grade questions to 42% for fourth and fifth grade questions. The CR baseline, however,
displays a qualitatively different pattern, with a peak performance of 51% for fourth
grade questions, and near chance performance for third grade questions. We believe
that observing such a pattern in performance may suggest that the TAG model is a
closer approximation of human inference than the baseline based solely on information
retrieval. Here, the relatively small number of third and fourth grade questions prevents
us from drawing any conclusions, but suggests that crafting question sets to allow

17 We wish to thank Khashabi et al. (2016) for providing us with this performance figure.
18 We did not have access to system output. However, in our experiments on this data set, we observed that

only differences in P@1 scores of 3% or higher (absolute) tend to be statistically significant at p < 0.05.
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Table 10
Precision@1 by grade level.

Grade Level Questions CR TAG

Grade 3 60 28.3% 49.2%
Grade 4 69 50.7% 41.3%
Grade 5 871 40.2% 42.6%

evaluating the distribution of performance by grade level may provide a further
measure of comparison between human and machine performance.

Which knowledge resources are generating the most useful answer justifications?
Shown in Table 11, the Barron’s Study Guide contributes more of the good justification
sentences than any other source, followed by the science dictionary, then the other
resources. Interestingly, the Simple Wicktionary contributes the fewest sentences to the
good justifications for the CR system (7.5%), but for the TAG system it is the third largest
contributor (14.8%). That is, whereas the CR system is typically unable to find a good
justification from the Wiktionary, likely owing to its general nature, the TAG system
is able to successfully aggregate these sentences with sentences from other domain-
specific sources to build complete justifications.

The vast majority of the good justifications generated by the TAG system are aggre-
gates from non-adjacent text: 67% of the justifications aggregate sentences from different
corpora, 30% aggregate non-adjacent sentences within a single corpus, and only 3% of
good justifications contain sentences that were adjacent in their original corpus. This
is clear evidence that information aggregation (or fusion) is fundamental for answer
justification.

How orthogonal is the performance of the TAG model when compared with CR?
Both the TAG and CR models use the same knowledge resources, which on the surface
suggests the models may be similar, answering many of the same questions correctly.
The voting models in Table 6 appear to support this, where combining the TAG and
CR models increases performance by just under 2% P@1 over the best-performing TAG
model. To investigate this, we conducted an orthogonality analysis to determine the
number of questions both models answer correctly, and the number of questions each
model uniquely answers correctly.

Table 11
Most useful knowledge resources for justifications classified as “good.”

Resource Sentences CR TAG

Barrons SG 1,200 39.3% 43.0%
Flashcards 283 16.2% 8.2%
Teacher’s Guide 302 7.1% 7.0%
Virginia SG 1,314 9.1% 9.2%
Science Dictionary 733 20.8% 17.8%
Simple Wiktionary 17,473 7.5% 14.8%
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Comparing the TAG (1GCT + 2GCT) and CR models, nearly half of questions are
answered correctly by one model and incorrectly by the other. When combined into a
two-way voting model, this causes a large number of ties—which, resolved at chance,
would perform at 42%, with ceiling performance (i.e., all ties resolved correctly) at
60%. This indicates that although the TAG and CR models share about half of their
performance, each model is sensitive to different kinds of questions, suggesting that
further combination strategies between TAG and CR are worth exploring.

10. Error Analysis

At a high level, our sentence aggregation model can be thought of as a system for
building and evaluating answer justifications. When questions are answered incorrectly,
it is unclear whether the system was unable to build a good justification for the correct
answer, or unable to detect a good justification that was successfully built. To examine
this, in addition to evaluating justification quality for correct answers, we also evaluated
the top six justifications for 100 questions that the TAG system answered incorrectly.
We investigated the type of TAG patterns in the correct justifications (from Section 6.2),
as well as the kinds of inference required for questions that were answered incorrectly.
In addition, we conducted a large open-ended error analysis and identified several
broad classes of issues that contribute to poor system performance.19

What patterns of lexical overlap do we observe in justification sentences? We begin
with an encouraging result. For questions that were answered incorrectly, nearly half
(45.1%) contain at least one good justification within the top 6 for the correct answer.
This suggests that the current model is much better at generating and broadly ranking
justifications than it is at the final step—pushing the correct justification from the top 6 to
the top position. This result suggests that the TAG model may benefit from an improved
ranking model. For example, whereas we currently use lexicalization to model TAG
structures and quantify the overlap between candidate TAGs and the question, none
of the features used by the ranking perceptron are explicitly lexicalized. We explored
some neural network variants of our models in Section 8.5, which were better able to
incorporate lexicalization, but did not see a performance gain. These models can be
extended in future work, however, to see if it is ultimately possible to make use of this
lexicalization.

Further, for questions answered correctly, the good justifications in the top 6 tend
to connect on several of the three lexical overlap categories (i.e., question focus words,
answer focus words, other shared non-focus words). Table 12 shows that for questions
answered correctly, in 69% of cases good justifications are connected on two or three
lexical overlap categories. Conversely, for questions that are answered incorrectly, the
good justifications are far more likely to contain sentences that only connect on a sin-
gle lexical overlap category (57.6% vs. 31.0% for questions answered correctly). This
suggests that although less lexically connected answer justifications are not necessarily
less numerous or of lower quality, they are much more challenging to detect given our
current connectivity-centered features. That is, the current features are very good at

19 Our current focus word extractor is not yet well-suited to complex multisentence questions. Although the
question corpus as a whole consists of 62% single-sentence questions, 25% two-sentence questions, and
14% questions that are three sentences or longer, we elected to focus on shorter single-sentence questions
for this error analysis whenever possible. As a result, 96% of the questions analyzed were single-sentence
and 4% were two-sentence.
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Table 12
Proportion of good justifications with a given number of connecting word categories (Q, A, X) for
both correct and incorrect answers (Top 6).

Connecting Categories Correct Incorrect

1 31.0% 57.6%
2 56.3% 39.4%
3 12.7% 3.0%

detecting well-connected answer justifications, which correlate with good answers, but
the features are not able to directly detect good answer justifications, which is a more
challenging theoretical problem.

Is it harder to detect justifications for certain kinds of inference? We predict that ques-
tions requiring more challenging kinds of inference as identified by Clark et al. (2013),
like model-based or general inference questions, are likely more difficult for the TAG
system to answer than simpler retrieval-based questions. Following the criteria de-
scribed by Clark et al., we classified the 100 questions in the error analysis based on
the inference type required to answer them correctly. This analysis, shown in Table 13,
suggests that it is much more challenging to detect good justifications for questions
that contain challenging inference. Where 58% of retrieval-based questions contained
a good justification within the top six, this decreased to 29% for questions requiring
general inference, and to 13% for questions requiring complex model-based reasoning.
Taken in conjunction with our analysis of lexical overlap categories, this suggests that
good justifications for complex inference may tend to be less lexically connected, and
thus more challenging to detect with our current framework. This suggests important
avenues for future work.

10.1 Broader Error Classes

To expand on the above two issues, we conducted a broader, open-ended error analysis,
and identified six main error classes made by the system: focus word failures, noise
in the knowledge base, complex inference, semantic cluster matching, coverage of the

Table 13
A summary of the inference type necessary for incorrectly answered questions. The summary is
broken down into three categories: incorrectly answered questions with a good justification in
the top six, incorrectly answered questions without a good justification in the top six, as well as
the overall proportions across these two conditions.

Inference Type Good No Good Proportion of
Justification Justification Questions

Retrieval 58% 23% 39%
General Inference 29% 43% 37%
Model-Based 13% 34% 25%
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Table 14
A summary of the classes of the errors made by the system. On any given question, more than
one error may have been made. The summary is broken down into three categories: incorrectly
answered questions with a good justification in the top six, incorrectly answered questions
without a good justification in the top six, as well as the overall proportions across these two
conditions.

Error Class Good No Good Overall
Justification Justification

FOCUS WORDS
Focus Word — Question 49% 46% 48%
Focus Word — Answer 20% 32% 27%
Focus Word — Answer Lists 7% 5% 6%
Focus Word — Compounds/Collocations 9% 16% 13%

NOISE IN THE KNOWLEDGE BASE
Excessively Long Sentence (Chosen Ans) 33% 9% 20%
Excessively Long Sentence (Correct Ans) 13% 4% 8%

COMPLEX INFERENCE
More Sentences Required 4% 16% 11%
Causal or Process Reasoning 27% 30% 29%
Quantifiers 4% 23% 15%
Negation 2% 9% 6%

MISCELLANEOUS
Semantic Cluster Matching 16% 5% 10%
Coverage of Knowledge Bases 4% 36% 22%
Other 29% 9% 18%

knowledge bases, and other errors. The distribution of these errors is shown in Table 14
and detailed here.

10.1.1 Focus Word Errors. Extracting focus words from questions and answers can be dif-
ficult, as often these questions are grounded in complex examples. Moreover, although
examples can often be filtered out, sometimes they are necessary to the question. Within
the larger category of focus word errors, we subdivided these errors into more specific
categories:

Question and Answer Focus Words: We considered a question or answer to have focus
word issues if either the words selected by the focus word extractor were not critical to
the inference, or if the weights did not reflect the relative importance of each word to
the inference. An example of this can be seen in Table 15.

Answer Choice Lists: Candidate answers may not be single choices, but occasionally
take the form of lists, as in the question which of the following organisms are decomposers?
and its correct answer worms, mushrooms, and insects. In these cases each list item for
a given answer candidate must be independently verified for correctness, as incorrect
lure answers often contain one or more correct list items. The current system does not
handle this type of complex problem solving method.
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Table 15
Example of failure to extract appropriate focus words from the question.

Focus Words — Question

Question What type of simple machine is Bruce using as he opens a twist top bottle of soda? (GR:5)
Focus Word(s) (NN bruce, 0.22) (VB open, 0.22) (NN twist, 0.22) (JJ top, 0.22) (NN bottle, 0.05)

(NN soda, 0.03) (NN machine, 0.02)
Issue The concept the question is testing is embedded in a complex example that the focus word

extractor is only partially able to suppress. Here, the most critical word for the inference
is twist, but some example words (bruce, open, and top) are not suppressed, and receive
the same weight as twist.

Compounds/Collocations: The current focus word extractor operates at the level of the
word, and does not join noun–noun compounds or collocations, such as simple machine
or water cycle. This causes compounds to be split, with different focus weights assigned
to each word. This also adds noise to the inference process, as (for example) a justifica-
tion sentence that contains simple but not machine is less likely to be on context.

10.1.2 Noise in the Knowledge Base. We included nearly all sentences contained in each of
the five science-domain corpora. Although most of this is high-quality text, occasionally
extremely long sentences are present (e.g., prefacing a chapter with a list of keywords).
These sentences can cause broad topic-level lexical connections between sentences that
are only marginally related to each other, and are a source of noise in the justification
building process.

10.1.3 Complex Inference. Some questions require complex inference to be answered
correctly. This may take the form of requiring longer sequences of graphlets to construct
a complete answer justification, requiring an understanding of quantifiers or negation,
or a complex inference process.

More Sentences Required: In our knowledge base, a sentence tends to capture a single
step in some process. Although two sentences are often sufficient to construct a good
justification for retrieval-based questions, for general inference and model-based rea-
soning questions, an inference may require more than two steps. Further, for questions
that are grounded in a concrete example, additional graphlets may be needed to elevate
the example words to the more general level of the concepts in our knowledge base –
for example, elevating polar bear to predator or animal, in Table 16.

Causal or Process Reasoning: Questions that require causal or process reasoning often
require a small structured and ordered representation of that process. For example, in
Table 17, a knowledge of the sequential nature of the water cycle—that evaporation leads
to condensation, and that condensation leads to precipitation—is necessary to answer the
question.

Quantifiers: Some questions require an understanding of quantifiers or scope to arrive
at a correct answer, whether these quantifiers are included in the question, answer, or
knowledge base. As illustrated in Table 18, our current system does not implement a
knowledge of quantifiers, nor their relationship to each other (some is less than most,
smaller is less than big, etc.).
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Table 16
Example of a question that needs more than two sentences to answer.

Complex Inference — More sentences required to construct a complete answer

Question Which of the following would result in a decrease in the polar bear population in
the arctic? (GR:5)

Focus Word(s) (JJ polar, 0.29) (NN population, 0.29) (NN arctic, 0.29) (VB result, 0.07)
(NN decrease, 0.04) (NN bear, 0.02)

Issue Requires additional graphlets, including that bears eat fish, eating an animal makes
you a predator and it your prey, and a decrease in prey population also causes a
decrease in predator population. Here, with a limited justification length of two
sentences, the system is not able to construct a justification that includes all the
crucial focus words, and all answer candidates are left with the same general
justification fragment that includes the highest-weighted focus words.

Correct Answer a decrease in the fish population
Focus Word(s) (NN population, 0.80) (NN decrease, 0.13) (NN fish, 0.07)
Justification A polar bear is a big, white bear that lives in the arctic. (Wiktionary)

The population of a place is the people or animals that live there. (Wiktionary)

Chosen Answer a decrease in the human population
Focus Word(s) (NN population, 0.92) (NN decrease, 0.08)
Justification A polar bear is a big, white bear that lives in the arctic. (Wiktionary)

The population of a place is the people or animals that live there. (Wiktionary)

Table 17
Example of a question that requires reasoning over a causal structure or process.

Complex Inference — Causal or Process Reasoning

Question In the water cycle, which process occurs after condensation? (GR:5)
Focus Word(s) (NN condensation, 0.75) (VB occur, 0.13) (NN water, 0.06) (NN cycle, 0.06)
Issue Requires knowing that the water cycle is a stage-like process that proceeds as

follows: evaporation, condensation, precipitation. The focus word extractor does not
currently detect causal or process markers, and as such the focus words for the
question do not include after.

Correct Answer Precipitation
Justification Condensation, in the water cycle, this step leads to precipitation. (Science

Dictionary)
When the humidity reaches 100 percent it is very likely that some form of
precipitation will occur, depending on the temperature. (Barrons SG)

Chosen Answer Evaporation
Justification When water vapor changes to liquid water it is called condensation. (Barrons SG)

Evaporation is defined as the change of water from its liquid phase to its gaseous
phase. (Barrons SG)

Negation: Our current framework does not implement a knowledge of negation. Within
the scope of elementary science exams, where questions tend to ask for positive rather
than negative evidence, this is often not an issue, with the overall prevalence of
questions requiring negation at 6%. However, our knowledge bases do include many
negated sentences or phrases that provide a contrast between two categories of items
through negation (e.g., melting is a physical change, not a chemical change). As can be seen
in Table 19, these sentences can be misused by our system.
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Table 18
Example of a question that requires an understanding of the quantifiers in both the question and
the answers.

Complex Inference — Quantifiers

Question Which of the following is a factor that will cause different species to compete
less? (GR:5)

Focus Word(s) (NN species, 0.50) (JJ less, 0.17) (VB compete, 0.13) (VB cause, 0.10) (JJ different,
0.07) (NN factor, 0.03)

Issue Requires connecting the idea that a large supply causes less competition. The focus
word extractor does not currently detect quantifiers, and as such the focus words
for the correct answer do not include large.

Correct Answer A large supply of resources
Focus Word(s) (NN supply, 0.92) (NN resource, 0.08)

Chosen Answer Lack of space
Focus Word(s) (NN space, 0.92) (NN lack, 0.08)

Table 19
Example of a question that requires an understanding of negation.

Complex Inference — Negation

Question Which of the following is an example of a chemical change? (GR:5)
Issue Requires detecting negation in the graphlets. The chosen answer justification

contains negative evidence against itself.

Correct Answer Milk souring
Justification Examples of chemical properties include the souring of milk and the ability to

burn in the presence of oxygen. (Barrons SG)
Evidence of a chemical change could be change in temperature, light, heat, or
sound given off, or the formation of gasses. (Science Dictionary)

Chosen Answer Ice cream melting
Justification Melting of ice is a physical change, not a chemical change. (Barrons SG)

Melting is a process of an object changing from the solid state to the liquid state
without a change in temperature. (Wiktionary)

10.1.4 Miscellaneous

Semantic Cluster Matching: Although the current system reduces noise by making lexical
connections only between words in sentences that have the same lemma and part of
speech, this strict criterion prevents some good justifications from being built, and others
from being recognized as good justifications. Ideally, semantically related terms such as
condensation and condensing (as in Table 20), or heredity and inherit, could be clustered
together to facilitate building more robust answer justifications independent of lexical
choice.

Coverage of Knowledge Bases: Inevitably our knowledge base suffers from a degree of
sparsity, where some topics or specific concepts included in questions are not discussed
in any of our corpora. This rarely happens with grade-appropriate science topics (but
does occur for topics such as competition). Coverage issues are much more frequent with
the concrete examples that ground the questions, though we mitigate this by including
the simple Wiktionary as a grade-appropriate general knowledge resource.
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Table 20
Example of a failure to recognize relatedness or equivalence of words.

Semantic Cluster Matching

Question Which is an example of water condensing? (GR:4)
Focus Word(s) (NN condensing, 0.92) (NN water, 0.08)
Issue Requires connecting condensing in the question with condensation in the correct

answer justification, based on their high degree of semantic relatedness.

Correct Answer Dew forming on plants during a cold night
Focus Word(s) (JJ cold, 0.68) (NN dew, 0.16) (NN night, 0.11) (NN plant, 0.05)
Justification Clouds, dew, water droplets on the outside of a glass on a hot day, are all caused

by condensation. (Virginia Flash Cards)
Think back to a hot summer day, when you poured yourself a glass of cold water
and took it outside. (Barrons SG)

Chosen Answer A puddle disappearing on a hot summer afternoon
Focus Word(s) (NN summer, 0.41) (NN afternoon, 0.41) (JJ hot, 0.09) (VB disappear, 0.06)

(NN puddle, 0.03)
Justification After a few hours or days those puddles disappear. (Barrons SG)

Think back to a hot summer day, when you poured yourself a glass of cold water
and took it outside. (Barrons SG)

Other: Although we were able to determine the source for the majority of errors, for
18% of incorrect questions we were unable to readily identify the issue. Because of the
difficulty of this QA task, we hypothesize that many of these cases may result from
the limitations of learning complex latent variables with our learning framework and
limited training data.

10.2 Summary of Errors

To summarize, this error analysis suggests that a majority of errors are caused by surface
issues, and not fundamental limitations of this approach to question answering for
science exams. Were we to solve these issues, including focus-word extraction errors,
noise in the knowledge base, knowledge coverage, and semantic cluster matching, our
analysis suggests that 50.5% of questions answered incorrectly could then be answered
correctly. Using this figure, the ceiling performance for the current model is estimated
to be 71.4%.

The remainder of errors center on difficulties with complex questions, including
questions requiring a knowledge of causality or processes to answer, longer inference
chains, or a knowledge of quantifiers or negation. We hypothesize that many of these
questions can be addressed by extending the current model towards including more
structure, and making better use of the existing structure within graphlets. For example,
much of the structure within a sentence that explicitly conveys causal or process infor-
mation (e.g., from a solid to a liquid) is not explicitly labelled within a graphlet, or used
in a targeted way towards addressing questions that require these kinds of complex
inference. By extending our general methods of justification construction and evaluation
to address the specific information needs of these complex questions, we believe that
the ceiling performance can be increased considerably, limited only by questions that
require complex domain-specific mechanisms, such as spatial reasoning, to answer. The
tradeoff between generality versus domain specificity appears intimately coupled with
a model’s performance, and other QA systems such as IBM Watson approach QA by
assembling a large ensemble of domain-specific models tailored to a given problem
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representation. To surpass the ceiling we observe in our error analysis, one would likely
also have to adopt this approach, and implement dedicated domain-specific methods
for the difficult problems left unsolved by our approach.

11. Conclusions

We have proposed an approach for QA where producing human-readable justifications
for answers, and evaluating answer justification quality, is the critical component. Our
interdisciplinary approach to building and evaluating answer justifications includes
cognitively inspired aspects, such as making use of psycholinguistic concreteness norms
for focus word extraction, and making use of age-appropriate knowledge bases, which
together help move our approach towards approximating the qualities of human in-
ference on the task of question answering for science exams. Intuitively, our structured
representations for answer justifications can be interpreted as a robust approximation of
more formal representations, such as logic forms (Moldovan and Rus 2001). However,
our approach does not evaluate the quality of connections in these structures by their
ability to complete a logic proof, but through a reranking model that measures their
correlations with good answers.

In our quest for explainability, we have designed a system that generates answer
justifications by chaining sentences together. Our experiments showed that this ap-
proach improves explainability, and, at the same time, answers questions out of reach
of information retrieval systems, or systems that process contiguous text. We evalu-
ated our approach on 1,000 multiple-choice questions from elementary school science
exams, and experimentally demonstrated that our method outperforms several strong
baselines at both selecting correct answers, and producing compelling human-readable
justifications for those answers. We further validated our three critical contributions: (a)
modeling the high-level task of determining justification quality by using a latent vari-
able model is important for identifying both correct answers and good justifications, (b)
identifying focus words using psycholinguistic concreteness norms similarly benefits
QA for elementary science exams, and (c) modeling the syntactic and lexical structure
of answer justifications allows good justifications to be assembled and detected.

We performed a detailed error analysis that suggests several important directions
for future work. First, though the majority of errors can be addressed within the
proposed formalism and by improving focus word extraction, 47.5% of incorrectly
answered questions would also benefit from more complex inference mechanisms,
ranging from causal and process reasoning, to modeling quantifiers and negation.
This suggests that our robust approach for answer justification may complement deep
reasoning methods for QA in the scientific domain (Baral, Liang, and Nguyen 2011).
Second, our text aggregation graphs currently capture intersentence connections solely
through lexical overlap. We hypothesize that extending these structures to capture
lexical-semantic overlap driven by word embeddings (Mikolov et al. 2013), which have
been demonstrated to be beneficial for QA (Yih et al. 2013; Jansen, Surdeanu, and
Clark 2014; Fried et al. 2015), would also be beneficial here, and increase robustness
on small knowledge bases, where exact lexical matching is often not possible. Finally,
whereas our answer justifications are currently short, future justifications might be
quite long, and aggregate sentences from knowledge bases of different domains and
genres. In these situations, combining our procedure for constructing justifications with
methods that improve text coherence (Barzilay and Lapata 2008) would likely improve
the overall user experience for reading and making use of answer justifications from
automated QA systems.
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To increase reproducibility, all the code behind this effort is released as open-source
software,20 which allows other researchers to use our entire science QA system as is, or
to explore adapting the various components to other tasks.

Acknowledgments
We thank the Allen Institute for Artificial
Intelligence for funding this work, and the
helpful comments from three anonymous
reviewers. Dr. Mihai Surdeanu discloses a
financial interest in Lum.ai. This interest has
been disclosed to the University of Arizona
Institutional Review Committee and is being
managed in accordance with its conflict of
interest policies.

References
Balduccini, Marcello, Chitta Baral, and Yuliya

Lierler. 2008. Knowledge representation
and question answering. Foundations of
Artificial Intelligence, 3:779–819.

Banarescu, Laura, Claire Bonial, Shu Cai,
Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn,
Martha Palmer, and Nathan Schneider.
2013. Abstract meaning representation
for sembanking. In Proceedings of the
7th Linguistic Annotation Workshop
and Interoperability with Discourse,
pages 178–186.

Baral, Chitta and Shanshan Liang. 2012.
From knowledge represented in
frame-based languages to declarative
representation and reasoning via asp.
In KR.

Baral, Chitta, Shanshan Liang, and Vo
Nguyen. 2011. Towards deep reasoning
with respect to natural language text in
scientific domains. In DeepKR Workshop.
Citeseer.

Baral, Chitta, Nguyen Ha Vo, and Shanshan
Liang. 2012. Answering why and how
questions with respect to a frame-based
knowledge base: a preliminary report.
In ICLP (Technical Communications),
pages 26–36.

Barzilay, Regina and Mirella Lapata. 2008.
Modeling local coherence: An entity-based
approach. Computational Linguistics,
34(1):1–34.

Barzilay, Regina and Kathleen R McKeown.
2005. Sentence fusion for multidocument
news summarization. Computational
Linguistics, 31(3):297–328.

Barzilay, Regina, Kathleen R. McKeown,
and Michael Elhadad. 1999. Information
fusion in the context of multi-document
summarization. In Proceedings of the
37th Annual Meeting of the Association for
Computational Linguistics on Computational
Linguistics, pages 550–557.

Berger, Adam, Rich Caruana, David Cohn,
Dayne Freytag, and Vibhu Mittal. 2000.
Bridging the lexical chasm: Statistical
approaches to answer finding. In
Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research &
Development on Information Retrieval,
Athens, Greece.

Björkelund, Anders and Jonas Kuhn. 2014.
Learning structured perceptrons for
coreference resolution with latent
antecedents and non-local features.
In Proceedings of the Association for
Computational Linguistics.

Blair-Goldensohn, Sasha, Kathleen
McKeown and Andrew Hazen Schlaikjer.
2003. A hybrid approach for answering
definitional questions. Technical Report
CUCS-006-03, Columbia University.

Bordes, Antoine, Sumit Chopra and
Jason Weston. 2014. Question answering
with subgraph embeddings. In Proceedings
of the Conference on Empirical Methods in
Natural Language Processing (EMNLP)
2014.

Bordes, Antoine, Nicolas Usunier, Sumit
Chopra and Jason Weston. 2015.
Large-scale simple question answering
with memory networks. arXiv preprint
arXiv:1506.02075.

Brysbaert, Marc, AmyBeth Warriner, and
Victor Kuperman. 2014. Concreteness
ratings for 40 thousand generally known
English word lemmas. Behavior Research
Methods, 46(3):904–911.

Chen, Danqi, Jason Bolton, and
Christopher D. Manning. 2016. A thorough
examination of the CNN / Daily Mail
reading comprehension task. In Proceedings
of the Association for Computational
Linguistics (ACL).

Chen, Danqi and Christopher D. Manning.
2014. A fast and accurate dependency
parser using neural networks. In Empirical
MNLP, pages 740–750.

20 https://github.com/clulab/releases/tree/master/cl2017-qa.

445

http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00287&crossref=10.1016%2FS1574-6526%2807%2903020-9&citationId=p_1
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00287&crossref=10.1016%2FS1574-6526%2807%2903020-9&citationId=p_1
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00287&crossref=10.3758%2Fs13428-013-0403-5&citationId=p_14
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00287&crossref=10.3758%2Fs13428-013-0403-5&citationId=p_14
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00287&system=10.1162%2F089120105774321091&citationId=p_7
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00287&system=10.1162%2F089120105774321091&citationId=p_7
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00287&system=10.1162%2Fcoli.2008.34.1.1&citationId=p_6


Computational Linguistics Volume 43, Number 2

Clark, Peter. 2015, Elementary school science
and math tests as a driver for AI: take the
aristo challenge! In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial
Intelligence, pages 4019–4021. Austin, TX.

Clark, Peter, Philip Harrison, and Niranjan
Balasubramanian. 2013. A study of the
knowledge base requirements for passing
an elementary science test. In Proceedings of
the 2013 Workshop on Automated Knowledge
Base Construction, AKBC’13, pages 37–42.

Collins, Michael. 2002, Discriminative
training methods for hidden Markov
models: Theory and experiments with
perceptron algorithms. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing (EMNLP), EMNLP ’02,
pages 1–8, Stroudsburg, PA.

Collobert, Ronan, Jason Weston, Léon Bottou,
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