
Learning Representations for Weakly
Supervised Natural Language
Processing Tasks

Fei Huang∗

Temple University

Arun Ahuja∗∗

Northwestern University

Doug Downey†

Northwestern University

Yi Yang‡

Northwestern University

Yuhong Guo∗

Temple University

Alexander Yates∗
Temple University

Finding the right representations for words is critical for building accurate NLP systems when
domain-specific labeled data for the task is scarce. This article investigates novel techniques for
extracting features from n-gram models, Hidden Markov Models, and other statistical language
models, including a novel Partial Lattice Markov Random Field model. Experiments on part-
of-speech tagging and information extraction, among other tasks, indicate that features taken
from statistical language models, in combination with more traditional features, outperform
traditional representations alone, and that graphical model representations outperform n-gram
models, especially on sparse and polysemous words.

∗ 1805 N. Broad St., Wachman Hall 324, Philadelphia, PA 19122, USA.
E-mail: {fei.huang,yuhong,yates}@temple.edu.

∗∗ 2133 Sheridan Road, Evanston, IL, 60208. E-mail: ahuja@eecs.northwestern.edu.
† 2133 Sheridan Road, Evanston, IL, 60208. E-mail: ddowney@eecs.northwestern.edu.
‡ 2133 Sheridan Road, Evanston, IL, 60208. E-mail: yya518@eecs.northwestern.edu.

Submission received: 13 June 2012; revised submission received: 25 November 2012, accepted for publication:
15 January 2013.

doi:10.1162/COLI a 00167

© 2014 Association for Computational Linguistics

Computational Linguistics Volume 40, Number 1

1. Introduction

NLP systems often rely on hand-crafted, carefully engineered sets of features to achieve
strong performance. Thus, a part-of-speech (POS) tagger would traditionally use a
feature like, “the previous token is the” to help classify a given token as a noun
or adjective. For supervised NLP tasks with sufficient domain-specific training data,
these traditional features yield state-of-the-art results. However, NLP systems are in-
creasingly being applied to the Web, scientific domains, personal communications like
e-mails and tweets, among many other kinds of linguistic communication. These texts
have very different characteristics from traditional training corpora in NLP. Evidence
from POS tagging (Blitzer, McDonald, and Pereira 2006; Huang and Yates 2009), parsing
(Gildea 2001; Sekine 1997; McClosky 2010), and semantic role labeling (SRL) (Pradhan,
Ward, and Martin 2007), among other NLP tasks (Daumé III and Marcu 2006; Chelba
and Acero 2004; Downey, Broadhead, and Etzioni 2007; Chan and Ng 2006; Blitzer,
Dredze, and Pereira 2007), shows that the accuracy of supervised NLP systems degrades
significantly when tested on domains different from those used for training. Collecting
labeled training data for each new target domain is typically prohibitively expensive.
In this article, we investigate representations that can be applied to weakly supervised
learning, that is, learning when domain-specific labeled training data are scarce.

A growing body of theoretical and empirical evidence suggests that traditional,
manually crafted features for a variety of NLP tasks limit systems’ performance in this
weakly supervised learning for two reasons. First, feature sparsity prevents systems
from generalizing accurately, because many words and features are not observed in
training. Also because word frequencies are Zipf-distributed, this often means that there
is little relevant training data for a substantial fraction of parameters (Bikel 2004b), espe-
cially in new domains (Huang and Yates 2009). For example, word-type features form
the backbone of most POS-tagging systems, but types like “gene” and “pathway” show
up frequently in biomedical literature, and rarely in newswire text. Thus, a classifier
trained on newswire data and tested on biomedical data will have seen few training
examples related to sentences with features “gene” and “pathway” (Blitzer, McDonald,
and Pereira 2006; Ben-David et al. 2010).

Further, because words are polysemous, word-type features prevent systems from
generalizing to situations in which words have different meanings. For instance, the
word type “signaling” appears primarily as a present participle (VBG) in Wall Street
Journal (WSJ) text, as in, “Interest rates rose, signaling that . . . ” (Marcus, Marcinkiewicz,
and Santorini 1993). In biomedical text, however, “signaling” appears primarily in the
phrase “signaling pathway,” where it is considered a noun (NN) (PennBioIE 2005); this
phrase never appears in the WSJ portion of the Penn Treebank (Huang and Yates 2010).

Our response to the sparsity and polysemy challenges with traditional NLP repre-
sentations is to seek new representations that allow systems to generalize to previously
unseen examples. That is, we seek representations that permit classifiers to have close
to the same accuracy on examples from other domains as they do on the domain of the
training data. Our approach depends on the well-known distributional hypothesis,
which states that a word’s meaning is identified with the contexts in which it appears
(Harris 1954; Hindle 1990). Our goal is to develop probabilistic statistical language
models that describe the contexts of individual words accurately. We then construct
representations, or mappings from word tokens and types to real-valued vectors,
from statistical language models. Because statistical language models are designed to
model words’ contexts, the features they produce can be used to combat problems
with polysemy. And by careful design of the statistical language models, we can limit

86

Huang et al. Computational Linguistics

the number of features that they produce, controlling how sparse those features are in
training data.

Our specific contributions are as follows:

1. We show how to generate representations from a variety of language
models, including n-gram models, Brown clusters, and Hidden Markov
Models (HMMs). We also introduce a Partial-Lattice Markov Random
Field (PL-MRF), which is a tractable variation of a Factorial Hidden
Markov Model (Ghahramani and Jordan 1997) for language modeling,
and we show how to produce representations from it.

2. We quantify the performance of these representations in experiments
on POS tagging in a domain adaptation setting, and weakly supervised
information extraction (IE). We show that the graphical models outperform
n-gram representations, even when the n-gram models leverage larger
corpora for training. The PL-MRF representation achieves a state-of-the-art
93.8% accuracy on a biomedical POS tagging task, which represents a
5.5 percentage point absolute improvement over more traditional POS
tagging representations, a 4.8 percentage point improvement over a tagger
using an n-gram representation, and a 0.7 percentage point improvement
over a tagger with an n-gram representation using several orders of
magnitude more training data. The HMM representation improves
over the n-gram model by 7 percentage points on our IE task.

3. We analyze how sparsity, polysemy, and differences between domains
affects the performance of a classifier using different representations.
Results indicate that statistical language model representations, and
especially graphical model representations, provide the best features
for sparse and polysemous words.

The next section describes background material and related work on representation
learning for NLP. Section 3 presents novel representations based on statistical language
models. Sections 4 and 5 discuss evaluations of the representations, first on sequence-
labeling tasks in a domain adaptation setting, and second on a weakly supervised set-
expansion task. Section 6 concludes and outlines directions for future work.

2. Background and Previous Work on Representation Learning

2.1 Terminology and Notation

In a traditional machine learning task, the goal is to make predictions on test data using
a hypothesis that is optimized on labeled training data. In order to do so, practitioners
predefine a set of features and try to estimate classifier parameters from the observed
features in the training data. We call these feature sets representations of the data.

Formally, let X be an instance space for a learning problem. Let Z be the space of
possible labels for an instance, and let f : X → Z be the target function to be learned.
A representation is a function R: X → Y , for some suitable feature space Y (such as R

d).
We refer to dimensions of Y as features, and for an instance x ∈ X we refer to values
for particular dimensions of R(x) as features of x. Given a set of training examples, a
learning machine’s task is to select a hypothesis h from the hypothesis space H, a subset
of ZR(X). Errors by the hypothesis are measured using a loss function L(x, R, f, h) that

87

Computational Linguistics Volume 40, Number 1

measures the cost of the mismatch between the target function f (x) and the hypothesis
h(R(x)).

As an example, the instance set for POS tagging in English is the set of all English
sentences, and Z is the space of POS sequences containing labels like NN (for noun) and
VBG (for present participle). The target function f is the mapping between sentences
and their correct POS labels. A traditional representation in NLP converts sentences
into sequences of vectors, one for each word position. Each vector contains values for
features like, “+1 if the word at this position ends with -tion, and 0 otherwise.” A
typical loss function would count the number of words that are tagged differently by
f (x) and h(R(x)).

2.2 Representation-Learning Problem Formulation

Machine learning theory assumes that there is a distribution D over X from which
data is sampled. Given a training set S = {(x1, z1), . . . , (xN, zN)} ∼ (D(X),Z)N, a fixed
representation R, a hypothesis space H, and a loss function L, a machine learning
algorithm seeks to identify the hypothesis in H that will minimize the expected loss
over samples from distribution D:

h∗ = argmin
h∈H

Ex∼D(X)L(x, R, f, h) (1)

The representation-learning paradigm breaks the traditional notion of a fixed rep-
resentation R. Instead, we allow a space of possible representations R. The full learning
problem can then be formulated as the task of identifying the best R ∈ R and h ∈ H
simultaneously:

R∗, h∗ = argmin
R∈R,h∈H

Ex∼D(X)L(x, R, f, h) (2)

The representation-learning problem formulation in Equation (2) can in fact be
reduced to the general learning formulation in Equation (1) by setting the fixed rep-
resentation R to be the identity function, and setting the hypothesis space to be R×H
from the representation-learning task. We introduce the new formulation primarily as
a way of changing the perspective on the learning task: most NLP systems consider
a fixed, manually crafted transformation of the original data to some new space, and
investigate hypothesis classes over that space. In the new formulation, systems learn
the transformation to the feature space, and then apply traditional classification or
regression algorithms.

2.3 Theory on Domain Adaptation

We refer to the distribution D over the instance space X as a domain. For example,
the newswire domain is a distribution over sentences that gives high probability to
sentences about governments and current events; the biomedical literature domain
gives high probability to sentences about proteins and regulatory pathways. In domain
adaptation, a system observes a set of training examples (R(x), f (x)), where instances
x ∈ X are drawn from a source domain DS, to learn a hypothesis for classifying ex-
amples drawn from a separate target domain DT. We assume that large quantities of
unlabeled data are available for the source domain and target domain, and call these

88

Huang et al. Computational Linguistics

samples US and UT, respectively. For any domain D, let R(D) represent the induced
distribution over the feature space Y given by PrR(D)[y] = PrD[{x such that R(x) = y}].

Previous work by Ben-David et al. (2007, 2010) proves theoretical bounds on an
open-domain learning machine’s performance. Their analysis shows that the choice of
representation is crucial to domain adaptation. A good choice of representation must
allow a learning machine to achieve low error rates on the source domain. Just as
important, however, is that the representation must simultaneously make the source
and target domains look as similar to one another as possible. That is, if the labeling
function f is the same on the source and target domains, then for every h ∈ H, we can
provably bound the error of h on the target domain by its error on the source domain
plus a measure of the distance between DS and DT:

Ex∼DTL(x, R, f, h) ≤ Ex∼DSL(x, R, f, h) + d1(R(DS), R(DT)) (3)

where the variation divergence d1 is given by

d1(D,D′) = 2 sup
B∈B

|PrD[B] − PrD′ [B]| (4)

where B is the set of measurable sets under D and D′ (Ben-David et al. 2007, 2010).
Crucially, the distance between domains depends on the features in the representa-

tion. The more that features appear with different frequencies in different domains, the
worse this bound becomes. In fact, one lower bound for the d1 distance is the accuracy
of the best classifier for predicting whether an unlabeled instance y = R(x) belongs to
domain S or T (Ben-David et al. 2010). Thus, if R provides one set of common features for
examples from S, and another set of common features for examples from T, the domain
of an instance becomes easy to predict, meaning the distance between the domains
grows, and the bound on our classifier’s performance grows worse.

In light of Ben-David et al.’s theoretical findings, traditional representations in
NLP are inadequate for domain adaptation because they contribute to the d1 distance
between domains. Although many previous studies have shown that lexical features
allow learning systems to achieve impressively low error rates during training, they also
make texts from different domains look very dissimilar. For instance, a feature based on
the word “bank” or “CEO” may be common in a domain of newswire text, but scarce
or nonexistent in, say, biomedical literature. Ben David et al.’s theory predicts greater
variance in the error rate of the target domain classifier as the distance grows.

At the same time, traditional representations contribute to data sparsity, a lack of
sufficient training data for the relevant parameters of the system. In traditional super-
vised NLP systems, there are parameters for each word type in the data, or perhaps
even combinations of word types. Because vocabularies can be extremely large, this
leads to an explosion in the number of parameters. As a consequence, for many of their
parameters, supervised NLP systems have zero or only a handful of relevant labeled
examples (Bikel 2004a, 2004b). No matter how sophisticated the learning technique, it
is difficult to estimate parameters without relevant data. Because vocabularies differ
across domains, domain adaptation greatly exacerbates this issue of data sparsity.

2.4 Problem Formulation for the Domain Adaptation Setting

Formally, we define the task of representation learning for domain adaptation as the
following optimization problem: Given a set of unlabeled instances US drawn from the

89

Computational Linguistics Volume 40, Number 1

source domain and unlabeled instances UT from the target domain, as well as a set of
labeled instances LS drawn from the source domain, identify a function R∗ from the
space of possible representations R that minimizes

R∗, h∗ = argmin
R∈R,h∈H

(
Ex∼DSL(x, R, f, h)

)
+ λd1(R(DS), R(DT)) (5)

where λ is a free parameter.
Note that there is an underlying tension between the two terms of the objec-

tive function: The best representation for the source domain would naturally include
domain-specific features, and allow a hypothesis to learn domain-specific patterns.
We are aiming, however, for the best general classifier, which happens to be trained
on training data from one domain (or a few domains). The domain-specific features
contribute to distance between domains, and to classifier errors on data taken from
domains not seen in training. By optimizing for this combined objective function, we
allow the optimization method to trade off between features that are best for classifying
source-domain data and features that allow generalization to new domains.

Unlike the representation-learning problem-formulation in Equation (2), Equa-
tion (5) does not reduce to the standard machine-learning problem (Equation (1)). In
a sense, the d1 term acts as a regularizer on R, which also affects H. Representation
learning for domain adaptation is a fundamentally novel learning task.

2.5 Tractable Representation Learning: Statistical Language Models
as Representations

For most hypothesis classes and any interesting space of representations, Equations (2)
and (5) are completely intractable to optimize exactly. Even given a fixed representation,
it is intractable to compute the best hypothesis for many hypothesis classes. And the d1
metric is intractable to compute from samples of a distribution, although Ben-David
et al. (2007, 2010) propose some tractable bounds. We view these problem formulations
as high-level goals rather than as computable objectives.

As a tractable objective, in this work we describe an investigation into the use of
statistical language models as a way to represent the meanings of words. This approach
depends on the well-known distributional hypothesis, which states that a word’s
meaning is identified with the contexts in which it appears (Harris 1954; Hindle 1990).
From this hypothesis, we can formulate the following testable prediction, which we call
the statistical language model representation hypothesis, or LMRH:

To the extent that a model accurately describes a word’s possible contexts, parameters
of that model are highly informative descriptors of the word’s meaning, and are
therefore useful as features in NLP tasks like POS tagging, chunking, NER, and
information extraction.

The LMRH says, essentially, that for NLP tasks, we can decouple the task of optimiz-
ing a representation from the task of optimizing a hypothesis. To learn a representation,
we can train a statistical language model on unlabeled text, and then use parameters
or latent states from the statistical language model to create a representation function.
Optimizing a hypothesis then follows the standard learning framework, using the
representation from the statistical language model.

90

Huang et al. Computational Linguistics

The LMRH is similar to the manifold and cluster assumptions behind other semi-
supervised approaches to machine learning, such as Alternating Structure Optimization
(ASO) (Ando and Zhang 2005) and Structural Correspondence Learning (SCL) (Blitzer,
McDonald, and Pereira 2006). All three of these techniques use predictors built on
unlabeled data as a way to harness the manifold and cluster assumptions. However,
the LMRH is distinct from at least ASO and SCL in important ways. Both ASO and SCL
create multiple “synthetic” or “pivot” prediction tasks using unlabeled data, and find
transformations of the input feature space that perform well on these tasks. The LMRH,
on the other hand, is more specific — it asserts that for language problems, if we opti-
mize word representations on a single task (the language modeling task), this will lead
to strong performance on weakly supervised tasks. In reported experiments on NLP
tasks, both ASO and SCL use certain synthetic predictors that are essentially language
modeling tasks, such as the task of predicting whether the next token is of word type w.
To the extent that these techniques’ performance relies on language-modeling tasks as
their “synthetic predictors,” they can be viewed as evidence in support of the LMRH.

One significant consequence of the LMRH is that it allows us to leverage well-
developed techniques and models from statistical language modeling. Section 3
presents a series of statistical language models that we investigate for learning repre-
sentations for NLP.

2.6 Previous Work

There is a long tradition of NLP research on representations, mostly falling into one of
four categories: 1) vector space models of meaning based on document-level lexical co-
occurrence statistics (Salton and McGill 1983; Sahlgren 2006; Turney and Pantel 2010);
2) dimensionality reduction techniques for vector space models (Deerwester et al. 1990;
Ritter and Kohonen 1989; Honkela 1997; Kaski 1998; Sahlgren 2001, 2005; Blei, Ng, and
Jordan 2003; Väyrynen and Honkela 2004, 2005; Väyrynen, Honkela, and Lindqvist
2007); 3) using clusters that are induced from distributional similarity (Brown et al.
1992; Pereira, Tishby, and Lee 1993; Martin, Liermann, and Ney 1998) as non-sparse
features (Miller, Guinness, and Zamanian 2004; Ratinov and Roth 2009; Lin and Wu
2009; Candito and Crabbe 2009; Koo, Carreras, and Collins 2008; Suzuki et al. 2009; Zhao
et al. 2009); and, recently, 4) neural network statistical language models (Bengio 2008;
Bengio et al. 2003; Morin and Bengio 2005; Mnih, Yuecheng, and Hinton 2009; Mnih
and Hinton 2007, 2009) as representations (Weston, Ratle, and Collobert 2008; Collobert
and Weston 2008; Bengio et al. 2009). Our work is a form of distributional clustering
for representations, but where previous work has used bigram and trigram statistics to
form clusters, we build sophisticated models that attempt to capture the context of a
word, and hence its similarity to other words, more precisely. Our experiments show
that the new graphical models provide representations that outperform those from
previous work on several tasks.

Neural network statistical language models have recently achieved state-of-the-art
perplexity results (Mnih and Hinton 2009), and representations based on them have im-
proved in-domain chunking, NER, and SRL (Weston, Ratle, and Collobert 2008; Turian,
Bergstra, and Bengio 2009; Turian, Ratinov, and Bengio 2010). As far as we are aware,
Turian, Ratinov, and Bengio (2010) is the only other work to test a learned representation
on a domain adaptation task, and they show improvement on out-of-domain NER
with their neural net representations. Though promising, the neural network models
are computationally expensive to train, and these statistical language models work
only on fixed-length histories (n-grams) rather than full observation sequences. Turian,

91

Computational Linguistics Volume 40, Number 1

Ratinov, and Bengio’s (2010) tests also show that Brown clusters perform as well or
better than neural net models on all of their chunking and NER tests. We concentrate on
probabilistic graphical models with discrete latent states instead. We show that HMM-
based and other representations significantly outperform the more commonly used
Brown clustering (Brown et al. 1992) as a representation for domain adaptation settings
of sequence-labeling tasks.

Most previous work on domain adaptation has focused on the case where some
labeled data are available in both the source and target domains (Chan and Ng 2006;
Daumé III and Marcu 2006; Blitzer, Dredze, and Pereira 2007; Daumé III 2007; Jiang
and Zhai 2007a, 2007b; Dredze and Crammer 2008; Finkel and Manning 2009; Dredze,
Kulesza, and Crammer 2010). Learning bounds for this domain-adaptation setting are
known (Blitzer et al. 2007; Mansour, Mohri, and Rostamizadeh 2009). Approaches to this
problem setting have focused on appropriately weighting examples from the source and
target domains so that the learning algorithm can balance the greater relevance of the
target-domain data with the larger source-domain data set. In some cases, researchers
combine this approach with semi-supervised learning to include unlabeled examples
from the target domain as well (Daumé III, Kumar, and Saha 2010). These techniques
do not handle open-domain corpora like the Web, where they require expert input to
acquire labels for each new single-domain corpus, and it is difficult to come up with
a representative set of labeled training data for each domain. Our technique requires
only unlabeled data from each new domain, which is significantly easier and cheaper to
acquire. Where target-domain labeled data is available, however, these techniques can
in principle be combined with ours to improve performance, although this has not yet
been demonstrated empirically.

A few researchers have considered the more general case of domain adaptation
without labeled data in the target domain. Perhaps the best known is Blitzer, McDonald,
and Pereira’s (2006) Structural Correspondence Learning (SCL). SCL uses “pivot” words
common to both source and target domains, and trains linear classifiers to predict these
pivot words from their context. After an SVD reduction of the weight vectors for these
linear classifiers, SCL projects the original features through these weight vectors to
obtain new features that are added to the original feature space. Like SCL, our language
modeling techniques attempt to predict words from their context, and then use the
output of these predictions as new features. Unlike SCL, we attempt to predict all words
from their context, and we rely on traditional probabilistic methods for language mod-
eling. Our best learned representations, which involve significantly different techniques
from SCL, especially latent-variable probabilistic models, significantly outperform SCL
in POS tagging experiments.

Other approaches to domain adaptation without labeled data from the target do-
main include Satpal and Sarawagi (2007), who show that by changing the optimization
function during conditional random field (CRF) training, they can learn classifiers that
port well to new domains. Their technique selects feature subsets that minimize the
distance between training text and unlabeled test text, but unlike our techniques, theirs
cannot learn representations with features that do not appear in the original feature set.
In contrast, we learn hidden features through statistical language models. McClosky,
Charniak, and Johnson (2010) use classifiers from multiple source domains and features
that describe how much a target document diverges from each source domain to deter-
mine an optimal weighting of the source-domain classifiers for parsing the target text.
However, it is unclear if this “source-combination” technique works well on domains
that are not mixtures of the various source domains. Dai et al. (2007) use KL-divergence
between domains to directly modify the parameters of their naive Bayes model for a

92

Huang et al. Computational Linguistics

text classification task trained purely on the source domain. These last two techniques
are not representation learning, and are complementary to our techniques.

Our representation-learning approach to domain adaptation is an instance of
semi-supervised learning. Of the vast number of semi-supervised approaches to
sequence labeling in NLP, the most relevant ones here include Suzuki and Isozaki’s
(2008) combination of HMMs and CRFs that uses over a billion words of unlabeled text
to achieve the current best performance on in-domain chunking, and semi-supervised
approaches to improving in-domain SRL with large quantities of unlabeled text
(Weston, Ratle, and Collobert 2008; Deschacht and Moens 2009; and Fürstenau and
Lapata 2009). Ando and Zhang’s (2005) semi-supervised sequence labeling technique
has been tested on a domain adaptation task for POS tagging (Blitzer, McDonald, and
Pereira 2006); our representation-learning approaches outperform it. Unlike most semi-
supervised techniques, we concentrate on a particularly simple task decomposition: un-
supervised learning for new representations, followed by standard supervised learning.
In addition to our task decomposition being simple, our learned representations are also
task-independent, so we can learn the representation once, and then apply it to any task.

One of the best-performing representations that we consider for domain adaptation
is based on the HMM (Rabiner 1989). HMMs have of course also been used for super-
vised, semi-supervised, and unsupervised POS tagging on a single domain (Banko and
Moore 2004; Goldwater and Griffiths 2007). Recent efforts on improving unsupervised
POS tagging have focused on incorporating prior knowledge into the POS induction
model (Graça et al. 2009; Toutanova and Johnson 2007), or on new training techniques
like contrastive estimation (Smith and Eisner 2005) for alternative sequence models.
Despite the fact that completely connected, standard HMMs perform poorly at the POS
induction task (Johnson 2007), we show that they still provide very useful features
for a supervised POS tagger. Experiments in information extraction have previously
also shown that HMMs provide informative features for this quite different, semantic
processing task (Downey, Schoenmackers, and Etzioni 2007; Ahuja and Downey 2010).

This article extends our previous work on learning representations for do-
main adaptation (Huang and Yates 2009, 2010) by investigating new language
representations—the naive Bayes representation and PL-MRF representation (Huang
et al. 2011)—by analyzing results in terms of polysemy, sparsity, and domain diver-
gence; by testing on new data sets including a Chinese POS tagging task; and by pro-
viding an empirical comparison with Brown clusters as representations.

3. Learning Representations of Distributional Similarity

In this section, we will introduce several representation learning models.

3.1 Traditional POS-Tagging Representations

As an example of our terminology, we begin by describing a representation used in
traditional POS taggers (this representation will later form a baseline for our POS
tagging experiments). The instance set X is the set of English sentences, and Z is the set
of POS tag sequences. A traditional representation TRAD-R maps a sentence x ∈ X to a
sequence of boolean-valued vectors, one vector per word xi in the sentence. Dimensions
for each latent vector include indicators for the word type of xi and various orthographic
features. Table 1 presents the full list of features in TRAD-R. Because our IE task classifies
word types rather than tokens, this baseline is not appropriate for that task. Herein, we

93

Computational Linguistics Volume 40, Number 1

Table 1
Summary of features provided by our representations. ∀a1[g(a)] represents a set of boolean
features, one for each value of a, where the feature is true iff g(a) is true. xi represents a token at
position i in sentence x, w represents a word type, Suffixes = {-ing,-ogy,-ed,-s,-ly,-ion,-tion,-ity},
k (and k) represents a value for a latent state (set of latent states) in a latent-variable model, y∗

represents the maximum a posteriori sequence of states y for x, yi is the latent variable for xi, and
yi,j is the latent variable for xi at layer j. prefix(y,p) is the p-length prefix of the Brown cluster y.

Representation Features

TRAD-R ∀w1[xi = w]
∀s∈Suffixes1[xi ends with s]
1[xi contains a digit]

n-GRAM-R ∀w′ ,w′′P(w′ww′′)/P(w)
LSA-R ∀w,j{v′

left(w)}j
∀w,j{v′

right(w)}j

NB-R ∀k1[y∗i = k]

HMM-TOKEN-R ∀k1[y∗i = k]
HMM-TYPE-R ∀kP(y = k|x = w)
I-HMM-TOKEN-R ∀j,k1[y∗i,j = k]
I-HMM-TYPE-R ∀j,kP(y.,j = k|x = w)
BROWN-TOKEN-R ∀j∈{−2,−1,0,1,2}

∀p∈{4,6,10,20} prefix(yi+j, p)
BROWN-TYPE-R ∀p prefix(y, p)

LATTICE-TOKEN-R ∀j,k1[y∗i,j = k]
LATTICE-TYPE-R ∀kP(y = k|x = w)

describe how we can learn representations R by using a variety of statistical language
models, for use in both our IE and POS tagging tasks. All representations for POS
tagging inherit the features from TRAD-R; all representations for IE do not.

3.2 n-gram Representations

n-gram representations, which we call n-GRAM-R, model a word type w in terms of the
n-gram contexts in which w appears in a corpus. Specifically, for word w we generate
the vector P(w′ww′′)/P(w), the conditional probability of observing the word sequence
w′ to the left and w′′ to the right of w. Each dimension in this vector represents a com-
bination of the left and right words. The experimental section describes the particular
corpora and statistical language modeling methods used for estimating probabilities.
Note that these features depend only on the word type w, and so for every token xi = w,
n-GRAM-R provides the same set of features regardless of local context.

One drawback of n-GRAM-R is that it does not handle sparsity well—the features
are as sparsely observed as the lexical features in TRAD-R, except that n-GRAM-R fea-
tures can be obtained from larger corpora. As an alternative, we apply latent semantic
analysis (LSA) (Deerwester et al. 1990) to compute a reduced-rank representation. For
word w, let vright(w) represent the right context vector of w, which in each dimension
contains the value of P(ww′′)/P(w) for some word w′′, as observed in the n-gram
model. Similarly, let vleft(w) be the left context vector of w. We apply LSA to the set

94

Huang et al. Computational Linguistics

Figure 1
A graphical representation of the naive Bayes statistical language model. The B and E are special
dummy words for the beginning and end of the sentence.

of right context vectors and the set of left context vectors separately,1 to find reduced-
rank versions v′

right(w) and v′
left(w), where each dimension represents a combination

of several context word types. We then use each component of v′
right(w) and v′

left(w)
as features. After experimenting with different choices for the number of dimensions to
reduce our vectors to, we choose a value of 10 dimensions as the one that maximizes
the performance of our supervised sequence labelers on held-out data. We call this
model LSA-R.

3.3 A Context-Dependent Representation Using Naive Bayes

The n-GRAM-R and LSA-R representations always produce the same features F for a
given word type w, regardless of the local context of a particular token xi = w. Our
remaining representations are all context-dependent, in the sense that the features
provided for token xi depend on the local context around xi. We begin with a statis-
tical language model based on the Naive Bayes model with categorical latent states
S = {1, . . . , K}. First, we form trigrams from our sentences. For each trigram, we form a
separate Bayes net in which each token from the trigram is conditionally independent
given the latent state. For tokens xi−1, xi, and xi+1, the probability of this trigram given
latent state Yi = y is given by:

P(xi−1, xi, xi+1|yi) = Pleft(xi−1|yi)Pmid(xi|yi)Pright(xi+1|yi) (6)

where Pleft, Pmid, and Pright are multinomial distributions conditioned on the latent state.
The probability of a whole sentence is then given by the product of the probabilities
of its trigrams. Figure 1 shows a graphical representation of this model. We train our
models using standard expectation-maximization (Dempster, Laird, and Rubin 1977)
with random initialization of the parameters.

Because our factorization of the sentence does not take into account the fact that the
trigrams overlap, the resulting statistical language model is mass-deficient. Worse still,
it is throwing away information from the dependencies among trigrams which might
help make better clustering decisions. Nevertheless, this model closely mirrors many
of the clustering algorithms used in previous approaches to representation learning for
sequence labeling (Ushioda 1996; Miller, Guinness, and Zamanian 2004; Koo, Carreras,

1 Compare with Dhillon, Foster, and Ungar (2011), who use canonical correlation analysis to find a
simultaneous reduction of the left and right context vectors, a significantly more complex undertaking.

95

Computational Linguistics Volume 40, Number 1

and Collins 2008; Lin and Wu 2009; Ratinov and Roth 2009), and therefore serves as an
important benchmark.

Given a naive Bayes statistical language model, we construct an NB-R representa-
tion that produces |S| boolean features Fs(xi) for each token xi and each possible latent
state s ∈ S:

Fs(xi) =

{
true if s = arg maxs′∈SP(xi−1, xi, xi+1|yi = s′),
false otherwise.

For a reasonable choice of S (i.e., |S| � |V|), each feature should be observed often
in a sufficiently large training data set. Therefore, compared with n-GRAM-R, NB-R
produces far fewer features. On the other hand, its features for xi depend not just on
the contexts in which xi has appeared in the statistical language model’s training data,
but also on xi−1 and xi+1 in the current sentence. Furthermore, because the range of
the features is much more restrictive than real-valued features, it is less prone to data
sparsity or variations across domains than real-valued features.

3.4 Context-Dependent, Structured Representations: The Hidden Markov Model

In previous work, we have implemented several representations based on hidden
Markov models (Rabiner 1989), which we used for both sequential labeling (like POS
tagging [Huang et al. 2011] and NP chunking [Huang and Yates 2009]) and IE (Downey,
Schoenmackers, and Etzioni 2007). Figure 2 shows a graphical model of an HMM. An
HMM is a generative probabilistic model that generates each word xi in the corpus
conditioned on a latent variable yi. Each yi in the model takes on integral values from 1
to K, and each one is generated by the latent variable for the preceding word, yi−1. The
joint distribution for a corpus x = (x1, . . . , xN) and a set of state vectors y = (y1, . . . , yN)
is given by: P(x, y) =

∏
i P(xi|yi)P(yi|yi−1). Using expectation-maximization (EM)

(Dempster, Laird, and Rubin 1977), it is possible to estimate the distributions for
P(xi|yi) and P(yi|yi−1) from unlabeled data.

We construct two different representations from HMMs, one for sequence-labeling
tasks and one for IE. For sequence labeling, we use the Viterbi algorithm to produce the
optimal setting y∗ of the latent states for a given sentence x, or y∗ = argmax

y
P(x, y). We

use the value of y∗i as a new feature for xi that represents a cluster of distributionally
similar words. For IE, we require features for word types w, rather than tokens xi.
Applying Bayes’ rule to the HMM parameters, we compute a distribution P(Y|x = w),
where Y is a single latent node, x is a single token, and w is its word type. We then use
each of the K values for P(Y = k|x = w), where k ranges from 1 to K, as features. This set

Figure 2
The Hidden Markov Model.

96

Huang et al. Computational Linguistics

of features represents a “soft clustering” of w into K different clusters. We refer to these
representations as HMM-TOKEN-R and HMM-TYPE-R, respectively.

We also compare against a multi-layer variation of the HMM from our previous
work (Huang and Yates 2010). This model trains an ensemble of M independent HMM
models on the same corpus, initializing each one randomly. We can then use the Viterbi-
optimal decoded latent state of each independent HMM model as a separate feature for
a token, or the posterior distribution for P(Y|x = w) from each HMM as a separate set
of features for each word type. We refer to this statistical language model as an I-HMM,
and the representations as I-HMM-TOKEN-R and I-HMM-TYPE-R, respectively.

Finally, we compare against Brown clusters (Brown et al. 1992) as learned features.
Although not traditionally described as such, Brown clustering involves constructing
an HMM model in which each word type is restricted to having exactly one latent state
that may generate it. Brown et al. describe a greedy agglomerative clustering algorithm
for training this model on unlabeled text. Following Turian, Ratinov, and Bengio (2010),
we use Percy Liang’s implementation of this algorithm for our comparison, and we test
runs with 100, 320, 1,000 and 3,200 clusters. We use features from these clusters identical
to Turian et al.’s.2 Turian et al. have shown that Brown clusters match or exceed the
performance of neural network-based statistical language models in domain adaptation
experiments for named-entity recognition, as well as in-domain experiments for NER
and chunking.

Because HMM-based representations offer a small number of discrete states as
features, they have a much greater potential to combat sparsity than do n-gram mod-
els. Furthermore, for token-based representations, these models can potentially handle
polysemy better than n-gram statistical language models by providing different features
in different contexts.

3.5 A Novel Lattice Statistical Language Model Representation

Our final statistical language model is a novel latent-variable statistical language model,
called a Partial Lattice MRF (PL-MRF), with rich latent structure, shown in Figure 3. The
model contains a lattice of M × N latent states, where N is the number of words in a
sentence and M is the number of layers in the model. The dotted and solid lines in the
figure together form a complete lattice of edges between these nodes; the PL-MRF uses
only the solid edges. Formally, let c = 	N

2
, where N is the length of the sentence; let i
denote a position in the sentence, and let j denote a layer in the lattice. If i < c and j is
odd, or if j is even and i > c, we delete edges between yi,j and yi,j+1 from the complete
lattice. The same set of nodes remains, but the partial lattice contains fewer edges and
paths between the nodes. A central “trunk” at i = c connects all layers of the lattice, and
branches from this trunk connect either to the branches in the layer above or the layer
below (but not both).

The result is a model that retains most of the edges of the complete lattice, but
unlike the complete lattice, it supports tractable inference. As M, N → ∞, five out of
every six edges from the complete lattice appear in the PL-MRF. However, the PL-MRF
makes the branches conditionally independent from one another, except through the
trunk. For instance, the left branch between layers 1 and 2 ((y1,1, y1,2) and (y2,1, y2,2)) in
Figure 3 are disconnected; similarly, the right branch between layers 2 and 3 ((y4,2, y4,3)
and (y5,2, y5,3)) are disconnected, except through the trunk and the observed nodes. As

2 Percy Liang’s implementation is available at http://metaoptimize.com/projects/wordreprs/.

97

Computational Linguistics Volume 40, Number 1

y4,1

y3,1

y4,2

y3,2

y4,3

y3,3

y4,4

y3,4

y4,5

y3,5

x1

y2,1

y1,1

x2

y2,2

y1,2

x3

y2,3

y1,3

x4

y2,4

y1,4

x5

y2,5

y1,5

Figure 3
The PL-MRF model for a five-word sentence and a four-layer lattice. Dashed gray edges are part
of a complete lattice, but not part of the PL-MRF.

a result, excluding the observed nodes, this model has a low tree-width of 2 (excluding
observed nodes), and a variety of efficient dynamic programming and message-passing
algorithms for training and inference can be readily applied (Bodlaender 1988). Our
inference algorithm passes information from the branches inwards to the trunk, and
then upward along the trunk, in time O(K4MN). In contrast, a fully connected lattice
model has tree-width = min(M, N), making inference and learning intractable (Sutton,
McCallum, and Rohanimanesh 2007), partly because of the difficulty in enumerating
and summing over the exponentially-many configurations y for a given x.

We can justify the choice of this model from a linguistic perspective as a way to
capture the multi-dimensional nature of words. Linguists have long argued that words
have many different features in a high dimensional space: They can be separately
described by part of speech, gender, number, case, person, tense, voice, aspect, mass
vs. count, and a host of semantic categories (agency, animate vs. inanimate, physical vs.
abstract, etc.), to name a few (Sag, Wasow, and Bender 2003). In the PL-MRF, each layer
of nodes is intended to represent some latent dimension of words.

We represent the probability distribution for PL-MRFs as log-linear models that
decompose over cliques in the MRF graph. Let Cliq(x, y) represent the set of all maximal
cliques in the graph of the MRF model for x and y. Expressing the lattice model in log-
linear form, we can write the marginal probability P(x) of a given sentence x as:

∑
y
∏

c∈Cliq(x,y) score(c, x, y)∑
x′,y′

∏
c∈Cliq(x′,y′) score(c, x′, y′)

where score(c, x, y) = exp(θc · fc(xc, yc)). Our model includes parameters for transitions
between two adjacent latent variables on layer j: θtrans

i,s,i+1,s′,j for yi,j = s and yi+1,j = s′. It
also includes observation parameters for latent variables and tokens, as well as for pairs
of adjacent latent variables in different layers and their tokens: θobs

i,j,s,w and θobs
i,j,s,j+1,s′,w for

yi,j = s, yi,j+1 = s′, and xi = w.

98

Huang et al. Computational Linguistics

As with our HMM models, we create two representations from PL-MRFs, one for
tokens and one for types. For tokens, we decode the model to compute y∗, the matrix of
optimal latent state values for sentence x. For each layer j and and each possible latent
state value k, we add a boolean feature for token xi that is true iff y∗

i,j = k. For word
types, we compute distributions over the latent state space. Let y be a column vector of
latent variables for word type w. For a PL-MRF model with M layers of binary variables,
there are 2M possible values for y. Our type representation computes a probability
distribution over these 2M possible values, and uses each probability as a feature for
w.3 We refer to these two representations as LATTICE-TOKEN-R and LATTICE-TYPE-R,
respectively.

We train the PL-MRF using contrastive estimation (Smith and Eisner 2005), which
iteratively optimizes the following objective function on a corpus X:

∑
x∈X

log

∑
y
∏

c∈Cliq(x,y) score(c, x, y)∑
x′∈N (x),y′

∏
c∈Cliq(x′,y′) score(c, x′, y′)

(7)

where N (x), the neighborhood of x, indicates a set of perturbed variations of the original
sentence x. Contrastive estimation seeks to move probability mass away from the per-
turbed neighborhood sentences and onto the original sentence. We use a neighborhood
function that includes all sentences which can be obtained from the original sentence by
swapping the order of a consecutive pair of words. Training uses gradient descent over
this non-convex objective function with a standard software package (Liu and Nocedal
1989) and converges to a local maximum or saddle point.

For tractability, we modify the training procedure to train the PL-MRF one layer
at a time. Let θi represent the set of parameters relating to features of layer i, and let
θ¬i represent all other parameters. We fix θ¬0 = 0, and optimize θ0 using contrastive
estimation. After convergence, we fix θ¬1, and optimize θ1, and so on. For training each
layer, we use a convergence threshold of 10−6 on the objective function in Equation (7),
and each layer typically converges in under 100 iterations.

4. Domain Adaptation with Learned Representations

We evaluate the representations described earlier on POS tagging and NP chunking
tasks in a domain adaptation setting.

4.1 A Rich Problem Setting for Representation Learning

Existing supervised NLP systems are domain-dependent: There is a substantial drop in
their performance when tested on data from a new domain. Domain adaptation is the
task of overcoming this domain dependence. The aim is to build an accurate system for

3 This representation is only feasible for small numbers of layers, and in our experiments that require type
representations, we used M = 10. For larger values of M, other representations are also possible. We also
experimented with a representation which included only M possible values: For each layer l, we included
P(yl = 0|w) as a feature. We used the less-compact representation in our experiments because results
were better.

99

Computational Linguistics Volume 40, Number 1

a target domain by training on labeled examples from a separate source domain. This
problem is sometimes also called transfer learning (Raina et al. 2007).

Two of the challenges for NLP representations, sparsity and polysemy, are exacer-
bated by domain adaptation. New domains come with new words and phrases that
appear rarely (or even not at all) in the training domain, thus increasing problems
with data sparsity. And even for words that do appear commonly in both domains, the
contexts around the words will change from the training domain to the target domain.
As a result, domain adaptation adds to the challenge of handling polysemous words,
whose meaning depends on context.

In short, domain adaptation is a challenging setting for testing NLP representations.
We now present several experiments testing our representations against state-of-the-
art POS taggers in a variety of domain adaptation settings, showing that the learned
representations surpass the previous state-of-the-art, without requiring any labeled data
from the target domain.

4.2 Experimental Set-up

For domain adaptation, we test our representations on two sequence labeling tasks:
POS tagging and chunking. To incorporate learned representation into our models, we
follow this general procedure, although the details vary by experiment and are given in
the following sections. First, we collect a set of unannotated text from both the training
domain and test domain. Second, we learn representations on the unannotated text.
We then automatically annotate both the training and test data with features from the
learned representation. Finally, we train a supervised linear-chain CRF model on the
annotated training set and apply it to the test set.

A linear-chain CRF is a Markov random field (Darroch, Lauritzen, and Speed 1980)
in which the latent variables form a path with edges only between consecutive nodes in
the path, and all latent variables are globally conditioned on the observations. Let X be a
random variable over data sequences, and Z be a random variable over corresponding
label sequences. The conditional distribution over the label sequence Z given X has the
form

pθ(Z = z|X = x) ∝ exp

⎛
⎝∑

i

∑
j

θj fj(zi−1, zi, x, i)

⎞
⎠ (8)

where fj(zi−1, zi, x, i) is a real-valued feature function of the entire observation sequence
and the labels at positions i and i − 1 in the label sequence, and θj is a parameter to be
estimated from training data.

We use an open source CRF software package designed by Sunita Sarawagi to train
and apply our CRF models.4 As is standard, we use two kinds of feature functions:
transition and observation. Transition feature functions indicate, for each pair of labels
l and l′, whether zi = l and zi−1 = l′. Boolean observation feature functions indicate, for
each label l and each feature f provided by a representation, whether zi = l and xi has
feature f . For each label l and each real-valued feature f in representation R, real-valued
observation feature functions have value f (x) if zi = l, and are zero otherwise.

4 Available from http://sourceforge.net/projects/crf/.

100

Huang et al. Computational Linguistics

4.3 Domain Adaptation for POS Tagging

Our first experiment tests the performance of all the representations we introduced
earlier on an English POS tagging task, trained on newswire text, to tag biomedical re-
search literature. We follow Blitzer et al.’s experimental set-up. The labeled data consists
of the WSJ portion of the Penn Treebank (Marcus, Marcinkiewicz, and Santorini 1993)
as source domain data, and 561 labeled sentences (9,576 tokens) from the biomedical
research literature database MEDLINE as target domain data (PennBioIE 2005). Fully
23% of the tokens in the labeled test text are never seen in the WSJ training data. The
unlabeled data consists of the WSJ text plus 71,306 additional sentences of MEDLINE
text (Blitzer, McDonald, and Pereira 2006). As a preprocessing step, we replace hapax
legomena (defined as words that appear once in our unlabeled training data) with
the special symbol *UNKNOWN*, and do the same for words in the labeled test sets that
never appeared in any of our unlabeled training text.

For representations, we tested TRAD-R, n-GRAM-R, LSA-R, NB-R, HMM-TOKEN-
R, I-HMM-TOKEN-R (between 2 and 8 layers), and LATTICE-TOKEN-R (8, 12, 16,
and 20 layers). Each latent node in the I-HMMs had 80 possible values, creating
808 ≈ 1015 possible configurations of the eight-layer I-HMM for a single word. Each
node in our PL-MRF is binary, creating a much smaller number (220 ≈ 106) of possible
configurations for each word in a 20-layer representation. To give the n-gram model
the largest training data set available, we trained it on the Web 1Tgram corpus (Brants
and Franz 2006). We included the top 500 most common n-grams for each word type,
and then used mutual information on the training data to select the top 10,000 most
relevant n-gram features for all word types, in order to keep the number of features
manageable. We incorporated n-gram features as binary values indicating whether xi
appeared with the n-gram or not. For comparison, we also report on the performance of
Brown clusters (100, 320, 1,000, and 3,200 possible clusters), following Turian, Ratinov,
and Bengio (2010). Finally, we compare against Blitzer, McDonald, and Pereira (2006)
SCL technique, described in Section 2.6, and the standard semi-supervised learning
algorithm ASO (Ando and Zhang 2005), whose results on this task were previously
reported by Blitzer, McDonald, and Pereira (2006).

Table 2 shows the results for the best variation of each kind of model—20 layers for
the PL-MRF, 7 layers for the I-HMM, and 3,200 clusters for the Brown clustering. All
statistical language model representations outperform the TRAD-R baseline.

In nearly all cases, learned representations significantly outperformed TRAD-R. The
best representation, the 20-layer LATTICE-TOKEN-R, reduces error by 47% (35% on
OOV) relative to the baseline TRAD-R, and by 44% (24% on out-of-vocabulary words
(OOV)) relative to the benchmark SCL system. For comparison, this model achieved a
96.8% in-domain accuracy on Sections 22–24 of the Penn Treebank, about 0.5 percentage
point shy of a state-of-the-art in-domain system with more sophisticated supervised
learning (Shen, Satta, and Joshi 2007). The BROWN-TOKEN-R representation, which
Turian, Ratinov, and Bengio (2010) demonstrated performed as well or better than
a variety of neural network statistical language models as representations, achieved
accuracies between the SCL system and the HMM-TOKEN-R. The WEB1T-n-GRAM-R,
I-HMM-TOKEN-R, and LATTICE-TOKEN-R all performed quite close to one another,
but the I-HMM-TOKEN-R and LATTICE-TOKEN-R were trained on many orders of
magnitude less text. The LSA-R and NB-R outperformed the TRAD-R baseline but
not the SCL system. The n-GRAM-R, which was trained on the same text as the
other representations except the WEB1T-n-GRAM-R, performed far worse than the
WEB1T-n-GRAM-R.

101

Computational Linguistics Volume 40, Number 1

Table 2
Learned representations, and especially latent-variable statistical language model
representations, significantly outperform a traditional CRF system on domain adaptation for
POS tagging. Percent error is shown for all words and out-of-vocabulary (OOV) words. The
SCL+500bio system was given 500 labeled training sentences from the biomedical domain.
1.8% of tokens in the biomedical test set had POS tags like ‘HYPHENATED’, which are not
part of the tagset for the training data, and were labeled incorrectly by all systems without
access to labeled data from the biomedical domain. As a result, an error rate of 1.8 + 3.9 = 5.7
serves as a reasonable lower bound for a system that has never seen labeled examples from
the biomedical domain.

Model All words OOV words

TRAD-R 11.7 32.7
n-GRAM-R 11.7 32.2
LSA-R 11.6 31.1
NB-R 11.6 30.7
ASO 11.6 29.1
SCL 11.1 28
BROWN-TOKEN-R 10.0 25.2
HMM-TOKEN-R 9.5 24.8
WEB1T-n-GRAM-R 6.9 24.4
I-HMM-TOKEN-R 6.7 24
LATTICE-TOKEN-R 6.2 21.3

SCL+500bio 3.9 –

The amount of unlabeled training data has a significant impact on the performance
of these representations. This is apparent in the difference between WEB1T-n-GRAM-
R and n-GRAM-R, but it is also true for our other representations. Figure 4 shows the
accuracy of a representative subset of our taggers on words not seen in labeled training
data, as we vary the amount of unlabeled training data available to the language

Figure 4
Learning curve for representations: target domain accuracy of our taggers on OOV words
(not seen in labeled training data), as a function of the number of unlabeled examples given
to the language models.

102

Huang et al. Computational Linguistics

models. Performance grows steadily for all representations we measured, and none
of the learning curves appears to have peaked. Furthermore, the margin between the
more complex graphical models and the simpler n-gram models grows with increasing
amounts of training data.

4.3.1 Sparsity and Polysemy. We expected that statistical language model represen-
tations would perform well in part because they provide meaningful features for
sparse and polysemous words. For sparse tokens, these trends are already evident
in the results in Table 2: Models that provide a constrained number of features, like
HMM-based models, tend to outperform models that provide huge numbers of fea-
tures (each of which, on average, is only sparsely observed in training data), like
TRAD-R.

As for polysemy, HMM models significantly outperform naive Bayes models and
the n-GRAM-R. The n-GRAM-R’s features do not depend on a token type’s context at all,
and the NB-R’s features depend only on the tokens immediately to the right and left of
the current word. In contrast, the HMM takes into account all tokens in the surrounding
sentence (although the strength of the dependence on more distant words decreases
rapidly). Thus the performance of the HMM compared with n-GRAM-R and NB-R,
as well as the performance of the LATTICE-TOKEN-R compared with the WEB1T-n-
GRAM-R, suggests that representations that are sensitive to the context of a word
produce better features.

To test these effects more rigorously, we selected 109 polysemous word types from
our test data, along with 296 non-polysemous word types. The set of polysemous word
types was selected by filtering for words in our labeled data that had at least two
POS tags that began with distinct letters (e.g., VBZ and NNS). An initial set of non-
polysemous word types was selected by filtering for types that appeared with just
one POS tag. We then manually inspected these initial selections to remove obvious
cases of word types that were in fact polysemous within a single part-of-speech, such
as “bank.” We further define sparse word types as those that appear five times or
fewer in all of our unlabeled data, and we define non-sparse word types as those that
appear at least 50 times in our unlabeled data. Table 3 shows our POS tagging results
on the tokens of our labeled biomedical data with word types matching these four
categories.

As expected, all of our statistical language models outperform the baseline by
a larger margin on polysemous words than on non-polysemous words. The margin
between graphical model representations and the WEB1T-n-GRAM-R model also in-
creases on polysemous words, except for the NB-R. The WEB1T-n-GRAM-R uses none
of the local context to decide which features to provide, and the NB-R uses only the
immediate left and right context, so both models ignore most of the context. In contrast,
the remaining graphical models use Viterbi decoding to take into account all tokens
in the surrounding sentence, which helps to explain their relative improvement over
WEB1T-n-GRAM-R on polysemous words.

The same behavior is evident for sparse words, as compared with non-sparse
words: All of the statistical language model representations outperform the baseline
by a larger margin on sparse words than not-sparse words, and all of the graphical
models perform better relative to the WEB1T-n-GRAM-R on sparse words than not-
sparse words. By reducing the feature space from millions of possible n-gram fea-
tures to L categorical features, these models ensure that each of their features will
be observed often in a reasonably sized training data set. Thus representations based

103

Computational Linguistics Volume 40, Number 1

Table 3
Graphical models consistently outperform n-gram models by a larger margin on sparse words
than not-sparse words, and by a larger margin on polysemous words than not-polysemous
words. One exception is the NB-R, which performs worse relative to WEB1T-n-GRAM-R on
polysemous words than non-polysemous words. For each graphical model representation,
we show the difference in performance between that representation and WEB1T-n-GRAM-R
in parentheses. For each representation, differences in accuracy on polysemous and
non-polysemous subsets were statistically significant at p < 0.01 using a two-tailed
Fisher’s exact test. Likewise for performance on sparse vs. non-sparse categories.

polysemous not polysemous sparse not sparse

tokens 159 4,321 463 12,194

TRAD-R 59.5 78.5 52.5 89.6
WEB1T-n-GRAM-R 68.2 85.3 61.8 94.0
NB-R 64.5 88.7 57.8 89.4
(-WEB1T-n-GRAM-R) (–3.7) (+3.4) (–4.0) (–4.6)

HMM-TOKEN-R 67.9 83.4 60.2 91.6
(-WEB1T-n-GRAM-R) (–0.3) (–1.9) (–1.6) (–2.4)

I-HMM-TOKEN-R 75.6 85.2 62.9 94.5
(-WEB1T-n-GRAM-R) (+7.4) (–0.1) (+1.1) (+0.5)

LATTICE-TOKEN-R 70.5 86.9 65.2 94.6
(-WEB1T-n-GRAM-R) (+2.3) (+1.6) (+3.4) (+0.6)

on graphical models help address two key issues in building representations for POS
tagging.

4.3.2 Domain Divergence. Besides sparsity and polysemy, Ben-David et al.’s (2007, 2010)
theoretical analysis of domain adaptation shows that the distance between two domains
under a representation R of the data is crucial for a good representation. We test their
predictions using learned representations.

Ben-David et al.’s (2007, 2010) analysis depends on a particular notion of distance,
the d1 divergence, that is computationally intractable to calculate. For our analysis, we
resort instead to two different computationally efficient approximations of this measure.
The first uses a more standard notion of distance: the Jensen-Shannon Divergence (dJS),
a distance metric for probability distributions:

dJS(p||q) = 1
2

∑
i

[
pilog

(pi
mi

)
+ qilog

(qi
mi

)]

where mi =
pi+qi

2 .
Intuitively, we aim to measure the distance between two domains by measuring

whether features appear more commonly in one domain than in the other. For instance,
the biomedical domain is far from the newswire domain under the TRAD-R repre-
sentation because word-based features like protein, gene, and pathway appear far more
commonly in the biomedical domain than the newswire domain. Likewise, bank and
president appear far more commonly in newswire text. Since the d1 distance is related
to the optimal classifier for distinguishing two domains, it makes sense to measure the
distance by comparing the frequencies of these features: a classifier can easily use the
occurrence of words like bank and protein to accurately predict whether a given sentence
belongs to the newswire or biomedical domain.

104

Huang et al. Computational Linguistics

More formally, let S and T be two domains, and let f be a feature5 in representation
R—that is, a dimension of the image space of R. Let V be the set of possible values
that f can take on. Let US be an unlabeled sample drawn from S, and likewise for
UT. We first compute the relative frequencies of the different values of f in R(US) and
R(UT), and then compute dJS between these empirical distributions. Let pf represent the
empirical distribution over V estimated from observations of feature f in R(US), and let
qf represent the same distribution estimated from R(UT).

Definition 1
JS domain divergence for a feature or df (US, UT) is the domain divergence between
domains S and T under feature f from representation R, and is given by

df (US, UT) = dJS(pf ||qf)

For a multidimensional representation, we compute the full domain divergence as a
weighted sum over the domain divergences for its features. Because individual features
may vary in their relevance to a sequence-labeling task, we use weights to indicate
their importance to the overall distance between the domains. We set the weight wf
for feature f proportional to the L1 norm of CRF parameters related to f in the trained
POS tagger. That is, let θ be the CRF parameters for our trained POS tagger, and let
θf = {θl,v|l be the state for zi and v be the value for f}. We set wf =

||θf ||1
||θ||1 .

Definition 2
JS Domain Divergence or dR(US, UT), is the distance between domains S and T under
representation R, and is given by

dR(US, UT) =
∑

f

wf df (US, UT)

Blitzer (2008) uses a different notion of domain divergence to approximate the d1
divergence, which we also experimented with. He trains a CRF classifier on examples
labeled with a tag indicating which domain the example was drawn from. We refer to
this type of classifier as a domain classifier. Note that these should not be confused
with our CRFs used for POS tagging, which take as input examples which are labeled
with POS sequences. For the domain classifier, we tag every token from the WSJ domain
as 0, and every token from the biomedical domain as 1. Blitzer then uses the accuracy
of his domain classifier on a held-out test set as his measure of domain divergence. A
high accuracy for the domain classifier indicates that the representation makes the two
domains easy to separate, and thus high accuracy signifies a high domain divergence. To
measure domain divergence using a domain classifier, we trained our representations
on all of the unlabeled data for this task, as before. We then used 500 randomly sampled
sentences from the WSJ domain, and 500 randomly sampled biomedical sentences, and
labeled these with 0 for the WSJ data and 1 for the biomedical data. We measured
the error rate of our domain-classifier CRF as the average error rate across folds when
performing three-fold cross-validation on these 1,000 sentences.

5 For simplicity, the definition we provide here works only for discrete features, although it is possible to
extend this definition to continuous-valued features.

105

Computational Linguistics Volume 40, Number 1

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.32 0.37 0.42 0.47

Ta
rg

et
 D

om
ai

n

Ta
gg

in
g

Ac
cu

ra
cy

Domain Divergence under the Representation

LATTICE-R

I-HMM-R

Trad-R

Ngram-R

1 HMM

7 HMMs

8 layer LATTICE

20 layer LATTICE

Figure 5
Target-domain POS tagging accuracy for a model developed using a representation R correlates
strongly with lower JS domain divergence between WSJ and biomedical text under each
representation R. The correlation coefficients r2 for the linear regressions drawn in the
figure are both greater than 0.97.

Figure 5 plots the accuracies and JS domain divergences for our POS taggers.
Figure 6 shows the difference between target-domain error and source-domain error
as a function of JS domain divergence. Figures 7 and 8 show the same information,
except that the x axis plots the accuracy of a domain classifier as the way of mea-
suring domain divergence. These results give empirical support to Ben-David et al.’s
(2007, 2010) theoretical analysis: Smaller domain divergence—whether measured by
JS domain divergence or by the accuracy of a domain classifier—correlates strongly
with better target-domain accuracy. Furthermore, smaller domain divergence correlates
strongly with a smaller difference in the accuracy of the taggers on the source and
target domains.

Figure 6
Smaller JS domain divergence correlates with a smaller difference between target-domain error
and source-domain error.

106

Huang et al. Computational Linguistics

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98

Ta
rg

et
 D

om
ai

n

Ta
gg

in
g

Ac
cu

ra
cy

Domain Classification Accuracy

Trad Rep

I-HMM

Ngram

PL-MRF

1 HMM

7 HMMs

20 layer PL-MRF

8 layer PL-MRF

Figure 7
Target-domain tagging accuracy decreases with the accuracy of a CRF domain classifier.
Intuitively, this means that training data from a source domain is less helpful for tagging in
a target domain when source-domain data is easy to distinguish from target-domain data.

Figure 8
Better domain classification correlates with a larger difference between target-domain error and
source-domain error.

Although both the JS domain divergence and the domain classifier provide only
approximations of the d1 metric for domain divergence, they agree very strongly:
In both cases, the LATTICE-TOKEN-R representations had the lowest domain diver-
gence, followed by the I-HMM-TOKEN-R representations, followed by TRAD-R, with
n-GRAM-R somewhere between LATTICE-TOKEN-R and I-HMM-TOKEN-R. The main
difference between the two metrics appears to be that the JS domain divergence gives
a greater domain divergence to the eight-layer LATTICE-TOKEN-R model and the
n-GRAM-R, placing them past the four- through eight-layer I-HMM-TOKEN-R represen-
tations. The domain classifier places these models closer to the other LATTICE-TOKEN-R
representations, just past the seven-layer I-HMM-TOKEN-R representation.

107

Computational Linguistics Volume 40, Number 1

The domain divergences of all models, using both techniques for measuring diver-
gence, remain significantly far from zero, even under the best representation. As a result,
there is ample room to experiment with even less-divergent representations of the two
domains, to see if they might yield ever-increasing target-domain accuracies. Note that
this is not simply a matter of adding more layers to the layered models. The I-HMM-
TOKEN-R model performed best with seven layers, and the eight-layer representation
had about the same accuracy and domain divergence as the five-layer model. This
may be explained by the fact that the I-HMM layers are trained independently, and so
additional layers may be duplicating other ones, and causing the supervised classifier
to overfit. But it also shows that our current methodology has no built-in technique
for constraining the domain divergence in our representations—the decrease in domain
divergence from our more sophisticated representations is a coincidental byproduct of
our training methodology, but there is no guarantee that our current mechanisms will
continue to decrease domain divergence simply by increasing the number of layers. An
important consideration for future research is to devise explicit learning mechanisms
that guide representations towards smaller domain divergences.

4.4 Domain Adaptation for Noun-Phrase Chunking and Chinese POS Tagging

We test the generality of our representations by using them for other tasks, domains, and
languages. Here, we report on further sequence-labeling tasks in a domain adaptation
setting: noun phrase chunking for adaptation from news text to biochemistry journals,
and POS tagging in Mandarin for a variety of domains. In the next section, we describe
the use of our representations in a weakly supervised information extraction task.

For chunking, the training set consists of the CoNLL 2000 shared task data for
source-domain labeled data (Sections 15–18 of the WSJ portion of the Penn Treebank,
labeled with chunk tags) (Tjong, Sang, and Buchholz 2000). For test data, we used
biochemistry journal data from the Open American National Corpus6 (OANC). One
of the authors manually labeled 198 randomly selected sentences (5,361 tokens) from
the OANC biochemistry text with noun-phrase chunk information.7 We focus on noun
phrase chunks because they are relatively easy to annotate manually, but contain a large
variety of open-class words that vary from domain to domain. The labeled training set
consists of 8,936 sentences and 211,726 tokens. Twenty-three percent of chunks in the
test set begin with an OOV word (especially adjective-noun constructions like “aqueous
formation” and “angular recess”), and 29% begin with a word seen at most twice in
training data; we refer to these as OOV chunks and rare chunks. For our unlabeled
data, we use 15,000 sentences (358,000 tokens; Sections 13–19) of the Penn Treebank
and 45,000 sentences (1,083,000 tokens) from the OANC’s biochemistry section. We
tested TRAD-R (augmented with features for automatically generated POS tags), LSA-R,
n-GRAM-R, NB-R, HMM-TOKEN-R, I-HMM-TOKEN-R (7 layers, which performed best
for POS tagging) and LATTICE-TOKEN-R (20 layers) representations.

Figure 9 shows our NP chunking results for this domain adaptation task. The
performance improvements for the HMM-based chunkers are impressive: LATTICE-
TOKEN-R reduces error by 57% with respect to TRAD-R, and comes close to state-of-the-
art results for chunking on newswire text. The results suggest that this representation
allows the CRF to generalize almost as well to out-of-domain text as in-domain text.

6 Available from http://www.anc.org/OANC/.
7 The labeled data for this experiment are available from the first author’s Web site.

108

Huang et al. Computational Linguistics

F1
on

B
io

ch
em

is
tr

y
Te

xt

0.72
0.74 0.75 0.76

0.84
0.87

0.89
0.86 0.87 0.87 0.88

0.91
0.94 0.94

0.6
0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

Trad-R Ngram-R LSA-R NB-R HMM-R I-HMM-R LATTICE-R

OOV ALL

Freq: 0 1 2 all
Chunks: 284 39 39 1,258

R P R P R P R P

TRAD-R .74 .70 .85 .87 .79 .86 .86 .87
n-GRAM-R .74 .74 .85 .85 .79 .86 .87 .87
LSA-R .76 .74 .82 .83 .78 .85 .87 .88
NB-R .73 .78 .86 .73 .86 .75 .88 .88
HMM-TOKEN-R .80 .89 .92 .88 .92 .90 .91 .90
I-HMM-TOKEN-R .90 .86 .92 .95 .87 .97 .95 .92
LATTICE-TOKEN-R .92 .85 .94 .95 .87 .97 .95 .93

Figure 9
On biomedical journal data from the OANC, our best NP chunker outperforms the baseline
CRF chunker by 0.17 F1 on chunks that begin with OOV words, and by 0.08 on all chunks. The
table shows performance breakdowns (recall and precision) for chunks whose first word has
frequency 0, 1, and 2 in training data, and the number of chunks in test data that fall into each
of these categories.

Improvements are greatest on OOV and rare chunks, where LATTICE-TOKEN-R made
absolute improvements over TRAD-R by 0.17 and 0.09 F1, respectively. Improvements
for the single-layer HMM-TOKEN-R were smaller but still significant: 36% relative re-
duction in error overall, and 32% for OOV chunks.

The improved performance from our HMM-based chunker caused us to wonder
how well the chunker could work without some of its other features. We removed all
tag features and orthographic features and all features for word types that appear fewer
than 20 times in training. This chunker still achieves 0.91 F1 on OANC data, and 0.93
F1 on WSJ data (Section 20), outperforming the TRAD-R system in both cases. It has
only 20% as many features as the baseline chunker, greatly improving its training time.
Thus these features are more valuable to the chunker than features from automatically
produced tags and features for all but the most common words.

For Chinese POS tagging, we use text from the UCLA Corpus of Written Chinese
(Tao and Xiao 2007), which is part of the Lancaster Corpus of Mandarin Chinese
(LCMC). The UCLA Corpus consists of 11,192 sentences of word-segmented and POS-
tagged text in 13 genres (see Table 4). We use gold-standard word segmentation labels
for training and testing. The LCMC tagset consists of 50 Chinese POS tags. On average,
each genre contains 5,284 word tokens, for a total of 68,695 tokens among all genres. We
use the ‘news’ genre as our source domain, which we use for training and development

109

Computational Linguistics Volume 40, Number 1

Table 4
POS tagging accuracy: the LATTICE-TOKEN-R and other graphical model representations
outperform TRAD-R and state-of-the-art Chinese POS taggers on all target domains. For target
domains, * indicates the performance is statistically significantly better than the Stanford and
TRAD-R baselines at p < 0.05, using a two-tailed χ2 test; ** indicates significance at p < 0.01.
On the news domain, the Stanford tagger is significantly different from all other systems
using a two-tailed χ2 test with p < 0.01.

Domain Stanford TRAD NGR LSA NB HMM I-H LAT

lore 88.4 84.0 84.2 85.3 85.3 89.7 89.9 90.1*
religion 83.5 79.1 79.4 79.8 80.0 85.2 85.6 85.9*
humour 89.0 84.2 84.5 86.2 86.8 89.6 89.6 89.9*
general-fic 87.5 84.5 85.0 85.3 85.7 89.4 89.7 89.9*
essay 88.4 83.2 83.7 84.0 84.3 89.0 89.1 90.1*
mystery 87.4 82.4 83.4 84.3 85.3 90.1 91.1 91.3**
romance 87.5 84.2 84.5 85.3 86.1 89.0 89.5 89.8**
science-fic 88.6 82.1 82.5 83.0 83.0 87.0 88.3 88.6
skills 82.7 77.3 77.7 78.2 78.4 84.9 85.0 85.1**
science 86.0 82.0 82.3 82.4 82.4 87.8 87.8 87.9*
adventure-fic 82.1 74.3 75.2 76.1 77.8 81.7 82.0 82.2
report 91.7 84.2 85.1 85.3 86.1 91.9 91.9 91.9

news 98.8** 96.9 92.3 93.4 94.3 94.2 97.0 97.1
all but news 87.0 81.2 82.0 82.8 83.6 88.1 88.4 88.8**
all domains 88.7 83.2 83.6 84.4 85.5 89.5 89.7 90.0**

data. For test data, we randomly select 20% of every other genre. For our unlabeled
data, we use all of the ‘news’ text, plus the remaining 80% of the texts from the other
genres. As before, we replace hapax legomena in the unlabeled data with the special
symbol *UNKNOWN*, and do the same for word types in the labeled test sets that never
appear in our unlabeled training texts. We compare against a state-of-the-art Chinese
POS tagger for in-domain text, the CRF-based Stanford tagger (Tseng, Jurafsky, and
Manning 2005). We obtained the code for this tagger,8 and retrained it on our training
data set.

The Chinese POS tagging results are shown in Table 4. The LATTICE-TOKEN-R
outperforms the state-of-the-art Stanford tagger on all target domains. Overall, on all
out-of-domain tests, LATTICE-TOKEN-R provides a relative reduction in error of 13.8%
compared with the Stanford tagger. The best performance is on the ‘mystery’ domain,
where the LATTICE-TOKEN-R model reaches 91.3% accuracy, a 3.9 percentage points
improvement over the Stanford tagger. Its performance on the in-domain ‘news’ test set
is significantly worse (1.7 percentage points) than the Stanford tagger, suggesting that
the Stanford tagger relies on domain-dependent features that are helpful for tagging
news, but not for tagging in general. The LATTICE-TOKEN-R’s accuracy is still signifi-
cantly worse on out-of-domain text than in-domain text, but the gap between the two
(8.3 percentage points) is better than the gap for the Stanford tagger (11.8 percentage
points). We believe that the lower out-of-domain performance of our Chinese POS
tagger, compared with our English POS tagger and our chunker, was at least in part
due to having far less unlabeled text available for this task.

8 Available at http://nlp.stanford.edu/software/tagger.shtml.

110

Huang et al. Computational Linguistics

5. Information Extraction Experiments

In this section, we evaluate our learned representations on their ability to capture
semantic, rather than syntactic, information. Specifically, we investigate a set-expansion
task in which we’re given a corpus and a few “seed” noun phrases from a semantic
category (e.g., Superheroes), and our goal is to identify other examples of the category
in the corpus. This is a different type of weakly supervised task from the earlier domain
adaptation tasks because we are given only a handful of positive examples from a cate-
gory, rather than a large sample of positively and negatively labeled training examples
from a separate domain.

Existing set-expansion techniques utilize the distributional hypothesis: Candidate
noun phrases for a given semantic class are ranked based on how similar their contex-
tual distributions are to those of the seeds. Here, we measure how performance on the
set-expansion task varies when we employ different representations for the contextual
distributions.

5.1 Methods

The set-expansion task we address is formalized as follows. Given a corpus, a set of
seeds from some semantic category C, and a separate set of candidate phrases P, output
a ranking of the phrases in P in decreasing order of likelihood of membership in the
semantic category C.

For any given representation R, the set-expansion algorithm we investigate is
straightforward: We rank candidate phrases in increasing order of the distance between
their feature vectors and those of the seeds. The particular distance metrics utilized are
detailed subsequently.

Because set expansion is performed at the level of word types rather than to-
kens, it requires type-based representations. We compare HMM-TYPE-R, n-GRAM-R,
LATTICE-TYPE-R, and BROWN-TYPE-R in this experiment. We used a 25-state HMM,
and the LATTICE-TYPE-R as described in the previous section. Following previous set-
expansion experiments with n-grams (Ahuja and Downey 2010), we use a trigram
model with Kneser-Ney smoothing for n-GRAM-R.

The distances between the candidate phrases and the seeds for HMM-TYPE-R,
n-GRAM-R, and LATTICE-TYPE-R representations are calculated by first creating a
prototypical “seed feature vector” equal to the mean of the feature vectors for each
of the seeds in the given representation. Then, we rank candidate phrases in order
of increasing distance between their feature vector and the seed feature vector. As a
distance measure between vectors (in this case, probability distributions), we compute
the average of five standard distance measures, including KL and JS divergence, and
cosine, Euclidean, and L1 distance. In experiments, we found that improving upon
this simple averaging was not easy—in fact, tuning a weighted average of the distance
measures for each representation did not improve results significantly on held-out data.

For Brown clusters, we use prefixes of all possible lengths as features. We define
the similarity between two Brown representation feature vectors to be the number of
features they share in common (this is equivalent to the length of the longest common
prefix between the two original Brown cluster labels). The candidate phrases are then
ranked in decreasing order of the sum of their similarity scores to each of the seeds. We
experimented with normalizing the similarity scores by the longer of the two vector
lengths, and found this to decrease results slightly. We use unnormalized (integer)
similarity scores for Brown clusters in our experiments.

111

Computational Linguistics Volume 40, Number 1

5.2 Data Sets

We utilized a set of approximately 100,000 sentences of Web text, joining multi-word
named entities in the corpus into single tokens using the Lex algorithm (Downey,
Broadhead, and Etzioni 2007). This process enables each named entity (the focus of the
set-expansion experiments) to be treated as a single token, with a single representation
vector for comparison. We developed all word type representations using this corpus.

To obtain examples of multiple semantic categories, we utilized selected Wikipedia
“listOf” pages from Pantel et al. (2009) and augmented these with our own manually
defined categories, such that each list contained at least ten distinct examples occurring
in our corpus. In all, we had 432 examples across 16 distinct categories such as Coun-
tries, Greek Islands, and Police TV Dramas.

5.3 Results

For each semantic category, we tested five different random selections of five seed
examples, treating the unselected members of the category as positive examples, and
all other candidate phrases as negative examples. We evaluate using the area under the
precision-recall curve (AUC) metric.

The results are shown in Table 5. All representations improve performance over
a random baseline, equal to the average AUC over five random orderings for each
category, and the graphical models outperform the n-gram representation. I-HMM-
TYPE-R and Brown clustering in the particular case of 1,000 clusters perform best, with
HMM-TYPE-R performing nearly as well. Brown clusters give somewhat lower results
as the number of clusters varies.

As with POS tagging, we expect that language model representations improve
performance on the IE task by providing informative features for sparse word types.
However, because the IE task classifies word types rather than tokens, we expect the rep-
resentations to provide less benefit for polysemous word types. To test these hypotheses,
we measured how IE performance changed in sparse or polysemous settings. We identi-
fied polysemous categories as those for which fewer than 90% of the category members
had the category as a clear dominant sense (estimated manually); other categories were
considered non-polysemous. Categories whose members had a median number of
occurrences in the corpus of less than 30 were deemed sparse, and others non-sparse.

Table 5
I-HMM-TYPE-R outperforms the other methods, improving performance over a random
baseline by twice as much as either n-GRAM-R or LATTICE-TYPE-R.

model AUC

I-HMM-TYPE-R 0.18
HMM-TYPE-R 0.17
BROWN-TYPE-R-3200 0.16
BROWN-TYPE-R-1000 0.18
BROWN-TYPE-R-320 0.15
BROWN-TYPE-R-100 0.13
LATTICE-TYPE-R 0.11

n-GRAM-R baseline 0.10
Random baseline 0.10

112

Huang et al. Computational Linguistics

Table 6
Graphical models as representations for IE consistently perform better relative to n-gram models
on sparse words, but not necessarily polysemous words.

polysemous not-polysemous sparse not-sparse

types 222 210 266 166
categs. 12 4 13 3

n-GRAM-R 0.07 0.17 0.06 0.25
LATTICE-TYPE-R 0.09 0.15 0.1 0.19
-n-GRAM-R +0.02 −0.02 +0.04 −0.06
HMM-TYPE-R 0.14 0.26 0.15 0.32
-n-GRAM-R +0.07 +0.09 +0.09 +0.07

IE performance on these subsets of the data are shown in Table 6. Both graphical
model representations outperform the n-gram representation more on sparse words, as
expected. For polysemy, the picture is mixed: The LATTICE-TYPE-R outperforms
n-GRAM-R on polysemous categories, whereas HMM-TYPE-R’s performance advan-
tage over n-GRAM-R decreases.

One surprise on the IE task is that the LATTICE-TYPE-R performs significantly less
well than the HMM-TYPE-R, whereas the reverse is true on POS tagging. We suspect
that the difference is due to the issue of classifying types vs. tokens. Because of their
more complex structure, PL-MRFs tend to depend more on transition parameters than
do HMMs. Furthermore, our decision to train the PL-MRFs using contrastive estimation
with a neighborhood that swaps consecutive pairs of words also tends to emphasize
transition parameters. As a result, we believe the posterior distribution over latent states
given a word type is more informative in our HMM model than the PL-MRF model.
We measured the entropy of these distributions for the two models, and found that
H(PPL-MRF(y|x = w)) = 9.95 bits, compared with H(PHMM(y|x = w)) = 2.74 bits, which
supports the hypothesis that the drop in the PL-MRF’s performance on IE is due to its
dependence on transition parameters. Further experiments are warranted to investigate
this issue.

5.4 Testing the Language Model Representation Hypothesis in IE

The language model representation hypothesis (Section 2) suggests that all else being
equal, more accurate language models will provide features that lead to better perfor-
mance on NLP tasks. Here, we test this hypothesis on the set expansion IE task.

Figures 10 and 11 show how the performance of the HMM-TYPE-R varies with the
language modeling accuracy of the underlying HMM. Language modeling accuracy
is measured in terms of perplexity on held-out text. Here, we use set expansion data
sets from previous work (Ahuja and Downey 2010). The first two are composed of
extractions from the TextRunner information extraction system (Banko et al. 2007) and
are denoted as Unary (361 examples) and Binary (265 examples). The second, Wikipedia
(2,264 examples), is a sample of Wikipedia concept names. We evaluate the performance
of several different trained HMMs with numbers of latent states K ranging from 5 to
1,600 (to help illustrate how IE and LM performance varies even when model capacity
is fixed, we include three distinct models with K = 100 states trained separately over
the full corpus). We used a distributed implementation of HMM training and corpus

113

Computational Linguistics Volume 40, Number 1

K = 5

K = 10

K = 25 K = 50

K = 100

K = 100

K = 100

K = 200

K = 400

Figure 10
Information extraction (IE) performance of HMM-TYPE-R as the language modeling accuracy of
the HMM varies, on TextRunner data sets. IE accuracy (in terms of area under the precision-recall
curve) tends to increase as language modeling accuracy improves (i.e., perplexity decreases).

5 10
25 50

100

100

100

200 400

5

5

25

25
50

50
100

200

100

200

800

1600 400

Figure 11
Information extraction (IE) performance of HMM-TYPE-R as the language modeling accuracy
of the HMM varies on the Wikipedia data set. Number labels indicate the number of latent
states K, and performance is shown for three training corpus sizes (the full corpus consists of
approximately 60 million tokens). IE accuracy (in terms of area under the precision-recall curve)
tends to increase as language modeling accuracy improves (i.e., perplexity decreases).

partitioning techniques (Yang, Yates, and Downey 2013) to enable training of our larger
capacity HMM models on large data sets.

The results provide support for the language model representation hypothesis,
showing that IE performance does tend to improve as language model perplexity
decreases. On the smaller Unary and Binary sets (Figure 10), although IE accuracy

114

Huang et al. Computational Linguistics

does decrease for the lowest-perplexity models, overall language model perplexity
exhibits a negative correlation with IE area under the precision-recall curve (the Pearson
correlation coefficient is −0.18 for Unary, and −0.28 for Binary). For Wikipedia (Fig-
ure 11), the trend is more consistent, with IE performance increasing monotonically
as perplexity decreases for models trained on the full training corpus (the Pearson
correlation coefficient is −0.90).

Figure 11 also illustrates how LM and IE performance changes as the amount
of training text varies. In general, increasing the training corpus size increases IE
performance and decreases perplexity. Over all data points in the figure, IE perfor-
mance correlates most strongly with model perplexity (−0.68 Pearson correlation, −0.88
Spearman correlation), followed by corpus size (0.66, 0.71) and model capacity (−0.05,
0.38). The small negative Pearson correlation between model capacity and IE perfor-
mance is primarily due to the model with 1,600 states trained on 4% of the corpus.
This model has a large parameter space and sparse training data, and thus suffers from
overfitting in terms of both model perplexity and IE performance. If we ignore this
overfit model, the Pearson correlation between model capacity and IE performance for
the other models in the Figure is 0.24.

Our results show that IE based on distributional similarity tends to improve as the
quality of the latent variable model used to measure distributional similarity improves.
A similar trend was exhibited in our previous work (Ahuja and Downey 2010); here, we
extend the previous results to models with more latent states and a larger, more reliable
test set (Wikipedia). The results suggest that scaling up the training of latent variable
models to utilize larger training corpora and more latent states may be a promising
direction for improving IE capabilities.

6. Conclusion and Future Work

Our study of representation learning demonstrates that by using statistical language
models to aggregate information across many unannotated examples, it is possible to
find accurate distributional representations that can provide highly informative features
to weakly supervised sequence labelers and named-entity classifiers. For both domain
adaptation and weakly supervised set expansion, our results indicate that graphical
models outperform n-gram models as representations, in part for their greater ability to
handle sparsity and polysemy. Our IE task provides important evidence to support the
Language Model Representation Hypothesis, showing that the AUC of the IE system
correlates more with language model perplexity than the size of the training data or
the capacity of the language model. Finally, our sequence labeling experiments provide
empirical evidence in support of theoretical work on domain adaptation, showing that
target-domain tagging accuracy is highly correlated with two different measures of
domain divergence.

Representation learning remains a promising area for finding further improve-
ments in various NLP tasks. The representations we have described are trained in
an unsupervised fashion, so a natural extension is to investigate supervised or semi-
supervised representation-learning techniques. As mentioned previously, our current
techniques have no built-in methods for enforcing that they provide similar features in
different domains; devising a mechanism that enforces this could allow for less domain-
divergent and potentially more accurate representations. We have considered sequence
labeling, but another promising direction is to apply these techniques to more complex
structured prediction tasks, like parsing or relation extraction. Our current approach
to sequence labeling requires retraining of a CRF for every new domain; incremental

115

Computational Linguistics Volume 40, Number 1

retraining techniques for new domains would speed up the process. Finally, models
that combine our representation learning approach with instance weighting and other
forms of supervised domain adaptation may take better advantage of labeled data in
target domains, when it is available.

Acknowledgments
This material is based on work supported
by the National Science Foundation under
grant no. IIS-1065397.

References
Ahuja, Arun and Doug Downey. 2010.

Improved extraction assessment through
better language models. In Proceedings of
the Annual Meeting of the North American
Chapter of the Association of Computational
Linguistics (NAACL-HLT), pages 225–228,
Los Angeles, CA.

Ando, Rie Kubota and Tong Zhang. 2005.
A high-performance semi-supervised
learning method for text chunking.
In Proceedings of the ACL, pages 1–9,
Ann Arbor, MI.

Banko, Michele, Michael J. Cafarella,
Stephen Soderland, Matt Broadhead, and
Oren Etzioni. 2007. Open information
extraction from the web. In Proceedings of
the IJCAI, pages 2670–2676, Hyderabad.

Banko, Michele and Robert C. Moore.
2004. Part of speech tagging in context.
In Proceedings of the COLING, pages
556–561, Geneva.

Ben-David, Shai, John Blitzer, Koby
Crammer, Alex Kulesza, Fernando Pereira,
and Jenn Wortman. 2010. A theory of
learning from different domains. Machine
Learning, 79:151–175.

Ben-David, Shai, John Blitzer, Koby
Crammer, and Fernando Pereira. 2007.
Analysis of representations for domain
adaptation. In Advances in Neural
Information Processing Systems 20,
pages 127–144, Vancouver.

Bengio, Yoshua. 2008. Neural net language
models. Scholarpedia, 3(1):3,881.

Bengio, Yoshua, Réjean Ducharme, Pascal
Vincent, and Christian Janvin. 2003.
A neural probabilistic language model.
Journal of Machine Learning Research,
3:1,137–1,155.

Bengio, Yoshua, Jerome Louradour,
Ronan Collobert, and Jason Weston.
2009. Curriculum learning. In Proceedings
of the International Conference on Machine
Learning (ICML), pages 41–48,
Montreal.

Bikel, Daniel M. 2004a. A distributional
analysis of a lexicalized statistical
parsing model. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing, pages 182–189,
Barcelona.

Bikel, Daniel M. 2004b. Intricacies of Collins’
parsing model. Computational Linguistics,
30(4):479–511.

Blei, David M., Andrew Y. Ng, and Michael I.
Jordan. 2003. Latent Dirichlet allocation.
Journal of Machine Learning Research,
3:993–1,022.

Blitzer, John. 2008. Domain Adaptation of
Natural Language Processing Systems.
Ph.D. thesis, University of Pennsylvania,
Philadelphia, PA.

Blitzer, John, Koby Crammer, Alex Kulesza,
Fernando Pereira, and Jenn Wortman.
2007. Learning bounds for domain
adaptation. In Advances in Neural
Information Processing Systems,
pages 129–136, Vancouver.

Blitzer, John, Mark Dredze, and Fernando
Pereira. 2007. Biographies, Bollywood,
boom-boxes and blenders: Domain
adaptation for sentiment classification.
In Association for Computational Linguistics
(ACL), pages 40–47, Prague.

Blitzer, John, Ryan McDonald, and
Fernando Pereira. 2006. Domain
adaptation with structural correspondence
learning. In Proceedings of the EMNLP,
pages 120–128, Sydney.

Bodlaender, Hans L. 1988. Dynamic
programming on graphs with bounded
treewidth. In Proceedings of the 15th
International Colloquium on Automata,
Languages and Programming,
pages 105–118, Tampere.

Brants, Thorsten and Alex Franz. 2006.
Web 1t 5-gram version 1. www.ldc.
upenn.edu/catalog/.

Brown, Peter F., Vincent J. Della Pietra,
Peter V. deSouza, Jenifer C. Lai, and
Robert L. Mercer. 1992. Class-based
n-gram models of natural language.
Computational Linguistics, 18:467–479.

Candito, Marie and Benoit Crabbe. 2009.
Improving generative statistical parsing
with semi-supervised word clustering.
In Proceedings of the IWPT, pages 138–141,
Paris.

116

Huang et al. Computational Linguistics

Chan, Yee Seng and Hwee Tou Ng. 2006.
Estimating class priors in domain
adaptation for word sense disambiguation.
In Proceedings of the Association for
Computational Linguistics (ACL),
pages 89–96, Sydney.

Chelba, Ciprian and Alex Acero. 2004.
Adaptation of maximum entropy
classifier: Little data can help a lot.
In Proceedings of the EMNLP,
pages 285–292, Barcelona.

Collobert, Robert and Jason Weston. 2008. A
unified architecture for natural language
processing: Deep neural networks with
multitask learning. In Proceedings of the
International Conference on Machine Learning
(ICML), pages 160–167, Helsinki.

Dai, Wenyuan, Gui-Rong Xue, Qiang Yang,
and Yong Yu. 2007. Transferring naive
Bayes classifiers for text classification.
In Proceedings of the National Conference
on Artificial Intelligence (AAAI),
pages 540–545, Vancouver.

Darroch, J. N., S. L. Lauritzen, and
T. P. Speed. 1980. Markov fields and
log-linear interaction models for
contingency tables. The Annals of
Statistics, 8(3):522–539.

Daumé III, Hal. 2007. Frustratingly easy
domain adaptation. In Proceedings of the
ACL, pages 256–263, Prague.

Daumé III, Hal, Abhishek Kumar, and
Avishek Saha. 2010. Frustratingly easy
semi-supervised domain adaptation.
In Proceedings of the ACL Workshop
on Domain Adaptation (DANLP),
pages 53–59, Uppsala.

Daumé III, Hal and Daniel Marcu. 2006.
Domain adaptation for statistical
classifiers. Journal of Artificial Intelligence
Research, 26:101–126.

Deerwester, Scott, Susan T. Dumais,
George W. Furnas, Thomas K. Landauer,
and Richard Harshman. 1990. Indexing by
latent semantic analysis. Journal of the
American Society of Information Science,
41(6):391–407.

Dempster, Arthur, Nan Laird, and Donald
Rubin. 1977. Likelihood from incomplete
data via the EM algorithm. Journal of
the Royal Statistical Society, Series B,
39(1):1–38.

Deschacht, Koen and Marie-Francine Moens.
2009. Semi-supervised semantic role
labeling using the latent words language
model. In Proceedings of the Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 21–29,
Singapore.

Dhillon, Paramveer S., Dean Foster, and
Lyle Ungar. 2011. Multi-View Learning of
Word Embeddings via CCA. In Proceedings
of the Advances in Neural Information
Processing Systems (NIPS), volume 24,
pages 886–874, Granada.

Downey, Doug, Matthew Broadhead, and
Oren Etzioni. 2007. Locating complex
named entities in web text. In Proceedings
of the 20th International Joint Conference
on Artificial Intelligence (IJCAI 2007),
pages 2,733–2,739, Hyderabad.

Downey, Doug, Stefan Schoenmackers, and
Oren Etzioni. 2007. Sparse information
extraction: Unsupervised language models
to the rescue. In Proceedings of the ACL,
pages 696–703, Prague.

Dredze, Mark and Koby Crammer. 2008.
Online methods for multi-domain learning
and adaptation. In Proceedings of EMNLP,
pages 689–697, Honolulu, HI.

Dredze, Mark, Alex Kulesza, and Koby
Crammer. 2010. Multi-domain learning
by confidence weighted parameter
combination. Machine Learning,
79:123–149.

Finkel, Jenny Rose and Christopher D.
Manning. 2009. Hierarchical Bayesian
domain adaptation. In Proceedings of
HLT-NAACL, pages 602–610, Boulder, CO.

Fürstenau, Hagen and Mirella Lapata. 2009.
Semi-supervised semantic role labeling.
In Proceedings of the 12th Conference of the
European Chapter of the ACL, pages 220–228,
Athens.

Ghahramani, Zoubin and Michael I. Jordan.
1997. Factorial hidden Markov models.
Machine Learning, 29(2-3):245–273.

Gildea, Daniel. 2001. Corpus variation and
parser performance. In Conference on
Empirical Methods in Natural Language
Processing, pages 167–202, Pittsburgh, PA.

Goldwater, Sharon and Thomas L. Griffiths.
2007. A fully Bayesian approach to
unsupervised part-of-speech tagging.
In Proceedings of the ACL, pages 744–751,
Prague.

Graça, João V., Kuzman Ganchev, Ben Taskar,
and Fernando Pereira. 2009. Posterior vs.
parameter sparsity in latent variable
models. In Proceedings of the Neural
Information Processing Systems Conference
(NIPS), pages 664–672, Vancouver.

Harris, Z. 1954. Distributional structure.
Word, 10(23):146–162.

Hindle, Donald. 1990. Noun classification
from predicage-argument structures.
In Proceedings of the ACL, pages 268–275,
Pittsburgh, PA.

117

Computational Linguistics Volume 40, Number 1

Honkela, Timo. 1997. Self-organizing
maps of words for natural language
processing applications. In Proceedings
of the International ICSC Symposium on
Soft Computing, pages 401–407, Millet,
Alberta.

Huang, Fei and Alexander Yates. 2009.
Distributional representations for
handling sparsity in supervised sequence
labeling. In Proceedings of the Annual
Meeting of the Association for Computational
Linguistics (ACL), pages 495–503,
Singapore.

Huang, Fei and Alexander Yates. 2010.
Exploring representation-learning
approaches to domain adaptation. In
Proceedings of the ACL 2010 Workshop on
Domain Adaptation for Natural Language
Processing (DANLP), pages 23–30, Uppsala.

Huang, Fei, Alexander Yates, Arun Ahuja,
and Doug Downey. 2011. Language
models as representations for weakly
supervised NLP tasks. In Proceedings
of the Conference on Natural Language
Learning (CoNLL), pages 125–134,
Portland, OR.

Jiang, Jing and ChengXiang Zhai. 2007a.
Instance weighting for domain
adaptation in NLP. In Proceedings
of ACL, pages 264–271, Prague.

Jiang, Jing and ChengXiang Zhai. 2007b. A
two-stage approach to domain adaptation
for statistical classifiers. In Proceedings of
the Conference on Information and Knowledge
Management (CIKM), pages 401–410, Lisbon.

Johnson, Mark. 2007. Why doesn’t EM find
good HMM POS-taggers. In Proceedings of
the EMNLP, pages 296–305, Prague.

Kaski, S. 1998. Dimensionality reduction
by random mapping: Fast similarity
computation for clustering. In
Proceedings of the IJCNN, pages 413–418,
Washington, DC.

Koo, Terry, Xavier Carreras, and Michael
Collins. 2008. Simple semi-supervised
dependency parsing. In Proceedings of
the Annual Meeting of the Association of
Computational Linguistics (ACL),
pages 595–603, Columbus, OH.

Lin, Dekang and Xiaoyun Wu. 2009. Phrase
clustering for discriminative learning.
In Proceedings of the ACL-IJCNLP,
pages 1,030–1,038, Singapore.

Liu, Dong C. and Jorge Nocedal. 1989. On
the limited memory method for large scale
optimization. Mathematical Programming B,
45(3):503–528.

Mansour, Y., M. Mohri, and
A. Rostamizadeh. 2009. Domain

adaptation with multiple sources.
In Proceedings of the Advances in Neural
Information Processing Systems,
pages 1,041–1,048, Vancouver.

Marcus, Mitchell P., Mary Ann
Marcinkiewicz, and Beatrice Santorini.
1993. Building a large annotated corpus of
English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Martin, Sven, Jorg Liermann, and Hermann
Ney. 1998. Algorithms for bigram and
trigram word clustering. Speech
Communication, 24:19–37.

McClosky, David. 2010. Any Domain Parsing:
Automatic Domain Adaptation for Parsing.
Ph.D. thesis, Brown University,
Providence, RI.

McClosky, David, Eugene Charniak, and
Mark Johnson. 2010. Automatic domain
adaptation for parsing. In North American
Chapter of the Association for Computational
Linguistics - Human Language Technologies
2010 Conference (NAACL-HLT 2010),
pages 28–36, Los Angeles, CA.

Miller, Scott, Jethran Guinness, and
Alex Zamanian. 2004. Name tagging with
word clusters and discriminative training.
In Proceedings of the Annual Meeting of the
North American Chapter of the Association of
Computational Linguistics (HLT-NAACL),
pages 337–342, Boston, MA.

Mnih, Andriy and Geoffrey Hinton. 2007.
Three new graphical models for statistical
language modelling. In Proceedings of
the 24th International Conference on
Machine Learning, pages 641–648,
Corvallis, OR.

Mnih, Andriy and Geoffrey Hinton. 2009.
A scalable hierarchical distributed
language model. In Proceedings of the
Neural Information Processing Systems
(NIPS), pages 1,081–1,088, Vancouver.

Mnih, Andriy, Zhang Yuecheng, and
Geoffrey Hinton. 2009. Improving a
statistical language model through
non-linear prediction. Neurocomputing,
72(7-9):1414–1418.

Morin, Frederic and Yoshua Bengio. 2005.
Hierarchical probabilistic neural network
language model. In Proceedings of the
International Workshop on Artificial
Intelligence and Statistics, pages 246–252,
Barbados.

Pantel, Patrick, Eric Crestan, Arkady
Borkovsky, Ana-Maria Popescu,
and Vishnu Vyas. 2009. Web-scale
distributional similarity and entity set
expansion. In Proceedings of the EMNLP,
pages 938–947, Singapore.

118

Huang et al. Computational Linguistics

PennBioIE. 2005. Mining the bibliome
project. http://bioie.ldc.upenn.edu/.

Pereira, Fernando, Naftali Tishby, and
Lillian Lee. 1993. Distributional clustering
of English words. In Proceedings of the
Annual Meeting of the Association for
Computational Linguistics (ACL),
pages 183–190, Columbus, OH.

Pradhan, Sameer, Wayne Ward, and James H.
Martin. 2007. Towards robust semantic role
labeling. In Proceedings of NAACL-HLT,
pages 556–563, Rochester, NY.

Rabiner, Lawrence R. 1989. A tutorial on
hidden Markov models and selected
applications in speech recognition.
Proceedings of the IEEE, 77(2):257–285.

Raina, Rajat, Alexis Battle, Honglak Lee,
Benjamin Packer, and Andrew Y. Ng.
2007. Self-taught learning: Transfer
learning from unlabeled data.
In Proceedings of the 24th International
Conference on Machine Learning,
pages 759–766, Corvallis, OR.

Ratinov, Lev and Dan Roth. 2009. Design
challenges and misconceptions in named
entity recognition. In Proceedings of the
Conference on Natural Language Learning
(CoNLL), pages 147–155, Boulder, CO.

Ritter, H. and T. Kohonen. 1989.
Self-organizing semantic maps.
Biological Cybernetics, 61(4):241–254.

Sag, Ivan A., Thomas Wasow, and Emily M.
Bender. 2003. Synactic Theory: A Formal
Introduction. CSLI Publications, Stanford,
CA, second edition.

Sahlgren, Magnus. 2001. Vector-based
semantic analysis: Representing word
meanings based on random labels.
In Proceedings of the Semantic Knowledge
Acquisition and Categorization Workshop,
pages 1–12, Helsinki.

Sahlgren, Magnus. 2005. An introduction
to random indexing. In Methods and
Applications of Semantic Indexing Workshop
at the 7th International Conference on
Terminology and Knowledge Engineering
(TKE), 87:1–9.

Sahlgren, Magnus. 2006. The word-space
model: Using distributional analysis to
represent syntagmatic and paradigmatic
relations between words in high-dimensional
vector spaces. Ph.D. thesis, Stockholm
University.

Salton, Gerard and Michael J. McGill. 1983.
Introduction to Modern Information Retrieval.
McGraw-Hill.

Satpal, Sandeep and Sunita Sarawagi.
2007. Domain adaptation of conditional
probability models via feature subsetting.

In Proceedings of ECML/PKDD,
pages 224–235, Warsaw.

Sekine, Satoshi. 1997. The domain
dependence of parsing. In Proceedings of
Applied Natural Language Processing
(ANLP), pages 96–102, Washington, DC.

Shen, Libin, Giorgio Satta, and Aravind K.
Joshi. 2007. Guided learning for
bidirectional sequence classification.
In Proceedings of the ACL, pages 760–767,
Prague.

Smith, Noah A. and Jason Eisner. 2005.
Contrastive estimation: Training
log-linear models on unlabeled data.
In Proceedings of the 43rd Annual Meeting
of the Association for Computational
Linguistics (ACL), pages 354–362,
Ann Arbor, MI.

Sutton, Charles, Andrew McCallum, and
Khashayar Rohanimanesh. 2007. Dynamic
conditional random fields: Factorized
probabilistic models for labeling and
segmenting sequence data. Journal of
Machine Learning Research, 8:693–723.

Suzuki, Jun and Hideki Isozaki. 2008.
Semi-supervised sequential labeling and
segmentation using giga-word scale
unlabeled data. In Proceedings of the
Annual Meeting of the Association for
Computational Linguistics (ACL-HLT),
pages 665–673, Columbus, OH.

Suzuki, Jun, Hideki Isozaki, Xavier Carreras,
and Michael Collins. 2009. An empirical
study of semi-supervised structured
conditional models for dependency
parsing. In Proceedings of the EMNLP,
pages 551–560, Singapore.

Tao, Hongyin and Richard Xiao. 2007.
The UCLA Chinese corpus. UCREL.
www.lancaster.ac.uk/fass/projects/
corpus/UCLA/.

Tjong, Erik F., Kim Sang, and Sabine
Buchholz. 2000. Introduction to the
CoNLL-2000 shared task: Chunking.
In Proceedings of the 4th Conference
on Computational Natural Language
Learning, pages 127–132, Lisbon.

Toutanova, Kristina and Mark Johnson.
2007. A Bayesian LDA-based model for
semi-supervised part-of-speech
tagging. In Proceedings of the NIPS,
pages 1,521–1,528, Vancouver.

Tseng, Huihsin, Daniel Jurafsky, and
Christopher Manning. 2005.
Morphological features help POS
tagging of unknown words across
language varieties. In Proceedings
of the Fourth SIGHAN Workshop,
pages 32–39, Jeju Island.

119

Computational Linguistics Volume 40, Number 1

Turian, Joseph, James Bergstra, and
Yoshua Bengio. 2009. Quadratic
features and deep architectures for
chunking. In Proceedings of the North
American Chapter of the Association for
Computational Linguistics - Human
Language Technologies (NAACL HLT),
pages 245–248, Boulder, CO.

Turian, Joseph, Lev Ratinov, and Yoshua
Bengio. 2010. Word representations:
A simple and general method for
semi-supervised learning. In Proceedings
of the Annual Meeting of the Association
for Computational Linguistics (ACL),
pages 384–394, Uppsala.

Turney, Peter D. and Patrick Pantel. 2010.
From frequency to meaning: Vector
space models of semantics. Journal of
Artificial Intelligence Research, 37:141–188.

Ushioda, Akira. 1996. Hierarchical clustering
of words. In Proceedings of the International
Conference on Computational Linguistics
(COLING), pages 1,159–1,162, Copenhagen.

Väyrynen, Jaakko and Timo Honkela. 2004.
Word category maps based on emergent
features created by ICA. In Proceedings of
the STePs 2004 Cognition + Cybernetics
Symposium, pages 173–185, Tikkurila.

Väyrynen, Jaakko and Timo Honkela. 2005.
Comparison of independent component
analysis and singular value decomposition

in word context analysis. In Proceedings
of the International and Interdisciplinary
Conference on Adaptive Knowledge
Representation and Reasoning (AKRR),
pages 135–140, Espoo.

Väyrynen, Jaakko, Timo Honkela, and
Lasse Lindqvist. 2007. Towards explicit
semantic features using independent
component analysis. In Proceedings of the
Workshop Semantic Content Acquisition
and Representation (SCAR), pages 20–27,
Stockholm.

Weston, Jason, Frederic Ratle, and
Ronan Collobert. 2008. Deep learning
via semi-supervised embedding.
In Proceedings of the 25th International
Conference on Machine Learning,
pages 1,168–1,175, Helsinki.

Yang, Yi, Alexander Yates, and Doug
Downey. 2013. Overcoming the memory
bottleneck in distributed training
of latent variable models of text.
In Proceedings of the NAACL-HLT,
pages 579–584, Atlanta, GA.

Zhao, Hai, Wenliang Chen, Chunyu Kit,
and Guodong Zhou. 2009. Multilingual
dependency learning: A huge feature
engineering method to semantic
dependency parsing. In Proceedings of the
CoNLL 2009 Shared Task, pages 55–60,
Boulder, CO.

120

