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ABSTRACT 
In the past year at Carnegie Mellon steady progress has been made 
in the area of acoustic and language modeling. The result has been  

a dramatic reduction in speech recognition errors in the SPHINX-II 
system. In this paper, we review SPHINX-I/and summarize our re- 

cent  efforts on improved speech recognition. Recently SPHINX-I/ 
achieved the lowest error rate in the November 1992 DARPA eval- 
uations. For 5000-word, speaker-independent, continuous, speech 
recognition, the error rate was reduced to 5%. 

1. ~TRODUCTION 

At Carnegie Mellon, we have made significant progress 
in large-vocabulary speaker-independent continuous speech 
recognition during the past years [16, 15, 3, 18, 14]. In com- 
parison with the SPHINX system [23], SPHINX-II offers not 
only significantly fewer recognition errors but also the capa- 
bility to handle a much larger vocabulary size. For 5,000-word 
speaker-independent speech recognition, the recognition error 
rate has been reduced to 5%. This system achieved the lowest 
error rate among all of the systems tested in the November 
1992 DARPA evaluations, where the testing set has 330 utter- 
ances collected from 8 new speakers. Currently we are refin- 
ing and extending these and related technologies to develop 
practical unlimited-vocabulary dictation systems, and spoken 
language systems for general application domains with larger 
vocabularies and reduced linguistic constraints. 

One of the most important contributions to our systems de- 
velopment has been the availability of large amounts of train- 
ing data. In our current system, we used about 7200 utter- 
ances of read Wall Street Journal (WSJ) text, collected from 
84 speakers (half male and half female speakers) for acous- 
tic model training; and 45-million words of text published 
by the WSJ for language model training. In general, more 
data requires different models so that more detailed acoustic- 
phonetic phenomena can be well characterized. Towards 
this end, our recent progress can be broadly classified into 
feature extraction, detailed representation through parameter 
sharing, search, and language modeling. Our specific contri- 
butions in SPHINX-II include normalized feature represen- 
tations, multiple-codebook semi-continuous hidden Markov 
models, between-word senones, multi-pass search algorithms, 
long-distance language models, and unified acoustic and lan- 

guage representations. The SPHINX-II system block diagram 
is illustrated in Figure 1, where feature codebooks, dictionary, 
senones, and language models are iteratively reestimated with 
the semi-continuous hidden Markov model (SCHMM), albeit 
not all of them are jointly optimized for the WSJ task at 
present. In this paper, we will characterize our contributions 
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Figure 1: Sphinx-II System Diagram 

by percent error rate reduction. Most of these experiments 
were performed on a development test set for the 5000-word 
WSJ task. This set consists of 410 utterances from 10 new 
speakers. 

2. FEATURE EXTRACTION 
The extraction of reliable features is one of the most impor- 
tant issues in speech recognition and as a result the training 
data plays a key role in this research. However the curse of 
dimensionality reminds us that the amount of training data 
will always be limited. Therefore incorporation of additional 
features may not lead to any measurable error reduction. This 
does not necessarily mean that the additional features are 
poor ones, but rather that we may have insufficient data to 
reliably model those features. Many systems that incorporate 
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environmentally-robust [1] and speaker-robust [11] models 
face similar constraints. 

2.1.  M F C C  D y n a m i c  Features 

Temporal changes in the spectra are believed to play an im- 
portant role in human perception. One way to capture this in- 
formation is to use delta coefficients that measure the change 
in coefficients over time. Temporal information is particu- 
larly suitable for HMMs, since HMMs assume each frame is 
independent of the past, and these dynamic features broaden 
the scope of a frame. In the past, the SPHINX system has 
utilized three codebooks containing [23]: (1) 12 LPC cep- 
strum coefficients x~(k), 1 < =  k < =  12; (2) 12 differenced 
LPC cepstrum coefficients (40 msec. difference) Axt(k) ,  
1 < =  k < =  12; (3) Power and differenced power (40 msec.) 
zt(0) and Azt(0) .  Since we are using a multiple-codebook 
hidden Markov model, it is easy to incorporate new features 
by using an additional codebook. We experimented with a 
number of new measures of spectral dynamics, including: 
(1) second order differential cepstrum and power (AAzt(k) ,  
1 < =  k < =  12, and AAzt (0) )  and third order differential 
cepstrum and power. The first set of coefficients is incor- 
porated into a new codebook, whose parameters are second 
order differences of the cepstrum. The second order differ- 
ence for frame t, AAx~(k),  where t is in units of 10ms, 
is the difference between t + 1 and t - 1 first order differ- 
ential coefficients, or AAz~(k)  = AX~_l(k) - Ax~+l(k). 
Next, we incorporated both 40 msec. and 80 msec. dif- 
ferences, which represent short-term and long-term spectral 
dynamics, respectively. The 80 msec. differenced cepstrum 
Az ' t (k )  is computed as: Az'~(k) = z~_4(k) - xt+4(k). 
We believe that these two sources of information are more 
complementary than redundant. We incorporated both Az t  
and Aztt  into one codebook (combining the two into one 
feature vector), weighted by their variances. We attempted 
to compute optimal linear combination of cepstral segment, 
where weights are computed from linear discriminants. But 
we found that performance deteriorated slightly. This may 
be due to limited training data or there may be little informa- 
tion beyond second-order differences. Finally, we compared 
mel-frequency cepstral coefficients (MFCC) with our bilinear 
transformed LPC cepstral coefficients. Here we observed a 
significant improvement for the SCHMM model, but noth- 
ing for the discrete model. This supported our early findings 
about problems with modeling assumptions [15]. Thus, the fi- 
nal configuration involves 51 features distributed among four 
codebooks, each with 256 entries. The codebooks are: (1) 12 
mel-scale cepstrum coefficients; (2) 12 40-msec differenced 
MFCC and 12 80-msec differenced MFCC; (3) 12 second- 
order differenced MFCC; and (4) power, 40-msec differenced 
power, second-order differenced power. The new feature set 
reduced errors by more than 25% over the baseline SPHINX 
results on the WSJ task. 

3. D E T A I L E D  M O D E L I N G  T H R O U G H  

P A R A M E T E R  S H A R I N G  

We need to model a wide range of acoustic-phonetic phenom- 
ena, but this requires a large amount of training data. Since 
the amount of available training data will always be finite one 
of the central issues becomes that of how to achieve the most 
detailed modeling possible by means of parameter sharing. 
Our successful examples include SCHMMs and senones. 

3.1. Semi-Continuous HMMs 

The semi-continuous hidden Markov model (SCHMM) [12] 
has provided us with an an excellent tool for achieving detailed 
modeling through parameter sharing. Intuitively, from the 
continuous mixture HMM point of view, SCHMMs employ a 
shared mixture of continuous output probability densities for 
each individual HMM. Shared mixtures substantially reduce 
the number of free parameters and computational complex- 
ity in comparison with the continuous mixture HMM, while 
maintaining, reasonably, its modeling power. From the dis- 
crete HMM point of view, SCHMMs integrate quantization 
accuracy into the HMM, and robustly estimate the discrete 
output probabilities by considering multiple codeword can- 
didates in the VQ procedure. It mutually optimizes the VQ 
codebook and HMM parameters under a unified probabilistic 
framework [13], where each VQ codeword is regarded as a 
continuous probability density function. 

For the SCHMM, an appropriate acoustic representation for 
the diagonal Gaussian density function is crucial to the recog- 
nition accuracy [13]. We first performed exploratory semi- 
continuous experiments on our three-codebook system. The 
SCHMM was extended to accommodate a multiple feature 
front-end [13]. All codebook means and covariance matrices 
were reestimated together with the HMM parameters except 
the power covariance matrices, which were fixed. When three 
codebooks were used, the diagonal SCHMM reduced the er- 
ror rate of the discrete HMM by 10-15% for the RM task [16]. 
When we used our improved 4-codebook MFCC front-end, 
the error rate reduction is more than 20% over the discrete 
HMM. 

Another advantage of using the SCHMM is that it requires less 
training data in comparison with the discrete HMM. There- 
fore, given the current limitations on the size of the training 
data set, more detailed models can be employed to improve 
the recognition accuracy. One way to increase the number 
of parameters is to use speaker-clustered models. Due to the 
smoothing abilities of the SCHMM, we were able to train 
multiple sets of models for different speakers. We investi- 
gated automatic speaker clustering as well as explicit male, 
female, and generic models. By using sex dependent models 
with the SCHMM, the error rate is further reduced by 10% on 
the WSJ task. 
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3.2. Senones 

To share parameters among different word models, context- 
dependent subword models have been used successfully in 
many state-of-the-art speech recognition systems [26, 21, 17]. 
The principle of parameter sharing can also be extended to 
subphonetic models [19, 18]. We treat the state in pho- 
netic hidden Markov models as the basic subphonetic unit 

senone. Senones are constructed by clustering the state- 
dependent output distributions across different phonetic mod- 
els. The total number of senones can be determined by clus- 
tering all the triphone HMM states as the shared-distribution 
models [18]. States of different phonetic models may thus 
be tied to the same senone if they are close according to 
the distance measure. Under the senonic modeling frame- 
work, we could also use a senonic decision tree to predict un- 
seen triphones. This is particularly important for vocabulary- 
inc~pendence [10], as we need to find subword models which 
are detailed, consistent, trainable and especially generalizable. 
Recently we have developed a new senonic decision-tree to 
predict the subword units not covered in the training set [18]. 
The decision tree classifies senones by asking questions in a 
hierarchical manner [7]. These questions were first created 
using speech knowledge from human experts. The tree was 
automatically constructed by searching for simple as well as 
composite questions. Finally, the tree was pruned using cross 
validation. When the algorithm terminated, the leaf nodes 
of the tree represented the senones to be used. For the WSJ 
task, our overall senone models gave us 35% error reduction 
in comparison with the baseline SPHINX results. 

The advantages of senones include not only better param- 
eter sharing but also improved pronunciation optimization. 
Clustering at the granularity of the state rather than the entire 
model (like generalized triphones [21]) can keep the dissimi- 
lar states of two models apart while the other corresponding 
states are merged, and thus lead to  better parameter shar- 
ing. In addition, senones give us the freedom to use a larger 
number of states for each phonetic model to provide more 
detailed modeling. Although an increase in the number of 
states will increase the total number of free parameters, with 
senone sharing redundant states can be clustered while others 
are uniquely maintained. 

Pronunciation Optimization. Here we use the forward- 
backward algorithm to iteratively optimize a senone sequence 
appropriate for modeling multiple utterances of a word. To 
explore the idea, given the multiple examples, we train a word 
HMM whose number of states is proportional to the average 
duration. When the Baum-Welch reestimation reaches its 
optimum, each estimated state is quantized with the senone 
codebook. The closest one is used to label the states of the 
word HMM. This sequence of senones becomes the senonic 
baseform of the word. Here arbitrary sequences ofsenones are 
allowed to provide the flexibility for the automatically learned 

pronunciation. When the senone sequence of every word is 
determined, the parameters (senones) may be re-trained. Al- 
though each word model generally has more states than the 
traditional phoneme-concatenated word model, the number 
of parameters remains the same since the size of the senone 
codebook is unchanged. When senones were used for pronun- 
ciation optimization in a preliminary experiment, we achieved 
10-15% error reduction in a speaker-independent continuous 
spelling task [ 19]. 

4. M U L T I - P A S S  S E A R C H  

Recent work on search algorithms for continuous speech 
recognition has focused on the problems related to large vo- 
cabularies, long distance language models and detailed acous- 
tic modeling. A variety of approaches based on Viterbi beam 
search [28, 24] or stack decoding [5] form the basis for most 
of this work. In comparison with stack decoding, Viterbi 
beam search is more efficient but less optimal in the sense 
of MAR For stack decoding, a fast-match is necessary to re- 
duce a prohibitively large search space. A reliable fast-match 
should make full use of detailed acoustic and language mod- 
els to avoid the introduction of possibly unrecoverable errors. 
Recently, several systems have been proposed that use Viterbi 
beam search as a fast-match [27, 29], for stack decoding or the 
N-best paradigm [25]. In these systems, N-best hypotheses 
are produced with very simple acoustic and language models. 
A multi-pass rescoring is subsequently applied to these hy- 
potheses to produce the final recognition output. One problem 
in this paradigm is that decisions made by the initial phase 
are based on simplified models. This results in errors that 
the N-best hypothesis list cannot recover. Another problem 
is that the rescoring procedure could be very expensive per 
se as many hypotheses may have to be rescored. The chal- 
lenge here is to design a search that makes the appropriate 
compromises among memory bandwidth, memory size, and 
computational power [3]. 

To meet this challenge we incrementally apply all available 
acoustic and linguistic information in three search phases. 
Phase one is a left to right Viterbi Beam search which produces 
word end times and scores using right context between-word 
models with a bigram language model. Phase two, guided 
by the results from phase one, is a right to left Viterbi Beam 
search which produces word beginning times and scores based 
on left context between-word models. Phase three is an A* 
search which combines the results of phases one and two with 
a long distance language model. 

4.1. Modified A* Stack Search 

Each theory, th, on the stack consists of five entries. A partial 
theory, th.pt, a one word extension th.w, a time th.t which 
denotes the boundary between th.pt and th.w, and two scores 
th.g, which is the score for th.pt up to time th.t and th.h which 
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is the best score for the remaining portion of the input starting 
with ti~.w at time th.t+l through to the end. Unique theories 
are detlermined by th.pt and th.w. The algorithm proceeds as 
follows. 

l. Add initial states to the stack. 

2. According to the evaluation function th.g+ th.h, remove 
the best theory, th, from the stack. 

3. I f th  accounts for the entire input then output the sentence 
corresponding to th. Halt if this is the Nth utterance 
output. 

4. For the word th.w consider all possible end times, t as 
provided by the left/right lattice. 

(a) For all words, w, beginning at time t + 1 as provided 
by the right/left lattice 

i. Extend theory th with w. Designate this 
theory as th'. Set th'.pt = th.pt + th.w, 
th' .w ::= w and th'.t = t. 

ii. Compute scores 
th'.g = th.g + w_score(w, th.t + 1,t), and 
th'.h. See following for definition of w_score 
and thqh computation. 

iii. If  th' is already on the stack then choose the 
best instance of th' otherwise push th' onto 
the stack. 

5. Goto step 2. 

4.2. Discussion 

When tit is extended we are considering all possible end times 
t for th.w and all possible extensions w. When extending th 
with w to obtain th' we are only interested in the value for 
th'.t which gives the best value for th'.h + th'.g. For any t 
and w, th'.h is easily determined via table lookup from the 
right/left lattice. Furthermore the value of th'.g is given by 
th.g + w_score (w, th.t+l, t). The function w_score(w,b,e) 
computes the score for the word w with begin time b and end 
time e. 

Our objective is to maximize the recognition accuracy with 
a minimal increase in computational complexity. With 
our decomposed, incremental, semi-between-word-triphones 
search, we observed that early use of detailed acoustic mod- 
els can significantly reduce the recognition error rate with 
a negligible increase computational complexity as shown in 
Figure 2. 

By incrementally applying knowledge we have been able to 
decompose the search so that we can efficiently apply de- 
tailed acoustic or linguistic knowledge in each phase. Further 
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Figure 2: Comparison between early and late use of knowl- 
edge. 

more, each phase defers decisions that are better made by a 
subsequent phase that will apply the appropriate acoustic or 
linguistic information. 

5. UNIFIED STOCHASTIC ENGINE 
Acoustic and language models are usually constructed sepa- 
rately, where language models are derived from a large text 
corpus without consideration for acoustic data, and acoustic 
models are constructed from the acoustic data without ex- 
ploiting the existing text corpus used for language training. 
We recently have developed a unified stochastic engine (USE) 
that jointly optimizes both acoustic and language models. As 
the true probability distribution of both the acoustic and lan- 
guage models can not be accurately estimated, they can not be 
considered as real probabilities but scores from two different 
sources. Since they are scores instead of probabilities, the 
straightforward implementation of the Bayes equation will 
generally not lead to a satisfactory recognition performance. 
To integrate language and acoustic probabilities for decoding, 
we are forced to weight acoustic and language probabilities 
with a so called language weight [6]. The constant language 
weight is usually tuned to balance the acoustic probabilities 
and the language probabilities such that the recognition error 
rate can be minimized. Most HMM-based speech recognition 
systems have one single constant language weight that is in- 
dependent of any specific acoustic or language information, 
and that is determined using a hill-climbing procedure on de- 
velopment data. It is often necessary to make many runs with 
different language weights on the development data in order 
to determine the best value. 

In the unified stochastic engine (USE), not only can we iter- 
atively adjust language probabilities to fit our given acous- 
tic representations but also acoustic models. Our multi-pass 
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search algorithm generates N-best hypotheses which are used 
to optimize language weights or implement many discrimina- 
tive training methods, where recognition errors can be used 
as the objective function [20, 25]. With the progress of new 
database construction such as DARPA's CSR Phase II, we be- 
lieve acoustically-driven language modeling will eventually 
provide us with dramatic performance improvements. 

In the N-best hypothesis list, we can assume that the correct 
hypothesis is always in the list (we can insert the correct 
answer if it is not there). Let hypothesis be a sequence of 
words wl, w2, ...w~ with corresponding language and acoustic 
probabilities. We denote the correct word sequence as 0, and 
all the incorrect sentence hypotheses as 0. We can assign a 
variable weight to each of the n-gram probabilities such that 
we have a weighted language probability as: 

W ( W )  = r r , _ , _  ,_ _ ,~ , (x , , , , , ,w,_ , , . . . )  llr,tw~lw~-rw~-2...) (1) 
i 

where the weight c~ 0 is a function of acoustic data, Xi, for 
wi, and words wi, Wi-l,  .... For a given sentence k, a very 
general objective function can be defined as 

Lk(A) = E P r ( 0 ) l - - ~ [ l ° g P r ( ' V ' l w i  ) + 
i~o 

+a( Xi, wi wi_ l...)logPr(wi Iwi_ l wi-2...)] + 

+ ~[ logPr( ,Vdw, )  + 

+ a ( . V i ,  w i w i _ l . . . ) l o g P r ( w i l w i _ l . . . ) ] } .  (2) 

where A denotes acoustic and language model parameters as 
well as language weights, Pr(O) denotes the a priori proba- 
bility of the incorrect path 0, and Pr (Xi  ]wi) denotes acoustic 
probability generated by word model w~. It is obvious that 
when Lk (A) > 0 we have a sentence classification error. Min- 
imization of Equation 2 will lead to minimization of sentence 
recognition error rate. To jointly optimize the whole train- 
ing set, we first define a nondecreasing, differentiable cost 
function Ik (A) (we use the sigmoid function here) in the same 
manner as the adaptive probabilistic decent method [4, 20]. 
There exist many possible gradient decent procedures for the 
proposed problems. 

The term o~(,¥i,wiwi_l...)logPr(wilwi_l...) could be 
merged as one item in Equation 2. Thus we can have lan- 
guage probabilities directly estimated from the acoustic train- 
ing data. The proposed approach is fundamentally different 
from traditional stochastic language modeling. Firstly, con- 
ventional language modeling uses a text corpus only. Any 
acoustical confusable words will not be reflected in language 
probabilities. Secondly, maximum likelihood estimation is 
usually used, which is only loosely related to minimum sen- 
tence error. The reason for us to keep a 0 separate from the 
language probability is that we may not have sufficient acous- 
tic data to estimate the language parameters at present. Thus, 

we are forced to have a 0  shared across different words so we 
may have n-gram-dependent, word-dependent or even word- 
count-dependent language weights. We can use the gradient 
decent method to optimize all of the parameters in the USE. 
When we jointly optimize L(A), we not only obtain our uni- 
fied acoustic models but also the unified language models. A 
preliminary experiment reduced error rate by 5% on the WSJ 
task [14]. We will extend the USE paradigm for joint acoustic 
and language model optimization. We believe that t_he USE 
can further reduce the error rate with an increased amount of 
training data. 

6. LANGUAGE MODELING 
Language Modeling is used in Sphinx-II at two different 
points. First, it is used to guide the beam search. For that 
purpose we used a conventional backoff bigram for that pur- 
pose. Secondly, it is used to recalculate linguistic scores for 
the top N hypotheses, as part of the N-best paradigm. We 
concentrated most of our language modeling effort on the 
latter. 

Several variants of the conventional backoff trigram language 
model were applied at the reordering stage of the N-best 
paradigm. (Eventually we plan to incorporate this language 
model into the A* phase of the multi-pass search with the 
USE). The best result, a 22% word error rate reduction, was 
achieved with the simple, non-interpolated "backward" tri- 
gram, with the conventional forward trigram finishing a close 
second. 

7. S U M M A R Y  

Our contributions in SPHINX-II include improved feature 
representations, multiple-codebook semi-continuous hidden 
Markov models, between-word senones, multi-pass search 
algorithms, and unified acoustic and language modeling. The 
key to our success is our data-driven unified optimization ap- 
proach. This paper characterized our contributionsby percent 
error rate reduction on the 5000-word WSJ task, for which we 
reduced the word error rate from 20% to 5% in the past year 
[2]. 

Although we have made dramatic progress there remains a 
large gap between commercial applications and laboratory 
systems. One problem is the large number of out of vocabu- 
lary (OOV) words in real dictation applications. Even for a 
20000-word dictation system, on average more than 25% of 
the utterances in a test set contain OOV words. Even if we 
exclude those utterance containing OOV words, the error rate 
is still more than 9% for the 20000-word task due to the lim- 
itations of current technology. Other problems are illustrated 
by the November 1992 DARPA stress test evaluation, where 
testing data comprises both spontaneous speech with many 
OOV words but also speech recorded using several different 
microphones. Even though we augmented our system with 
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more than 20,000 utterances in the training set and a noise 
normalization component [1], our augmented system only re- 
duced the error rate of our 20000-word baseline result from 
12.8% to 12.4%, and the error rate for the stress test was even 
worse 'when compared with the baseline (18.0% vs. 12.4%). 
To sunmaarize, our current word error rates under different 
testing conditions are listed in Table 1. We can see from this 

Systems Vocabulary Test Set Error Rate 
Baseline 5000 330 utt. 5.3% 
Baseline 20000 333 utt. 12.4% 

Stress Test 20000 320 utt. 18.0% 

Table 1: Performance of SPHINX-II in real applications. 

table that improved modeling technology is still needed to 
make speech recognition a reality. 
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