
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 79–85,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Instances and Concepts in Distributional Space

Gemma Boleda
Universitat Pompeu Fabra

Barcelona, Spain
gemma.boleda@upf.edu

Abhijeet Gupta and Sebastian Padó
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Abstract

Instances (“Mozart”) are ontologically dis-
tinct from concepts or classes (“com-
poser”). Natural language encompasses
both, but instances have received compar-
atively little attention in distributional se-
mantics. Our results show that instances
and concepts differ in their distributional
properties. We also establish that instanti-
ation detection (“Mozart – composer”) is
generally easier than hypernymy detection
(“chemist – scientist”), and that results on
the influence of input representation do not
transfer from hyponymy to instantiation.

1 Introduction

Distributional semantics (Turney and Pantel, 2010),
and data-driven, continuous approaches to lan-
guage in general including neural networks (Ben-
gio et al., 2003), are a success story in both Compu-
tational Linguistics and Cognitive Science in terms
of modeling conceptual knowledge, such as the
fact that cats are animals (Baroni et al., 2012), sim-
ilar to dogs (Landauer and Dumais, 1997), and
shed fur (Erk et al., 2010). However, distribu-
tional representations are notoriously bad at han-
dling discrete knowledge (Fodor and Lepore, 1999;
Smolensky, 1990), such as information about spe-
cific instances. For example, Beltagy et al. (2016)
had to revert from a distributional to a symbolic
knowledge source in an entailment task because
the distributional component licensed unwarranted
inferences (white man does not entail black man,
even though the phrases are distributionally very
similar). This partially explains that instances have
received much less attention than concepts in dis-
tributional semantics.

This paper addresses this gap and shows that
distributional models can reproduce the age-old

ontological distinction between instances and con-
cepts. Our work is exploratory: We seek in-
sights into how distributional representations mir-
ror the instance/concept distinction and the hyper-
nymy/instantiation relations.

Our contributions are as follows. First, we build
publicly available datasets for instantiation and hy-
pernymy (Section 2).1 Second, we carry out a
contrastive analysis of instances and concepts, find-
ing substantial differences in their distributional
behavior (Section 3). Finally, in Section 4, we com-
pare supervised models for instantiation detection
(Lincoln – president) with such models for hyper-
nymy detection (19th century president – presi-
dent). Identifying instantiation turns out to be eas-
ier than identifying hypernymy in our experiments.

2 Datasets

We focus on “public” named entities such as Abra-
ham Lincoln or Vancouver, as opposed to “private”
named entities like my neighbor Michael Smith or
unnamed entities like the bird I saw today), because
for public entities we can extract distributional rep-
resentations directly from corpus data.2

No existing dataset treats entities and concepts
on a par, which would enable a contrastive analysis
of instances and concepts. Therefore, we create
the data for our study, building two comparable
datasets around the binary semantic relations of
instantiation and hypernymy (see Table 2). This
design enables us to relate our results to work on
hypernymy (see Section 5), and provides a rich re-
lational perspective on the instance–concept divide:
In both cases, we are dealing with the relationship

1Available from http://www.ims.uni-stuttgart.
de/data/Instantiation.html.

2Note that, for feasibility reasons, our distributional repre-
sentations are made up of explicit mentions of proper nouns
(Abraham Lincoln, Lincoln), without taking into account other
referential expressions (he, the 16th president of the United
States, the president). We leave these to future work.
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INSTANCE HYPERNYM

Total 28,424 30,488
Positive 7,106 7,622
Unique inst./hypo. 5,847 7,622
Unique conc./hyper. 540 2,369

Table 1: Dataset statistics. Total number of data-
points, Positive cases, unique instances/hyponyms
and unique concepts/hypernyms.

INSTANCE HYPERNYM

Positive Mozart – composer chemist – scientist

NOTINST/ Mozart – garden chemist –
NOTHYP communication

INVERSE composer – Mozart scientist – chemist

I2I/C2C Mozart – O. Robertson chemist – diadem

Table 2: Positive examples and confounders.

between a more general (concept/hypernym) and a
more specific object (instance/hyponym), but, from
an ontological perspective, hyponym concepts, as
classes of individuals, are considered to be com-
pletely different from instances, both in theoretical
linguistics and in AI (Dowty et al., 1981; Lenat and
Guha, 1990; Fellbaum, 1998).

We construct both datasets from the WordNet
noun hierarchy. Its backbone is formed by hy-
ponymy (Fellbaum, 1998) and it was later ex-
tended with instance-concept links marked with the
Hypernym Instance relation (Miller and Hris-
tea, 2006). We sample the items from WordNet
that are included in the space we will use in the
experiments, namely, the word2vec entity vector
space, which is, to our knowledge, the largest ex-
isting source for entity vectors.3 The space was
trained on Google News, and contains vectors for
nodes in FreeBase which covers millions of entities
and thousands of concepts. This enables us to per-
form comparative analyses, as we sample instances
and concepts from a common resource, and that we
have compatible vector representations for both.

INSTANCE. This dataset contains around 30K
datapoints for instantiation (see Table 1 for statis-
tics and Table 2 for examples).4 It contains 7K
positive cases (e.g., Vancouver-city), namely all
pairs of instances and their concepts from Word-
Net that are covered by the word2vec entity vector

3https://code.google.com/p/word2vec
4Each instance can belong to multiple concepts

(Vancouver-city and Vancouver-port), and different in-
stances/hyponyms can belong to the same concept/hypernym.

Global sim. Local sim.

Instances 0.045 (0.02) 0.528 (0.16)
Concepts 0.037 (0.02) 0.390 (0.12)

Instance-Concept 0.021 (0.01) 0.379 (0.12)

Table 3: Cosine similarities for within-type and
across-type pairs (means and standard deviations).

space. For each positive example, we create three
confounders, or negative examples, as follows:

1. The NOTINST subset pairs the instance with
a wrong concept, to ensure that we do not
only spot instances vs. concepts in general,
but truly detect the instantiation relationship.

2. The INVERSE subset switches instance and
concept, to check that we are capturing the
asymmetry in the relationship.

3. The I2I (instance-to-instance) subset pairs the
instance with a random instance from another
concept, a sanity check to ensure that we are
not thrown off by the high similarity among
instances (see Section 3).

HYPERNYMY. This dataset contains hypernymy
examples which are as similar to the INSTANCE

dataset as possible. The set of potential hyponyms
are obtained from the intersection between the
nouns in the word2vec entity space and WordNet,
excluding instances. Each of the nouns that has a di-
rect WordNet hypernym as well as a co-hyponym is
combined with the direct hypernym into a positive
example. The confounders are then built in parallel
to those for INSTANCE. Note that in this case the
equivalent of NOTINST is actually not-hypernym
(hence NOTHYP in the results discussion), and the
equivalent of I2I is concept-to-concept (C2C).5

3 Instances and Concepts

We first explore the differences between instances
and concepts by comparing the distribution of sim-
ilarities of their word2vec vectors (cf. previous
section). We use both a global measure of simi-
larity (average cosine to all other members of the
respective set), and a local measure (cosine to the
nearest neighbor). The results, shown in Table 3,
indicate that instances exhibit substantially higher
similarities than concepts, both at the global and at

5This does not reduce to co-hyponymy, because the hy-
ponym is randomly paired with another hyponym.
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the local level.6 The difference holds even though
we consider more unique concepts than instances
(Table 1), and might thus expect the concepts to
show higher similarities, at least at the local level.
The global similarity of instances and concepts is
the lowest (see last row in Table 3), suggesting that
instances and concepts are represented distinctly
in the space, even when they come from the same
domain (here, newswire).

Taken together, these observations indicate that
instances are semantically more coherent than con-
cepts, at least in our space. We believe a crucial
reason for this is that instances share the same speci-
ficity, referring to one entity, while concepts are of
widely varying specificity and size (compare pres-
ident of the United States with artifact). Further
work is required to probe this hypothesis.

It is well established in lexical semantics that
cosine similarity does not distinguish between hy-
pernymy and other lexical relations, and in fact
hyponyms and hypernyms are usually less simi-
lar than co-hyponyms like cat–dog or antonyms
like good–bad (Baroni and Lenci, 2011). This
result extends to instantiation: The average simi-
larity of each instance to its concept is 0.110 (stan-
dard deviation: 0.12), very low compared to the
figures in Table 3. The nearest neighbors of in-
stances show a wide range of relations similar to
those of concepts, further enriched by the instance-
concept axis: Tyre – Syria (location), Thames river
– estuary (“co-hyponym class”), Luciano Pavarotti
– soprano (“contrastive class”), Joseph Goebels –
bolshevik (“antonym class”), and occasionally true
instantiation cases like Sidney Poitier – actor.

4 Modeling Instantiation vs. Hypernymy

The analysis in the previous section suggests
clearly that unsupervised methods are not adequate
for instantiation, so we turn to supervised methods,
which have also been used for hypernymy detec-
tion (Baroni et al., 2012; Roller et al., 2014). Also
note that unsupervised asymmetric measures pre-
viously used for hypernymy (Lenci and Benotto,
2012; Santus et al., 2014) are only applicable to
non-negative vector spaces, which excludes predic-
tive models like the one we use.

We use a logistic regression classifier, partition-
ing the data into train/dev/test portions (80/10/10%)
and ensuring that instances/hyponyms are not

6Both differences are statistically significant at α=0.001
according to a Kruskal-Wallis test.

reused across partitions. We report F-scores for
the positive class on the test sets.

Table 4 shows the results. Rows correspond
to experiments. The task is always to detect in-
stantiation (left) or hypernymy (right), but the con-
founders differ: We combine the positive exam-
ples with each of the individual negative datasets
(NOTINST/NOTHYP, INVERSE, I2I/C2C, cf. Sec-
tion 2, all balanced setups) and with the union of all
negative datasets (UNION, 25% positive examples).
The columns correspond to feature sets. We con-
sider two baselines: Freq for most frequent class,
1Vec for a baseline where the classifier only sees
the vector for the first component of the input pair –
for instance, for NOTINST, only the instance vector
is given. This baseline tests possible memoriza-
tion effects (Levy et al., 2015). For instantiation,
we have a third baseline, Cap. It makes a rule-
based decision on the basis of capitalization where
available and guesses randomly otherwise. The
remaining columns show results for three repre-
sentations that have worked well for hypernymy
(see Roller et al. (2014) and below for discussion):
Concatenating the two input vectors (Conc), their
difference (Diff ), and concatenating the difference
vector with the squared difference vector (DDSq).

Instantiation. Instantiation achieves overall
quite good results, well above the baselines and
with nearly perfect F-score for the INVERSE and
I2I cases. Recall that these setups basically require
the classifier to characterize the notion of instance
vs. concept, which turns out to be an easy task,
consistent with the analysis in the previous section.
Indeed, for INVERSE, the 1Vec and Cap baselines
also achieve (near-)perfect F-scores of 0.96 and
1.00 respectively; in this case, the input is either an
instance or a concept vector, so the task reduces to
instance identification. The distributional models
perform at the same level (0.98-0.99).

The most difficult setup is NOTINST, where the
model has to decide whether the concept matches
the instance, with 0.79 best performance. Since the
INVERSE and I2I cases are easy, the combined task
is about as difficult as NOTINST, and the best result
for UNION is the same (0.79). The very bad perfor-
mance of 1Vec in this case excludes memorization
as a significant factor in our setup.

Instantiation vs. Hypernymy. Table 4 shows
that, in our setup, hypernymy detection is consid-
erably harder than instantiation: Results are 0.57-
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INSTANCE Freq 1Vec Cap Conc Diff DDSq HYPERNYM Freq 1Vec Conc Diff DDSq

NOTINST 0.49 0.32 0.67 0.79 0.77 0.78 NOTHYP 0.51 0.29 0.55 0.53 0.57
INVERSE 0.5 0.96 1.00 0.98 0.99 0.99 INVERSE 0.5 0.65 0.75 0.78 0.78
I2I 0.5 0.31 0.80 0.97 0.94 0.94 C2C 0.51 0.29 0.64 0.58 0.62
UNION 0.25 0.01 0.57 0.79 0.74 0.74 UNION 0.25 0.00 0.31 0.26 0.30

Table 4: Supervised modeling results (rows: datasets/tasks, columns: feature sets)

0.78 for the individual hypernymy tasks, compared
to the 0.79-0.99 range of instantiation.7 The differ-
ence is even more striking for UNION, with 0.31
vs. 0.79. Our interpretation is that, in contrast to
instantiation, the individual tasks for hypernymy
are all nontrivial, such that modeling them together
is substantially more difficult. INVERSE and C2C
require the classifier to model the notion of concept
specificity (other concepts may be semantically re-
lated, but what distinguishes hypernymy is the fact
that hyponyms are more specific), which is appar-
ently more difficult than characterizing the notion
of instance as opposed to concept.

Frequency Effects. We now test the effect of fre-
quency on our best model (Conc) on the most in-
teresting dataset family (UNION). The word2vec
vectors do not provide absolute frequencies, but
frequency ranks. Thus, we rank-order our two
datasets, split each into ten deciles, and compute
new F-Scores. The results in Figure 1 show that
there are only mild effects of frequency, in particu-
lar compared to the general level of inter-bin vari-
ance: for INSTANCE, the lowest-frequency decile
yields an F-Score of 76% compared to 81% for the
highest-frequency one. The numbers are compa-
rable for the HYPERNYM dataset, with 28% and
36%, respectively. We conclude that frequency is
not a decisive factor in our present setup.

Input Representation. Regarding the effect of
the input representation, we reproduce Roller et
al.’s (2014) results that DDSq works best for hyper-
nymy detection in the NOTHYP setup. In contrast,
for instantiation detection it is the concatenation
of the input vectors that works best (cf. NOTINST

row in Table 4). Difference features (Diff, DDSq)
perform a pre-feature selection, signaling system-
atic commonalities and differences in distributional
representations as well as the direction of feature in-

7Our hypernymy results are lower than previous work. E.g.
Roller et al. (2014) report 0.85 maximum accuracy on a task
analogous to NOTHYP, compared to our 0.57 F-score. Since
our results are not directly comparable in terms of evalua-
tion metric, dataset, and space, we leave it to future work to
examine the influence of these factors.

clusion; Roller et al. (2014) argued that the squared
difference features “identify dimensions that are
not indicative of hypernymy”, thus removing noise.
Concatenating vectors, instead, allows the classifier
to combine the information in the features more
freely. We thus take our results to suggest that
the relationship between instances and their con-
cept is overall less predictable than the relation-
ship between hyponyms and hypernyms. This ap-
pears plausible given the tendency of instances to
be more “crisp”, or idiosyncratic, in their proper-
ties than concepts (compare the relation between
Mozart or John Lennon and composer with that of
poet or novelist and writer). This interpretation is
also consistent with the fact that difference features
work best for the INVERSE case, which requires
characterizing the notion of inclusion, and con-
catenation works best for the I2I and C2C cases,
where instead we are handling potentially unrelated
instances or concepts.

Error analysis. An error analysis on the most
interesting INSTANCE setup (UNION dataset with
Conc features) reveals errors typical for distribu-
tional approaches. The first major error source is
ambiguity. For example, WordNet often lists mul-
tiple “senses” for named entities (Washington as
synonym for George Washington and a city name,
a.o.). The corresponding vector representations are
mixtures of the contexts of the individual entities
and consequentely more difficult to process, no
matter which sense we consider. The second major
error source is general semantic relatedness. For
instance, the model predicts that the writer Franz
Kafka is a Statesman, presumably due to the bureau-
cratic topics of his novels that are often discussed
in connection with his name. Similarly, Arnold
Schönberg – writer is due to Schönberg’s work as
a music theorist. Finally, Einstein – river com-
bines both error types: Hans A. Einstein, Albert
Einstein’s son, was an expert on sedimentation.

5 Related Work

Recent work has started exploring the representa-
tion of instances in distributional space: Herbe-
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Figure 1: Performance by frequency bin

lot and Vecchi (2015) and Gupta et al. (2015) ex-
tract quantified and specific properties of instances
(some cats are black, Germany has 80 million in-
habitants), and Kruszewski et al. (2015) seek to
derive a semantic space where dimensions are sets
of entities. We instead analyze instance vectors.
A similar angle is taken in Herbelot and Vecchi
(2015), for “artificial” entity vectors, whereas we
explore “real” instance vectors extracted with stan-
dard distributional methods. An early exploration
of the properties of instances and concepts, limited
to a few manually defined features, is Alfonseca
and Manandhar (2002).

Some previous work uses distributional repre-
sentations of instances for NLP tasks: For instance,
Lewis and Steedman (2013) use the distributional
similarity of named entities to build a type system
for a semantic parser, and several works in Knowl-
edge Base completion use entity embeddings (see
Wang et al. (2014) and references there).

The focus on public, named instances is shared
with Named Entity Recognition (NER; see Lample
et al. (2016) and references therein); however, we
focus on the instantiation relation rather than on
recognition per se. Also, in terms of modeling,
NER is typically framed as a sequence labeling
task to identify entities in text, whereas we do clas-
sification of previously gathered candidates. In
fact, the space we used was built on top of a cor-
pus processed with a NER system. Named Entity
Classification (Nadeau and Sekine, 2007) can be
viewed as a limited form of the instantiation task.
We analyze the entity representations themselves
and tackle a wider set of tasks related to instantia-
tion, with a comparative analysis with hypernymy.

There is a large body of work on hypernymy
and other lexical relations in distributional seman-
tics (Geffet and Dagan, 2005; Kotlerman et al.,
2010; Baroni and Lenci, 2011; Lenci and Benotto,
2012; Weeds et al., 2014; Rimell, 2014; Roller et

al., 2014; Santus et al., 2014; Levy et al., 2015; San-
tus et al., 2016; Roller and Erk, 2016; Shwartz et
al., 2016). Many studies, notably studies of textual
entailment, include entities, but do not specifically
investigate their properties and contrast them with
concepts: This is the contribution of our paper.

6 Conclusions

The ontological distinction between instances and
concepts is fundamental both in theoretical studies
and practical implementations. Our analyses and
experiments suggest that the distinction is recover-
able from distributional representations. The good
news is that instantiation is easier to spot than hy-
pernymy, consistent with it lying along a greater on-
tological divide. The bad (though expected) news
is that not all extant results for concepts carry over
to instances, for instance regarding input represen-
tation in classification tasks.

More work is required to better assess the prop-
erties of instances as well as the effects of design
factors such as the underlying space and dataset
construction. An extremely interesting (and chal-
lenging) extension is to tackle “anonymous” enti-
ties for which standard distributional techniques do
not work (my neighbor, the bird we saw this morn-
ing), in the spirit of Herbelot and Vecchi (2015)
and Boleda et al. (2017).
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