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Preface: General Chair

Welcome to the EACL 2017, the 15th Conference of the European Chapter of the Association for
Computational Linguistics! This is the largest ever EACL in terms of the number of papers being
presented. We have a strong scientific program, including 14 workshops, six tutorials, a demos
session, and a student research workshop. EACL received a record number of sumbissions this year,
approximately 1,000 long and short papers combined, which reflects how broad and active our field is.
We are also fortunate to have three excellent invited speakers: David Blei (University of Columbia),
Devi Parikh (Virginia Tech), and Hinrch Schiitze (LMU Munich). I hope that you will enjoy both the
conference and Valencia.

I am deeply indebted to the Program Committee Chairs, Alexander Koller and Phil Blunsom, for their
hard work. They put together a team of 27 area chairs who in turned assembled many reviewers and
handled a large number of papers. The Workshop Chairs, Laura Rimmell and Richard Johansson,
coordinated with the workshop chairs for ACL 2017 and EMNLP 2017 and succeeded in putting together
an exciting and broad programme including 14 workshops. The student research workshop was organised
by the student members of the EACL board — John Camilleri, Mariona Coll Ardanuy Uxoa Ifiourrieta,
and Florian Kunneman. With the help of Barbara Plank (Faculty advisor), they issued the call, organised
a team of reviewers, assigned papers, coordinated and mediated among reviewers, and finally constructed
a schedule consisting of 12 papers.

The Tutorial Chairs, Lucia Specia and Alexandre Klementiev, put together a very strong programme
of six tutorials, which I hope many of us will attend. The publication chairs, Maria Liakata and Chris
Biemann, have been short of amazing. They undertook the complex task of producing the conference
proceedings and managed to make it seem easy, while being extremely thorough and paying attention
to every detail. Chris Biemann deserves a double thank you for being Sponsorship Chair. Our demo
chairs, Anselmo Pefias and André Martins, did a fantastic job selecting 30 demos for our demo session
which I encourage you all to attend. I would also like to thank David Weir our publicity chair and
the ACL business manager Priscilla Rassmussen, who knows more about our conferences than anyone
else. Sincere thanks are due to the various sponsors for their generous contribution. I am grateful to all
members of the EACL board for their advice and guidance, in particular to Llufs Marques and Walter
Daelemans.

Last, but not least, this conference could not have taken place without the local organising committee
who have worked tremendously hard to make EACL 2017 a success. The Local Chair, Paolo and Andrea
Aldea from Groupo Pacifico, have brought together a fantastic local team and have dealt with many of
the day-to-day tasks arising in organizing such a large conference expertly and efficiently.

I am always amazed by the dedication of our colleagues and their willingness to share knowledge and
invest precious time in order to make our conferences a success. On that note, I would like to thank
the authors who submitted their work to EACL and everyone else involved: area chairs, workshop
organizers, tutorial presenters, reviewers, demo presenters, and participants of the conference.

Welcome to EACL 2017!

Mirella Lapata
General Chair
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Preface: Programme Chairs

Welcome to the 15" Conference of the European Chapter of the Association for Computational
Linguistics! In these proceedings you will find all the papers accepted for presentation at the conference
in Valencia from the 3" to the 7¢" of April 2017. The main conference program consists of both oral
and poster presentations and also includes additional presentations of papers from the Transaction of the
Association for Computational Linguistics (TACL), posters from the Student Research Workshop, and
two demonstration sessions.

We received considerably more paper submissions than previous meetings of the EACL: 441 Long Papers
and 502 Short Papers (excluding papers withdrawn or rejected for incorrect formatting). The Short Paper
deadline was set after that for Long Papers and it is notable that we received more submissions of Short
than Long papers. After the commendable reviewing efforts of our Program Committee we accepted
119 Long Papers, 78 as oral presentations and 41 posters, and 120 Short Papers, 47 orals and 73 posters.
Overall the acceptance rates where 27% and 24% for the Long and Short Paper tracks respectively. The
EACL 2017 programme also contained the oral presentations of four papers published in TACL.

It would not have been possible to produce such a high quality programme without the amazing effort
and dedication of our Program Committee. We would like to than all of those who served on the
committee, which consisted of 27 Area Chairs and 612 Reviewers, drawn from a diverse range of fields
and from both Europe and further afield. Each paper received at least three reviews. We selected the final
programme based on the recommendations of the Area Chairs and reviewers, while aiming to ensure
the representation of a wide variety of research areas. The Area Chairs were each asked to nominate
candidate papers for the Outstanding Papers sessions, of which the Programme Chairs and General Chair
selected three Long Papers and one Short Paper. These were allocated extra time in the programme for
their oral presentations.

Following the precedent set at ACL 2016, we decided to allocate Long Paper and Short Paper oral
presentations 20 minute and 15 minute slots respectively, including time for questions and changing
speakers. While this shorter scheduling requires presenters to be more concise in their presentation, it
allowed us to accommodate a larger program of talks in the space available at the venue.

In addition to the main conference programme, a Student Research Workshop was held which selected 12
papers for presentation as posters, and two demonstration sessions were held during the evening poster
sessions. We are particularly grateful to our three distinguished invited speakers, Devi Parikh (Georgia
Tech), David Blei (Columbia University), and Hinrich Schiitze (LMU Munich). They represent the
amazing diversity of contemporary research being conducted across Computational Linguistics, Artificial
Intelligence, and Machine Learning.

In total the programme contains 126 talks and 126 posters, making this the largest EACL conference by
a considerable margin. Firstly this would not be possible without the authors who chose to submit there
research papers for publication at EACL, and we thank them for choosing our conference. Obviously
coordinating such a programme requires contributions from many people beyond the Programme Chairs.
We would like to thank our Area Chairs who ensured the smooth running of the two reviewing cycles.
We are also thankful for the support we received from the rest of the organising committee, including the
Publication Chairs, Local Organisers, Workshop Chairs, Tutorial Chairs, Demo Chairs, the Handbook
Chair, and the Student Research Workshop Chair, all listed in full later in the proceedings. We are also
grateful for the technical support received form the START team. We would like to thank the Programme
Chairs for ACL 2016, Katrin Erk and Noah Smith, who generously provided many insights and tips from
their own experience to help us avoid pitfalls and ensure the smooth running of the reviewing process.
Finally, we are thankful to have been blessed with an exceptionally calm and organised General Chair in
Mirella Lapata, who ensured the smooth running of the organising process and the ultimate success of
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this conference.
We hope you enjoy EACL 2017 in Valencia!

Phil Blunsom and Alexander Koller
EACL 2017 Programme Chairs
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Abstract

Universal Dependencies (UD) is becom-
ing a standard annotation scheme cross-
linguistically, but it is argued that this
scheme centering on content words is
harder to parse than the conventional one
centering on function words. To improve
the parsability of UD, we propose a back-
and-forth conversion algorithm, in which
we preprocess the training treebank to in-
crease parsability, and reconvert the parser
outputs to follow the UD scheme as a post-
process. We show that this technique con-
sistently improves LAS across languages
even with a state-of-the-art parser, in par-
ticular on core dependency arcs such as
nominal modifier. We also provide an
in-depth analysis to understand why our
method increases parsability. !

1 Introduction

As shown in Figure 1 there are several variations
in annotations of dependencies. A famous exam-
ple is a head choice in a prepositional phrase (e.g,
to a bar), which diverges in the two trees. Though
various annotation schemes have been proposed
so far (Hajic et al., 2001; Johansson and Nugues,
2007; de Marneffe and Manning, 2008; McDon-
ald et al., 2013), recently the Universal Dependen-
cies (UD) (de Marneffe et al., 2014) gains much
popularity and is becoming the annotation stan-
dard across languages. The upper tree in Figure
1 is annotated in UD.

Practically, however, UD may not be the opti-
mal choice. In UD a content word consistently
dominates a function word, but past work points
out that this makes some parser decisions more

'Our conversion script is available at

https://github.com/kohilin/MultiBFConv

1

comp

c nmod

that Bob went to a bar

Joe saw

NOUN VERB SCONJ NOUN VERB ADP DET NOUN

mark case
N SN G

Figure 1: Dependency trees with content head
(above) and function head (below).

difficult than the conventional style centering on
function words, e.g., the tree in the lower part of
Figure 1 (Schwartz et al., 2012; Ivanova et al.,
2013).

To overcome this issue, in this paper, we
show the effectiveness of a back-and-forth conver-
sion approach where we train a model and parse
sentences in an anontation format with higher
parsability, and then reconvert the parser output
into the UD scheme. Figure 1 shows an example
of our conversion. We use the function head trees
(below) as an intermediate representation.

This is not the first attempt to improve depen-
dency parsing accuracy with tree conversions. The
positive result is reported in Nilsson et al. (2006)
using the Prague Dependency Treebank. For the
conversion of content and function head in UD,
however, the effect is still inconclusive. Using En-
glish UD data, Silveira and Manning (2015) report
the negative result, which they argue is due to error
propagation at backward conversions, in particu-
lar in copula constructions that often incur drastic
changes of the structure. Rosa (2015) report the
advantage of funcion head in the adposition con-
struction, but the data is HamleDT (Zeman et al.,
2012) rather than UD and the conversion target is
conversely too restrictive.

Our main contribution is to show that the back-
and-forth conversion can bring consistent accu-
racy improvements across languages in UD, by

Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 1-7,

Valencia, Spain, April 3-7, 2017. (©2017 Association for Computational Linguistics



POS Label | Example

case ... a post about fault ...
ADP dep (ja) Taro ni ha ...

mark | ... opinions on how it ...
SCONIJ | mark | [think that ...
ADV mark | ... feet when you ...

case Elena ’s motor cycle ...

PART mark | ... Sharon to make ...

Table 1: The set of conversion targets. (ja) is an
example in Japanese.

limiting the conversion targets to simpler ones
around function words while covering many lin-
guistic phenomena. Another limitation in previous
work is the parsers: MSTParser or MaltParser is
often used, but they are not state-of-the-art today.
We complement this by showing the effectiveness
of our approach even with a modern parser with
rich features. We also provide an in-dpeth analy-
sis to explore when and why our conversion brings
higher parsability than the orignal UD.

2 Conversion method

Let us define notations first. For the i-th word w;
in a sentence, p; denotes its POS tag, h; the head
index, [; the dependency label, and left; (right;) the
list of indexes of left (right) children for w;. For
instance in the upper tree in Figure 1, ws = went,
ps = VERB, hs =2, I5 = ccomp, and lefts = [3, 4].

Forward Conversion The forward algorithm
receives the original UD tree and converts it to a
function head tree by modifying h;. Figure 1 is
an example, and Algorithm 1 is the pseudo-code;
root(y) returns the root word index of tree y.

The algorithm traverses the tree in a top-down
fashion and modifies the deepest node first. The
modifications such as changing the mark arc from
went to that in Figure 1 occur when it detects a
word w; (that, in this case), for which the pair
(pi, I;) exists in the set of conversion targets, which
is listed in Table 1 and is denoted by 7" in Algo-
rithm 1. Let w; be the head of the detected word
w;. Then, we reattach the arcs so that w;’s head
becomes w;’s head and w;’s new head becomes
w;. Note that we modify heads (%;) only and keep
labels (I;). We skip the children of the root word
(line 13); otherwise, an arc with root label will ap-
pear at an intermediate node. We operate only on
the outermost child when multiple candidates are
found (line 11).

Backward Conversion In contrast, the back-
ward algorithm receives a function head tree and

Algorithm 1 Forward conversion

Input: a dependency tree y and the set of targets 7.
Output: modified y after applying CONV(root(y)).
procedure CONV(j)
for i in left; do
CONV(2)
CHANGEDEP(SEARCH(left;), j)
for ¢ in right; do
CONV(7)
CHANGEDEP(SEARCH(reverse(right;)), j)

procedure SEARCH(children)
for i in children do
if (p;,l;) € Tthen T is the set of targets.
return % > The first found candidate is

outermost. We only change this.
12: procedure CHANGEDEP(7, j)
13: if [; # root then
14: hL <—hj;h]' — 1

TRYR RANE D2

— —

> We skip the root.

reconverts it to a UD-style tree. Algorithm 2 is the
pseudo-code.

There are two main differences between the for-
ward and backward algorithms. The first is the
relative position of a target node (one of Table 1)
among the operated nodes; in the forward algo-
rithm they are the target node, its parent (head),
and its grandparent, while in the backward algo-
rithm they are the target node, its head, and its
children. The second is how we reattach the nodes
at the CHANGEDEP operation, in particular when
the target node has multiple children. While the
forward algorithm modifies only two arcs at once,
the backward algorithm may modify more than
two arcs considering possible parse errors at pre-
diction. Specifically, when we find a target node
having multiple children, we change the head of
all these children to the head of the target (exclud-
ing those with the mwe label)>. We choose the
intermost child as the new head of the target word
(line 17).

Remarks The target list in Table 1 is developed
for covering main constructions in English and
Japanese while keeping the backward conversion
accuracy high. We do not argue this list is perfect,
and seeking better one is an important future work.
Note also that we use this list across all languages.

One possible drawback of our method is that it
may introduce additional non-projective arcs. In
fact, we found that the ratio of non-projective arcs
in the training sets increases by 10% points on av-

?In the original UD, tokens with mwe label sometimes at-
tach to a function word, which may be the current target. To
avoid flipping the relationship of mwe components, our back-
ward algorithm skips them in the CHANGEDEP operation.



Algorithm 2 Backward conversion

Input: a dependency tree y and the set of targets 7.
Output: reconverted y after applying CONV(root(y)).

1: procedure CONV(j)

2: for i in left; do

3: CONV(1)

4 if (p;,1;) € T then

5: CHANGEDEP(left;, 7)

6: for i in right; do

7: CONV(2)

8: if (p;,1;) € T then

9: CHANGEDEP(reverse(right;), j)
10: procedure CHANGEDEP(children, j)

11: lastchild — —1
12: for i in children do

> -1 is dummy.

13: if I; # mwe then > We skip mwes.
14: lastchild «— i

15: hl — hj

16: if lastchild # —1 then

17: h; < lastchild > The last chid is innermost.

erage. We argue this is not a serious restriction
since UD already contains moderate amount of
non-projective arcs and the parser should be able
to handle them. In practice, this complication does
not lead to performance degradation; when we em-
ploy non-projective parsers, the scores increase re-
gardless of the increased non-projectivity.

3 Experiment

3.1 Experimental Setting

For each treebank and parser, we train two differ-
ent models: one with the original trees (UD) and
another with the converted trees (CONV). Recon-
verting CONV'’s output into the UD scheme by the
backward algorithm, we can evaluate the outputs
of both models against the same UD test set.

For parsers, we use two non-projective parsers:
second-order MSTParser (MST) (McDonald et al.,
2005) 3 and RBGParser (RBG) (Lei et al., 2014) *
with the default settings, which utilizes the third-
order features and is much stronger .

We choose 19 langueges from UD ver.1.3 con-
sidering the sizes and typological variations.” The
ratio of converted tokens is 6.3% on average
(2.3%-15.6%). The failed backward conversions
rarely occur at most 0.01% (0.002% on average)
in the training data. We use gold POS tags, and
exclude punctuations from evaluation.

3https://sourceforge.net/projects/mstparser/

*https://github.com/taolei87/RBGParser

SWe exclude Arabic and French since they caused prob-
lems in training with RBG in a preliminary study.

3.2 Result

Attachment scores Table 2 shows the main re-
sult and we can see that the improvements are re-
markable in the labeled attachment score (LAS):
For MST, the scores increase more than 1.0 point
in many languages (11 out of 19), and for RBG,
though the changes are smaller, more than 0.5
points improvements are still observed in 10 lan-
guages. The differences in the unlabelled attach-
ment score (UAS) are modest, implying that our
conversion contributes in particular to find correct
arc labels rather than head words themselves. On
the other hand, LAS of Hindi decreases with RBG.
One possible explanation for this is that the score
of original UD is sufficiently high (91.74) and our
conversion may impede parsability in such cases.

These overall improvements are not observed in
past work (Silveira and Manning, 2015). One rea-
son of our success seems that we restrict our con-
version to simpler constructions and operations.
We do not modify copula and auxiliary construc-
tions, which involve more complex changes, am-
plifying error propagation in backward conver-
sion. Our conversion also suffers from such prop-
agation (see below) but in a lesser extent, suggst-
ing that it may achieve a good balance between
parsability and simplicity.

As the whole trends of the two parsers are simi-
lar, we mainly foucs on RBG in the analysis below.

What kinds of errors are reduced by our con-
version? To inspect this, we compare F1-scores
of each arc label. Table 3 summarizes the results
for the frequent labels, and interestingly we can
see that the improvements are observed for more
semantically crucial, core relations such as dobj
(+0.81), nmod (+2.34), and nsubj (+2.01).5 This
is not surprising as these relations are involved in
most of our conversion. See Figure 1, on which
in the original tree, nmod arc connects two con-
tent words (went and bar) while in the converted
tree, they are connected via a function word fo.
The result suggests that this latter structure is more
parsable than the original one, possibly because
directly connecting content words is harder due to
the sparsity. We further investigate this hypothesis
quantitatively later.

The Fl-scores degrade in some functional
lables, such as mark (-2.74) and case (-0.85). In-

®1n the following, by core labels we mean the labels in the
“core” row at Table 3 while by functional labels we mean the
other labels (func).



UAS LAS CNC

L. MST RBG MST RBG RBG
UD CONV UD CONV UD CONV UD CONV UD CONV
bg | 8839 88.86 9033 90.74 | 81.63 82.63 84.85 85.64 | 80.74 81.92
cs | 86.65 8720 9140 91.67 | 79.85 80.65 87.25 87.22 | 8523 85.21
da | 82.03 8346 86.08 86.51 | 76.81 78.52 82.13 82.65 | 78.42 79.54
de | 84.69 84.66 87.19 86.68 | 7547 77.69 79.39 80.63 | 72.03 74.10
en | 8597 8630 89.69 89.65 | 80.67 81.89 8632 86.50 | 82.30 82.83
es |[8598 8647 89.02 89.21 | 80.13 81.95 8498 85.75 | 77.33 79.00
et | 81.04 80.81 87.67 87.60 | 71.28 71.56 83.84 84.07 | 82.58 82.99
fa | 83.26 84.25 82.83 84.37 | 7843 80.10 78.64 80.56 | 74.53 77.47
fi | 7676 7642 8557 85.80 | 6824 6855 81.69 8246 | 80.46 81.22
hi | 89.80 92.14 9510 94.99 | 84.11 87.20 91.74 90.76 | 87.96 87.22
hu | 7931 7994 84.53 84.15 | 66.47 67.26 79.53 7994 | 77.19 78.06
it | 88.82 8948 92.14 92.83 | 83.90 8594 89.22 90.25 | 83.31 85.27
ja | 87.67 9020 91.58 9224 | 7996 8541 87.70 87.62 | 81.09 81.14
no |89.14 89.44 9157 9157 | 84.06 8523 88.31 88.32 | 84.81 85.14
pl | 88.10 87.71 9225 9247 | 80.20 80.73 87.51 87.70 | 85.08 85.64
pt | 8582 8534 9051 91.04 | 80.16 80.53 86.79 87.47 | 80.30 81.90
ru |8l46 8191 86.76 87.13 | 7479 7586 83.15 83.92 | 81.01 82.04
tr | 79.02 7890 85.10 85.13 | 62.56 62.66 75.33 75.57 | 73.70 74.19
zh | 7928 79.07 85.75 8548 | 73.44 7472 8091 81.68 | 79.43 80.45
Avg. | 8438 84.87 88.69 88.91 | 76.96 7837 84.17 84.67 | 80.40 81.33

Table 2: Comparison of unlabelled (UAS) and labelled (LAS) attachment scores. See body for CNC. A
bold score means that the difference is more than 0.1 points.

Type | Label | Ratio UD | CONV
advmod | 4.9% | 79.24 | 79.15

amod 6.3% | 92.41 | 92.46

core conj 4.4% | 66.56 | 68.07
dobj 5.7% | 81.92 | 82.73

nmod | 14.6% | 76.52 | 78.86

nsubj 7.3% | 80.19 | 82.20

case 11.4% | 95.54 | 94.69

func cc 3.3% | 79.47 | 80.00
det 6.6% | 94.99 | 94.95

mark 2.9% | 87.39 | 84.65

Table 3: Fl-scores (UD and CONV) and the av-
erage ratio in the test set (Ratio) of the frequent
labels.

specting the outputs, we find that this essentially
arises in our backward conversion, which induces
errors on these arcs even when they are correctly
attached in the (CONV) parser output, if another
core label arc following them, such as nmod, at-
taches wrong. Figure 2 describes the situation.
In the initial parser output (above), the case arc
to in is correct although it misattaches groups as
a child of in (the correct head is provides). By

)
Py \
... provides in a single glass all four essential groups
k case
nmod

Figure 2: A failed output of CONV model (above),
which induces an additional error on case with the
backward conversion (below).

the backward conversion, then, it induces a wrong
case arc from groups to in, which hurts both pre-
cision and recall. In summary, we can say that
just predicting correct functional arcs (e.g., case)
is equally easy for both representations, but our
method needs correct analysis on both functional
and core arcs, to recover the true functional arcs.

Although this additional complexity seems de-
ficiency, the oveall scores (FAS) increase, which
suggests that the majority case is successful pre-
dictions of both arcs thanks to our conversion.
In other words, though our method slightly drops
scores of functional arcs, it saves much more arcs
of core relations, which are generally harder.

CNC To further verify the intuition above, now
we introduce another metric called the CNC score,



which is recently proposed in Nivre (2016) for UD
evaluation purpose and calculates LAS excluding
functional arcs’. The last column in Table 2 shows
the results, where the improvements are clearer
than LAS, +0.9 points on average. The results
confirm the above observation that our method fa-
cilitates to find core grammatical arcs at a slight
sacrifice of functional arcs.

Head word vocabulary entropy Finally, we
provide an analysis to answer the question why our
method improves the scores of core dependency
arcs. As we mentioned above, this may be rel-
evant to the ease of sparseness by placing func-
tion words between two content words. We verify
this intuition quantitatively in terms of the entropy
reduction of head word vocabulary. Schwartz et
al. (2012) hypothesize about such correlation be-
tween entropy and parsability, although no qunati-
tative verification has been carried out yet.

For each dependency h™'w from h to w with
label [ in the training data, we extract a pair
((p,l,w), h) where p is the POS tag of w. We then
discard the pairs such that a tuple (p, [, w) appears
less than five times, and calculate the entropy of
head word, H;(h) from the conditional probablity
P(h|p,l,w). We perform this both for the original
UD and converted data, and calculate the differ-
ence for each label H""Y(h) — Hf"(h).

See Figure 3 above, where many nmods appear
on the upper left side, meaning that the reduction
of entropy contributes to the larger improvements
cross-linguistically. Other points on this area in-
clude dobjs of Japanese and Persian, both of which
employ case constructions for expressing objects.

We also explore the correlation between LAS
and the averaged reduction of entropy per a to-
ken in each language. Figure 3 below shows
a negative correlation, which means the reduc-
tion of entropy as a whole by the conversion re-
lates with the overall improvement. In particu-
lar in MST, we find a strong negative correlation
(r = —=.75;p < .01). RBG, on the other hand,
has a weaker, non-significant negative correlation
(r = —.35; p = .14) when excluding Hindi, which
seems an outlier. These correlations imply that the
variation of entropy can be a metric of assessing
an annotation framework, or a conversion method.

7 Arcs with the following relations: aux, auxpass, case,
cc, cop, det, mark, and neg.
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Figure 3: The reduction of entropy and the im-
provement of F1-score (above) and LAS (below)

4 Conclusion and Future Work

We have shown that our back-and-forth conversion
around function words reduces head word vocab-
ulary, leading to improvements of parsability and
labelled attachment scores. This is the first empir-
ical result on UD showing the parser preference to
the function head scheme across languages. The
method is modular, and can be combined with any
parsing systems as pre- and post-processing steps.

Recently there has been a big success in the
transition-based neural dependency parsers, which
we have not tested mainly because the most such
systems currently available, such as SyntaxNet
(Andor et al., 2016) and LSTMParser (Dyer et al.,
2015), do not support non-projective parsing. The
neural parsers are advantageous in that the bilex-
ical sparsity problem, the main challenge in UD
parsing for the ordinary feature-based systems,
might be alleviated thanks to word embeddings. It
is thus an interesting and important future work to
develop a neural dependency parser designed for
non-projective parsing and see whether our con-
version is still effective for such stronger system.
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Abstract

We introduce the URIEL knowledge
base for massively multilingual NLP and
the lang2vec utility, which provides
information-rich vector identifications of
languages drawn from typological, ge-
ographical, and phylogenetic databases
that are normalized to have straightfor-
ward and consistent formats, naming,
and semantics. The goal of URIEL
and lang2vec is to enable multilingual
NLP, especially on less-resourced lan-
guages and make possible types of exper-
iments (especially but not exclusively re-
lated to NLP tasks) that are otherwise dif-
ficult or impossible due to the sparsity and
incommensurability of the data sources.
lang2vec vectors have been shown to
reduce perplexity in multilingual language
modeling, when compared to one-hot lan-
guage identification vectors.

1 Introduction

This article introduces lang2vec!, a database
and utility representing languages as information-
rich typological, phylogenetic, and geographical
vectors. lang2vec feature primarily represent
binary language facts (e.g., that negation precedes
the verb or is represented as a suffix, that the lan-
guage is part of the Germanic family, etc.) and are
sourced and predicted from a variety of linguis-
tic resources including WALS (Dryer and Haspel-
math, 2013), PHOIBLE (Moran et al., 2014), Eth-
nologue (Lewis et al., 2015), and Glottolog (Ham-
marstrom et al., 2015).

lwww.cs.cmu.edu/~dmortens/downloads/
uriel_lang2vec_latest.tar.xz
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Despite the heterogeneity of its sources,
lang2vec provides a simple interface with con-
sistent formats, featuring naming, language codes,
and feature semantics. 1ang2vec takes as its in-
put a list of ISO 639-3 codes and outputs a ma-
trix of [0.0, 1.0] feature values (like those in Table
1), allowing straightforward “plug and play” ex-
perimentation where different sources or types of
information can easily be combined or contrasted.

lang2vec is a release of the URIEL project,
a compendium of tools and resources to bet-
ter enable multilingual NLP, especially in less-
resourced languages where conventional NLP re-
sources like parallel corpora are limited.

2 Motivation

The recent success of “polyglot” models (Her-
mann and Blunsom, 2014; Faruqui and Dyer,
2014; Ammar et al., 2016; Tsvetkov et al., 2016;
Daiber et al., 2016), in which a language model
is trained on multiple languages and shares repre-
sentations across languages, represents a promis-
ing avenue for NLP, especially for less-resourced
languages, as these models appear to be able to
learn useful patterns from better-resourced lan-
guages even when training data in the target lan-
guage is limited.

Just as neural NLP raises many questions about
the best representations of words and sentences,
these models raise the question of the representa-
tion of languages. Tsvetkov et al. (2016) shows
that vectors that represent information about the
language outperform a simple “one-hot” represen-
tation where each language is represented by a 1 in
a single dimension. This result parallels the results
of other recent work in sound/character represen-
tation, in which vectors of linguistically-aware
features outperform one-hot character represen-
tations on some tasks (Bharadwaj et al., 2016;
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S_SUBIJECT- S_SUBIJECT- S_ADPOSITION- S_ADPOSITION-
_BEFORE_VERB _AFTER_VERB _BEFORE_NOUN _AFTER_NOUN
eng 1 0 1 0
mlg 0 1 1 0
kaz 1 0 0 1

Table 1: Truncated lang2vec syntax vectors for English, Malagasy, and Kazakh, representing binary
feature values converted from multi-class features in WALS (Dryer and Haspelmath, 2013) (§3.1), ex-
tracted by text-mining prose descriptions in Ethnologue (Lewis et al., 2015) (§3.1), and imputed by
k-nearest-neighbors classification from related, nearby, and similar languages (§4).

Training set baseline id id+phonology+inventory
Italian monolingual 4.36 — —
Italian, French, Romanian 5.73 493 4.24 (-26.0%)
Italian, French, Romanian, Hindi 5.88 4.98 4.41 (-25.0%)
Hindi monolingual 3.70 — —
Hindi, Tamil, Telegu 4.14 3.78 3.35 (-19.1%)
Hindi, Tamil, Telegu, English 4.29 3.82 3.42 (-20.3%)

Table 2: Perplexity of monoglot and polyglot language models in Italian and Hindi (Tsvetkov et
al., 2016), when the languages are not identified to the model (baseline), when the languages are
represented as one-hot vectors (id), and when languages are represented as lang2vec vectors

(id+phonology+inventory).

Rama, 2016).

Sample results from Tsvetkov et al. (2016) are
reproduced in Table 2, measuring the perplexity of
monolingual and polyglot models, trained on pro-
nunciation dictionaries in several languages and
tested on Italian and Hindi. We can see that train-
ing on a set of three similar languages, and a set
of four similar and dissimilar languages, raises
perplexity above the baseline monolingual model,
even when the language is identified to the model
by a one-hot (id) vector. However, perplexity is
lowered by the introduction of phonological fea-
ture vectors for each language (the phonology
and inventory vector types described in §3.1),
giving consistently lower perplexity than even the
monolingual baseline.

Providing such vectors for many languages,
however, is made difficult by the somewhat piece-
meal digital representation of language informa-
tion. There exist many information-rich sources
of language data, but each source covers differ-
ent sets of languages in different levels of detail,
has different formats and semantics (ranging from
binary features to trees to English prose descrip-
tions), uses different identifiers for languages and
different names for features, etc.

It does not take long in collecting a “polyglot”
experiment like those in Ammar et al. (2016),

Tsvetkov et al. (2016), or Daiber et al. (2016)
before one adds a language for which an ex-
pected feature is missing, present only in another
database or not present in any database; this prob-
lem is compounded when working on genuinely
less-studied languages. The initial motivation for
the URIEL knowledge base and the lang2vec
utility is to make such research easier, allow-
ing different sources of information to be easily
used together or as different experimental condi-
tions (e.g., is it better to provide this model in-
formation about the syntactic features of the lan-
guage, or the phylogenetic relationships between
the languages?). Standardizing the use of this
kind of information also makes it easier to repli-
cate and expand on previous work, without need-
ing to know how the authors processed, for exam-
ple, WALS feature classes or PHOIBLE invento-
ries into model input.

While 1ang2vec was originally conceived as
providing rich language representations to “poly-
glot” models, it can be utilized in a variety of
kinds of research projects (O’Horan et al., 2016):
helping to choose “bridge” or “pivot” languages
for cross-lingual transfer (Deri and Knight, 2016),
directly providing feature values to systems in-
terested in those specific features, or acting as
a dataset for the prediction of unknown or un-



recorded language facts (Daumé III and Camp-
bell, 2007; Daumé III, 2009; Coke et al., 2016).
By normalizing information from a variety of data
sources, it can also allow the comparison of re-
sources, due to format and semantic differences,
that were difficult to compare directly before, and
help to quantify knowledge gaps concerning world
languages.

3 Vector types

lang2vec offers a variety of vector representa-
tions of languages, of different types and derived
from different sources, but all reporting feature
values between 0.0 (generally representing the ab-
sence of a phenomenon or non-membership in a
class) and 1.0 (generally representing the pres-
ence of a phenomenon or membership in a class).
This normalization makes vectors from different
sources more easily interchangeable and more eas-
ily predictable for each other (£4).

As in SSWL (Collins and Kayne, 2011), differ-
ent features are not held to be mutually exclusive;
the features S_.SVO and S_SOV can both be 1 if
both orders are normally encountered in the lan-
guage.

Phylogeny, geography, and identity vectors are
complete—they have no missing values, due to the
nature of how they are calculated. The typological
features (syntax, phonology, and inventory), how-
ever, have missing values, reflecting the coverage
of the original sources; missing values are repre-
sented in the output as “~-"". Predicted typological
vectors (§4) attempt to impute these values based
on related, neighboring, and typologically similar
languages.

All vectors within the syntax, phonology,
and inventory categories have the same dimen-
sionality as other types of vectors in the same cat-
egory, even though the sources themselves may
only represent a subset of these values, to allow
straightforward element-wise comparison of val-
ues. (This way, when WALS happens not to con-
tain a feature value that SSWL does, they can eas-
ily be combined by a vector operation, without
needing to track down specific feature names or
go back to the original sources. In general, users
will probably want to use the union or average of
relevant sources, or use the knn predictions.)
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3.1 Typological vectors

The syntax features are adapted (after conver-
sion to binary features) from the World Atlas of
Language Structures (WALS) (Dryer and Haspel-
math, 2013), directly from Syntactic Structures
of World Languages (Collins and Kayne, 2011)
(whose features are already binary), and indirectly
by text-mining the short prose descriptions on ty-
pological features in Ethnologue (Lewis et al.,
2015).2

The phonology features are adapted in the
same manner from WALS and Ethnologue.

The phonetic inventory features are adapted
from the PHOIBLE database, itself a collec-
tion and normalization of seven phonological
databases (Moran et al., 2014; Chanard, 2006;
Crothers et al., 1979; Hartell, 1993; Michael et
al., 2012; Maddieson and Precoda, 1990; Ra-
maswami, 1999). The PHOIBLE-based features
in lang2vec primarily represent the presence or
absence of natural classes of features (e.g., inter-
dental fricatives, voiced uvulars, etc.), with 1 rep-
resenting the presence of at least one sound of
that class and O representing absence. They are
derived from PHOIBLE’s phonetic inventories by
extracting each segment’s articulatory features us-
ing the PanPhon feature extractor (Mortensen et
al., 2016), and using these features to determine
the presense or absence of the relevant natural
classes.

3.2 Phylogeny vectors

The fam vectors express shared membership in
language families, according to the world lan-
guage family tree in Glottolog (Hammarstrém et
al., 2015). Each dimension represents a lan-
guage family or branch thereof (such as “Indo-
European” or “West Germanic” in Table 4).

3.3 Geography vectors

Although another component of URIEL (to be de-
scribed in a future publication) provides geograph-
ical distances between languages, geo vectors ex-
press geographical location with a fixed number
of dimensions and each dimension representing
the same feature even when different sets of lan-
guages are considered. Each dimension represents

Descriptions of well-studied typological features are of-
ten expressed formulaically in prose (“SVO”, “adjective be-
fore noun”, “(C)(C)v(C)”, etc.), and are relatively straightfor-
ward to extract given regular expressions and some Boolean
logic (e.g., if “CV” and not “CCV” and ...).



Vector type #Languages #Features #Data points Y% Coverage
Syntax (from sources)

syntax_wals 1808 98 78732 44%
syntax_sswl 230 33 6404 84%
syntax_ethnologue 1336 30 18105 45%
Syntax (averaged over sources)

syntax_avg 2654 103 94227 34%
Syntax (predicted)

syntax_knn 7970 103 820910 100%
Phonology (from sources)

phonology_wals 832 27 14358 64%
phonology_ethnologue 543 8 1017 23%
Phonology (averaged over sources)

phonology_avg 1296 28 15303 42%
Phonology (predicted)

phonology_knn 7970 28 223160 100%
Inventory (from sources)

inventory_phoible_aa 202 158 31916 100%
inventory_phoible_gm 428 158 67624 100%
inventory_phoible_ph 404 158 63832 100%
inventory_phoible_ra 100 158 15800 100%
inventory_phoible_saphon 334 158 52772 100%
inventory_phoible_spa 219 158 34602 100%
inventory_phoible_upsid 334 158 75050 100%
Inventory (averaged over sources)

inventory_avg 1715 158 270970 100%
Inventory (predicted)

inventory_knn 7970 158 1259260 100%

Table 3: Typological vectors available in Lang2vec, along with the number of languages and features,
the number of individual data points, and the percentage of those language/feature pairs for which that
data point exists.

Indo-European Germanic West Germanic Romance North Germanic
deu 1 1 1 0 0
eng 1 1 1 0 0
fra 1 0 0 1 0
swe 1 1 0 0 1
mlg 0 0 0 0 0

Table 4: Truncated 1 ang2vec phylogeny vectors for German, English, French, Swedish, and Malagasy,
where 1 represents membership in a particular language family or branch.
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the orthodromic distance—that is, the “great cir-
cle” distance—from the language in question to a
fixed point on the Earth’s surface. These distances
are expressed as a fraction of the Earth’s antipodal
distance, so that values will always be in between
0.0 (directly at the fixed point) and 1.0 (at the an-
tipode of the fixed point).

Figure 1: Example of a Fibonacci lattice over-
laid on the Earth’s surface, representing the “fixed
points” of a geo vector (§3.3). (Map data:
Google.)

The fixed points were derived by generating
a spherical Fibonacci lattice (Gonzélez, 2009;
Keinert et al., 2015), a technique that approxi-
mates with high precision a uniform distribution
of points on a sphere. Language points are derived
from Glottolog, WALS, and SSWL’s declarations
of language location.?

3.4 Identity vectors

The id vector is simply a one-hot vector iden-
tifying each language. These vectors can serve
as simple identifiers of languages to a system,
serve as the control in an experiment in introduc-
ing (say) typological information to a system, as
in Tsvetkov et al. (2016), or serve in combination
with other vectors (such as fam) that do not al-
ways identify a language uniquely.

4 Feature prediction

One of the major difficulties in using typological
features in multilingual processing is that many
languages, and many features of individual lan-
guages, happen to be missing from the databases.

31t should be emphasized that these points are abstractions
rather than precise facts; there is no one point on Earth that
best specifies “English”, and no definition of the “center” of
a language’s area would have a known and an unambiguous
answer for every language. About 2% of language codes had
no corresponding geographical information in any database;
we filled these in manually where possible.
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For example, no relevant syntactic features
from Slovak were available in any of the source
databases.* It is not a mystery, however, what sort
of language Slovak is; it is probably very similar
to Czech, somewhat similar to other West Slavic
languages, etc. Likewise, it is probably more sim-
ilar overall to nearby languages than far-away lan-
guages. °

The question of how we can best predict un-
known typological features is a larger question
(Daumé III and Campbell, 2007; Daumé I1I, 2009;
Coke et al., 2016) than this article can capture
in detail, but nonetheless we can offer a prelim-
inary attempt at providing practically useful ap-
proximations of missing features by a k-nearest-
neighbors approach. By taking an average of ge-
netic, geographical, and feature distances between
languages, and calculating a weighted 10-nearest-
neighbors classification, we can predict feature
missing values with an accuracy of 92.93% in 10-
fold cross-validation. (We will describe these pro-
cedures, the exact notions of distance involved, al-
ternative prediction methods that we also investi-
gated, and their results in more detail in a future
article.)

5 Conclusion

While there are many language-information re-
sources available to NLP, their heterogeneity in
format, semantics, language naming, and feature
naming makes it difficult to combine them, com-
pare them, and use them to predict missing val-
ues from each other. lang2vec aims to make
cross-source and cross-information-type experi-
ments straightforward by providing standardized,
normalized vectors representing a variety of infor-
mation types.
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Abstract

Noise Contrastive Estimation (NCE) is a
learning procedure that is regularly used
to train neural language models, since
it avoids the computational bottleneck
caused by the output softmax. In this pa-
per, we attempt to explain some of the
weaknesses of this objective function, and
to draw directions for further develop-
ments. Experiments on a small task show
the issues raised by the unigram noise
distribution, and that a context dependent
noise distribution, such as the bigram dis-
tribution, can solve these issues and pro-
vide stable and data-efficient learning.

1 Introduction

Statistical language models (LMs) play an impor-
tant role in many tasks, such as machine trans-
lation and speech recognition. Neural models,
with various neural architectures (Bengio et al.,
2001; Mikolov et al., 2010; Chelba et al., 2014;
Jozefowicz et al., 2016), have recently achieved
great success. However, most of these neural ar-
chitectures have a common issue: large output vo-
cabularies cause a computational bottleneck due to
the output normalization.

Different solutions have been proposed, as
shortlists (Schwenk, 2007), hierarchical soft-
max (Morin and Bengio, 2005; Mnih and Hin-
ton, 2009; Le et al., 2011), or self-normalisation
techniques (Devlin et al., 2014; Andreas et al.,
2015; Chen et al., 2016). Sampling-based tech-
niques explore a different solution, where a limited
number of negative examples are sampled to re-
duce the normalization cost. The resulting model
is theoretically unnormalized. Apart from impor-
tance sampling (Bengio and Sénécal, 2008; Jean et
al., 2015), the noise contrastive estimation (NCE)
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provides a simple and efficient sampling strategy,
which our work focuses on.

Introduced by (Gutmann and Hyvirinen, 2010),
NCE proposes an objective function that replaces
the conventional log-likelihood by a binary classi-
fication task, discriminating between the real ex-
amples provided by the data, and negative ex-
amples sampled from a chosen noise distribution.
This allows the model to learn indirectly from the
data distribution. NCE was first applied to lan-
guage modeling by (Mnih and Teh, 2012), and
then to various models, often in the context of ma-
chine translation (Vaswani et al., 2013; Baltescu
and Blunsom, 2015; Zoph et al., 2016). However,
recently, a comparative study of methods for train-
ing large vocabulary LMs (Chen et al., 2016) high-
lighted the inconsistency of NCE training when
dealing with very large vocabularies, showing very
different perplexity results for close loss values. In
another work (Jézefowicz et al., 2016), NCE was
shown far less data-efficient than the theoretically
similar importance sampling.

In this paper, we focus on a small task to provide
an in-depth analysis of the results. NCE relies on
the definition of an artificial classification task that
must be monitored. Indeed, using a unigram noise
distribution as usually advised leads to an ineffec-
tive solution, where the model almost systemati-
cally classifies words in the noise class. This can
be explained by the inability to sample rare words
from the noise distribution, yielding inconsistent
updates for the most frequent words. We explore
other noise distributions and show that designing a
more suitable classification task, with for instance
a simple bigram distribution, can efficiently cor-
rect the weaknesses of NCE.
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2 Theoretical background

A neural probabilistic language model with pa-
rameters 6 outputs, for an input context H, a con-
ditional distribution PQH for the next word, over
the vocabulary V. This conditional distribution is
defined using the softmax activation function:

exp sp(w, H)

> expsg(w', H)
w’' ey

P (w) = (1)

Here, sg(w, H) is a scoring function which de-
pends on the network architecture. The denomina-
tor is the partition function Z(H ), which is used to
ensure output scores are normalized into a proba-
bility distribution.

2.1

Maximum likelihood training is realized by mini-
mizing the negative log-likelihood. Parameter up-
dates will be made using this objective gradient

Maximum likelihood training

0 0
log P (w) = %39(10, H)
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increasing the positive output’s score, while de-
creasing the score of the rest of the vocabu-
lary. Unfortunately, both output normalization and
gradient computation require computation of the
score for every word in V, which is the bottleneck
during training, since it implies product of very
large matrices (|V| being usually anywhere from
tens to hundreds of thousand words).

2.2 Noise contrastive estimation

The idea behind noise contrastive estimation is to
learn the relative description of the data distribu-
tion P, to a reference noise distribution F,, by
learning their ratio Py/P,,. This is done by draw-
ing samples from the noise distribution and learn-
ing to discriminate between the two sets via a clas-
sification task. Considering a mixture of the data
and noise distribution, for each example w with
a context H from the data D, we draw k noise
samples from P, With the logistic regression,
we want to estimate the posterior probability of
which class C' (C' = 1 for the data, C = 0 for
the noise) the sample comes from. Since we want
to approach the data distribution with our model
of parameters 6 the conditional class probabilities
are:
PH(w|C =1) = P (w)
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and
P (w|C = 0) = P (w)

which gives posterior class probabilities:

Py (w)
P (w) + kP (w)

PH(C = 1]w) = 3)

which can be rewritten as:

PH
PH(C = 1|w) = oy, <log P@EZ;) &)
with:
_ 1
7k (1) = 1+ kexp(—u)

The reformulation obtained in equation 4 shows
that training a classifier based on a logistic re-
gression will estimate the log-ratio of the two dis-
tributions. This allows the learned distribution
to be unnormalized, as the partition function is
parametrized separately. A normalizing parame-
ter ¢ is added, as following:

PgH(w) = sg,(w, H) exp(cH)

However, this parametrization is context-
dependent. In (Mnih and Teh, 2012), the authors
argue that these context-dependent parameters ¢
can be put to zero, and that given the number of
free parameters, the output scores for each context
sg, (8, H) will self-normalize.

The objective function is given by maximizing
the log-likelihood of the true example w to belong
to class C' = 1 and the noise samples (w7 )1<j<k
to C = 0, which is, for one true examplelz

S0 (wa H)
so(w, H) + kPH (w)
kP (u?)
so(wf, H) + kP (w])
(5)
In order to obtain the global objective to maxi-
mize, we sum on all examples (H,w) € D:

Jo= Y Ji'(w)

H,weD

Ty

(w) =log

(6)

'"We keep the notation sq (w, H) instead of sg, (w, H) for
readability.
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Figure 1: Comparative training of 3-grams neural language models with £ = 25 noise samples by
positive example, with the unigram, uniform, and bigram distribution as noise distributions. Data are
recorded over the first epoch. In the first column are shown minus the NCE score, and its fraction
concerning true data. In the middle, are shown the negative log-likelihood and the log of the partition
function. In the last column, are shown the mean posterior probabilities of classifying data as data, and

noise as noise.

3 Experimental set-up

Noise contrastive estimation offers theoretical
guarantees (Gutmann and Hyvirinen, 2010). First,
the maximum for a global objective defined on an
unlimited amount of data is reached for sy =
log P4, and is the only extrema under mild con-
ditions on the noise distribution. Secondly, the
parameters that maximize our experimental objec-
tive converge to * in probability as the amount of
data grows. Finally, as the number & of noise sam-
ples by example increases, the choice of the noise
distribution P,, has less impact on the estimation
accuracy. Still, the noise distribution should be
chosen close to the data distribution, to avoid a
too simplistic classification task which could stop
the learning process too early. To a certain extent,
we can describe it as a trade-off between the num-
ber of samples and the effort we need to put on a
’good’ noise distribution.

Considering these properties, we investigate the
impact of the noise distribution on the training of
language models. (Mnih and Teh, 2012) exper-
imented with uniform and unigram distributions,
while most of the subsequent literature used the
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unigram, excepted for (Zoph et al., 2016), who
used the uniform with a very large vocabulary.

To monitor the training process with Noise-
contrastive estimation, we report the average neg-
ative log-likelihood of the model, and its average
log-partition function (‘—11)‘ > logZ(H)). In

(H,w)eD
addition to the NCE score, we consider its true
data term, defined by log %, which
quantifies how well the model is able to recognize
examples from true data as such, and can be used
to estimate the posterior probabilities of each class

during training (as described in equation 3).

Training was made on a relatively short En-
glish corpus (news-commentary 2012) of 4.2M
words with a full vocabulary of ~ 70K words.
We trained simple feed-forward n-grams neural
language models with Tensorflow (Abadi et al.,
2015)?. Results are recorded on the training data®.

2As our goal is not performance, we choose a simple and
time-efficient model, with a context of 3 words, one hidden
layer, and embedding and hidden dimension of 50 and 100.
3We use a validation set to avoid overfitting.



4 Experiments and Results

The first series of experiments compares different
choices of noise distribution (uniform, unigram
and bigram) for various vocabulary sizes (from
~25K to the full vocabulary of ~70K words). Fig-
ure 1 gathers the evolution of different quantities
observed during the first training epoch when se-
lecting all words appearing more than once (~40K
words). The same trend is observed for all vocab-
ulary sizes.

For the three noise distributions, the NCE score
seems to converge. However, for the unigram dis-
tribution, the log-partition function does not de-
crease, thus neither does the log-likelihood. Inter-
estingly, the posterior classification probabilities
shown in the third column reveal a very ineffec-
tive behaviour: almost all the positive examples
are classified in the noise class.

On the contrary, the use of the uniform distribu-
tion yields more consistent results, despite the fact
that it is slow to learn.

Finally, learning with the bigram noise distribu-
tion shows a very consistent behaviour with a log
partition function converging steadily to zero, as
well as a negative log-likelihood on par with MLE
training. It is moreover very data-efficient, com-
pared to the uniform distribution.

k | 25 100 200 500 |
Uniform 209 105 81 7.1
Unigram 29.7 329 305 185
Unigram (o = 0.25) | 25.0 8.1 6.9 6.6
Bigram 66 65 65 65

Table 1: Negative log-likelihood after one epoch
of training with a full vocabulary, for various noise
distributions and a varying number of noise sam-
ples k

Table 1 shows the negative log-likelihood
reached after one epoch of training, for a vary-
ing number of noise samples. For the sake of
efficiency with context-independant noise distri-
butions, we used for these experiments the NCE
implementation native to Tensorflow, for which
the noise samples are re-used for all the positive
examples in the training batch. While this cer-
tainly lowers the performance of the algorithm, we
believe it still demonstrates how importantly the
convergence speed is impacted by the number of
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noise samples for context-independant noise dis-
tributions, compared to the bigram distribution.

However, using the bigram distribution implies
to maintain bigram counts. This can be costly
with a large vocabulary size, but not prohibitive.
We thus make further experiments with context-
independent noise distributions.

A common trick, when using any kind of neg-
ative sampling, is to employ a distortion coeffi-
cient 0 < a < 1 to smooth the unigram distri-
bution, by raising every count ¢(w) to c(w)®, as
it is done in (Mikolov et al., 2013). We can then
try to get the good’ of each distribution, which
is a balance between the sampling of frequent and
rare words as noise, while staying close to the data.
Results are shown on figure 2. Distortion heavily
influences how the model converges: being closer
to the uniform distribution makes training easier,
while retaining the unigram distribution’s shape is
still needed. This is also shown in table 1.

To get a better idea of the differences between
those distributions, we first examine the ability of
the models to recognize positive examples as such
for a portion of the vocabulary containing the most
frequent words. The two top graphs of figure 3
show that both the uniform and a distorted uni-
gram distribution help the model to learn to clas-
sify the 1000 most frequent words, while almost
no information seems to be kept on the rest (which
represents ~ i of the training data). However,
the model using a distorted unigram seems a little
more balanced in what it learns, for about the same
average performance. The third graph shows that
its log-partition function is behaving quite better,
which explains the negative log-likelihood gap ob-
served in figure 2 between these two distributions.

40
35 f\

A

30\ —&— a=0
25| —e— a=0.25
20 o —v— a=0.5
15 o— a=0.75
1(5) A a=1

0

0 1 2 3 4 5

Figure 2: Comparative training of full vocabulary
models with £ = 100 noise samples for a varying
distortion, on 5 epochs.
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Figure 3: Mean posterior probabilities of recog-
nizing true examples coming from the training
data as such, for the 1K most frequent words,
the rest of the vocabulary, and the average, for
a uniform and a unigram distribution with dis-
tortion. The bottom graph shows the two log-
partition functions. Training is done on full vo-
cabulary models, with k& = 100 noise samples, on
5 epochs.

These results show how changing the shape of
the noise distribution can positively affect train-
ing: using distortion allows to smooth the uni-
gram distribution, avoiding to sample only fre-
quent words, while reaching a better negative log-
likelihood than with a uniform distribution. How-
ever, as indicated by table 1, models trained with a
bigram noise distribution need far less noise sam-
ples or data.
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5 Conclusion

Given the difficulty to train neural language mod-
els with NCE for large vocabularies, this paper
aimed to get a better understanding of its mech-
anisms and weaknesses. Our results indicate that
the theoretical trade-off between the number of
noise samples and the effort we need to put on
a ’good’ noise distribution is verified in practice.
It also impacts the quantity of training data re-
quired, and the training stability. Notably, a con-
text dependent noise distribution yields a satisfac-
tory classification task, along with a faster and
steadier training. In the future, we project to work
on an intermediate context-dependent noise dis-
tribution, which would be able to scale well with
large vocabularies.
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Abstract

Deep neural networks have achieved re-
markable results across many language
processing tasks, however they have been
shown to be susceptible to overfitting and
highly sensitive to noise, including ad-
versarial attacks. In this work, we pro-
pose a linguistically-motivated approach
for training robust models based on ex-
posing the model to corrupted text exam-
ples at training time. We consider sev-
eral flavours of linguistically plausible cor-
ruption, include lexical semantic and syn-
tactic methods. Empirically, we evaluate
our method with a convolutional neural
model across a range of sentiment analy-
sis datasets. Compared with a baseline and
the dropout method, our method achieves
better overall performance.

1 Introduction

Deep learning has achieved state-of-the-art results
across a range of computer vision (Krizhevsky
et al., 2012), speech recognition (Graves et al.,
2013), and natural language processing tasks
(Bahdanau et al., 2015; Kalchbrenner et al., 2014,
Bitvai and Cohn, 2015). However, deep mod-
els tend to be overconfident in their predictions
over noisy test instances, including adversarial ex-
amples (Szegedy et al., 2014; Goodfellow et al.,
2015). A range of methods have been proposed to
train models to be more robust, such as injecting
noise into the data and hidden layers (Jiang et al.,
2009), dropout (Srivastava et al., 2014), and the
incorporation of explicit regularization terms into
the training objective (Ng, 2004; Li et al., 2016).
In this work, we propose a linguistically-
motivated method customised to text applications,
based on injecting different kinds of word- and
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Figure 1: Accuracy (%) drops as we increase ad-
versarial noise to word embeddings, as evaluated
on binary classification dataset MR.

sentence-level linguistic noise into the input text,
inspired by adversarial examples (Goodfellow et
al., 2015). Our method has its origins in computer
vision, where it has been shown that small pixel
perturbations indiscernible to humans can signif-
icantly distort the predictions of state-of-the-art
deep models (Szegedy et al., 2014; Nguyen et al.,
2015), an observation that has been harnessed in
recent work on adversarial training (Goodfellow et
al., 2015). This kind of noise is cheap to generate
for images and is transferable between different
models, but it is less clear how to generate analo-
gous textual noise while preserving the fidelity of
the training data, due to text being discrete and se-
quential in nature, with latent syntactic structure.
Based on the same linguistic intuition, adversarial
evaluation for natural language processing mod-
els was proposed by Smith (2012). Also, adver-
sarial learning for text, such as perceptron learn-
ing (Sggaard, 2013) and unsupervised estimation
methods (Smith and Eisner, 2005), have been stud-
ied in the language area.

Word embeddings learned from WORD2VEC

Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 21-27,

Valencia, Spain, April 3-7, 2017. (©2017 Association for Computational Linguistics



(Mikolov et al., 2013) and GLOVE (Pennington
et al., 2014) are now widely used as input to lan-
guage processing models, however these represen-
tations are highly susceptible to noise. For ex-
ample, Figure 1 shows that as we add adversarial
noise n = €V Loss(x,y,0) to WORD2VEC rep-
resentations, classification accuracy for a convolu-
tional model (Kim, 2014) over a sentiment classi-
fication task (Pang and Lee, 2008) drops apprecia-
bly, such that with only 1% perturbations, a state-
of-the-art model drops to the level of a random
classifier.

Word embeddings are not an intuitive represen-
tation of human language, and it is not immedi-
ately clear how to generate adversarial noise over
the raw text input without affecting the fidelity of
the data. In human-to-human textual communi-
cation such as chat and microblogs, humans are
remarkably resilient to “noise”, in terms of typos,
lexical and syntactic disfluencies, and the large va-
riety of semantically-equivalent ways of express-
ing the same content (Han and Baldwin, 2011;
Eisenstein, 2013; Baldwin et al., 2013; Pavlick
and Callison-Burch, 2016). These observations
are the inspiration for this work, in proposing a
training strategy based on the explicit generation
of linguistic corruption over the source training in-
stances, to train robust text models. Empirically,
we demonstrate the effectiveness of our method
over a range of sentiment analysis datasets us-
ing a state-of-the-art convolutional neural network
model (Kim, 2014). In this, we show that our
method is superior to a baseline and dropout (Sri-
vastava et al., 2014) using MAP training.'

2 Generating Text Noise

Our method involves the explicit generation of
several kinds of linguistic corruption, to train more
robust deep models. The first question is how to
generate the linguistic noise, focusing on English
for the purposes of this paper. We focus on the
generation of two classes of text noise: (1) syntac-
tic noise; and (2) semantic noise.’

Syntactic Noise The first class of linguistic
noise is syntactic, focusing on the syntactic struc-

'The implementation is freely available at https://
github.com/lrank/Linguistic_adversity

2We also experimented with a method which generates
lexical noise, but for the purposes of our experiments here, as
the vast majority of the generated candidates are OOV words,
it is largely equivalent to word dropout, and omitted from this

paper.
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ture of the input, either through explicit parsing
and generation using a deep linguistic parser, or
sentence compression.

For the deep linguistic parser, we use the LinGO
English Resource Grammar (“ERG”: Copestake
and Flickinger (2000)) with the ACE parser, based
on pyDelphin.> The ERG supports both pars-
ing and generation, via the semantic formalism
of Minimal Recursion Semantics (“MRS”: Copes-
take et al. (2005)). To generate paraphrases with
the ERG, we simply parse a given input, select
the preferred parse using a pretrained parse selec-
tion model (Oepen et al., 2002), and exhaustively
generate from the resultant MRS. We then use uni-
form random sampling to select from the genera-
tor outputs, which potentially numbers in the thou-
sands of variants. To handle unknown words dur-
ing parsing and generation, we use POS mapping
and introduce a unique relation for each unknown
word, which we use to substitute the unknown
word back in to the generation output. In practice,
the primary sources of “noise” introduced by the
ERG are due to topicalisation, adjective ordering,
fronting of adverbial phrases, and relativisation of
modifiers.

The second approach to syntactic noise is based
on sentence compression (“COMP”: Knight and
Marcu (2000)), which aims to “trim” an input of
peripheral content, while maintaining grammati-
cality, and also the syntax of the original as much
as possible. While the state-of-the-art in sentence
compression is based on deep learning methods
such as recurrent neural networks (Filippova et
al., 2015), we implement a simple parser-based
model, due to the lack of large-scale annotated
data for training and the fact that a relative lack
of precision in the output may ultimately help our
method. First, we parse the sentence using the
Stanford CoreNLP constituency parser (Chen and
Manning, 2014). Next, we model the conditional
probability of deleting a sub-tree C' with label S

given its parent node with label R by p(C|S, R) =
p(C,S,R)
Ecp(cvszR) ’

corpora of Clarke and Lapata (2006),* made up of
a few hundred labelled instances.

trained on the sentence compression

Semantic Noise The second class of linguistic
noise is semantic noise. Semantic noise is more
subtle than syntactic noise, as we must be careful

*https://github.com/delph-in/pydelphin
*http://jamesclarke.net/research/
resources/



not to impact on the fidelity of the original labels,
which can readily occur with full paraphrasing or
abstractive summarisation. As such, we focus on
lexical substitution of near-synonyms of words in
the original text, and experiment with two methods
for generating near-synonyms.

Our approach to generating semantic noise pro-
ceeds as follows. First, we apply filters to iden-
tify words which should not be candidates for lex-
ical substitution, namely words which are parts
of named entities or function words. As such,
we use the Stanford CoreNLP POS tagger and
named entity recogniser (Finkel et al., 2005; Chen
and Manning, 2014), and identify “substitutable
words” as those which are nouns, verbs, adjectives
or adverbs, and not part of a named entity. For
each substitutable word w, we generate the set of
substitution candidates s(w). For each candidate
w; € {w}Us(w) we allow the original word to be
preserved with p(w;) = «, and share the remain-
ing 1 —« proportional to the language model score
based on substituting w; into the original text. For
this, we use the pre-trained US English language
model from the CMU Sphinx Speech Recognition
toolkit.> Finally, we sample from the probability
distribution {p(w;) : w; € {w} U s(w)} for each
substitutable word w to generate a semantically-
corrupted version of the original.

We experiment with two approaches to gen-
erating the substitution candidates. The first is
based on Princeton WordNet (“WN”: Miller et
al. (1990)), over all synsets that a given substi-
tutable word occurs in, using the NLTK API (Bird,
2006). The second is based on the “counter-
fitting” method of Mrksic et al. (2016) (“CFIT”),
whereby word embeddings from WORD2VEC are
projected based on a supervised objective func-
tion which penalises similarity between antonym
pairs, and rewards similarity between synonym
pairs, as trained on 10k English news sentences
from WMT14 (Bojar et al., 2014).

Word Dropout As a standard approach to train-
ing robust models, we use word dropout (Srivas-
tava et al., 2014; Pham et al., 2014). Dropout can
be viewed as a method for zeroing out noise, and
is first-order equivalent to an /o regularizer applied
after feature scaling (Wager et al., 2013).

Shttps://sourceforge.net/projects/
cmusphinx/
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Method Example
Original The cat sat on the mat .
ERG On the mat sat the cat .
Comp The cat sat on ¢ mat ¢
WN The kat sat on the flatness .
CFIT The pet stood onto the mat .

Table 1: Examples of generated sentences across
four proposed methods. Modified words are
marked by “underwave” and omitted words are de-

noted with a “¢o”.

Table 1 shows an example sentence and sample
corrupted outputs after applying each type of lin-
guistic noise. The ERG seldom changes words,
and instead tends to reorder the words based on
syntactic alternation. COMP performs like word
dropout in that it tends to remove tokens with low
semantic content and to generate complete sen-
tences. WN and CFIT both only modify the text at
the word level, based on near-synonyms and words
with similar semantic function, respectively.

3 Models and Training

We evaluate our methods on several sentence clas-
sification tasks, using a convolutional neural net-
work (“CNN”’) model (Kim, 2014). Note that our
method corrupts the input directly, and is thus eas-
ily transferrable to other classes of models (e.g.,
other deep learning or linear models).

Convolutional Neural Network The CNN op-
erates at the sentence level by first embedding
each word using a lookup table which is stacked
into the sentence matrix Eg. A 1d convolutional
layer is then applied to Eg, which applies a se-
ries of filters over each window of ¢ words, with
each filter employing a rectifier transform func-
tion. MaxPooling is applied over each set of fil-
ter outputs to result in a fixed-size sentence repre-
sentation.® The sentence vector is fed into a final
Softmax layer to generate a probability distribu-
tion over classification labels.

The model is trained to minimise the cross-
entropy between the ground-truth and the model
prediction, using the Adam Optimizer (Kingma
and Ba, 2015) with learning rate 10~* and a

®We use window widths of size t € {3, 4,5}, and 128 fil-
ters for each size. MaxPooling is applied to each of the three
sizes separately, and the resulting vectors are concatenated to
form the sentence representation.



batch size of 128. We initialise the embedding
with dimension m 300 Google pre-trained
WORD2VEC word embeddings (Mikolov et al.,
2013). Words not in the pre-trained vocabulary are
initialized randomly using a uniform distribution
U(]—0.25,0.25)™).

Injecting Noise during Training Our proposed
method involves corrupting the training input with
adversarial noise of various kinds. All the meth-
ods are non-deterministic, involving random sam-
pling. They are applied afresh every epoch, such
that each time an instance is processed, it will
have a different input form.” The two semantic
approaches (WN and CFIT) support configurable
noise rates in terms of the proportion of substi-
tutable words that are corrupted. Accordingly,
we experiment with two thresholds on the random
variable for substitution of each word: low (“lo”;
a = 0.5) and high (“hi”’; o = 0). Besides the
above methods which employ a single type noise,
we experiment with a combination (COMB) of the
four different noise types (ERG + COMP + WNj,
+ CFIT},), by uniformly randomly choosing one
of the four methods for noise generation each time
we process a training instance.

Datasets
datasets:
e MR: sentence polarity dataset from movie re-
views (Pang and Lee, 2008)8
e CR: customer review dataset (Hu and Liu,
2004)°
e Subj: subjectivity dataset (Pang and Lee,
2005)8
e SST: Stanford Sentiment Treebank, using
the 2-class configuration (Socher et al.,
2013)10
We evaluate using classification accuracy, based
on both in-domain evaluation!' and a cross-
domain setting, in which we evaluate a model
trained on MR and tested on CR, and vice versa.
This last setting characterises a realistic applica-

We experiment on the following

"Using a single application of noise is less effective, but
still yields improvements over baseline methods including
dropout.

$https://www.cs.cornell.edu/people/
pabo/movie-review—-data/

*http://www.cs.uic.edu/~1iub/FBS/
sentiment-analysis.html

Yhttp://nlp.stanford.edu/sentiment/

"Where there is no pre-defined training/test split for a
given dataset, we use 10-fold cross validation. See Kim
(2014) for more details on the datasets and evaluation set-
tings.
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tion scenario, where robustness to vocabulary shift
and other differences in the input is paramount.

4 Experimental Results and Analysis

Table 2 presents the results of training with dif-
ferent sources of linguistic corruption in the in-
domain and cross-domain settings. In general, the
proposed methods perform better than the base-
line and dropout, and semantic noise using WN
achieves consistent improvements across all set-
tings. The COMB method uniformly outperforms
the other methods for all in-domain evaluations,
indicating that the improvements from training
with different types of noise are orthogonal. Note
that improvements are smaller on SST and MR
than CR and Subj for all methods. Almost ev-
ery method improves over word dropout, except
counter-fitting at a high noise level. Also surpris-
ing is the fact that dropout shows no improvement
over standard training, and is overall mildly detri-
mental.

Our intuition behind why WN consistently out-
performs the baseline methods and other single
sources of noise is it sometimes performs sim-
ilarity to dropout, in replacing common words
with rare ones, and sometimes substitutes frequent
words for frequent words, leading to better gen-
eralisation in the word embeddings. To test this
hypothesis, we computed nearest neighbours in
the word embedding space for both the baseline
method and the WN method. For example, the
top-3 nearest neighbours for superior in CR are
exceptional, excellent and unmatched for WN,
while for the baseline, they are inferior, excep-
tional and excellent. That is, similar to the intu-
ition behind counter-fitting, the methods appears
to learn to differentiate between synonyms and
antonyms, in a manner which is sensitised to the
target domain.

Although similar in function to WN, the
counter-fitting based method performs unexpect-
edly poorly. This appears to be a consequence of
the training of these embeddings, namely that the
corpus was much smaller than that used for the
WORD2VEC training, and consequently coverage
on our corpora was substantially lower, leading
to the approach making inappropriate substitutions
and not aiding model robustness.

Sentence compression was found to be highly
effective. To illustrate by example, the sentence
Player has a problem with dual-layer dvd’s such



In domain Cross domain
Method
MR CR Subj SST MR/CR CR/MR

baseline 80.4 82.6 924 84.5 67.0 67.2
dropout 80.1 824 92.6 84.5 67.7 67.4
ERG 80.0 82.8 929 844 68.1 67.3
ComMp 79.5 83.1 93.2 843 68.1 67.5
WN, 809 832 93.1 84.3 68.5 67.3
WN,; 81.2 838 929 84.6 67.9 67.5
CFiT,, 79.8 82,7 92.6 84.1 68.9 67.3
CFiTy; 76.2 789 91.0 80.3 67.4 64.2
CoMB 81.4 84.3 93.6 84.8 68.4 67.4

Table 2: Accuracy (%) of the CNN, in four in-domain settings, and two cross-domain settings, with
word dropout (“‘dropout”), or linguistic corruption based on different sources of syntactic and semantic
corruption. The best result for each dataset is indicated in bold.

as Alias seasons 1 and season 2 is compressed
into has a problem with dual-layer dvd which pre-
serves the key information that we expect to be
useful for model learning. This allows the model
to better learn the components of the input that are
predictive of sentiment.

Syntactic paraphrasing (ERG) tends to primar-
ily corrupt the word order, with fewer lexical sub-
stitutions. Thus, the model is less prone to over-
fitting to local n-gram features, and focuses on
learning words and phrases that are genuinely pre-
dictive of sentiment.

5 Conclusions

In this paper, we present a training method that
corrupts training examples with linguistic noise,
in order to learn more robust models. Based on
evaluation over several sentiment analysis datasets
with convolutional neural networks, we show that
this method outperforms standard training and
dropout, both for in-domain and out-of-domain
application. Our approach has wide-spread po-
tential to also benefit other types of discriminative
model and in a range of other language processing
tasks.
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Abstract

We explore whether social media can pro-
vide a window into community real estate
— foreclosure rates and price changes —
beyond that of traditional economic and
demographic variables. We find language
use in Twitter not only predicts real estate
outcomes as well as traditional variables
across counties, but that including Twit-
ter language in traditional models leads
to a significant improvement (e.g. from
Pearson r = .50 to r = .59 for price
changes). We overcome the challenge of
the relative sparsity and noise in Twitter
language variables by showing that train-
ing on the residual error of the traditional
models leads to more accurate overall as-
sessments. Finally, we discover that it is
Twitter language related to business (e.g.
‘company’, ‘marketing’) and technology
(e.g. ‘technology’, ‘internet’), among oth-
ers, that yield predictive power over eco-
nomics.

1 Introduction

The massive amount of text provided by users
of social media like Facebook and Twitter give
researchers the opportunity to investigate topics
that were not previously tangible. Specifically,
the study of economic outcomes has been turn-
ing to the use of social media data in order cap-
ture non-traditional factors like consumer mood.
For instance, researchers have attempted to predict
the stock market by measuring mood from twitter
feeds (Bollen et al., 2011), used Twitter data to
measure socio-economic indicators and financial
markets (Mao, 2015), shown correlation of con-
sumer confidence with sentiment word frequen-
cies in twitter messages over time (O’Connor et
al., 2010), and predicted movie revenue using so-
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cial media and text mining (Asur and Huberman,
2010; Joshi et al., 2010; Yu et al., 2012).

Here, we attempt to leverage social media to
understand another economic phenomena, real es-
tate. Our goal is to determine whether language
from Twitter can predict real-estate foreclosure
rates and price changes, cross-sectionally across
counties, beyond that of traditional economic vari-
ables. We suspect this is possible because a com-
munity’s language in social media may capture
economic-related community characteristics that
are not otherwise easily available. However, the
challenge is incorporating noisy high-dimensional
language features in such a way that they can con-
tribute beyond the robust low-dimensional tradi-
tional predictors (i.e. demographics, median in-
come, education rates, unemployment rates).

The contributions of this paper follow. First, we
show that county real estate market outcomes can
be predicted from language in social media be-
yond traditional factors. Second, we address the
challenge of effectively leveraging multi-modal
feature types (i.e. socioeconomic variables, which
are individually very predictive (Nguyen, 2016);
and social media linguistic features, which are in-
dividually noisy) by demonstrating that a 2-step
residualized control approach to learning a pre-
dictive model leads to more accuracy than jointly
learning all feature parameters at once. This rep-
resents the first work to investigate the use of lan-
guage in Twitter to predict real estate related out-
comes — foreclosure and increased price rates.

2 Related Work

Much of the research on prediction of hous-
ing markets has focused on economic condi-
tions. For instance, others have found strong re-
lationships between housing prices and the stock
market(Gyourko and Keim, 1992; Case et al.,
2005), credit and income (Ortalo-Magne and
Rady, 2006), past market prices (Ghysels et al.,
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Figure 1: Procedure of building language model over the residual error of the control model.

2012; Tse, 1997), and market sentiment (i.e. from
surveys) (Hui and Wang, 2014).

Except Kaplanski et al. (2012), who looked at
daylight hours, few have ventured beyond direct
economic factors as predictors of real estate out-
comes. Our belief is that language analyses in so-
cial media can offer predictive value beyond that
of economics in that they capture aspects of peo-
ple’s daily life that are not traditionally available
to economists.

While exploiting social media language has not
been studied in the real estate domain, use of
language predictors has been increasing for other
economic-related applications, like measuring the
public health using analysis of messages in so-
cial media (Paul and Dredze, 2011; Eichstaedt
et al., 2015; Culotta, 2014), in addition to pre-
dicting stock market exploiting text in social me-
dia (Bollen et al., 2011; Zhang et al., 2011; Tsola-
cos, 2012), and predicting political behaviour con-
sidering tweets (DiGrazia et al., 2013). Perhaps
the most similar work to ours used manually se-
lected keywords in Google searches to predict the
overall US housing market (Wu and Brynjolfsson,
2013). Still, while Google has allowed researchers
to tap into one aspect of the online world, search
data is only available for specific scales and rely-
ing on manually-chosen keywords can restrict pre-
dictive performance (Schwartz et al., 2013). We
leverage open-vocabulary features (i.e. not based
on manual keyword lists) and attempt to predict
real-estate at the level of US counties.

3 Language Model

We learn a model from the Twitter language of
US counties to predict real estate outcomes. We
extract community language features from tweets
and then we learn models for the cross-county
prediction task, handling both traditional predic-
tors and linguistic predictors. We focus on two
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outcomes per county, foreclosure and increased
price rates (zillow website, 2016), and consider
a wide variety of traditional socioeconomic and
demographic predictors to compare. Specifically,
socioeconomic variables include median income,
unemployment rate and percentage with bachelors
degrees while demographic variables include me-
dian age; percentage: female, black, hispanic, for-
eign born, married; and population density. All
variables were obtained from US Census (census
bureau, 2010), and we henceforth refer to them as
a whole as controls.

3.1 Features

We build feature vectors from the raw tweets by
extracting 1, 2, and 3-grams as well as mentions
of 2000 LDA topics based on posteriors we down-
loaded which were previously estimated from so-
cial media (Schwartz et al., 2013). Features were
limited to those mentioned by at least 25% of
counties, leaving us with 13,359 1to3-grams and
all 2, 000 topics.

Since there are only 1,347 counties, to which
we plan to apply the model (data described in
evaluation) but tens of thousands of predictors,
we utilize feature selection and dimensional re-
duction to avoid overfitting. We limit ourselves
to features with at least a small linear relation-
ship to the outcome, having a family-wise er-
ror alpha of 200 (Efron, 2012). Then, we per-
form randomized principal components analysis
(RPCA) , an approximate PCA based on stochastic
re-sampling(Rokhlin et al., 2009), which in effect
combines co-varying features and leaves a more
reasonable number of parameters to estimate dur-
ing learning.!

'Since the topic features are already a combination of n-
grams, they are less sparse and presumably less noisy. Thus,
we apply the feature selection and dimensionality reduction

steps for n-grams and topics independently, keeping 90 di-
mensions of topics and 45 dimensions of n-grams.



socioeconomics demographics socioeconomics + demographics
Fc Ip Fc Ip Fc Ip
no lang 0.34 0.42 0.24 0.44 0.37 0.50
with lang (residualized control) 0.41 0.56 0.39 0.57 0.42 0.59

Table 1: Comparing the Pearson r of adding language model over the residual of the control model
vs. control model for ’foreclosure’ and ’increased price’ rates. Fc stands for foreclosure rate and Ip is
increased-price rate. bold indicates significant improvement (p < 0.05) over no language.

3.2 Learning

We learn four different models: (1) a control
model using the socioeconomic & demographic
variables, (2) a language model using only tweet-
derived features, (3) a combined model using both
socioeconomics & demographics and language in
a single model, and (4) a language over residual-
ized control model fitting language to the residual
error of the control model. With the control model
as our baseline, we investigate whether language
alone (model 2) or adding language to the control
model (models 3 and 4) increases accuracy. All
models except the 4th are learned via L2 penal-
ized (“ridge”) regression (Goeman et al., 2016).2

Residualized Control Approach In order to ef-
fectively exploit Twitter language in our model,
we suspect that we need to treat the language fea-
tures (which are numerous, noisy, more biased,
and non-normal) differently than the control vari-
ables (which are few, mostly unbiased, and mostly
normal). In other words, simply combining the
two may lead to losing the importance of the con-
trols amongst the numerous features.? As depicted
in Figure 1, we build a language model over the
residual error of the control model, allowing in-
dependent consideration of the two sets of fea-
tures and different penalties. More specifically,
the training phase consists of three steps: (1) train
a model using the socioeconomics & demograph-
ics, which is the control model, as in Eq.1, (2)
calculate the training errors and consider this er-
ror as our new label, described in Eq.2, and (3)
train a language model over this new data, which
is shown in Eq.3. In the end, our model is depicted
in Eq.4. In these equations « and +y are the coef-
ficient of control features and language features,
and /3 and A are the interceptions. For testing pur-

2For the control model, which has few features by com-
parison, the ridge penalty is essentially zero and standard
multivariate linear regression produces comparable results

3In fact, our results show such a combined model per-
forms only marginally better than a language alone model.
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pose we feed each data to both control model and
language model, and then report the summation of
their predictions as the final predicted label.

9= a x Xeontrol + B (D
€e=y—y 2)
€=y X Xlanguage +A 3)

-y aXXcontv"ol"i_’}/XXlanguage+()\+/6) (4)

The resulting model, a combination of the control
model and language model, is still an affine model
w.r.t. the language and control features. Thus,
its possible ridge-regression over all the features
at once could give us the same result (i.e. hy-
perplane). However, since we suspect that each
socioeconomic and demographic feature are more
informative and less noisy than the Twitter fea-
tures, we explore this two-stage learning proce-
dure in order to bias our model toward favoring
the role of socioeconomics & demographics over
language features.

4 Evaluation

Here we evaluate the power of Twitter language
to predict cross-county real-estate outcomes com-
pared to demographic and socioeconomic factors.

4.1 Data Set

We are using 3 different sources of data: a lan-
guage dataset from Twitter messages, a control
dataset of socioeconomic and demographic vari-
ables, and an outcome dataset of housing related
data. Our language data was derived from Twit-
ter’s 1% random stream collected from 2011 to
2013 and included 131 million tweets that are
mapped to 1,347 counties based on their self-
reported location following the procedure of Eich-
staedt et al. (2015). Our control data included
the previously mentioned socioeconomic and de-
mographic variables which were obtained from
2010 US Census data (census bureau, 2010). This



H Foreclosure | Increased-price
language 0.38 0.48
combined 0.40 0.49
residualized control 0.42 0.59

Table 2: Comparing the Pearson r of building lan-
guage model over residual of control model vs.
combining the language and the control features
into a single model. bold indicates significant im-
provement (p < 0.05) over combined model.

dataset is only collected every 10 years, so the
2010 US Census is the most recent dataset for all
of the socioeconomic and demographic variables
at the county level.

As outcomes, our real estate data, including
the foreclosure rate (the number of homes (per
10,000 homes sold) that were foreclosed) and
increased-price rate (the percentage of homes with
values that have increased in the past year) were
downloaded from Zillow and covering 2011 to
2013 (zillow website, 2016). Considering all these
data sets, we end up with 427 counties having fore-
closure rate outcome data, and 717 counties hav-
ing increase price rate data.*.

4.2 Results

Table 1 reports the effect of building a language
model over the residual of socioeconomics, de-
mographics, and socioeconomics & demograph-
ics by comparing them with the control models.
All of the results were produced by 10 fold cross-
validation. We see a significant improvement of
exploiting language (p < 0.05 according to paired
t-test) above and beyond socioeconomic and de-
mographic factors for both the outcomes of fore-
closures (from » = .37 to r = .42) and increased
price (from r = .50 to r = .59). This suggests
that language on Twitter does, in fact, capture in-
formation about a community that is not captured
by the traditional predictors.

We next explored whether building language
model using the residualized control approach
performs better than a model combining control
and language features in a single learning step.
Results are in Table 2, showing that building lan-
guage model over residual performs significantly
better than a combined model for both of the out-

“The control and real estate datasets can be found here:
http://www3.cs.stonybrook.edu/~mzamani/
datasets/eacl2017/
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comes. In fact, the gap is .10 in Pearson r for in-
creased price. Further, it also appears possible that
the combined feature model could perform worse
than the control model in some cases, presumably
because the controls are lost when being fit with
the language. In a sense, the residualized con-
trol approach utilizes a prior that each socioeco-
nomic and demographic feature are more informa-
tive than a single word and should thus receive a
different penalty parameter or be fit independently.
It worth noting that this method is applicable for
many different learning algorithms (e.g. SVM,
deep convolutional net).

As mentioned previously, one limitation of the
traditional predictors is that many are only avail-
able every 10 years as part of the US Census. We
primarily focused on Twitter data that was a cou-
ple years removed from the last census, which may
explain the improvement. Thus, we also ran an ex-
periment using the Twitter data from (Schwartz et
al., 2013) which spans 2009 to 2010, and found
similar results: the residualized control approach
improved the Pearson r for ‘increased price‘ from
0.36 to 0.44 and for ‘foreclosure‘ from 0.65 to
0.69. Thus, the improvements provided by the
residualized control approach do not appear to be
due to the fact that twitter data are newer than con-
trol data.

We have shown that Twitter language is adding
predictive information about the real estate mar-
ket beyond that of traditional socioeconomic pre-
dictors. So, just what exactly are tweets captur-
ing that socioeconomics are not? Toward this,
we ran a differential language analysis to iden-
tify the top 50 most predictive features (indepen-
dently) of increased price, the outcome which we
performed the best. Figure 2 shows the results
controlled by socioeconomic and location features
(US state indicator), limited to those passing a
Benjamini-Hochberg False Discovery rate alpha
of 0.01 (Benjamini and Hochberg, 1995). We see
that, although each displayed n-gram was predic-
tive beyond socioeconomics, many of them sug-
gest a more nuanced economic characterization of
a community (e.g. ‘technology’, ‘media’, ‘inter-
net’, and ‘marketing’), suggesting avenues of fu-
ture exploration for better understanding the hous-
ing market.
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5 Conclusion

While the real estate market of a community is be-
lieved to be affected by many factors, traditionally
only coarse economic and demographic variables
have been accessible at scale to market researchers
and forecasters. Here, we explored the predic-
tion power of language in the real estate mar-
ket as compared to traditional predictors, show-
ing that language in twitter is predictive of fore-
closure rates and price increases and that a residu-
alized control approach to combine language fea-
tures with traditional variables can lead to more
accurate models. We believe this can open the
door to more a nuanced and precise understanding
of the real-estate market.
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Abstract

We present a new Lexical Simplification
approach that exploits Neural Networks to
learn substitutions from the Newsela cor-
pus - a large set of professionally produced
simplifications. We extract candidate sub-
stitutions by combining the Newsela cor-
pus with a retrofitted context-aware word
embeddings model and rank them using
a new neural regression model that learns
rankings from annotated data. This strat-
egy leads to the highest Accuracy, Pre-
cision and F1 scores to date in standard
datasets for the task.

1 Introduction

In Lexical Simplification (LS), words and expres-
sions that challenge a target audience are replaced
with simpler alternatives. Early lexical simplifiers
(Devlin and Tait, 1998; Carroll et al., 1998) com-
bine WordNet (Fellbaum, 1998) and frequency
information such as Kucera-Francis coefficients
(Rudell, 1993). Modern simplifiers are more so-
phisticated, but most of them still adhere to the
following pipeline: Complex Word Identification
(CWI) to select words to simplify; Substitution
Generation (SG) to produce candidate substitu-
tions for each complex word; Substitution Selec-
tion (SS) to filter candidates that do not fit the con-
text of the complex word; and Substitution Rank-
ing (SR) to rank them according to their simplicity.

The most effective LS approaches exploit Ma-
chine Learning techniques. In CWI, ensembles
that use large corpora and thesauri dominate the
top 10 systems in the CWI task of SemEval
2016 (Paetzold and Specia, 2016d). In SG, Horn
et al. (2014) extract candidates from a parallel
Wikipedia and Simple Wikipedia corpus, yield-
ing major improvements over previous approaches
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(Devlin, 1999; Biran et al., 2011). Glavas and
§tajner (2015) and Paetzold and Specia (2016f)
employ word embedding models to generate can-
didates, leading to even better results.

In SR, the state-of-the-art performance is
achieved by employing supervised approaches:
SVMRank (Horn et al., 2014) and Boundary
Ranking (Paetzold and Specia, 2015). Supervised
approaches have the caveat of requiring annotated
data, but as a consequence they can adapt to the
needs of a specific target audience.

Recently, (Xu et al., 2015) introduced the
Newsela corpus, a new resource composed of
thousands of news articles simplified by profes-
sionals. Their analysis reveals the potential use of
this corpus in simplification, but thus far no sim-
plifiers exist that exploit this resource. The scale
of this corpus and the fact that it was created by
professionals opens new avenues for research, in-
cluding using Neural Network approaches, which
have proved promising for many related problems.

Neural Networks for supervised ranking have
performed well in Information Retrieval (Burges
et al., 2005), Medical Risk Evaluation (Caruana et
al., 1995) and Summarization (Cao et al., 2015),
among other tasks, which suggests that they could
be an interesting approach to SR. In the context of
LS, existing work has only exploited word embed-
dings as features for SG, SS and SR.

In this paper, we introduce an LS approach that
uses the Newsela corpus for SG and employs a
new regression model for Neural Ranking in SR
that addresses the task in three steps: Regression,
Ordering and Confidence Check.

2 Hybrid Substitution Generation

Our approach combines candidate substitutions
from two sources: the Newsela corpus and
retrofitted context-aware word embedding models.
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2.1 SG via Parallel Data

The Newsela corpus1 (version 2016-01-29.1) con-
tains 1,911 news articles in their original form, as
well as up to 5 versions simplified by trained pro-
fessionals to different reading levels. It has a total
of 10,787 documents, each with a unique article
identifier and a version indicator between 0 and 5,
where 0 refers to the article’s original form, and 5
to its simplest version.

To employ the Newsela corpus in SG, we first
produce sentence alignments for all pairs of ver-
sions of a given article. To do so, we use paragraph
and sentence alignment algorithms from (Paetzold
and Specia, 2016g). They align paragraphs with
sentences that have high TF-IDF similarity, con-
catenate aligned paragraphs, and finally align con-
catenated paragraphs at sentence-level using the
TF-IDF similarity between them. Using this algo-
rithm, we produce 550,644 sentence alignments.

We then tag sentences using the Stanford Tagger
(Toutanvoa and Manning, 2000), produce word
alignments using Meteor (Denkowski and Lavie,
2011), and extract candidates using a strategy sim-
ilar to that of Horn et al. (2014). First we con-
sider all aligned complex-to-simple word pairs as
candidates. Then we filter them by discarding
pairs which: do not share the same POS tag, have
at least one non-content word, have at least one
proper noun, or share the same stem. After filter-
ing, we inflect all nouns, verbs, adjectives and ad-
verbs to all possible variants. We then complement
the candidate substitutions from the Newsela cor-
pus using the following word embeddings model.

2.2 SG via Context-aware Word Embeddings

Paetzold and Specia (2016f) present a state-of-
the-art simplifier that generates candidates from
a context-aware word embeddings model trained
over a corpus composed of words concatenated
with universal POS tags. We take this approach
a step further by incorporating another enhance-
ment: lexicon retrofitting.

Faruqui et al. (2015) introduce an algorithm
that allows for typical embeddings to be retrofitted
over lexicon relations, such as synonymy, hyper-
nymy, etc. To retrofit the context-aware mod-
els from (Paetzold and Specia, 2016f), we con-
catenate the words in WordNet (Fellbaum, 1998)
with their universal POS tag, create a dictionary
containing mappings between word-tag pairs and

'https://newsela.com/data
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their synonyms, then use the algorithm described
in (Faruqui et al., 2015).

We train a bag-of-words (CBOW) model
(Mikolov et al., 2013b) of 1,300 dimensions with
word2vec (Mikolov et al., 2013a) using a corpus
of over 7 billion words that includes the SubIMDB
corpus (Paetzold and Specia, 2016b), UMBC web-
base?, News Crawl®, SUBTLEX (Brysbaert and
New, 2009), Wikipedia and Simple Wikipedia
(Kauchak, 2013). We retrofit the model over
WordNet’s synonym relations only. We choose
this model training configuration because it has
been shown to perform best for LS in a recent ex-
tensive benchmarking (Paetzold, 2016).

For each target word in the Newsela vocabu-
lary we then generate as complementary candidate
substitutions the three words in the model with the
lowest cosine distances from the target word that
have the same POS tag and are not a morphologi-
cal variant. As demonstrated by Paetzold and Spe-
cia (2016a), in SG parallel corpora tend to yield
higher Precision, but noticeably lower Recall than
embedding models. We add only three candidates
in order increase Recall without compromising the
high Precision from the Newsela corpus.

3 Unsupervised Substitution Selection

We pair our generator with the Unsupervised
Boundary Ranking SS approach from (Paetzold
and Specia, 2016f). They learn a supervised rank-
ing model over data gathered in unsupervised fash-
ion. Candidates are ranked according to how well
they fit the context of the target word, and a per-
centage of the worst ranking candidates is dis-
carded.

For training, the approach requires a set of com-
plex words in context along with candidate substi-
tutions for it. To produce this data, we generate
candidates for the complex words in all 929 sim-
plification instances of the BenchLS dataset (Paet-
zold and Specia, 2016a) using our SG approach.
The selector assigns label 1 to the complex words
and O to all candidates, then trains the model over
this data. During SS, we discard 50% of candi-
dates with the worst rankings. We chose this pro-
portion through experimentation. As features, we
use the same described in (Paetzold and Specia,
2016f).

“http://ebiquity.umbc.edu/resource/html/id/351
3http://www.statmt.org/wmt11/translation-task html



4 Neural Substitution Ranking

Our approach performs three steps:
Ordering and Confidence Check.

Regression,

4.1 Regression

In this step, we employ a multi-layer perceptron
to determine the ranking between candidate sub-
stitutions. The network (Figure 1) takes as input a
set of features from two candidates, and produces
a single value that represents how much simpler
candidate 1 is than candidate 2. If the value is
negative, then candidate 1 is simpler than 2, if it
is positive, candidate 2 is simpler than 1.
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Figure 1: Architecture of neural ranker
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Our network has three hidden layers with eight
nodes each. For training we use the LexMTurk
dataset (Horn et al., 2014), which contains 500 in-
stances composed of a sentence, a target complex
word and candidate substitutions ranked by sim-
plicity. Let ¢; and ¢y be a pair of candidates from
an instance, r; and 7y their simplicity ranks, and
®(c;) a function that maps a candidate ¢; to a set
of feature values. For each possible pair in each
instance of the LexMTurk dataset we create two
training instances: one with input [®(c1), P(c2)]
and reference output r; —ro, and one with input
[®(c2),P(c1)] and reference output 7o —71. We
train our model for 500 epochs. We use the same
n-gram probability features from SubIMDB used
by (Paetzold and Specia, 2015). Hidden layers use
the tanh activation function, and the output node
uses a linear function with Mean Average Error.

4.2 Ordering

Once the model is trained, we rank candidates by
simplicity. Let M (c;,c;) be the value estimated
by our model for a pair of candidates c; and c; of a
generated set C'. During the ordering, we calculate
the final score R(c;) of all candidates ¢; (Eq. 1).

Z M(Ci,Cj)

cj#cieC

(1)
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Then, we simply rank all candidates based on
R: the lower the score, the simpler a candidate is.

4.3 Confidence Check

Once candidates are ranked, in order to increase
the reliability of our simplifier, instead of replac-
ing the target complex word with the simplest can-
didate, we first compare the use of this candidate
against the original word in context, which can be
seen as a Confidence Check.

The target t is only replaced by the simplest
candidate c if the language model probability of
the trigram SJ ~, t, in which S] 5 is the bigram
of words precedlng t in posmon J of sentence S,
is smaller than that of trigram S] —, c. This type
of approach has been proved a rehable alternative
to simply adding the target complex word to the
candidate pool during ranking (Glavas and §tajner,
2015).

To calculate probabilities, we train a 5-gram
language model over SubIMDB, since its word
and n-gram frequencies have been shown to cor-
relate with simplicity better than those from other
larger corpora (Paetzold and Specia, 2016b). We
henceforth refer to our LS approach (SG+SS+SR)
as NNLS.

5 Substitution Generation Evaluation

Here we assess the performance of our SG ap-
proach in isolation (NNLS/SG), and when paired
with our SS strategy (NNLS/SG+SS), as described
in Sections 2 and 3. We compare them to the gen-
erators of all approaches featured in the bench-
marks of Paetzold and Specia (2016a): Devlin
(Devlin and Tait, 1998), Biran (Biran et al., 2011),
Yamamoto (Kajiwara et al., 2013), Horn (Horn
et al., 2014), Glavas (Glavas and gtajner, 2015)
and Paetzold (Paetzold and Specia, 2015; Paetzold
and Specia, 2016f). These SG strategies extract
candidates from WordNet, Wikipedia and Simple
Wikipedia articles, Merriam dictionary, sentence-
aligned Wikipedia and Simple Wikipedia articles,
typical word embeddings and context-aware word
embeddings, respectively. They are all available in
the LEXenstein framework (Paetzold and Specia,
2015).

We use two common evaluation datasets for
LS: BenchLS (Paetzold and Specia, 2016a), which
contains 929 instances and is annotated by English
speakers from the U.S, and NNSEval (Paetzold
and Specia, 2016f), which contains 239 instances



and is annotated by non-native English speakers.
Each instance is composed of a sentence, a tar-
get complex word, and a set of gold candidates
ranked by simplicity. We use the same metrics
featured in (Paetzold and Specia, 2016a), which
are the well known Precision, Recall and F1. No-
tice that, since these datasets already provide tar-
get words deemed complex by human annotators,
we do not address CWI in our evaluations.

The results in Table 1 reveal that our SG ap-
proach outperforms all others in Precision and F1
by a considerable margin, and that our SS ap-
proach leads to noticeable increases in Precision
at almost no cost in Recall.

BenchLS NNSeval

P R F1 P R F1
Devlin 0.133 0.153 0.143]0.092 0.093 0.092
Biran 0.130 0.144 0.136]0.084 0.079 0.081
Yamamoto 0.032 0.087 0.047|0.026 0.061 0.037
Horn 0.235 0.131 0.168]0.134 0.088 0.106
Glavas 0.142 0.191 0.163|0.105 0.141 0.121
Paetzold 0.180 0.252 0.210(0.118 0.161 0.136
NNLS/SG 0.270 0.209 0.236[0.186 0.136 0.157
NNLS/SG+SS | 0.337 0.206 0.256 | 0.231 0.135 0.171

Table 1: SG benchmarking results

6 Substitution Ranking Evaluation

We also compare our Neural Ranking SR ap-
proach (NNLS/SR) to the rankers of all aforemen-
tioned lexical simplifiers. The Devlin, Biran, Ya-
mamoto, Horn, Glavas and Paetzold rankers ex-
ploit Kucera-Francis coefficients (Rudell, 1993),
hand-crafted complexity metrics, a supervised
SVM ranker, rank averaging and Boundary Rank-
ing, respectively. In this experiment we disregard
the step of Confidence Check, since we aim to
analyse the performance of our ranking strategy
alone.

The datasets used are those introduced for the
English Lexical Simplification task of SemEval
2012 (Specia et al., 2012), to which dozens of
systems were submitted. The training and test
sets are composed of 300 and 1,710 instances, re-
spectively. Each instance is composed of a sen-
tence, a target complex word, and a series of can-
didate substitutions ranked by simplicity. We use
TRank, the official metric of the SemEval 2012
task, which measures the proportion of instances
for which the candidate with the highest gold-
rank was ranked first, as well Pearson (p) correla-
tion. While TRank best captures the reliability of
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rankers in practice, Pearson correlation shows how
well the rankers capture simplicity in general.

Table 2 reveals that, much like our SG ap-
proach, our Neural Ranker performs well in isola-
tion, offering the highest scores among all strate-
gies available.

TRank p
Devlin 0.596 0.614
Biran 0.513 0.505
Yamamoto | 0.604 0.649
Horn 0.639 0.673
Glavas 0.632 0.644
Paetzold 0.653 0.677
NNLS/SR | 0.658 0.677

Table 2: SR benchmarking results

7 Full Pipeline Evaluation

We then evaluate our approach in two settings:
with (NNLS) and without (NNLS-C), the Con-
fidence Check (Section 4.3). The evaluation
datasets used are the same described in Section 5,
and the metrics are:

e Accuracy: The proportion of instances in
which the target word was replaced by a gold
candidate.

Precision: The proportion of instances in
which the target word was either replaced by
a gold candidate or not replaced at all.

BenchLS NNSeval

P A P A
Devlin 0.309 0.307(0.335 0.117
Biran 0.124 0.123]0.121 0.121
Yamamoto [0.044 0.041|0.444 0.025
Horn 0.546 0.341]0.364 0.172
Glavas 0.480 0.252]0.456 0.197
Paetzold [0.423 0.423|0.297 0.297
NNLS 0.642 0.434|0.544 0.335
NNLS-C [0.543 0.538|0.397 0.393

Table 4: Full pipeline evaluation results

Notice that, unlike in SG, Recall and F1 are not
applicable in this form of evaluation. Table 4 re-
veals that, without the confidence check, our ap-
proach yields an average increase of 10.5% in Ac-
curacy over the former state-of-the-art simplifier.
With the confidence check, it yields the highest
Precision while retaining the highest Accuracy.



2A 2B 3A 3B 4 5 1
SE |Devlin | 0(0%) 689 (74%) 86 (36%) 34 (14%) 60 (50%) 17 (14%) |43 (36%)
SE |Horn 0(0%) 689 (74%) 76 (32%) 43 (18%) 74 (61%) 15 (12%) |32 (26%)
SE |Glavas | 0(0%) 689 (74%) 70 (29%) 23 (10%) 81 (55%) 20 (14%) |46 (31%)
SE |Paetzold| 0 (0%) 689 (74%) 59 (25%) 21 (9%) 68 (42%) 28 (18%) | 64 (40%)
SE [NNLS | 0(0%) 689 (74%) 40 (17%) 30 (12%) 34 (20%) 45 (26%) |91 (54%)
PV |Devlin |84 (9%) 232 (25%) 146 (61%) 22 (9%) 35(49%) 8 (11%) |29 (40%)
PV |Horn 84 (9%) 232 (25%) 123 (51%) 30 (12%) 50 (57%) 13 (15%) | 24 (28%)
PV |Glavas |84 (9%) 232 (25%) 127 (53%) 12 (5%) 46 (46%) 17 (17%) |38 (38%)
PV | Paetzold | 84 (9%) 232 (25%) 126 (52%) 9 (4%) 39 (37%) 14 (13%) |52 (50%)
PV |NNLS |84 (9%) 232 (25%) 110 (46%) 17 (7%) 14 (12%) 26 (23%) |73 (65%)
Table 3: Error categorisation results

8 Error Analysis

In this Section we analyse NNLS to understand the
sources of its errors. For that, we use PLUMBErr
(Paetzold and Specia, 2016c¢; Shardlow, 2014), a
method that assesses all steps taken by LS systems
and identifies five types of errors:

e 1: No error during simplification.

e 2A: Complex word classified as simple.

2B: Simple word classified as complex.
3A: No candidate substitutions produced.
3B: No simpler candidates produced.

4: Replacement compromises the sentence’s
grammaticality or meaning.

e 5: Replacement does not simplify the word.

Errors of type 2 are made during CWI, 3 during
SG/SS, and 4 and 5 during SR. We pair ours, De-
vlin’s, Horn’s, Glavas’ and Paetzold’s simplifiers
with two CWI approaches: one that simplifies ev-
erything (SE), and the Performance-Oriented Soft
Voting approach (PV), which won the CWI task of
SemEval 2016 (Paetzold and Specia, 2016¢).

Table 3 shows the count and proportion (in
brackets) of instances in BenchLS in which each
error was made. It shows that our approach cor-
rectly simplifies the largest number of problems,
while making the fewest errors of type 3A and
4. However, it can be noticed that NNLS makes
many errors of type 5. By analysing the output
produced after each step, we found that this is
caused by the inherently high Precision of our ap-
proach: by producing a smaller number of spuri-
ous candidates, our simplifier reduces the occur-
rences of ungrammatical and/or incoherent sub-
stitutions, but also disregards many candidates
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that are simpler than the target complex word.
Nonetheless, this noticeably increases the number
of correct simplifications made.

9 Conclusions

We introduced an LS approach that extracts can-
didate substitutions from the Newsela corpus and
retrofitted context-aware word embedding models,
selects them with Unsupervised Boundary Rank-
ing, and ranks them using a new Neural Ranking
strategy.

We found that: (i) our generator achieves the
highest Precision and F1 scores to date, (ii) our
Neural Ranking strategy leads to the top scores
on the English Lexical Simplification task of Se-
mEval 2012, (iii) and their combination offers the
highest Precision and Accuracy scores in two stan-
dard evaluation datasets. An error analysis reveals
that our LS approach makes considerably fewer
grammaticality/meaning errors than former state-
of-the-art simplifiers.

In future work, we aim to investigate new archi-
tectures for our Neural Ranking model, as well as
to test our approach in other NLP tasks. An im-
plementation of our Substitution Generation, Se-
lection and Ranking approaches can be found in
the LEXenstein framework®.
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Abstract

This paper discusses some central caveats
of summarisation, incurred in the use of
the ROUGE metric for evaluation, with re-
spect to optimal solutions. The task is NP-
hard, of which we give the first proof. Still,
as we show empirically for three central
benchmark datasets for the task, greedy al-
gorithms empirically seem to perform op-
timally according to the metric. Addition-
ally, overall quality assurance is problem-
atic: there is no natural upper bound on
the quality of summarisation systems, and
even humans are excluded from perform-
ing optimal summarisation.

1 Introduction

Research in automatic summarisation today has
reached a stalemate. Despite continuing innova-
tion of promising algorithms for carrying out au-
tomatic summarisation, recent research over con-
ventional benchmark datasets has suggested the
following: according to the most widely accepted
automatic evaluation metric, ROUGE, there has
been no substantial improvement in performance
on central datasets in the field in the last decade
(Hong et al., 2014). Additionally, according to
ROUGE, there seems to be little significant ben-
efit to supervised over unsupervised learning, or
to exact over greedy approximate algorithmic so-
lutions. Moreover, there is little understanding as
to what a perfect score is according to ROUGE, or
how naturally this describes a human’s idea of an
optimal summary.
In this paper we substantiate these issues with
evidence, observing that by ROUGE numbers:
(1) Perfect scores for extractive summari-
sation are theoretically computationally
hard to achieve. We provide the first proof
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2)

3)

“4)

of NP-hardness for optimisation of extractive
summarisation with respect to ROUGE. Yet
empirically the metric shows that greedy and
exact global decoding method performances
are similar.

100% perfect scores are impossible for
higher quality datasets. The metric returns
an average of ROUGE scores over multi-
ple reference summaries in order to avoid
bias (Nenkova and Passonneau, 2004). This
means that it is impossible to obtain 100%
ROUGE-n scores unless the reference sum-
maries contain precisely the same n-grams.

Relative perfect scores are highly diverse
and unattainable by humans. ROUGE
scores are generally rather low for short sum-
maries and seem to get higher for datasets
with longer summary length budgets, even
when document length also substantially in-
creases. We know that 100% perfect scores
are impossible, so what is a perfect score
according to ROUGE? How do we know
when no improvement is possible? Previous
research on evaluation metrics for automatic
summarisation has tried to empirically show
a correlation between human judgments and
system output quality (Lin, 2004; Lin and
Hovy, 2003; Liu and Liu, 2008; Graham,
2015). But this does not address the upper
bound issue. Indeed, we demonstrate there
is no possible relative perfect score, even if
one has access to the sentences of the refer-
ence summaries. So, for example, even hu-
mans are doomed to perform sub-optimally
(Cf. Marujo et al. (2016)).

State-of-the-art automatic summarisation
is unsupervised. There have been recent ad-
vances in supervised summarisation mainly

Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 4145,

Valencia, Spain, April 3-7, 2017. (©2017 Association for Computational Linguistics



with respect to supervised learning using
neural networks (for example (Rush et al.,
2015; Chopra et al., 2016)). However, due
to data size requirements, these systems are
constrained to title generation systems and
therefore not in the scope of this work. Hong
et al. (2014) survey the state-of-the-art us-
ing the central DUC 2004 dataset. Of these,
ICSISum (Gillick and Favre, 2009) is the
only global summariser using an exact al-
gorithm; it obtains the best ROUGE-2 score
without supervision. All the other approaches
use greedy strategies/approximations, even
if they intend to model global optimisation.
This raises the following important question:
If one shifts from a greedy strategy to an ex-
act global one, does supervision give substan-
tial system performance improvement?

In this paper, we do not consider or compare
evaluation metrics. This work is all under the as-
sumption that ROUGE (under its currently used
parameters) provides an accurate account of sum-
marisation quality.

Throughout, we refer to as reference sum-
maries the gold standard that accompanies the
summarisation dataset. Reference summaries are
probably abstractive. On the other hand, by gold
summaries, we refer to optimal summaries con-
sisting of sentences from the input document.

2 Preliminaries

ROUGE. Let g be an n-gram and R and S be
multiset representations of reference and system
summaries, respectively. We define the intersec-
tion A N B of two multisets A, B as a multiset
containing all multiples of their shared elements.

> ges {glg € S}n{glg € RY|

ROUGEn(5) e |9l € R
(1)
When there is more than one reference sum-
mary, then the individual ROUGE scores are cal-

culated per reference and the average is returned.

The data. Empirical results of this paper are cal-
culated over datasets from three separate domains.
duc04: 30 newswire article set-summary set pairs
first used in the DUC 2004 summarisation task 2.

"We use the current version ROUGE-1.5.5 http://
www . berouge . com, with the following parameters unless
otherwise stated: -n 2 -m -x -f A -t 0 {-b|-1}
[length] -a -r 1000 —-c 95.

http://duc.nist.gov/duc2004/
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We use both the original 665 bytes summary bud-
get as well as the 100 word summary budget used
by (Hong et al., 2014).

echr: judgment-summary pairs scraped from the
European Court of Human Rights case-law web-
site, HUDOC.? The test set consists of 138 pairs.
We adopt the same summary budget length: 805
words used by Schluter and Sggaard (2015).

wiki: Wikipedia leading paragraphs-article pairs
(all labeled “good article”) from a comprehen-
sive dump of English language Wikipedia arti-
cles.* The test set consists of 111 pairs. We use
the same summary budget of 335 used by Schluter
and Sggaard (2015).

3 ROUGE optimisation for extraction

We now provide a proof of NP-hardness of ex-
act oracle extractive summarisation with respect to
ROUGE. We first prove the result for ROUGE-1
and later extend the result to ROUGE-n.

Theorem 1. Given a document, its manually writ-
ten non-extractive summary, and the ROUGE-1
metric for N € 7., building an extractive sum-
mary that maximises the ROUGE-1 metric is NP-
hard.

Proof. The objective is to optimise ROUGE-1 by
maximising the number of word tokens paired up
between system and reference summaries. That is,
one is trying to choose the sentences, within bud-
get, that cumulatively maximise the number of un-
igram tokens that can be paired with those of refer-
ence summaries. We can reduce the NP-hard max
k-weighted dominating set problem to the oracle
extractive summarisation problem with ROUGE-1
as the metric.

Given a graph G (V,E), the max k-
dominating set problem requires a solution of k
vertices that are adjacent to the maximum num-
ber of vertices in G. The max k-dominating set
problem is NP-hard, even for cubic graphs (graphs
in which the degree of all vertices is equal to 3)
(Garey and Johnson, 1979).

Suppose further that each vertex s € V is as-
sociated with a weight w,. The max k’-weighted
dominating set problem consists in determining a
subset of vertices of total weight &’ that are adja-
cent with the maximum number of vertices in G.

*http://hudoc.echr.coe.int/
*https://dumps.wikimedia.org/
enwiki/latest/enwiki-latest-pages

—articles-multistream.xml.bz2



In particular, if we set w,, = 1 for each vertex, then
the two problems are identical, showing the corre-
sponding NP-hardness of this weighted version of
the problem.

Let G = (V,E) be a cubic graph. Let N(v)
be the neighbourhood of vertex v. Now let the
weight of each vertex w, be |[N(v) U {v}| = 4.
With &’ 4k it is easy to see that the max
k'-weighted dominating set problem is equivalent
to the max k-dominating set problem for cubic
graphs. A solution is a dominating set S’ such that
Hu | v e (N(v)U{v}),v € S’} is maximised
for " cow(v) = 4k.

We reduce the 4k-weighted dominating set
problem to the problem of exact summarisation
with respect to ROUGE-1 as follows.

We create an input document D = {s, | v €
V'}, where s, := N(v) U {v} is a sentence (its
components written in any order). Evaluation is
carried out against a single reference summary V'
(the set of vertices of our original graph written out
in any order). Let S be an output extractive sum-
mary from D within our budget of size 4k. We
want to maximise

ROUGE-1(S) =

2w Hwlw € U, eg 8o} N{wlw € V1
Y fwlw eV}

(Uspes s0) NV [(Us,es 50)]
V] V]

_ Hulue (N U{v}), sy € S}
V]

where the second equality follows from the fact
that no vertex occurs more than once in the refer-
ence summary V.

Maximising the last term (2) is the same as
maximising without its denominator. Take S" :=
{v | s, € S} for the solution of the original 4k-
weighted dominating set problem. Suppose S’ was
not a maximum solution. Then there is a better so-
lution S of weight 4k. But then {s, | v € S} is
a better solution for summarisation. This gives the
result. O

2)

We can extend the reduction in the proof of The-
orem 1 from 4k-weighted dominating set to ex-
tractive summarisation with respect to ROUGE-
n with budget 2 - (4k) by introducing a dummy
symbol d into our documents and summaries for
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padding sentences. We first introduce some nota-
tion for the new sentences of documents and refer-
ence summaries.

We will now write sentences s, from the proof
of Theorem 1 with the superscript 1, s, corre-
sponding to the type of gram (1-gram) measured
in ROUGE-1. We set an ordering on V', numbering
the vertices so that V' := {v1,...,v)y|} (though
this ordering is purely for ease in description). In-
stead of simply choosing any order to write the
nodes from N (v;,) U {vi, } = {viy, Vig, Vig, Viy s
we write s})il according to the ordering of the
node indices. So, if i1 < io < i3 < 14, then
Sll)i1 = Vi1 Vip Vi3 Viy.

We generalise this to order-n sentences. The
order-n sentence s” is just s. (first order sen-
tence) with each vertex padded to the right
by the string d™1 and prefixed with 4"V
to the resulting string, where d is a dummy
symbol not in V. For example, 312,1,1
dv;, dv;,dv;,dv;,d, and in general, sﬁil
d =Dy, d Dy, d Dy, d Dy, d=D . So
order-n sentences have length 4 + 5(n — 1).
Order-n sentences will be used for creating doc-
uments D, and reference summaries V,, for the
NP-hardness proof of exact oracle summarisa-
tion with respect to ROUGE-n, with a budget of
k(4 +5(n —1)).

Note how if v occurs in a first order sentence
sl, then there are exactly 2 bigrams containing
v in the corresponding second order sentence s2:
dv and vd. Similarly, there are exactly n n-grams
containing v in the corresponding sentence s™:
d Dy, d"2ud, ... dod™ 2 vd™1) This is
the set-up for the document D,, in the reduction of
(4k)-weighted dominating set to exact extractive
summarisation with respect to ROUGE-n.

We set up the reference summary in a similar
way. For V. = Vj, we write the vertices in or-
der. For V,, we pad the right of each symbol in V;
with the string d™~1) and attach the same string
as a prefix. So, once again, a 1-gram in V corre-
sponds to exactly n n-grams in V,,. ROUGE-n is
maximised when the number of matched n-grams
of V,, is maximised, which is precisely when the
number of 1-grams of V] is maximised. The reduc-
tion from (4k)-weighted dominating set to exact
extractive summarisation with respect to ROUGE-
n and with budget (4+5(n—1))k follows, yielding
the following generalisation of Theorem 1.

Theorem 2. Given a document, its manually writ-



ten non-extractive summary, and the ROUGE-n
metric for n € Z., building an extractive sum-
mary that maximises the ROUGE-n metric is NP-
hard.

Because the ROUGE optimisation problem is
NP-hard, one may suspect that exchanging a
greedy strategy out for an exact global approach
would lead to substantial improvements in system
performance. Therefore, for our three datasets, we
generate gold extractive summaries using both ex-
act and greedy global oracle approaches. If our
suspicions are true, then we expect these ap-
proaches to generate poor quality gold extractive
summaries with the greedy algorithm in compari-
son to exact one.

opt Greedy Exact

wrt. | Rl R2 R1 R2
duc04 | RI1 50.5 13.87 | 4991 13.98
R2 | 48.27 19.61 | 46.92 16.79
wiki R1 | 64.14 2249 | 63.41 21.81
R2 | 59.68 27.81 | 59.43 27.11
echr R1 | 83.57 51.01 | 84.17 50.34
R2 | 81.38 57.31 | 82.04 56.67

Table 1: Exact and greedy oracle summarisation
ROUGE-n scores in percentages, for n € [2].

We use an open source solver to find exact op-
timal solutions.> Note that in the exact set-up sen-
tences cannot be clipped to meet the boundary
budget constraint, which is a more natural setting
for automatic summarisation. To build an extrac-
tive summary greedily, we iteratively add the sen-
tence with highest ROUGE score to the summary,
normalising by sentence length. The measure au-
tomatically chops sentences that otherwise bring
summary lengths over the limit. Table 1 gives the
results for greedy and exact oracle gold extractive
summaries across our three domains.

Greedy is good. We observe that across the
board, the greedy strategy performs comparably to
the exact strategy for global optimisation. With the
shorter summaries required by the duc04 dataset,
the greedy strategy yields higher ROUGE scores,
possibly by chopping the last sentence of sum-
maries. This chopping reward lessens, it seems, as
summary budgets increase, but the two methods

’3gnu.org/software/glpk
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stay competitive with each other.

No data necessary. This also provides good ev-
idence that is no substantial benefit in switch-
ing from unsupervised exact global state-of-the-
art approaches to supervised exact global ap-
proaches for extractive summarisation on conven-
tional datasets.

Far from perfection. For extractive summarisa-
tion, the perfect scores (in Table 1) are far from
100% as well as diverse, according to dataset.

Evaluation against multiple, rather than sin-
gle reference summaries is generally recognised
as leading to fairer, better quality, evaluation:
different human summaries appear to be good
even though they do not have identical content
(Nenkova and Passonneau, 2004). However, aver-
aging ROUGE scores across multiple summaries,
as is standard practice, makes a perfect 100%
score unattainable, even for abstractive systems.
This is because the word frequencies required by
ROUGE suddenly become unattainable.

100

all references
1st reference
2nd reference
3rd reference
4th reference

80

60

40

Number of stems

20

Frequency

Figure 1: Stemmed word frequencies for refer-
ence summary set d30001t from duc04: averaged
across all reference summaries and for single ref-
erence summaries.

As illustration, consider the frequencies re-
quired by the reference summaries for a duc2004
document set in Figure 1. The number of 1-grams
to match has increased: this was the original in-
tent—to allow for equally important but different
content. We have gone from around 60 stemmed
words to 160 stemmed words. However, for ex-
ample, in the case of our example summary set,
136/160 matches are really only part matches
(with weight < 1).

This leads to the contradictory situation where,
according to the ROUGE metric, humans cannot
summarise well (though they are thought to be



able to judge summary quality accurately). In-
deed, evaluating one reference summary against
the other three for the duc04 dataset achieves
39.92 ROUGE-1 and 9.39 ROUGE-2—far below
optimal performance. Since humans are generally
abstractive summarisers this provides a sort of up-
per bound on abstractive summarisation perfor-
mance according to ROUGE.

4 Concluding remarks

Previous work on summarisation evaluation has
mainly considered the positive aspects of ROUGE;
namely correlation to human judgments. In this
paper we hope to have raised some concerns with
respect to ROUGE and our expectations for op-
timal summarisers. We have also given the first
NP-hardness proof for global optimisation with
respect to ROUGE.
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Abstract

We present an iterative annotation pro-
cess for producing aligned, parallel cor-
pora of abstractive and extractive sum-
maries for narrative. Our approach
uses a combination of trained annotators
and crowd-sourcing, allowing us to elicit
human-generated summaries and align-
ments quickly and at low cost. We
use crowd-sourcing to annotate aligned
phrases with the text-to-text generation
techniques needed to transform each
phrase into the other. We apply this pro-
cess to a corpus of 476 personal narratives,
which we make available on the Web.

1 Introduction

With the tremendous amounts of text published on
the Web every day, automatic text summarization
is more relevant than ever. Web content must com-
pete for readers’ attention, and the existence of
click bait links shows that content providers are
very aware that a short, appealing summary may
be their only chance to attract readers. For the
readers’ part, summaries stating exactly what a
piece of content is about protects them from wast-
ing time on topics that do not interest them.
Research on summarization has long focused
on extraction: selecting the most salient sentences
from a text without any modifications. These sum-
maries can be incoherent or incomprehensible due
to unresolved pronouns and references, and sen-
tences containing irrelevant information (Nenkova
and McKeown, 2011), and this is particularly
problematic with informal web text. Thus abstrac-
tive summarization is critical for the web, with
rewriting of extracted sentences, as humans write
summaries (Jing and McKeown, 1999).
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To develop an abstractive summarization sys-
tem, we need data: parallel corpora that align
extractive summaries with abstractive summaries.
Such corpora would allow researchers to develop
text-to-text generation approaches to produce ab-
stractive summaries from extractive ones. While
there are many summarization copora available,
most provide abstractive summaries only (Meyer
et al., 2016), extractive summaries only or un-
aligned abstractive and extractive summaries (e.g.,
as in (Over et al., 2007; Dang and Owczarzak,
2008)).

In this work, we present an iterative annotation
process for producing aligned summaries anno-
tated with text-to-text generation techniques. Fig-
ure 1 shows a human-written abstractive summary
and human-selected extractive summary from our
corpus. The extractive summary suggests the nar-
rator was already uneasy and leaves the reader
wondering why. This information is unimpor-
tant, but the extractive summary must include it
because it is in the same sentence as the bloody
woman, just as it must include an extra character:
the man in medical attire. Text-to-text generation
techniques, such as sentence compression, could
be used to rewrite this extractive summary to more
closely match the abstractive summary.

Abstractive: While driving home I saw a woman cov-
ered in blood standing by the side of the road. As I passed
she attempted to launch herself at my car.

Extractive: As I’'m looking around as to what the fuck is
going on, we approach the roundabout and there is a man
in medical attire next to a woman in white pyjamas, with

blood covering her clothing. I go straight, and as we go

past the woman attempts to launch herself at my car.

Figure 1: Abstractive and extractive summaries.

While the extractive summary contains some
extraneous information, it does include every-
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thing present in the abstractive summary. We use
crowd-sourcing with Amazon Mechanical Turk
(AMT) to produce our extractive summaries, and
workers are given the abstractive summaries as
a prompt, ensuring high-quality extractive sum-
maries despite using inexpensive crowd-sourcing.
In the next stage of our annotation process, we
use AMT workers (Turkers) to align phrases from
the extractive summaries to the abstractive sum-
maries. Finally, we use Turkers to annotate the
aligned phrases with the five rewriting operations
identified by Jing and McKeown (1999) — re-
duction (compression), combination (fusion), syn-
tactic transformation, lexical paraphrasing, gen-
eralization/specification — indicating how best to
rewrite each extracted phrase. We make our cor-
pus available on the Web'.

2 Related Work

Text-to-text generation for abstractive summa-
rization is the task of revising extracted sen-
tences using techniques such as sentence compres-
sion (Knight and Marcu, 2000; Lin, 2003; Zajic et
al., 2007; Liu and Liu, 2009) and fusion (Barzi-
lay and McKeown, 2005). Unfortunately, cor-
pora for text-to-text generation are rare and time-
consuming to produce. Marcu (1999) created a
corpus of nearly 7,000 abstractive and extractive
summaries of news articles by automatically ex-
tracting sentences based on a human-written sum-
mary, building a large corpus at the cost of some
noise. Murray et al (2005) created a corpus of 61
paired, human-written abstractive/extractive sum-
maries of meeting transcripts, but the gain in sum-
mary quality achieved using human annotators is
offset by the small size of the corpus.

This work uses personal narratives, widely
found on social networks, weblogs, and online
forums. The availability of online narrative be-
gins to address a problem facing the text-to-text
generation approach to summarization: lack of
data. Gordon and Swanson (2009) trained a clas-
sifier to identify narratives in blog posts with 75%
precision and built a corpus of 937,994 narra-
tives. Ouyang and McKeown (2015) created a
corpus of 4,647 narratives collected automatically
from Reddit, achieving 94% precision in collect-
ing only narrative text. They argue that the Most
Reportable Event (MRE) is the most salient event

www.cs.columbia.edu/~ouyangj/aligned-
summarization-data
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and thus the shortest possible summary; they an-
notated a subset of 476 narratives by extracting
sentences that referred to MRE:s.

The Murray et al corpus includes alignments
between phrases in the extractive summaries and
sentences in the abstractive summaries. How-
ever, none of the corpora described above pro-
vides an analysis of how a summarizer might
transform an extracted phrase into its abstractive
form. While corpora exist for some rewrites in
McKeown and Jing (1999), such as compression
(Zift-Davis, Filippova and Altun (2013), Kaji-
wara and Komachi (2016)), fusion (McKeown et
al (2010)), and lexical paraphrasing/syntactic re-
ordering (Ganitkevitch et al (2013)), these corpora
exist in isolation. A human summarizer may apply
multiple rewrites to a single phrase, and our work
captures this information with annotations for all
of the rewrites over each alignment.

3 Data Collection

We use the annotated subset of 476 personal nar-
ratives in Ouyang and McKeown (2015), although
we do not use their annotations.

3.1 Stage One: Abstractive Summaries

We partitioned the 476 stories into 7 slices of 68
narratives. The narratives were written for 19 dif-
ferent prompts, which roughly correspond to top-
ics (eg. “Your best ‘Accidentally Racist” story?”).
We randomly assigned an equal number of narra-
tives from each prompt to each of the seven slices.

We trained four graduate student annotators
from our university’s Department of English and
Comparative Literature. Each was assigned four
slices: one in common with each other annotator,
and one among all annotators. Each participated
in a 30-minute training session: they were told to
imagine they were about to tell a story to a friend
and wanted to ask, “Did I tell you about. .. ?” They
should write one or two sentences to complete the
question and include any context they thought nec-
essary for their friend to understand it.

We evaluated interannotator agreement on this
task using an AMT HIT (Human Intelligence
Task) where Turkers were shown summaries writ-
ten by two different annotators, but not the narra-
tive itself. We then asked the Turkers to decide
whether or not the summaries described the same
event, and if so, whether one or both of the sum-
maries contained important information not found



in the other. We required Turkers to complete a
qualification test before working on the HIT, en-
suring they had read and understood the task in-
structions. The test consisted of pairs of example
summaries constructed so that the correct answers
to our two questions were clear: the paired sum-
maries were identical except for pieces of extra in-
formation that we inserted into one or both sum-
maries. Three Turkers worked on each hit, and we
considered a pair of summaries to be in agreement
if at least two out of three Turkers indicated that
the summaries described the same event.

Abstract A: My neighbor’s mom saved me from being
kidnapped into a car when I was six.
Abstract B: Someone tried to kidnap me when I was six,

but a neighbor’s mom grabbed me before they got me.

(a) Agreeing abstractive summaries.

Abstract A: I ran my mouth off at this rude woman.

Abstract B: I held a door for a lady and she told someone

on the phone that I had rudely ran around her.

(b) Disagreeing abstractive summaries.

Figure 2: Examples of agreeing and disagreeing abstractive
summaries for two different narratives.

Our annotators achieved 90.38% observed
agreement, producing a total of 1088 different ab-
stractive summaries. Figure 2 shows a pair of
agreeing and a pair of disagreeing abstractive sum-
maries. With the disagreeing summaries, we see
that annotators A and B focused on different as-
pects of the narrative: A summarized the narra-
tor’s confrontation with the rude woman, while
B explains why the narrator was angry with the
woman. Figure 3 shows a pair of agreeing sum-
maries where Turkers indicated that both sum-
maries contained important information not found
in the other summary. We see that annotator A
focused on the event’s emotional effect on the nar-
rator, while annotator C emphasized the irrespon-
sible friend’s bad behavior.

Abstract A: This one friend never gave back the 360 and
netbook I let him borrow, so now I have a hard time doing
good deeds for other people.

Abstract C: I lent my friend my netbook and xbox 360

and he broke the netbook and claimed the 360 was stolen.

He only ever gave me 100 bucks for it.

Figure 3: Extra information in a agreeing summaries.
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3.2 Stage Two: Extractive Summaries

To produce the corresponding extractive sum-
maries, we created another HIT that showed Turk-
ers a narrative, one of its abstractive summaries,
and instructions to compose an equivalent sum-
mary by selecting as few sentences as possible
from the narrative. We once again required Turk-
ers to complete a qualification test before working
on our HITs. The test consisted of a single story
and abstractive summary, written so that the sum-
mary was a word-for-word paraphrase of a single
sentence in the narrative that did not overlap with
any other sentences. We also required that Turk-
ers be at least 18 years old and have completed at
least 10,000 HITs with 98% acceptance on pre-
vious HITs. Three Turkers worked on each of
our HITs, and Turkers achieved substantial agree-
ment on which sentences they selected: Fleiss’s x
of 0.748. Figure 4 shows an extractive summary
where they achieved perfect agreement.

Abstractive: At a concert, I grabbed a chunk of dirt in
mid-air that was being thrown at a woman, and security
thought I was throwing the dirt.

Extractive: There is a woman standing next to me when
a huge piece of dirt comes flying straight at her face. 1
grab the chunk inches from her face mid-air. Security

sees me with a chunk of dirt in my hand and instantly

grab and pull me out of the crowd.

Figure 4: Perfect agreement among Turkers in constructing
the extractive summary.

Combining our abstractive and extractive sum-
maries, we have 476 narratives, 408 with two ab-
stractive summaries and 68 with four. For each
abstractive summary, we have six extractive sum-
maries, one for each Turker and an additional three
created by aggregating the Turkers’ summaries:
sentences selected by at least one (union), two
(majority), and all three (intersect) Turkers.

3.3 Stage Three: Phrase Alignments

We used another AMT HIT to produce phrase
alignments between the extractive and abstractive
summaries. We showed Turkers one of the ab-
stractive summaries produced in Stage One and
its corresponding extractive summary produced in
Stage Two (using union aggregation). The task
was to align phrases between the summaries, and
to submit as many alignments as they could find.
To avoid confusing terminology, the instruc-
tions referred to the abstractive summary as the



Summary
1 got in trouble for sticking my tongue out at a little boy. sticking my tongue out at a little boy

z z
Excerpt
Stuck my tongue out at a little boy who was playing peek-a-boo while sitting in a shopping cart. His Stuck my tongue out at a little boy who was playing peek-a-
mother came around the cart, got all up in my personal space and said that if | did it again she would call boo while sitting in a shopping cart
the cops.

Z %

Figure 5: Highlighting interface for Phrase Alignment HIT.

“summary” and the extractive summary as the “ex- e Generalization replaces longer strings of de-
cerpt.” We defined aligning as “matching phrases tail with shorter, more general descriptions.
from the summary with phrases from the excerpt o Specification replaces short, general descrip-
that effectively mean the same things.” The HIT tions with longer strings of detail.

interface (Figure 5), allowed Turkers to select As in Stages Two and Three, we tested the

phrases by highlighting, save alignments as they = Turkers’ understanding of the task before allow-
went along, and submit all their saved alignments  ing them to work on the HITs. Since we ask
at the end. Three Turkers worked on each HIT. about one rewrite operation at a time, we designed
As in the previous stages, we required Turkers separate qualiﬁcation tests for each rewrite. For
to complete a qualification test where we showed  each test, we selected one abstractive/extractive
Turkers one phrase from an abstractive summary  summary pair and constructed two different align-
and four phrases from the corresponding extrac-  ment examples where one alignment employed the
tive summary and asked them to decide which of ~ rewrite in question and the other did not. The
the four extractive optjons would make a good Turkers were asked whether or not the rewrite was
alignment with the abstractive phrase. We also  used in each of the two alignments.
presented them with a link to a demo of the in-
terface, so that they could try the highlighting and

saving functions before working on the actual HIT. Reduction 216 Generalization 3359
Lexical Para. 1218 Specification 1250

Syntactic Reor. 916

Rewrite Operation Counts

3.4 Stage Four: Rewriting Operations

Table 1: Rewrite operation counts.
Our final HIT asked Turkers to review the align- For each alignment, we put up four HITs (we

ments produced in Stage Three, and to identify  combined generalization and specification so that
the rewrite operation(s) involved in transforming  Turkers could choose one or neither, but not both).
the extractive phrase into the abstractive phrase.  Table 1 lists each rewrite and how many align-
When performing the task, Turkers were only con-  ments used it; we include an alignment when at
cerned with one rewrite at a time, and simply  Jeast 2 out of 3 Turkers agreed it used the rewrite.
had to select whether the presented alignment em-  We found that generalization was by far the most
ployed that rewrite or not. We designed our task  popular rewrite operation, and reduction was the
in this way because an alignment could employ Jeast, likely because reduction’s definition was
more than one rewrite, and we wanted the Turk-  the most demanding, as it required word-for-word

ers to consider each rewrite independently. matching outside of the removed parts. Figure 6
We defined the rewrite operations for the Turk-  shows an example each of generalization and its
ers as follows, and provided examples of each. counterpart specification from our annotations.

e Reduction keeps key parts word-for-word
and removes less important information.

e Lexical paraphrasing replaces words or
word sequences with paraphrases, ie. other
words that have the same meaning.

e Syntactic reordering changes the grammat- Figure 6: Examples of the two most common rewrite opera-
. . . tions, generalization and specification.
ical structure (eg. passive vs active).

Generalization: Very rarely do I ever get a "thanks” or a
smile of appreciation. — I never get any thanks.
Specification: I had the alien abduction dream. — I had

a sleep paralysis dream where I was abducted by aliens.
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Fusion Reduction Lexical Para.  Syntactic Reor.  Generalization  Specification
Fusion 1052 36 214 151 695 165
Reduction 185 34 32 113 24
Lexical Para. 1068 179 564 237
Syntactic Reor. 772 391 165
Generalization 2802 0
Specification 1093

Table 2: Rewrite co-occurences produced from confident and precise alignments.

3.5 Discussion

We evaluated our Stage Three and Four data from
the Turkers by assigning confidence levels to the
alignments and judging annotator agreement on
the rewrite labels. It would be difficult to deter-
mine interannotator agreement in Stage Three be-
cause Turkers could submit any number of align-
ments of any size for each HIT. Instead, we evalu-
ated on the level of individual alignments. A con-
fident alignment had to agree with another align-
ment, where two alignments agreed if (1) differ-
ent Turkers submitted them; (2) the selected ab-
stractive phrases overlapped enough that at least
half of the shorter phrase was covered by the over-
lap; and (3) the selected extractive phrases over-
lapped enough that at least half of the shorter was
covered. A precise alignment does not contain
an extractive phrase that was over two sentences
long, because the longer the alignment, the more
difficult to identify the rewrite components in-
volved. Thus a confident alignment is one where at
least two different Turkers aligned the same spans,
within a margin of error of a few words, while a
precise alignment is one where it is easier to pin-
point the spans where rewrite operations apply.

Out of the 6173 alignments the Turkers pro-
duced, 5836 (95%) were confident, 5602 (91%)
were precise, and 5281 (86%) were both. When
we evaluated the rewrite labels produced for these
confident and precise alignments, we found that
many were labeled for multiple rewrite techniques
at once, indicating that quality phrase transforma-
tions often involved stitching together rewrites in-
stead of performing them separately. Figure 7
below displays an example of such an align-
ment, which was labeled for lexical paraphrasing
(3/3 Turker agreement), syntactic reordering (2/3
agreement), and generalization (2/3 agreement).

Table 2 further displays the interactions be-
tween rewrites in the form of a co-occurence ma-
trix of the five rewrites we tested on AMT, plus
fusion, which we identified automatically.
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Extractive: My SO at the time had been de-
pressed/suicidal and I had been making posts in rele-
vant subs with a different account asking for advice. I
didn’t really have any experience with depression/suicide
at the time, so it was a very scary situation for me ...

Abstractive: My friend identified some of my Reddit
posts about my suicidal SO at the time, and I was kind

of relieved that I ended up getting to confide in him about

the situation.

Figure 7: A confident and precise alignment (in bold) with
multiple rewrite labels: lexical paraphrasing, syntactic re-
ordering, and generalization. The extractive summary shown
is truncated due to length.

4 Conclusion

We have presented a new corpus of 1088 aligned
abstractive and extractive summaries, totaling
6173 phrase-level alignments, each annotated with
rewrite operations, which we make available on
the Web. Our iterative annotation process uses
trained annotators to generate abstractive sum-
maries and Amazon Mechanical Turk to pro-
duce extractive summaries, phrase alignments,
and rewrite annotations. We found substantial
agreement among annotators and Turkers for all
tasks, demonstrating our ability to elicit high-
quality summaries and alignments despite using
inexpensive crowd-sourcing.

Our corpus provides summaries of a very dif-
ferent type of text from the traditional newswire
articles: personal narratives, a genre that natural
language processing research is just beginning to
explore. This data is widely found on the Web and
brings challenges such as informal language and
extreme content. We hope that others will make
use of these aligned, personal narrative summaries
and their annotated rewrite operations, which we
make available on the Web. Our next step will be
to exploit this data to create an abstractive sum-
marization system using text-to-text generation.
We also hope that the success of our annotation
method, using both trained annotators and crowd-
sourcing, will encourage other researchers to cre-
ate similar corpora.
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Abstract

Progress in text understanding has been
driven by large datasets that test partic-
ular capabilities, like recent datasets for
reading comprehension (Hermann et al.,
2015). We focus here on the LAMBADA
dataset (Paperno et al., 2016), a word
prediction task requiring broader context
than the immediate sentence. We view
LAMBADA as a reading comprehension
problem and apply comprehension models
based on neural networks. Though these
models are constrained to choose a word
from the context, they improve the state
of the art on LAMBADA from 7.3% to
49%. We analyze 100 instances, finding
that neural network readers perform well
in cases that involve selecting a name from
the context based on dialogue or discourse
cues but struggle when coreference reso-
lution or external knowledge is needed.

1 Introduction

The LAMBADA dataset (Paperno et al., 2016)
was designed by identifying word prediction tasks
that require broad context. Each instance is drawn
from the BookCorpus (Zhu et al., 2015) and con-
sists of a passage of several sentences where the
task is to predict the last word of the last sen-
tence. The instances are manually filtered to find
cases that are guessable by humans when given
the larger context but not when only given the last
sentence. The expense of this manual filtering has
limited the dataset to only about 10,000 instances
which are viewed as development and test data.
The training data is taken to be books in the corpus
other than those from which the evaluation pas-
sages were extracted.
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Paperno et al. (2016) provide baseline results
with popular language models and neural network
architectures; all achieve zero percent accuracy.
The best accuracy is 7.3% obtained by randomly
choosing a capitalized word from the passage.

Our approach is based on the observation that
in 83% of instances the answer appears in the con-
text. We exploit this in two ways. First, we auto-
matically construct a large training set of 1.8 mil-
lion instances by simply selecting passages where
the answer occurs in the context. Second, we treat
the problem as a reading comprehension task sim-
ilar to the CNN/Daily Mail datasets introduced by
Hermann et al. (2015), the Children’s Book Test
(CBT) of Hill et al. (2016), and the Who-did-What
dataset of Onishi et al. (2016). We show that stan-
dard models for reading comprehension, trained
on our automatically generated training set, im-
prove the state of the art on the LAMBADA test
set from 7.3% to 49.0%. This is in spite of the fact
that these models fail on the 17% of instances in
which the answer is not in the context.

We also perform a manual analysis of the LAM-
BADA task, provide an estimate of human perfor-
mance, and categorize the instances in terms of
the phenomena they test. We find that the com-
prehension models perform best on instances that
require selecting a name from the context based on
dialogue or discourse cues, but struggle when re-
quired to do coreference resolution or when exter-
nal knowledge could help in choosing the answer.

2 Methods

We now describe the models that we employ for
the LAMBADA task (Section 2.1) as well as our
dataset construction procedure (Section 2.2).

2.1 Neural Readers

Hermann et al. (2015) developed the CNN/Daily
Mail comprehension tasks and introduced ques-
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tion answering models based on neural networks.
Many others have been developed since. We re-
fer to these models as “neural readers”. While a
detailed survey is beyond our scope, we briefly
describe the neural readers used in our exper-
iments: the Stanford (Chen et al., 2016), At-
tention Sum (Kadlec et al., 2016), and Gated-
Attention (Dhingra et al., 2016) Readers. These
neural readers use attention based on the question
and passage to choose an answer from among the
words in the passage. We use d for the context
word sequence, q for the question (with a blank to
be filled), A for the candidate answer list, and V
for the vocabulary. We describe neural readers in
terms of three components:

1. Embedding and Encoding: Each word in d
and q is mapped into a v-dimensional vector via
the embedding function e(w) € RY, for all w €
d U q.! The same embedding function is used
for both d and q. The embeddings are learned
from random initialization; no pretrained word
embeddings are used. The embedded context
is processed by a bidirectional recurrent neural
network (RNN) which computes hidden vectors
h; for each position i:

h™~ = fRNN (07, e(d))
h™ = bRNN (07 ,e(d))
h=(h",h")

where ;" and 0 are RNN parameters, and
each of fRNN and bRNN return a sequence of
hidden vectors, one for each position in the in-
put e(d). The question is encoded into a single
vector g which is the concatenation of the final
vectors of two RNNs:

g~ =fRNN(0,,e(q))
g~ = bRNN(6; ,e(q))
9=19)490 )

The RNNs use either gated recurrent
units (Cho et al., 2014) or long short-term
memory (Hochreiter and Schmidhuber, 1997).

2. Attention: The readers then compute atten-
tion weights on positions of h using g. In
general, we define o; = softmax(att(h;,g)),
where ¢ ranges over positions in h. The

"We overload the e function to operate on sequences and
denote the embedding of d and q as matrices e(d) and e(q).
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att function is an inner product in the At-
tention Sum Reader and a bilinear product in
the Stanford Reader. The computed attentions
are then passed through a softmax function to
form a probability distribution. The Gated-
Attention Reader uses a richer attention archi-
tecture (Dhingra et al., 2016); space does not
permit a detailed description.

. Output and Prediction: To output a prediction
a*, the Stanford Reader computes the attention-
weighted sum of the context vectors and then an
inner product with each candidate answer:

|d|

C = E Ozihi
i=1

where o(a) is the “output” embedding function.
As the Stanford Reader was developed for the
anonymized CNN/Daily Mail tasks, only a few
entries in the output embedding function needed
to be well-trained in their experiments. How-
ever, for LAMBADA, correct answers can range
over the entirety of V, making the output em-
bedding function difficult to train. Therefore we
also experiment with a modified version of the
Stanford Reader that uses the same embedding
function e for both input and output words:

T

a® = argmax o(a) ' ¢

acA

a* = argmax e(a) We
acA

)

where W is an additional parameter matrix used
to match dimensions and model any additional
needed transformation.

For the Attention Sum and Gated-Attention
Readers the answer is computed by:

Va € A, P(ald,q) = Z a;
1€l(a,d)

a* = argmax P(ald,q)
acA

where I(a,d) is the set of positions where a ap-
pears in context d.

2.2 Training Data Construction

Each LAMBADA instance is divided into a con-
text (4.6 sentences on average) and a target sen-
tence, and the last word of the target sentence
is the target word to be predicted. The LAM-
BADA dataset consists of development (DEV) and
test (TEST) sets; Paperno et al. (2016) also provide



a control dataset (CONTROL), an unfiltered sample
of instances from the BookCorpus.

We construct a new training dataset from the
BookCorpus. We restrict it to instances that con-
tain the target word in the context. This decision
is natural given our use of neural readers that as-
sume the answer is contained in the passage. We
also ensure that the context has at least 50 words
and contains 4 or 5 sentences and we require the
target sentences to have more than 10 words.

Some neural readers require a candidate target
word list to choose from. We list all words in the
context as candidate answers, except for punctu-
ation.2 Our new dataset contains 1,827,123 in-
stances in total. We divide it into two parts, a
training set (TRAIN) of 1,618,782 instances and a
validation set (VAL) of 208,341 instances. These
datasets can be found at the authors’ websites.

3 Experiments

We use the Stanford Reader (Chen et al., 2016),
our modified Stanford Reader (Eq. 1), the Atten-
tion Sum (AS) Reader (Kadlec et al., 2016), and
the Gated-Attention (GA) Reader (Dhingra et al.,
2016). We also add the simple features from Wang
et al. (2016) to the AS and GA Readers. The fea-
tures are concatenated to the word embeddings in
the context. They include: whether the word ap-
pears in the target sentence, the frequency of the
word in the context, the position of the word’s first
occurrence in the context as a percentage of the
context length, and whether the text surrounding
the word matches the text surrounding the blank
in the target sentence. For the last feature, we only
consider matching the left word since the blank is
always the last word in the target sentence.

All models are trained end to end without any
warm start and without using pretrained embed-
dings. We train each reader on TRAIN for a max
of 10 epochs, stopping when accuracy on DEV de-
creases two epochs in a row. We take the model
from the epoch with max DEV accuracy and eval-
uate it on TEST and CONTROL. VAL is not used.

We evaluate several other baseline systems in-
spired by those of Paperno et al. (2016), but we fo-
cus on versions that restrict the choice of answers
to non-stopwords in the context.> We found this

>This list of punctuation symbols is at https:
//raw.githubusercontent.com/ZeweiChu/
lambada-dataset/master/stopwords/
shortlist-stopwords.txt

3We use the stopword list from Richardson et al. (2013).
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TEST CONTROL
Method all all context
Baselines (Paperno et al., 2016)
Random in context 1.6 0 N/A
Random cap. in context 7.3 0 N/A
n-gram 0.1 19.1 N/A
n-gram + cache 0.1 19.1 N/A
LSTM 0 21.9 N/A
Memory network 0 8.5 N/A
Our context-restricted non-stopword baselines
Random 5.6 0.3 2.2
First 3.8 0.1 1.1
Last 6.2 0.9 6.5
Most frequent 11.7 0.4 8.1
Our context-restricted language model baselines
n-gram 10.7 22 15.6
n-gram + cache 11.8 2.2 15.6
LSTM 9.2 2.4 16.9
Our neural reader results
Stanford Reader 21.7 7.0 49.3
Modified Stanford Reader 32.1 7.4 52.3
AS Reader 41.4 8.5 60.2
AS Reader + features 44.5 8.6 60.6
GA Reader 454 8.8 62.5
GA Reader + features 49.0 9.3 65.6
Human 86.0° | 36.07 -
Table 1:  Accuracies on TEST and CONTROL

datasets, computed over all instances (“all”) and
separately on those in which the answer is in
the context (“context”). The first section is from
Paperno et al. (2016). *Estimated from 100
randomly-sampled DEV instances. 'Estimated
from 100 randomly-sampled CONTROL instances.

strategy to consistently improve performance even
though it limits the maximum achievable accuracy.
We consider two n-gram language model base-
lines. We use the SRILM toolkit (Stolcke, 2002)
to estimate a 4-gram model with modified Kneser-
Ney smoothing on the combination of TRAIN and
VAL. One uses a cache size of 100 and the other
does not use a cache. We use each model to score
each non-stopword from the context. We also
evaluate an LSTM language model. We train it on
TRAIN, where the loss is cross entropy summed
over all positions in each instance. The output
vocabulary is the vocabulary of TRAIN, approxi-
mately 130k word types. At test time, we again
limit the search to non-stopwords in the context.
We also test simple baselines that choose partic-
ular non-stopwords from the context, including a
random one, the first in the context, the last in the
context, and the most frequent in the context.

4 Results

Table 1 shows our results. We report accuracies
on the entirety of TEST and CONTROL (“all”), as



well as separately on the part of CONTROL where
the target word is in the context (“‘context”). The
first part of the table shows results from Paperno
et al. (2016). We then show our baselines that
choose a word from the context. Choosing the
most frequent yields a surprisingly high accuracy
of 11.7%, which is better than all results from Pa-
perno et al.

Our language models perform comparably, with
the n-gram + cache model doing best. By forcing
language models to select a word from the con-
text, the accuracy on TEST is much higher than the
analogous models from Paperno et al., though ac-
curacy suffers on CONTROL.

We then show results with the neural readers,
showing that they give much higher accuracies on
TEST than all other methods. The GA Reader with
the simple additional features (Wang et al., 2016)
yields the highest accuracy, reaching 49.0%. We
also measured the “top k” accuracy of this model,
where we give the model credit if the correct an-
swer is among the top k ranked answers. On TEST,
we reach 65.4% top-2 accuracy and 72.8% top-3.

The AS and GA Readers work much better than
the Stanford Reader. One cause appears to be that
the Stanford Reader learns distinct embeddings for
input and answer words, as discussed above. Our
modified Stanford Reader, which uses only a sin-
gle set of word embeddings, improves by 10.4%
absolute. Since the AS and GA Readers merely
score words in the context, they do not learn sepa-
rate answer word embeddings and therefore do not
suffer from this effect.

We suspect the remaining accuracy difference
between the Stanford and the other readers is due
to the difference in the output function. The
Stanford Reader was developed for the CNN and
Daily Mail datasets, in which correct answers are
anonymized entity identifiers which are reused
across instances. Since the identifier embeddings
are observed so frequently in the training data,
they are frequently updated. In our setting, how-
ever, answers are words from a large vocabulary,
so many of the word embeddings of correct an-
swers may be undertrained. This could potentially
be addressed by augmenting the word embeddings
with identifiers to obtain some of the modeling
benefits of anonymization (Wang et al., 2016).

All context restricted models yield poor accu-

racies on the entirety of CONTROL. This is due
to the fact that only 14.1% of CONTROL instances
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label # | GA+ | human
single name cue 9| 8% | 100%
simple speaker tracking 19 | 84% | 100%
basic reference 18 | 56% 72%
discourse inference rule 16 | 50% 88%
semantic trigger 20 | 40% 80%
coreference 21 | 38% 90%
external knowledge 24 | 21% 88%
all 100 | 55% 86%

Table 2: Labels derived from manual analysis of
100 LAMBADA DEV instances. An instance can
be tagged with multiple labels, hence the sum of
instances across labels exceeds 100.

have the target word in the context, so this sets the
upper bound that these models can achieve.

4.1 Manual Analysis

One annotator, a native English speaker, sampled
100 instances randomly from DEV, hid the final
word, and attempted to guess it from the context
and target sentence. The annotator was correct
in 86 cases. For the subset that contained the
answer in the context, the annotator was correct
in 79 of 87 cases. Even though two annotators
were able to correctly answer all LAMBADA in-
stances during dataset construction (Paperno et al.,
2016), our results give an estimate of how often a
third would agree. The annotator did the same on
100 instances randomly sampled from CONTROL,
guessing correctly in 36 cases. These results are
reported in Table 1. The annotator was correct on
6 of the 12 CONTROL instances in which the an-
swer was contained in the context.

We analyzed the 100 LAMBADA DEV in-
stances, tagging each with labels indicating the
minimal kinds of understanding needed to answer
it correctly.* Each instance can have multiple la-
bels. We briefly describe each label below:

e single name cue: the answer is clearly a name
according to contextual cues and only a single
name is mentioned in the context.

simple speaker tracking: instance can be an-
swered merely by tracking who is speaking
without understanding what they are saying.

basic reference: answer is a reference to some-
thing mentioned in the context; simple under-
standing/context matching suffices.

“The annotations are available from the authors’ websites.



e discourse inference rule: answer can be found
by applying a single discourse inference rule,
such as the rule: “X left Y and went in search
of 27 - Y # Z.

e semantic trigger: amorphous semantic informa-
tion is needed to choose the answer, typically re-
lated to event sequences or dialogue turns, e.g.,
a customer says “Where is the X?” and a sup-
plier responds “We got plenty of X .

e coreference: instance requires non-trivial coref-
erence resolution to solve correctly, typically
the resolution of anaphoric pronouns.

e external knowledge: some particular external
knowledge is needed to choose the answer.

Table 2 shows the breakdown of these labels
across instances, as well as the accuracy on each
label of the GA Reader with features.

The GA Reader performs well on instances in-
volving shallower, more surface-level cues. In 9
cases, the answer is clearly a name based on con-
textual cues in the target sentence and there is only
one name in the context; the reader answers all but
one correctly. When only simple speaker tracking
is needed (19 cases), the reader gets 84% correct.

The hardest instances are those that involve
deeper understanding, like semantic links, coref-
erence resolution, and external knowledge. While
external knowledge is difficult to define, we chose
this label when we were able to explicitly write
down the knowledge that one would use when
answering the instances, e.g., one instance re-
quires knowing that “when something explodes,
noise emanates from it”. These instances make
up nearly a quarter of those we analyzed, making
LAMBADA a good task for work in leveraging ex-
ternal knowledge for language understanding.

4.2 Discussion

On CONTROL, while our readers outperform our
other baselines, they are outperformed by the lan-
guage modeling baselines from Paperno et al. This
suggests that though we have improved the state of
the art on LAMBADA by more than 40% absolute,
we have not solved the general language modeling
problem; there is no single model that performs
well on both TEST and CONTROL. Our 36% esti-
mate of human performance on CONTROL shows
the difficulty of the general problem, and reveals a
gap of 14% between the best language model and
human accuracy.

A natural question to ask is whether applying
neural readers is a good direction for this task,
since they fail on the 17% of instances which
do not have the target word in the context. Fur-
thermore, this subset of LAMBADA may in fact
display the most interesting and challenging phe-
nomena. Some neural readers, like the Stanford
Reader, can be easily used to predict target words
that do not appear in the context, and the other
readers can be modified to do so. Doing this will
require a different selection of training data than
that used above. However, we do wish to note that,
in addition to the relative rarity of these instances
in LAMBADA, we found them to be challenging
for our annotator (who was correct on only 7 of
the 13 in this subset).

We note that TRAIN has similar characteristics
to the part of CONTROL that contains the answer
in the context (the final column of Table 1). We
find that the ranking of systems according to this
column is similar to that in the TEST column. This
suggests that our simple method of dataset cre-
ation could be used to create additional training or
evaluation sets for challenging language modeling
problems like LAMBADA, perhaps by combining
it with baseline suppression (Onishi et al., 2016).

5 Conclusion

We constructed a new training set for LAMBADA
and used it to train neural readers to improve the
state of the art from 7.3% to 49%. We also pro-
vided results with several other strong baselines
and included a manual evaluation in an attempt
to better understand the phenomena tested by the
task. Our hope is that other researchers will seek
models and training regimes that simultaneously
perform well on both LAMBADA and CONTROL,
with the goal of solving the general problem of
language modeling.
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Abstract

Several corpora have been annotated with
negation scope—the set of words whose
meaning is negated by a cue like the
word “not”—Ileading to the development
of classifiers that detect negation scope
with high accuracy. We show that for
nearly all of these corpora, this high ac-
curacy can be attributed to a single fact:
they frequently annotate negation scope as
a single span of text delimited by punc-
tuation. For negation scopes not of this
form, detection accuracy is low and under-
sampling the easy training examples does
not substantially improve accuracy. We
demonstrate that this is partly an artifact of
annotation guidelines, and we argue that
future negation scope annotation efforts
should focus on these more difficult cases.

1 Introduction

Textual negation scope is the largest span affected
by a negation cue in a negative sentence (Morante
and Daelemans, 2012)."! For example, given the
marker not in (1), its scope is use the 56k conex-
tant modem.?

(1) Idonot [use the 56k conextant modem] since
I have cable access for the internet

Fancellu et al. (2016) recently presented a model
that detects negation scope with state-of-the-art
accuracy on the Sherlock Holmes corpus, which
has been annotated for this task (SHERLOCK;
Morante and Daelemans, 2012). Encoding an

!Traditionally, negation scope is defined on logical forms,
but this definition grounds the phenomenon at word level.

2For all examples in this paper, negation cues are in bold,
human-annotated negation scope is in square brackets [ ], and
automatically predicted negation scope is underlined.
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input sentence and cue with a bidirectional LSTM,
the model predicts, independently for each word,
whether it is in or out of the cue’s scope.

But SHERLOCK is only one of several corpora
annotated for negation scope, each the result of
different annotation decisions and targeted to spe-
cific applications or domains. Does the same ap-
proach work equally well across all corpora? In
answer to this question, we offer two contribu-
tions.

1. We evaluate Fancellu et al. (2016)’s model
on all other available negation scope corpora in
English and Chinese. Although we confirm that it
is state-of-the-art, we show that it can be improved
by making joint predictions for all words, incor-
porating an insight from Morante et al. (2008) that
classifiers tend to leave gaps in what should other-
wise be a continuous prediction. We accomplish
this with a sequence model over the predictions.

2. We show that in all corpora except SHER-
LOCK, negation scope is most often delimited by
punctuation. That is, in these corpora, examples
like (2) outnumber those like (1).

(2) It helps activation , [not inhibition of ibrfl
cells] .

Our experiments demonstrate that negation scope
detection is very accurate for sentences like (2)
and poor for others, suggesting that most clas-
sifiers simply overfit to this feature of the data.
When we attempt to mitigate this effect by under-
sampling examples like (2) in training, our system
does not improve on examples like (1) in test, sug-
gesting that more training data is required to make
progress on the phenomena they represent. Given
recent interest in improving negation annotation
(e.g. Ex-Prom workshop 2016), we recommend
that future negation scope annotations should fo-
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cus on these cases.’

2 Models

We use the bi-directional LSTM of Fancellu et
al. (2016). The input to the network is a nega-
tive sentence W = wy...wj,,| containing a negation
cue. If there is more than one cue, we consider
each cue and its corresponding scope as a sepa-
rate classification instance. Given a representation
c of the cue, our model must predict a sequence
§ = $1...8|y|» Where s; = 1 if w; is in the scope
defined by ¢, and 0 otherwise. We model this as
|w| independent predictions determined by proba-
bility p(s;|w, ¢), where the dependence on w and ¢
is modeled by encoding them using a bidirectional
LSTM; for details refer to Fancellu et al. (2016).

Although this model is already state-of-the-art,
it is natural to model a dependence between the
predictions of adjacent tokens. For the exper-
iments in this paper, we introduce a new joint
model p(s|w, ¢), defined as:

n

p(5’w7 C) = Hp(5i|51‘71> w, C)

=1

The only functional change to the model of Fan-
cellu et al. (2016) is the addition of a 4-parameter
transition matrix to create the dependence on s;_1,
enabling the use of standard inference algorithms.
This enables us to train the model end-to-end.

3 Experiments

We experiment with two English corpora: the
SFU product review corpus (Konstantinova et al.,
2012); and the BioScope corpus (Vincze et al.,
2008). The latter consists of three subcorpora: ab-
stracts of medical papers (ABSTRACT), full papers
(FULL) and clinical reports (CLINICAL).

We also experiment with the Chinese Negation
and Speculation (CNeSp) corpus (Zhou, 2015),
which also consisting of three subcorpora: prod-
uct reviews (PRODUCT), financial articles (FINAN-
CIAL) and computer-related articles (SCIENTIFIC).

3.1 Corpus differences

Although they all define the scope as the tokens
in a sentence affected by a negation cue (Morante
and Daelemans, 2012), these corpora are quite
different from SHERLOCK, which deals with a

3http://www.cse.unt.edu/exprom2016/
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wider range of complex phenomena including el-
lipsis, long-range dependencies and affixal nega-
tion. Though widely used (e.g. Qian et al. (2016)),
the SFU, BioScope and CNeSp corpora contain
simplifications that are sometimes hard to justify
linguistically. In SFU and BioScope, for instance,
scope is usually annotated only to the right of the
cue, as in (1). The only exception is passive con-
structions, where the subject to the left is also an-
notated:

(3) [This book] wasn’t [published before the
year 2000.]

On the other hand, in the CNeSp corpus, subjects
are usually annotated as part of the scope, except
in cases like VP-coordination (4). This is to ensure
that the scope is always a continuous span.

&) EHE =SB EIRE R T A A REE 45
HATFR M — Ak
The hotel are furnished with upscale facili-
ties, but [cannot offer us one more pillow]

Unlike in the other corpora, in SHERLOCK, nega-
tion scope frequently consists of multiple disjoint
spans of text, including material that is omitted
in CNeSp. In addition to annotating the subject,
as shown above, this corpus also annotates auxil-
iaries (5) and entire clauses (6).

(5) [...] the ground [was] damp and [the night]
in[clement].

(6) [An investigator needs] facts and not [leg-
ends or rumours] .

Sherlock also annotates scope inside NPs, for ex-
ample, when the the adjective bears affixal nega-
tion:

(7) I will take [an] un[pleasant remembrance]
back to London with me tomorrow

3.2 Experimental parameters

All of our corpora are annotated for both cue
and scope. Since we focus on scope detection,
we use gold cues as input. We train and test on
each corpus separately. We first extract only those
sentences containing at least one negation cue
(18% and 52% for English and Chinese respec-
tively) and create a 70%/15%/15% split of these
for training, development and test respectively.
We use a fixed split in order to define a fixed
development set for error analysis, but this setup



precludes direct comparison to most prior work,
since, except for Fancellu et al. (2016), most has
used 10-fold cross-validation. Nevertheless, we
felt a data analysis was crucial to understanding
these systems, and we wanted a clear distinction
between test (for reporting results) and develop-
ment (for analysis).

Model parameters and initialization are the
same as in Fancellu et al. (2016). We pretrain
our Chinese word embeddings on wikipedia and
segment using NLPIR.*> For Chinese, we exper-
imented with both word and character representa-
tions but found no significant difference in results.

Baseline. In preliminary experiments, we no-
ticed many sentences where negation scope was
a single span delimited by punctuation, as in (2).
To assess how important this feature is, we imple-
mented a simple baseline in three lines of python
code: we mark the scope as all tokens to the left
or right of the cue up until the first punctuation
marker or sentence boundary.

3.3 Results

We evaluate our classifier in two ways. First, we
compute the percentage of correct scopes (PCS),
the proportion of negation scopes that we fully
and exactly match in the test corpus. Second, we
measure token-level Fj; over tokens identified
as within scope. To understand the impor-
tance of continuous spans in scope detection, we
also report the number of gaps in predicted scopes.

Results are shown in Table 1, including those
on SHERLOCK for comparison.® It is clear that
the LSTM system improves from joint predic-
tion, mainly by predicting more continuous spans,
though it performs poorly on CNeSp-SCIENTIFIC,
which we believe is due to the small size of the
corpus. More intriguingly, the baseline results
clearly demonstrate that punctuation alone iden-
tifies scope in the majority of cases for SFU, Bio-
Scope, and CNeSp.

“Data from https://dumps.wikimedia.org/

SNLPIR: https://github.com/NLPIR-team/
NLPIR

SUnlike all other corpora where the scope if always con-
tinuous and where the joint prediction helps to ensure no gaps
are present, in Sherlock the gold scope is often discontinuous;
this is the reason why we also cannot test for gaps.
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Data System F; PCS gaps

Baseline 68.31 26.20 -

Sherlock  Fancellu et al. (2016) 88.72 63.87 -
+joint 87.93 68.93 -

Baseline 87.07 77.90 -

SFU Cruz et al. (2015)*  84.07 58.69 -
Fancellu et al. (2016) 89.83 74.85 17

+joint 88.34 78.09 0

Baseline 82.75 64.59

BioScope Zou et al. (2013)* - 76.90 -
Abstract  Fancellu et al. (2016) 91.35 73.72 37
+joint 92.11 81.38 4

Baseline 75.30 50.41 -

BioScope Velldal et al. (2012)* - 70.21 -
Full Fancellu et al. (2016) 77.85 51.24 20
+joint 77.73  54.54 6

Baseline 97.76  94.73 -

BioScope  Velldal et al. (2012)* - 90.74 -
Clinical Fancellu et al. (2016) 97.66 95.78 4
+joint 97.94 9421 1

Baseline 81.70 70.57 -

CNeSp Zhou (2015)* - 60.93 -
Abstract  Fancellu et al. (2016) 90.13 67.35 26
+joint 90.58 71.94 0

Baseline 90.84 58.87 -

CNeSp Zhou (2015)* - 56.07 -
Financial Fancellu et al. (2016) 94.88 75.05 6
+joint 93.58 74.03 0

Baseline 83.43 31.81 -

CNeSp Zhou (2015)* - 62.16 -
Scientific  Fancellu et al. (2016) 81.30 40.90 4
+joint 80.90 59.09 0

Table 1: Results for the English corpora (Sher-
lock, SFU & BioScope) and for Chinese corpora
(CNeSp). * denotes results provided for context
that are not directly comparable due to use 10-fold
cross validation, which gives a small advantage in
training data size.

Data Punctuation Other
Sherlock 68% 45%
SFU 92% 23%
BioScope Abstract 88% 51%
BioScope Full 84% 30%
BioScope Clinical 98% 47%
CNeSp Product 80% 37%
CNeSp Financial 84% 66%
CNeSp Scientific 20% 41%
Total 85% 40%
Average 85% 40%

Table 2: PCS results on the development set,
split into cases where punctuation exactly delimits
negation scope in the gold annotation, and those
where it does not.



4 Error analysis

The baseline results suggest that punctuation alone
is a strong predictor of negation scope, so we fur-
ther analyze this on the development set by divid-
ing the negation instances into those whose scopes
(in the human annotations) are precisely delimited
by the innermost pair of punctuation markers con-
taining the cue, and those which are not. The re-
sults (Table 2) confirm a huge gap in accuracy be-
tween these two cases. The model correctly learns
to associate surrounding punctuation with scope
boundaries, but when this is not sufficient, it un-
derpredicts, as in (8), or overpredicts, as in (9).

(8) surprisingly , expression of [neither
bhrfl nor blc-2 in a b-cell line , bjab , pro-
tected by the cells from anti-fas-mediated
apostosis] ...

) ... MREBEEIN SFHEREE T

Next time (I) [won’t live again in Pingdi
Xingzuo] for sure

A closer inspection reveals that in SHERLOCK,
where this gap is narrower, we correctly detect
a greater absolute number of the difficult punc-
tuation scopes, though accuracy for these is still
lower. The results on CNESP- SCIENTIFIC may
again be due to the small corpus size.

To understand why the system is so much bet-
ter on punctuation-delimited scope, we examined
the training data to see how frequent this pattern
is (Table 3). The results suggest that our model
may simply be learning that punctuation is highly
indicative of scope boundaries, since this is empir-
ically true in the data; the fact that the SHERLOCK
and CNESP-SCIENTIFIC are the exception to this
is in line with the observations above.

This result is important but seems to have
been overlooked: previous work in this area has
rarely analyzed the contribution of each feature to
classification accuracy. This applies to older CRF
models (e.g. Morante et al. (2008)), as well as to
more recent neural architectures (e.g. CNN, Qian
et al. (2016)), where local window based features
were used.

In order to see whether training imbalance was
at play, we experimented with training by under-
sampling from training examples that can be pre-
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Data Total Punctuation
Sherlock 984 40%
SFU 2450 80%
BioScope Abstract 1190 64%
BioScope Full 210 54%
BioScope Clinical 560 93%
CNeSp Product 2744 71%
CNeSp Financial 1053 58%
CNeSp Scientific 109 22%

Table 3: Training instances by corpus, showing
total count and percentages whose scope is pre-
dictable by punctuation boundaries only.
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Figure 1: PCS accuracy on development and test
sets divided into instances where the punctua-
tion and scope boundaries coincide (punct.) and
instances where they do not (no punct.), when
punct. instances are incrementally removed from
the training data.

dicted by scope boundaries only. We report re-
sults on using incrementally bigger samples of the
majority class. Figure 1 shows the results for the
SFU corpus, which is a representative of a trend
we observed in all of the other corpora. There does
indeed seem to be a slight effect where the classi-
fier overfits to punctuation as delimiter of negation
scope, but in general, classification of the other
cases improves only slightly from under-sampling.
This suggests that the absolute number of training
instances for these cases is insufficient, rather than
their ratio.

5 Re-annotation of negation scope

At this point it is worth asking: is negation scope
detection easy because most of the instances in
real data are easy? Or is it because the annota-
tion guidelines made it easy? Ofr is it because of
the domain of the data? To answer these ques-



tions we conducted a small experiment on SFU,
BioScope-abstract and CNeSp-financial, each rep-
resenting a different domain. For each, we ran-
domly selected 100 sentences and annotated scope
following the Sherlock guidelines. If the guide-
lines are indeed responsible for making scope de-
tection easy, we should observe relatively fewer
instances predictable by punctuation alone in these
new annotations. If instead, easy instances still
outnumber more difficult ones, we can conclude
that detecting negation scope is less easy on Sher-
lock Holmes because of the domain of the data.
Comparing the results in Table 4 with the one in
Table 3, the Sherlock-style annotation produces
more scopes that are not predictable by punctu-
ation boundaries than those that are. We attribute
this to the fact that by capturing elliptical construc-
tions, the Sherlock guidelines require the annota-
tion of complex, discontinuous scopes, as in (10).

(10)

BI1IOSCOPE : second , t cells , which lack cd45
and can not [signal via the tcr] , supported
higher levels of viral replication and gene
expression .

B10OSCOPE-SHERLOCK : second , [t cells] ,
which lack cd45 and can not [signal via the
ter] , supported higher levels of viral replica-
tion and gene expression .

In contrast with the original SFU and BioScope
annotation, always annotating the subject pro-
duces negation scopes that are not bound by punc-
tuation, since in both English and Chinese, sub-
jects generally appear to the left of the cue and are
less often delimited by any punctuation (11).

1D

SFU : i ’m sure she felt rather uncomfortable
having to ask us at all , but she thought it was
strange that we ’d not [mentioned it] .

SFU-SHERLOCK :i 'm sure she felt rather un-
comfortable having to ask us at all , but she
thought it was strange that [we ’d] not [men-
tioned it] .
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Data Punct. No Punct.
SFU 42% 58%
BioScope Abstract  34% 64%
CNeSp Financial 45% 55%

Table 4: Percentages of scope instances pre-
dictable (punct.) and not predictable (no punct.)
by punctuation boundaries only on 100 randomly
selected sentences annotated following the Sher-
lock guidelines for each of the three corpora con-
sidered.

6 Discussion and Recommendation

We have demonstrated that in most corpora used
to train negation scope detection systems, scope
boundaries frequently correspond to punctuation
tokens. The main consequence of this is in
the interpretation of the results: although neural
network-based sequence classifiers are highly ac-
curate quantitatively, this appears to be so because
they are simply picking up on easier cases that
are detectable from punctuation boundaries. Ac-
curacy on difficult cases not delimited by punc-
tuation is poor. Under-sampling easy training in-
stances seems to have little effect.

For future research in this area we make two
strong recommendations. (1) Our data-oriented
recommendation is to adopt a more linguistically-
motivated annotation of negation, such as the one
used in the SHERLOCK annotation, and to fo-
cus annotation on the more difficult cases. (2)
Our model-oriented recommendation is to explore
more recursive neural models that are less sensi-
tive to linear word-order effects such as punctua-
tion.
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Abstract

Cross-lingual information extraction is the
task of distilling facts from foreign lan-
guage (e.g. Chinese text) into represen-
tations in another language that is pre-
ferred by the user (e.g. English tuples).
Conventional pipeline solutions decom-
pose the task as machine translation fol-
lowed by information extraction (or vice
versa). We propose a joint solution with
a neural sequence model, and show that it
outperforms the pipeline in a cross-lingual
open information extraction setting by 1-4
BLEU and 0.5-0.8 F7.

1 Introduction

Suppose an English-speaking user is faced with
the daunting task of distilling facts from a col-
lection of Chinese documents. One solution is
to first translate the Chinese documents into En-
glish using a Machine Translation (MT) service,
then extract the facts using an English-based In-
formation Extraction (IE) engine. Unfortunately,
imperfect translations negatively impact the IE en-
gine, which may have been trained to expect nat-
ural English input (Sudo et al., 2004). Another
approach is to first run a Chinese-based IE engine
and then translate the results, but this relies on IE
resources in the source language. Such problems
with pipeline systems compound when the IE en-
gine relies on parsers or other analytics as features.

We propose to solve the cross-lingual IE task
with a joint approach. Further, we focus on Open
IE, which allows for an open set of semantic rela-
tions between a predicate and its arguments. Open
IE in the monolingual setting has shown to be
useful in a wide range of tasks, such as question
answering (Fader et al.,, 2014), ontology learn-
ing (Suchanek, 2014), and summarization (Chris-
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Figure 1: Example of input (a) and output (b) of
cross-lingual Open IE.

tensen et al., 2013). A variety of work has
achieved compelling results at monolingual Open
IE (Banko et al., 2007; Fader et al., 2011; An-
geli et al., 2015). But we are not aware of efforts
that focus on both the cross-lingual and open as-
pects of cross-lingual Open IE, despite significant
work in related areas, such as cross-lingual IE on
a closed, pre-defined set of events/entities (Sudo
et al., 2004; Parton et al., 2009; Ji, 2009; Snover
et al.,, 2011; Ji et al,, 2016), or bootstrapping
of monolingual Open IE systems in multiple lan-
guages (Faruqui and Kumar, 2015; Kozhevnikov
and Titov, 2013; van der Plas et al., 2014).

Inspired by the recent success of neural models
in machine translation (Kalchbrenner and Blun-
som, 2013; Cho et al.,, 2014; Bahdanau et al.,
2014), syntactic parsing (Vinyals et al., 2015;
Choe and Charniak, 2016), and semantic pars-
ing (Dong and Lapata, 2016), we propose a
sequence-to-sequence model that enables end-to-
end cross-lingual Open IE. Essentially, we recast
the problem as structured translation: the model
encodes natural-language sentences and decodes
predicate-argument forms (Figure 1). We show
that the joint approach outperforms the pipeline on
various metrics, and that the neural model is criti-
cal for the joint approach because of its capability
in generating complex open IE patterns.
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2 Cross-lingual Open IE Framework

Open IE involves the extraction of relations whose
schema need not be specified in advance; typi-
cally the relation name is represented by the text
linking the arguments, which can be identified by
manually-written patterns and/or parse trees. We
define our extractions based on PredPatt' (White
et al., 2016), a lightweight tool for identifying
predicate-argument structures with a set of Uni-
versal Dependencies (UD) based patterns.

PredPatt represents predicates and arguments in
a tree structure where a special dependency ARG is
built between a predicate head token and its argu-
ments’ head tokens, and original UD dependencies
within predicate phrases and argument phrases are
kept. For example, Fig 1b shows a tree structure
identified by PredPatt from the sentence: “Chris
wants to build a boat.”

Our framework assumes the availability of a bi-
text, e.g. a corpus of Chinese sentences and their
English translations. We run PredPatt on the tar-
get side (e.g. English) to obtain (Chinese sentence,
English PredPatt) pairs. This is used to train a
cross-lingual Open IE system that maps directly
from Chinese sentence to English PredPatt rep-
resentations. Besides the UD parser required for
running PredPatt on the target side, our framework
requires no additional resources.

Compared to existing Open IE (Banko et al.,
2007; Fader et al., 2011; Angeli et al., 2015), the
use of manual patterns on Universal Dependencies
means that the rules are interpretable, extensible
and language-agnostic, which makes PredPatt a
linguistically well-founded component for cross-
lingual Open IE. Note that our joint model is ag-
nostic to the IE representation, and can be adapted
to other Open IE frameworks.

3 Proposed Method

Our goal is to learn a model which directly maps
a sentence input A in the source language into
predicate-argument structures output B in the tar-
get language. Formally, we regard the input as a
sequence A = xq,- - , | A|» and use a linearized
representation of the predicate-argument structure
as the output sequence B = y1,--- ,y;p. While
tree-based decoders are conceivable (Zhang et al.,
2016), linearization of structured outputs to se-
quences simplifies decoding and has been shown

'nttps://github.com/hltcoe/PredPatt
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effective in, e.g. (Vinyals et al., 2015), especially
when a model with strong memory capabilities
(e.g. LSTM’s) are employed. Our model maps
A into B using a conditional probability which is
decomposed as:

| B
P(B|A):Hp(yt|ylu'”>yt—17A) (1)
t=1

3.1 Linearized PredPatt Representations

We begin by defining a linear form for our Pred-
Patt predicate-argument structures. To convert a
tree structure such as Figure 1b to a linear se-
quence, we first take an in-order traversal of ev-
ery node (token). We then label each token with
the type it belongs to: p for a predicate token, a
for an argument token, py, for a predicate head to-
ken, and aj, for an argument head token. We insert
parentheses to either the beginning or the end of an
argument, and we insert brackets to either the be-
ginning or the end of a predicate. Fig 2 shows the
linearized PredPatt for the sentence: “Chris wants
to build a boat.”.

[(Chris:ap) wants:pp, [(Chris:ap) build:py, (a:a boat:ar)]]

Figure 2: Linearized PredPatt Output

To recover the predicate-argument tree struc-
ture, we simply build it recursively from the out-
ermost brackets. At each layer of the tree, paren-
theses help recover argument nodes. The labels ay,
and p, help identify the head token of a predicate
and an argument, respectively. We define that an
auto-generated linearized PredPatt is malformed
if it has unmatched brackets or parentheses, or a
predicate (or an argument) has zero or more than
one head token.

3.2 Seq2Seq Model

Our sequence-to-sequence (Seq2Seq) model con-
sists of an encoder which encodes a sentence in-
put A into a vector representation, and a decoder
which learns to decode a sequence of linearized
PredPatt output B conditioned on encoded vector.

We adopt a model similar to that which is used
in neural machine translation (Bahdanau et al.,
2014). The encoder uses an L-layer bidirectional
RNN (Schuster and Paliwal, 1997) which con-
sists of a forward RNN reading inputs from z;
to )4 and a backward RNN reading inputs in

-
reverse from x4 to x1. Let hﬁ € R™ denote



the forward hidden state at time step ¢ and layer
l; it is computed by states at the previous time-

Z(hl -1
d [CE
where f is a nonlinear LSTM unit (Hochreiter

ﬂ
and Schmidhuber, 1997). The lowest layer h? is
the word embedding of the token x;. The back-

—

=
. pl
step and at a lower layer: h;

ward hidden state hé is computed similarly us-

ing another LSTM, and the representation of each

token x; is the concatenation of the top-layers:
—T =TT

h; = [hf , hiL ].

The decoder is an L-layer RNN which predicts
the next token y;, given all the previous words
Y<i = Y1, - ,Y;—1 and the context vector c¢; that
captures the attention to the encoder side (Bah-
danau et al., 2014; Luong et al., 2015), computed
as a weighted sum of hidden representations: c;
Zé-:l a;jh;. The weight a;; is computed by

exp (€;5)

> et XD (€ik)
L
eij = v} tanh(z W!st | +U,h;)
=1

aij

2)

where v, € R?, W! € R"*" and U, € R"*?"
are weight matrices.

The conditional probability of the next token y;
is defined as:

P(yi | y<i, A) = g(yi, s, ¢;)
= softmax(UosiL + Coci)lyi]

where U, € RIVEIX" and €, € RIVBIX2n 4re
weight matrices.[j] indexes jth element of a vec-
tor. siL is the top-layer hidden state at time step
i, computed recursively by st = f(st_|, sé_l, ci)
where s? = Wplyi—1] is the word vector of the
previous token y;_1, with Wx € RIVEIX" being a
parameter matrix.

Training: The objective function is to minimize
the negative log likelihood of the target linearized
PredPatt given the sentence input:

|A]
minimize — Z ZlogP(yi|y<l-,A) 3)
(A,B)ED i

where D is the batch of training pairs, and P(y; |
Y<i, A) is computed by Eq.(3).

Inference: We use greedy search to decode tokens
one by one: g; = argmax,, ey, P(yi|9<i, A)
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4 Experiments

We describe the data for evaluation, hyperparam-
eters, comparing approaches and evaluation re-
sults.?

Data: We choose Chinese as the source language
and English as the target language. To prepare
the data for evaluation, we first collect about 2M
Chinese-English parallel sentences®. We then tok-
enize Chinese sentences using Stanford Word Seg-
menter (Chang et al., 2008), and generate En-
glish linearized PredPatt by running SyntaxNet
Parser (Andor et al., 2016) and PredPatt (White et
al., 2016) on English sentences. After removing
long sequences (length>50), we result in 990K
pairs of Chinese sentences and English linearized
PredPatt, which are then randomly divided for
training (950K), validation (10K) and test (40K).
Fig 3 shows the statistics of the data. Note that in
general, the linearized PredPatt sequences are not
short, and can contain multiple predicates.

30K
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15K

(]

20

10K

s +

= N W A U O N

0

10 20 40 50 50

30 30
(a) (b)
Figure 3: Data Statistics: (a) Number of data pairs
with respect to the lengths of English linearized
PredPatt; (b) Boxplot of numbers of English pred-
icate with respect to the lengths of English lin-

earized PredPatt.

Hyperparameters: Our proposed model (Joint-
Seq2Seq) is trained using the Adam opti-
miser (Kingma and Ba, 2014), with mini-batch
size 64 and step size 200. Both encoder and de-
coder have 2 layers and hidden state size 512,
but different LSTM parameters sampled from /(-
0.05,0.05). Vocabulary size is 40K for both sides.
Dropout (rate=0.5) is applied to non-recurrent
connections (Srivastava et al., 2014). Gradients
are clipped when their norm is bigger than 5 (Pas-
canu et al., 2013). We use sampled softmax to
speed up training (Jean et al., 2015).
Comparisons: As an alternative,
a phrase-based machine translation

we train
system,

’The code is available at https://github.com/
sheng—-z/cross—-lingual-open-ie.

3The data comes from the GALE project; the largest bi-
texts are LDC2007E103 and LDC2006G05



Moses (Koehn et al., 2007), directly on the same
data we used to train Joint-Seq2Seq, i.e. pairs of
Chinese sentences and English linearized Pred-
Patt. We call this system Joint-Moses. We also
train a Pipeline system which consists of a Moses
system that translates Chinese sentence to English
sentence, followed by SyntaxNet Parser (Andor
et al., 2016) for Universal Dependency parsing
on English, and PredPatt for predicate-argument
identification.

Results: We regard the generation of linearized
PredPatt or linearized predicates* as a translation
problem, and use BLEU score (Papineni et al.,
2002) for evaluation. As shown in Table 1, Joint
Seq2Seq achieves the best BLEU scores, with an
improvement 1.7 BLEU for linearized PredPatt
and improvement of 4.3 BLEU for linearized pred-
icates compared to Pipeline.

PredPatt  Predicates
Pipeline 17.19 17.24
Joint Moses 18.34 16.43
Joint Seq2Seq 18.94 21.55

Table 1: Evaluation results (BLEU) of linearized
PredPatt and linearized predicates.

We also evaluate predicates in the same vein as
event detection evaluation using the weighted £
score.” There are totally 9,535 predicate tokens in
the test data. To enable a coarser-grain evaluation,
we also partitioned these predicates into k clusters
(k € {150, 1252}) and evaluated F} on the clus-
ter identities.The clusters are obtained by running
Bisecting k-Means algorithm on pre-trained word
embeddings (Rastogi et al., 2015).5 Table 2 shows
the F} scores: Joint Seq2Seq outperforms Pipeline
by 0.5-0.8 at different granularities.

An important aspect of the auto-generated lin-
earized PredPatt is its recoverability. Table 3
shows the number of unrecoverable outputs (in-
cluding empty or malformed ones). Since the last
step in Pipeline is to run PredPatt, Pipeline gen-
erates no malformed output. However, 15% of its

“In linearized predicates, arguments are replaced by
placeholders. For example, the linearized PredPatt in Fig 2
becomes “[ ?7arg wants:pj, Sth:= [ ?arg build:p;, ?arg ] ]” after
replacement.

SWeighted F) is the weighted average of individual Fy
for each predicate, with weights proportional to predicate fre-
quencies in the test data. We use token-level F; score (Liu et
al., 2015) which gives partial credits to partial matches.

SDownloaded from: https://github.com/sedu/
mvlsa.
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k=150 k=1252 k=9535
Pipeline 32.95 28.73 27.20
Joint Moses 32.56 27.94 25.43
Joint Seq2Seq  33.67 29.21 28.03

Table 2: Evaluation results (weighted F1) of pred-
icates at different cluster granularities.

outputs are empty. In contrast, Joint Seq2Seq gen-
erates no empty output and very few malformed
ones (1%). Joint Moses also generates no empty
output, but a large amount (84%) of its outputs is
malformed.

Joint Moses

33178(84%)

Pipeline
5965(15%)

Joint Seq2Seq
557(1%)

Table 3: Number of unrecoverable outputs.

Table 4 shows an example output. While some
arguments (e.g., “The focus of focus” in Table 4)
are not correct, the output of Joint Seq2Seq is clos-
est to the gold in terms of translation. Pipeline has
the higher precision in predicting the same predi-
cate head tokens as the gold, but its overall mean-
ing is less close. Joint Moses often generates un-
recoverable outputs (e.g., the predicate in Table 4
has two head tokens: “focus” and “related”.)

zhsent: & BT XE 5 ZEHME £3F %) 4
SO

en_sent: The focus of the auditing will be on special
item funds that are closely related to people

’s living .

gold: [(The focus of the auditing) will be on spe-
cial special funds [(special item funds) are
closely related to (people ’s living)]]

Pipeline: [(the key auditing concern and ordinary peo-
ple) are closely related to (the life of the spe-
cial funds)]

Joint- [(the auditing focus (attention) to (life) with

Moses:  (ordinary people) are closely related to (the
special funds)]

Joint- [(The focus of focus) focused on (the special

Seq2Seq: collection of the specific funds) [(the special

funds) related to (people ’s lives)]]

Table 4: Example output. Arguments are shown in
blue, and predicates shown in purple. Head tokens
are underlined in bold. Token labels are omitted.

5 Conclusions

We focus on the problem of cross-lingual open
IE, and propose a joint solution based on a neu-



ral sequence-to-sequence model. Our joint ap-
proach outperforms the pipeline solution by 1-4
BLEU and 0.5-0.8 F}. Future work includes min-
imum risk training (Shen et al., 2016) for directly
optimizing the cross-lingual open IE metrics of in-
terest. Furthermore, as PredPatt works on any lan-
guage that has UD parsers available, we plan to
evaluate cross-lingual Open IE on other target lan-
guages. We are also interested in exploring how
our cross-lingual open IE output, which contains
rich information about predicates and arguments,
can be used to facilitate existing IE tasks like rela-
tion extraction, event detection, and named entity
recognition in a cross-lingual setting.
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Abstract

We learn a mapping that negates adjectives
by predicting an adjective’s antonym in
an arbitrary word embedding model. We
show that both linear models and neural
networks improve on this task when they
have access to a vector representing the se-
mantic domain of the input word, e.g. a
centroid of temperature words when pre-
dicting the antonym of ‘cold’. We intro-
duce a continuous class-conditional bilin-
ear neural network which is able to negate
adjectives with high precision.

1 Introduction

Identifying antonym pairs such as hot and cold
in a vector space model is a challenging task,
because synonyms and antonyms are both dis-
tributionally similar (Grefenstette, 1992; Moham-
mad et al., 2008). Recent work on antonymy has
learned specialized word embeddings using a lex-
ical contrast objective to push antonyms further
apart in the space (Pham et al., 2015; Ono et al.,
2015; Nguyen et al., 2016; Mrksi¢ et al., 2016),
which has been shown to improve both antonym
detection and the overall quality of the vectors for
downstream tasks. In this paper we are interested
in a related scenario: given an arbitrary word em-
bedding model, with no assumptions about pre-
training for lexical contrast, we address the task
of negation, which we define as the prediction of
a one-best antonym for an input word. For exam-
ple, given the word talkative, the negation map-
ping should return a word from the set quiet, taci-
turn, uncommunicative, etc.

We focus on the negation of adjectives. The in-
tuition behind our approach is to exploit a word’s
semantic neighborhood to help find its antonyms.
Antonym pairs share a domain, or topic—e.g. tem-
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perature; but differ in their value, or polarity—e.g.
coldness (Turney, 2012; Hermann et al., 2013).
Negation must alter the polarity while retaining
the domain information in the word embedding.
We hypothesize that a successful mapping must
be conditioned on the domain, since the relevant
features for negating, say, a temperature adjective,
differ from those for an emotion adjective. In-
spired by Kruszewski et al. (2016), who find that
nearest neighbors in a vector space are a good ap-
proximation for human judgements about nega-
tion, we represent an adjective’s domain by the
centroid of nearest neighbors in the embedding
space or cohyponyms in WordNet.

We introduce a novel variant of a bilinear re-
lational neural network architecture which has
proven successful in identifying image transfor-
mations in computer vision (Memisevic, 2012;
Rudy and Taylor, 2015), and which learns a nega-
tion mapping conditioned on a gate vector repre-
senting the semantic domain of an adjective. Our
model outperforms several baselines on a multiple
choice antonym selection task, and learns to pre-
dict a one-best antonym with high precision. In
addition to the negation task, this model may be of
interest for other NLP applications involving lexi-
cal or discourse relations.

2 Relational Encoders

Our task is to map a word embedding vector z, e.g.
hot, to an antonym vector y in the same space, e.g.
cold, conditioned on the semantic domain, which
is represented by a vector z (see Sec 3.2 for how
this vector is obtained). We learn this mapping
using a relational neural network, which we intro-
duce in the following sections.

2.1 Relational Autoencoders: Background

Relational autoencoders (RAE), also known as
gated autoencoders (GAE), have been used in
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I

(a) Relational Autoencoder

(b) CCRAE

communicativeness

talkative

(c) CCCRE

Figure 1: Neural network architectures and training signal for (a) RAE (Memisevic, 2013), (b) Class-
Conditional RAE (Rudy and Taylor, 2015), and Continuous Class-Conditional RE (this paper). Figures

based on Memisevic (2013).

computer vision to learn representations of trans-
formations between images, such as rotation or
translation (Memisevic and Hinton, 2007; Memi-
sevic, 2012, 2013). RAE:s are a type of gated net-
work, which contains multiplicative connections
between two related inputs. The “gating” of one
image vector by another allows feature detectors
to concentrate on the correspondences between the
related images, rather than being distracted by the
differences between untransformed images. See
Figure 1(a). Multiplicative connections involve a
weight for every pair of units in the input vector
and gate vector. For an overview of RAEs see
Memisevic (2013) and Sigaud et al. (2015).

RAE gates perform a somewhat different func-
tion than LSTM gates (Hochreiter and Schmidhu-
ber, 1997). Both architectures use a nonlinearity to
modulate the contents of a product; in an RAE this
is an outer (bilinear) product while in an LSTM it
is a Hadamard (element-wise) product. However,
LSTM memory gates represent an internal hidden
state of the network, while RAE gates are part of
the network input.

An Autoencoder (AE) can be defined as in Eq 1
(we omit bias terms for simplicity), where W,
are the encoder weights and W4 are the decoder
weights. In autoencoders, weights are typically
tied so that Wyq = W,”.

h=f(z) =0(Wez)
y = g(h) = Wqh
For an RAE, we have two inputs x and z. Instead

of a weight matrix W we have a weight tensor
W € R"uXnx*nz_ The RAE is defined in Eq 2.

)

h
y=g(h,z)

f(z,2) = 0(Wez)x)
= 0((Wah)z)

)
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Rudy and Taylor (2015) introduce a class-
conditional gated autoencoder in which the gate
is a one-hot class label, rather than a transformed
version of the input image. For example, in the
MNIST task the label represents the digit. Effec-
tively, an autoencoder is trained per class, but with
weight sharing across classes. See Figure 1(b).

2.2 Continuous Class-Conditional Relational
Encoders

Our bilinear model is a continuous class-
conditional relational encoder (CCCRE). The
model architecture is the same as an RAE with
untied encoder and decoder weights (Eq 2). How-
ever, the training signal differs from a classic RAE
in two ways. First, it is not an autoencoder, but
simply an encoder, because it is not trained to
reproduce the input but rather to transform the
input to its antonym. Second, the encoder is
class-conditional in the sense of Rudy and Taylor
(2015), since the gate represents the class. Un-
like the one-hot gates of Rudy and Taylor (2015),
our gates are real-valued, representing the seman-
tic domain of the input vector. See Figure 1(c).
Analogous to the case of image transformation de-
tection, we want the model to learn the changes
relevant to negation without being distracted by
cross-domain differences.

We approximate the semantic domain as the
centroid of a set of related vectors (see Sec 3.2).
This approach is inspired by Kruszewski et al.
(2016), who investigate negation of nouns, which
typically involves a set of alternatives rather than
an antonym. It is natural to finish the statement
That’s not a table, it’s a ... with desk or chair, but
not pickle. Kruszewski et al. (2016) find that near-



est neighbors in a vector space are a good approx-
imation for human judgements about alternatives.
We hypothesize that a set of alternatives can stand
in for the semantic domain. Note that each word
has its own domain, based on its WordNet or dis-
tributional neighbors; however, similar words will
generally have similar gates.

3 Experiments

3.1 Models

We compare the CCCRE with several baselines.
The simplest is Cosine similarity in the original
vector space. We train a linear model (Linear)
which maps the input word to its antonym (Eq 3),

y= Wz 3)
an Untied Encoder (UE) with a bottleneck hid-
den layer, and a shallow feed-forward model (FF)
with a wide hidden layer rather than a bottleneck
(both as in Eq 1 with different hidden layer sizes).
To test whether the semantic domain is helpful in
learning negation, each of these models has a Con-
cat version in which the input consists of the con-
catenated input word and gate vectors z||z, rather
than .

3.2 Experimental Settings

We use publicly-available' 300-dimensional em-
beddings trained on part of the Google News
dataset using skip-gram with negative sampling
(SGNS) (Mikolov et al., 2013). Antonym training
data was obtained from WordNet (Miller, 1995)
(hereafter WN), resulting in approximately 20K
training pairs. Training data always excludes
antonym pairs where the input word is an input
word the test set. Exclusion of pairs where the tar-
get word is a target in the test set depends on the
training condition.

Gate vectors were obtained under two condi-
tions. In the standard condition we begin with
all WN cohyponyms of an input word. If there
are fewer than ten, we make up the difference with
nearest neighbors from the vector space. The gate
vector is the vector centroid of the resulting word
list. In the standard training condition, we do not
exclude antonym pairs with the target word in the
test set, since we hypothesize it is important for the
model to see other words with a similar semantic
domain in order to learn the subtle changes nec-
essary for negation. For example, if the pair (hot,

'https://code.google.com/archive/p/
word2vec/
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cold) is in the test set, we exclude (hot, cold), (hot,
freezing), etc. from training; but we do not exclude
(icy, hot) or (burning, cold) from training.

In the unsupervised gate condition we do not
use WN, but rather the ten nearest neighbors from
the vector space. Note that it is only the gates
which are unsupervised, not the word pairs: the
training targets are still supervised.

We also use a restricted training condition, to
test whether it is important for the model to have
training examples from a similar semantic domain
to the test examples. E.g. if (hot, cold) is in the
test set, is it important for the model to have other
temperature terms in the training data? We remove
all WN cohyponyms of test input words from the
training data, e.g. hot, cool, tepid etc. if cold is
a test input word. Although we do not explicitly
remove training examples with the target word in
the test set, these are effectively removed by the
nature of the semantic relations. We use standard
(supervised) gates in this condition.

In all conditions, the input word vector is never
part of the gate centroid, and we use the same gate
type at training and test time.

Hyperparameters were tuned on the GRE devel-
opment set (Sec 3.3). All models were optimized
using AdaDelta (p 0.95) to minimize Mean
Squared Error loss. The FF and CCCRE networks
have hidden layers of 600 units, while UE has 150
and UE-Concat has 300. Minibatch size was 48
for CCCRE and 16 for all other networks. The
linear models were trained for 100 epochs, FF net-
works for 400, UE for 300, and CCCRE for 200.

3.3 Evaluation

Experiment 1 uses the Graduate Record Examina-
tion (GRE) questions of Mohammad et al. (2013).
The task, given an input word, is to pick the best
antonym from five options. An example is shown
in (4), where the input word is piquant and the cor-
rect answer is bland. We use only those questions
where both input and target are adjectives.
piquant: (a) shocking (b) jovial (c) rigorous @)
(d) merry (e) bland
We evaluate a model by predicting an antonym
vector for the input word, and choosing the multi-
ple choice option with the smallest cosine distance
to the predicted vector. We report accuracy, i.e.
percentage of questions answered correctly.
Experiment 2 evaluates the precision of the
models. A natural criterion for the success of a
negation mapping is whether the model returns a



Training Condition

Method Stand. Unsup. Restr.
Random 0.20 — —
Cosine 0.50 — —
Linear 0.56 0.56 0.53
Linear-Concat 0.66 0.59 0.63
UE 0.57 0.55 0.52
UE-Concat 0.63 0.58 0.61
FF 0.58 0.54 0.51
FF-Concat 0.65 0.56 0.63
CCCRE 0.69 0.60 0.65

Table 1: Accuracy on the 367 multiple-choice ad-
jective questions in the GRE test set.

good antonym at rank 1, or several good antonyms
at rank 5, rather than returning any particular
antonym as required by the GRE task.

We use two datasets: the GRE test set (GRE),
and a set of 99 adjectives and their antonyms from
a crowdsourced dataset collected by Lenci and
Benotto acccording to the guidelines of Schulte
im Walde and Ké6per (2013) (LLB). For each input
word we retrieve the five nearest neighbors of the
model prediction and check them against a gold
standard. Gold standard antonyms for a word in-
clude its antonyms from the test sets and WN. Fol-
lowing Gorman and Curran (2005), to minimize
false negatives we improve the coverage of the
gold standard by expanding it with antonyms from
Roget’s 21st Century Thesaurus, Third Edition.?

4 Results and Discussion

Table 1 shows the results of Experiment 1. A ran-
dom baseline results in 0.20 accuracy. The cosine
similarity baseline is already fairly strong at 0.50,
suggesting that in general about two out of the five
options are closely related to the input word.
Information about the semantic domain clearly
provides useful information for this task, because
the Concat versions of the Linear, UE, and FF
models achieve several points higher than the
models using only the input word. The Linear-
Concat model achieves a surprisingly high 0.66
accuracy under standard training conditions.
CCCRE achieves the highest accuracy across
all training conditions, and is the only model that
beats the linear baseline, suggesting that bilinear
connections are useful for antonym prediction.
All the models show a notable loss of accuracy
in the unsupervised condition, suggesting that the
alternatives found in the vector neighborhood are

http://thesaurus.com
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less useful than supervised gates. Even in this
setting, however, CCCRE achieves a respectable
0.60. In the restricted condition, all non-Concat
models perform near the cosine baseline, suggest-
ing that in the standard setting they were mem-
orizing antonyms of semantically similar words.
The Concat models and CCCRE retain a higher
level of accuracy, indicating that they can general-
ize across different semantic classes.

We are unable to compare directly with previous
results on the GRE dataset, since our evaluation is
restricted to adjectives. As an indicative compar-
ison, Mohammad et al. (2013) report an F-score
of 0.69 on the full test dataset with a thesaurus-
based method, while Zhang et al. (2014) report
an F-score of 0.62 using a vector space induced
from WN and distributional vectors, and 0.82 with
a larger thesaurus. (Previous work reported F-
score rather than accuracy due to out-of-coverage
terms.)

Although CCCRE achieves the highest accu-
racy in Experiment 1, the GRE task does not re-
flect our primary goal, namely to negate adjectives
by generating a one-best antonym. CCCRE some-
times fails to choose the target GRE antonym,
but still makes a good overall prediction. For in-
put word doleful, the model fails to choose the
GRE target word merry, preferring instead socia-
ble. However, the top three nearest neighbors for
the predicted antonym of doleful are joyful, joyous,
and happy, all very acceptable antonyms.

Table 2 shows the results of Experiment 2. On
the GRE dataset, under standard training condi-
tions, CCCRE achieves an impressive P@1 of
0.66, i.e. two thirds of the time it is able to pro-
duce an antonym of the input word as the nearest
neighbor of the prediction. All of the other models
score less than 0.40. In the unsupervised and re-
stricted training conditions CCCRE still predicts
a one-best antonym about half the time.

The LB dataset is more challenging, because it
contains a number of words which lack obvious
antonyms, e.g. faxonomic, quarterly, psychiatric,
and biblical. However, CCCRE still achieves the
highest precision on this dataset. Interestingly,
precision does not suffer as much in the less super-
vised training conditions, and P@1 even improves
with the unsupervised nearest neighbor gates. We
speculate that nearest distributional neighbors cor-
respond better than the WN ontology to the crowd-
sourced antonyms in this dataset. LB antonyms for



GRE LB
Stand. Unsup. Restr. Stand. Unsup. Restr.

Method P@1 P@5 | P@l P@5 | P@l P@5 | P@l P@5|P@l P@5 | P@1 P@5
Cosine 0.05 0.07 — — — — 0.13 0.10 — — — —

Linear 036 029 | 034 029 | 032 028 029 025 | 030 024 | 029 0.23
Linear-Concat  0.39  0.33 0.43 0.34 | 036 0.31 0.33 0.28 0.31 0.27 032  0.27
UE 038 033 | 036 032 | 037 031 028 022 | 027 023 | 023 0.20
UE-Concat 038 033 | 043 038 | 027 031 033 028 | 034 027 | 028 0.25
FF 037 032 | 034 030 | 0.08 0.15 030 024 | 027 023 | 022 0.19
FF-Concat 036 030 | 046 040 | 037 034 || 034 026 | 028 0.26 | 034 0.27
CCCRE 066 049 | 052 042 | 052 038 || 039 032 | 046 032 | 034 0.30

Table 2: Precision at ranks 1 and 5 on the GRE and Lenci and Benotto datasets.

Method Top S Predictions

CCCRE ornate: unadorned, inelegant, banal, oversweet, unembellished
ruthless:  merciful, compassionate, gentle, righteous, meek

FF-Concat  ornate: unadorned, unornamented, overdecorated, elegant, sumptuousness
ruthless:  merciless, heartless, meek, merciful, unfeeling

Table 3: Samples of top five nearest neighbors of predicted antonym vectors for CCCRE and FF-Concat.

psychiatric include normal, well, sane, and bal-
anced. The unsupervised model predicts sane as
the top neighbor, while standard predicts psychi-
atrists. The sense in which sane is an antonym
of psychiatric is an extended sense, of a form un-
likely to be found in WN training data.

Table 3 shows sample predictions for the
CCCRE and FF-Concat models. It can be seen that
CCCRE has more antonyms at the highest ranks.

5 Related Work

Previous work on negation has focused on pattern-
based extraction of antonym pairs (Lin et al., 2003;
Lobanova, 2012). Such bootstrapped lexical re-
sources are useful for the negation task when the
input words are covered. Turney (2008); Schulte
im Walde and Koper (2013); Santus et al. (2014,
2015) use pattern-based and distributional features
to distinguish synonym and antonym pairs.
Schwartz et al. (2015) build a vector space using
pattern-based word co-occurrence, which can be
tuned to reduce the cosine similarity of antonyms.
Yih et al. (2012); Chang et al. (2013) use LSA
to induce antonymy-sensitive vector spaces from
a thesaurus, while Zhang et al. (2014) use tensor
decomposition to induce a space combining the-
saurus information with neural embeddings. Pham
et al. (2015); Ono et al. (2015); Nguyen et al.
(2016) learn embeddings with an objective that
increases the distance between antonyms, while
Nguyen et al. (2016); Mrksi¢ et al. (2016) re-
weight or retrofit embeddings to fine-tune them for
antonymy. Our approach differs in that we learn a
negation mapping in a standard embedding space.

75

Mohammad et al. (2013) use a supervised
thesaurus-based method on the GRE task. Pham
et al. (2015) learn negation as a linear map, finding
it more accurate at predicting a one-best antonym
when using vectors trained for lexical contrast.

RAE:s and related architectures have been used
in computer vision for a number of applications
including recognizing transformed images (Memi-
sevic and Hinton, 2007), recognizing actions (Tay-
lor et al., 2010), learning invariant features from
images and videos (Grimes and Rao, 2005; Zou
etal., 2012), and reconstructing MNIST digits and
facial images (Rudy and Taylor, 2015). Wang et al.
(2015) use RAEs for tag recommendation, but to
our knowledge RAEs have not been previously
used in NLP.

6 Conclusion

We have shown that a representation of the seman-
tic domain improves antonym prediction in linear
and non-linear models, and that the multiplicative
connections in a bilinear model are effective at
learning to negate adjectives with high precision.

One direction for future improvement is to
make the model more efficient to train, by re-
ducing the number of parameters to be learned in
the relational network (Alain and Olivier, 2013).
Future work will address negation of nouns and
verbs, especially the cases requiring prediction of
a set of alternatives rather than a true antonym (e.g.
desk, chair, etc. for table). Bilinear models may
also be useful for NLP tasks involving other lexi-
cal and discourse relations that would benefit from
being conditioned on a domain or topic.
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Abstract

Instances (“Mozart”) are ontologically dis-
tinct from concepts or classes (‘“‘com-
poser”). Natural language encompasses
both, but instances have received compar-
atively little attention in distributional se-
mantics. Our results show that instances
and concepts differ in their distributional
properties. We also establish that instanti-
ation detection (“Mozart — composer”) is
generally easier than hypernymy detection
(“chemist — scientist”), and that results on
the influence of input representation do not
transfer from hyponymy to instantiation.

1 Introduction

Distributional semantics (Turney and Pantel, 2010),
and data-driven, continuous approaches to lan-
guage in general including neural networks (Ben-
gio et al., 2003), are a success story in both Compu-
tational Linguistics and Cognitive Science in terms
of modeling conceptual knowledge, such as the
fact that cats are animals (Baroni et al., 2012), sim-
ilar to dogs (Landauer and Dumais, 1997), and
shed fur (Erk et al.,, 2010). However, distribu-
tional representations are notoriously bad at han-
dling discrete knowledge (Fodor and Lepore, 1999;
Smolensky, 1990), such as information about spe-
cific instances. For example, Beltagy et al. (2016)
had to revert from a distributional to a symbolic
knowledge source in an entailment task because
the distributional component licensed unwarranted
inferences (white man does not entail black man,
even though the phrases are distributionally very
similar). This partially explains that instances have
received much less attention than concepts in dis-
tributional semantics.

This paper addresses this gap and shows that
distributional models can reproduce the age-old
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ontological distinction between instances and con-
cepts. Our work is exploratory: We seek in-
sights into how distributional representations mir-
ror the instance/concept distinction and the hyper-
nymy/instantiation relations.

Our contributions are as follows. First, we build
publicly available datasets for instantiation and hy-
pernymy (Section 2).! Second, we carry out a
contrastive analysis of instances and concepts, find-
ing substantial differences in their distributional
behavior (Section 3). Finally, in Section 4, we com-
pare supervised models for instantiation detection
(Lincoln — president) with such models for hyper-
nymy detection (/9th century president — presi-
dent). Identifying instantiation turns out to be eas-
ier than identifying hypernymy in our experiments.

2 Datasets

We focus on “public” named entities such as Abra-
ham Lincoln or Vancouver, as opposed to “private”
named entities like my neighbor Michael Smith or
unnamed entities like the bird I saw today), because
for public entities we can extract distributional rep-
resentations directly from corpus data.’

No existing dataset treats entities and concepts
on a par, which would enable a contrastive analysis
of instances and concepts. Therefore, we create
the data for our study, building two comparable
datasets around the binary semantic relations of
instantiation and hypernymy (see Table 2). This
design enables us to relate our results to work on
hypernymy (see Section 5), and provides a rich re-
lational perspective on the instance—concept divide:
In both cases, we are dealing with the relationship

!Available from http://www.ims.uni-stuttgart.
de/data/Instantiation.html.

Note that, for feasibility reasons, our distributional repre-
sentations are made up of explicit mentions of proper nouns
(Abraham Lincoln, Lincoln), without taking into account other

referential expressions (he, the 1 6" president of the United
States, the president). We leave these to future work.
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INSTANCE HYPERNYM Global sim. Local sim.
Total 28,424 30,488 Instances 0.045 (0.02) 0.528 (0.16)
Positive 7,106 7,622 Concepts 0.037 (0.02) 0.390 (0.12)
Unique inst./hypo. 5,847 7,622
Unique conc./hyper. 540 2,369 Instance-Concept  0.021 (0.01) 0.379 (0.12)

Table 1: Dataset statistics. Total number of data-
points, Positive cases, unique instances/hyponyms
and unique concepts/hypernyms.

INSTANCE HYPERNYM

Positive Mozart — composer chemist — scientist
NOTINST/  Mozart — garden chemist —
NoTtHYP communication
INVERSE composer — Mozart scientist — chemist
121/C2C Mozart — O. Robertson  chemist — diadem

Table 2: Positive examples and confounders.

between a more general (concept/hypernym) and a
more specific object (instance/hyponym), but, from
an ontological perspective, hyponym concepts, as
classes of individuals, are considered to be com-
pletely different from instances, both in theoretical
linguistics and in Al (Dowty et al., 1981; Lenat and
Guha, 1990; Fellbaum, 1998).

We construct both datasets from the WordNet
noun hierarchy. Its backbone is formed by hy-
ponymy (Fellbaum, 1998) and it was later ex-
tended with instance-concept links marked with the
Hypernym_Instance relation (Miller and Hris-
tea, 2006). We sample the items from WordNet
that are included in the space we will use in the
experiments, namely, the word2vec entity vector
space, which is, to our knowledge, the largest ex-
isting source for entity vectors.®> The space was
trained on Google News, and contains vectors for
nodes in FreeBase which covers millions of entities
and thousands of concepts. This enables us to per-
form comparative analyses, as we sample instances
and concepts from a common resource, and that we
have compatible vector representations for both.

INSTANCE. This dataset contains around 30K
datapoints for instantiation (see Table 1 for statis-
tics and Table 2 for examples).* It contains 7K
positive cases (e.g., Vancouver-city), namely all
pairs of instances and their concepts from Word-
Net that are covered by the word2vec entity vector

3https ://code.google.com/p/word2vec

“Bach instance can belong to multiple concepts
(Vancouver-city and Vancouver-port), and different in-
stances/hyponyms can belong to the same concept/hypernym.
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Table 3: Cosine similarities for within-type and
across-type pairs (means and standard deviations).

space. For each positive example, we create three
confounders, or negative examples, as follows:

1. The NOTINST subset pairs the instance with
a wrong concept, to ensure that we do not
only spot instances vs. concepts in general,
but truly detect the instantiation relationship.

The INVERSE subset switches instance and
concept, to check that we are capturing the
asymmetry in the relationship.

. The 121 (instance-to-instance) subset pairs the
instance with a random instance from another
concept, a sanity check to ensure that we are
not thrown off by the high similarity among
instances (see Section 3).

HYPERNYMY. This dataset contains hypernymy
examples which are as similar to the INSTANCE
dataset as possible. The set of potential hyponyms
are obtained from the intersection between the
nouns in the word2vec entity space and WordNet,
excluding instances. Each of the nouns that has a di-
rect WordNet hypernym as well as a co-hyponym is
combined with the direct hypernym into a positive
example. The confounders are then built in parallel
to those for INSTANCE. Note that in this case the
equivalent of NOTINST is actually not-hypernym
(hence NOTHYP in the results discussion), and the
equivalent of 121 is concept-to-concept (C2C).>

3 Instances and Concepts

We first explore the differences between instances
and concepts by comparing the distribution of sim-
ilarities of their word2vec vectors (cf. previous
section). We use both a global measure of simi-
larity (average cosine to all other members of the
respective set), and a local measure (cosine to the
nearest neighbor). The results, shown in Table 3,
indicate that instances exhibit substantially higher
similarities than concepts, both at the global and at

5This does not reduce to co-hyponymy, because the hy-
ponym is randomly paired with another hyponym.



the local level.® The difference holds even though
we consider more unique concepts than instances
(Table 1), and might thus expect the concepts to
show higher similarities, at least at the local level.
The global similarity of instances and concepts is
the lowest (see last row in Table 3), suggesting that
instances and concepts are represented distinctly
in the space, even when they come from the same
domain (here, newswire).

Taken together, these observations indicate that
instances are semantically more coherent than con-
cepts, at least in our space. We believe a crucial
reason for this is that instances share the same speci-
ficity, referring to one entity, while concepts are of
widely varying specificity and size (compare pres-
ident of the United States with artifact). Further
work is required to probe this hypothesis.

It is well established in lexical semantics that
cosine similarity does not distinguish between hy-
pernymy and other lexical relations, and in fact
hyponyms and hypernyms are usually less simi-
lar than co-hyponyms like cat—dog or antonyms
like good-bad (Baroni and Lenci, 2011). This
result extends to instantiation: The average simi-
larity of each instance to its concept is 0.110 (stan-
dard deviation: 0.12), very low compared to the
figures in Table 3. The nearest neighbors of in-
stances show a wide range of relations similar to
those of concepts, further enriched by the instance-
concept axis: Tyre — Syria (location), Thames river
— estuary (“‘co-hyponym class™), Luciano Pavarotti
— soprano (“contrastive class”), Joseph Goebels —
bolshevik (“antonym class”), and occasionally true
instantiation cases like Sidney Poitier — actor.

4 Modeling Instantiation vs. Hypernymy

The analysis in the previous section suggests
clearly that unsupervised methods are not adequate
for instantiation, so we turn to supervised methods,
which have also been used for hypernymy detec-
tion (Baroni et al., 2012; Roller et al., 2014). Also
note that unsupervised asymmetric measures pre-
viously used for hypernymy (Lenci and Benotto,
2012; Santus et al., 2014) are only applicable to
non-negative vector spaces, which excludes predic-
tive models like the one we use.

We use a logistic regression classifier, partition-
ing the data into train/dev/test portions (80/10/10%)
and ensuring that instances/hyponyms are not

SBoth differences are statistically significant at a=0.001
according to a Kruskal-Wallis test.
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reused across partitions. We report F-scores for
the positive class on the test sets.

Table 4 shows the results. Rows correspond
to experiments. The task is always to detect in-
stantiation (left) or hypernymy (right), but the con-
founders differ: We combine the positive exam-
ples with each of the individual negative datasets
(NOTINST/NOTHYP, INVERSE, 121/C2C, cf. Sec-
tion 2, all balanced setups) and with the union of all
negative datasets (UNION, 25% positive examples).
The columns correspond to feature sets. We con-
sider two baselines: Freq for most frequent class,
1Vec for a baseline where the classifier only sees
the vector for the first component of the input pair —
for instance, for NOTINST, only the instance vector
is given. This baseline tests possible memoriza-
tion effects (Levy et al., 2015). For instantiation,
we have a third baseline, Cap. It makes a rule-
based decision on the basis of capitalization where
available and guesses randomly otherwise. The
remaining columns show results for three repre-
sentations that have worked well for hypernymy
(see Roller et al. (2014) and below for discussion):
Concatenating the two input vectors (Conc), their
difference (Diff), and concatenating the difference
vector with the squared difference vector (DDSgq).

Instantiation. Instantiation achieves overall
quite good results, well above the baselines and
with nearly perfect F-score for the INVERSE and
121 cases. Recall that these setups basically require
the classifier to characterize the notion of instance
vs. concept, which turns out to be an easy task,
consistent with the analysis in the previous section.
Indeed, for INVERSE, the /Vec and Cap baselines
also achieve (near-)perfect F-scores of 0.96 and
1.00 respectively; in this case, the input is either an
instance or a concept vector, so the task reduces to
instance identification. The distributional models
perform at the same level (0.98-0.99).

The most difficult setup is NOTINST, where the
model has to decide whether the concept matches
the instance, with 0.79 best performance. Since the
INVERSE and 121 cases are easy, the combined task
is about as difficult as NOTINST, and the best result
for UNION is the same (0.79). The very bad perfor-
mance of /Vec in this case excludes memorization
as a significant factor in our setup.

Instantiation vs. Hypernymy. Table 4 shows
that, in our setup, hypernymy detection is consid-
erably harder than instantiation: Results are 0.57-



INSTANCE Freq 1Vec Cap Conc Diff DDSq ‘ HYPERNYM Freq 1Vec Conc Diff DDSq
NotINsT 049 032 067 079 0.77 0.78 | NOTHYP 051 029 055 0353 0.57
INVERSE 05 09 1.00 098 099 0.99 | INVERSE 05 065 075 0.78 0.78
121 05 031 080 097 0% 094 | C2C 051 029 0.64 0.8 0.62
UNION 025 001 057 079 0.74 0.74 | UNION 025 000 031 0.26 0.30

Table 4: Supervised modeling results (rows: datasets/tasks, columns

0.78 for the individual hypernymy tasks, compared
to the 0.79-0.99 range of instantiation.” The differ-
ence is even more striking for UNTON, with 0.31
vs. 0.79. Our interpretation is that, in contrast to
instantiation, the individual tasks for hypernymy
are all nontrivial, such that modeling them together
is substantially more difficult. INVERSE and C2C
require the classifier to model the notion of concept
specificity (other concepts may be semantically re-
lated, but what distinguishes hypernymy is the fact
that hyponyms are more specific), which is appar-
ently more difficult than characterizing the notion
of instance as opposed to concept.

Frequency Effects. We now test the effect of fre-
quency on our best model (Conc) on the most in-
teresting dataset family (UNION). The word2vec
vectors do not provide absolute frequencies, but
frequency ranks. Thus, we rank-order our two
datasets, split each into ten deciles, and compute
new F-Scores. The results in Figure 1 show that
there are only mild effects of frequency, in particu-
lar compared to the general level of inter-bin vari-
ance: for INSTANCE, the lowest-frequency decile
yields an F-Score of 76% compared to 81% for the
highest-frequency one. The numbers are compa-
rable for the HYPERNYM dataset, with 28% and
36%, respectively. We conclude that frequency is
not a decisive factor in our present setup.

Input Representation. Regarding the effect of
the input representation, we reproduce Roller et
al’s (2014) results that DDSq works best for hyper-
nymy detection in the NOTHYP setup. In contrast,
for instantiation detection it is the concatenation
of the input vectors that works best (cf. NOTINST
row in Table 4). Difference features (Diff, DDSq)
perform a pre-feature selection, signaling system-
atic commonalities and differences in distributional
representations as well as the direction of feature in-

"Our hypernymy results are lower than previous work. E.g.
Roller et al. (2014) report 0.85 maximum accuracy on a task
analogous to NOTHYP, compared to our 0.57 F-score. Since
our results are not directly comparable in terms of evalua-
tion metric, dataset, and space, we leave it to future work to
examine the influence of these factors.
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: feature sets)

clusion; Roller et al. (2014) argued that the squared
difference features “identify dimensions that are
not indicative of hypernymy”, thus removing noise.
Concatenating vectors, instead, allows the classifier
to combine the information in the features more
freely. We thus take our results to suggest that
the relationship between instances and their con-
cept is overall less predictable than the relation-
ship between hyponyms and hypernyms. This ap-
pears plausible given the tendency of instances to
be more “crisp”, or idiosyncratic, in their proper-
ties than concepts (compare the relation between
Mozart or John Lennon and composer with that of
poet or novelist and writer). This interpretation is
also consistent with the fact that difference features
work best for the INVERSE case, which requires
characterizing the notion of inclusion, and con-
catenation works best for the 121 and C2C cases,
where instead we are handling potentially unrelated
instances or concepts.

Error analysis. An error analysis on the most
interesting INSTANCE setup (UNION dataset with
Conc features) reveals errors typical for distribu-
tional approaches. The first major error source is
ambiguity. For example, WordNet often lists mul-
tiple “senses” for named entities (Washington as
synonym for George Washington and a city name,
a.0.). The corresponding vector representations are
mixtures of the contexts of the individual entities
and consequentely more difficult to process, no
matter which sense we consider. The second major
error source is general semantic relatedness. For
instance, the model predicts that the writer Franz
Kafka is a Statesman, presumably due to the bureau-
cratic topics of his novels that are often discussed
in connection with his name. Similarly, Arnold
Schonberg — writer is due to Schonberg’s work as
a music theorist. Finally, Einstein — river com-
bines both error types: Hans A. Einstein, Albert
Einstein’s son, was an expert on sedimentation.

5 Related Work

Recent work has started exploring the representa-
tion of instances in distributional space: Herbe-
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Figure 1: Performance by frequency bin

lot and Vecchi (2015) and Gupta et al. (2015) ex-
tract quantified and specific properties of instances
(some cats are black, Germany has 80 million in-
habitants), and Kruszewski et al. (2015) seek to
derive a semantic space where dimensions are sets
of entities. We instead analyze instance vectors.
A similar angle is taken in Herbelot and Vecchi
(2015), for “artificial” entity vectors, whereas we
explore “real” instance vectors extracted with stan-
dard distributional methods. An early exploration
of the properties of instances and concepts, limited
to a few manually defined features, is Alfonseca
and Manandhar (2002).

Some previous work uses distributional repre-
sentations of instances for NLP tasks: For instance,
Lewis and Steedman (2013) use the distributional
similarity of named entities to build a type system
for a semantic parser, and several works in Knowl-
edge Base completion use entity embeddings (see
Wang et al. (2014) and references there).

The focus on public, named instances is shared
with Named Entity Recognition (NER; see Lample
et al. (2016) and references therein); however, we
focus on the instantiation relation rather than on
recognition per se. Also, in terms of modeling,
NER is typically framed as a sequence labeling
task to identify entities in text, whereas we do clas-
sification of previously gathered candidates. In
fact, the space we used was built on top of a cor-
pus processed with a NER system. Named Entity
Classification (Nadeau and Sekine, 2007) can be
viewed as a limited form of the instantiation task.
We analyze the entity representations themselves
and tackle a wider set of tasks related to instantia-
tion, with a comparative analysis with hypernymy.

There is a large body of work on hypernymy
and other lexical relations in distributional seman-
tics (Geffet and Dagan, 2005; Kotlerman et al.,
2010; Baroni and Lenci, 2011; Lenci and Benotto,
2012; Weeds et al., 2014; Rimell, 2014; Roller et
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al., 2014; Santus et al., 2014; Levy et al., 2015; San-
tus et al., 2016; Roller and Erk, 2016; Shwartz et
al., 2016). Many studies, notably studies of textual
entailment, include entities, but do not specifically
investigate their properties and contrast them with
concepts: This is the contribution of our paper.

6 Conclusions

The ontological distinction between instances and
concepts is fundamental both in theoretical studies
and practical implementations. Our analyses and
experiments suggest that the distinction is recover-
able from distributional representations. The good
news is that instantiation is easier to spot than hy-
pernymy, consistent with it lying along a greater on-
tological divide. The bad (though expected) news
is that not all extant results for concepts carry over
to instances, for instance regarding input represen-
tation in classification tasks.

More work is required to better assess the prop-
erties of instances as well as the effects of design
factors such as the underlying space and dataset
construction. An extremely interesting (and chal-
lenging) extension is to tackle “anonymous” enti-
ties for which standard distributional techniques do
not work (my neighbor, the bird we saw this morn-
ing), in the spirit of Herbelot and Vecchi (2015)
and Boleda et al. (2017).
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Abstract

There has recently been a lot of work try-
ing to use images of referents of words for
improving vector space meaning represen-
tations derived from text. We investigate
the opposite direction, as it were, trying to
improve visual word predictors that iden-
tify objects in images, by exploiting dis-
tributional similarity information during
training. We show that for certain words
(such as entry-level nouns or hypernyms),
we can indeed learn better referential word
meanings by taking into account their se-
mantic similarity to other words. For other
words, there is no or even a detrimental
effect, compared to a learning setup that
presents even semantically related objects
as negative instances.

1 Introduction

Someone who knows the meaning of the word
child will most probably know a) how to distin-
guish children from other entities in the real world
and b) that child is related to other words, such as
girl, boy, mother, etc. Traditionally, these two as-
pects of lexical meaning—which, following (Mar-
coni, 1997), we may call referential and inferen-
tial, respectively—have been modeled in quite dis-
tinct settings. Semantic similarity has been a pri-
mary concern for distributional models of word
meaning that treat words as vectors which are ag-
gregated over their contexts, cf. (Turney and Pan-
tel, 2010; Erk, 2016). Identifying visual referents
of words, on the other hand, is a core require-
ment for verbal human/robot interfaces (HRI) (Roy
et al., 2002; Tellex et al., 2011; Matuszek et al.,
2012; Krishnamurthy and Kollar, 2013; Kenning-
ton and Schlangen, 2015). Here, word meanings
have been modeled as predictors that can be ap-
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plied to the visual representation of an object and
predict referential appropriateness for that object.

This paper extends upon recent work on learn-
ing models of referential word use on large-scale
corpora of images paired with referring expres-
sions (Schlangen et al., 2016). As in previous
approaches in HRI, that work treats words during
training and application as independent predictors,
with no relations between them. Our starting as-
sumption here is that this misses potentially use-
ful information: e.g., that the costs for confusing
referents of child vs. boy should be much lower
than for confusing referents of child vs. car. We
thus investigate whether knowledge about seman-
tic similarities between words can be exploited to
learn more accurate visual word predictors, ac-
counting for this intuition that certain visual ob-
ject distinctions are semantically more important
or costly than others.

We explore two methods for informing visual
word predictors about semantic similarities in a
distributional space: a) by sampling negative in-
stances of word such that they contain more dis-
similar objects, b) by labeling instances with a
more fine-grained real-valued supervision signal
derived from pairwise distributional similarities
between object names. We find that the latter,
similarity-based training method leads to substan-
tial improvements for particular words such as
entry-level nouns or hypernyms, whereas predic-
tors for other words such as adjectives do not ben-
efit from distributional knowledge. These results
suggest that, in principle, semantic relatedness
might be promising knowledge source for training
more accurate visual models of referential word
use, but it also supports recent findings showing
that distributional models do not capture all as-
pects of semantic relatedness equally well (Rubin-
stein et al., 2015; Nguyen et al., 2016).
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2 Models for Referential Word Meaning

We model referential word meanings as predictors
that can be applied to the visual representation of
an object and return a score indicating the appro-
priateness of the word for denoting the object. We
describe now different ways of defining these pre-
dictors with respect to semantic similarity.

Words as Predictors (WAP) We train a binary
classifier for each word w in the vocabulary. The
training set for each word w is built as follows:
all visual objects in an “image + referring expres-
sion” corpus that have been referred to as w are
used as positive instances, the remaining objects
as negative instances. Thus, the set of object im-
ages divides into w and —w, with the consequence
that all negative instances are considered equally
dissimilar from w. The classifiers are trained with
logistic regression (using £1 penalty). (This is the
(Schlangen et al., 2016) model.)

Undersampling similar objects (WAP-NOSIM)
As discussed above, it is intuitive to assume that
a visual classifier that distinguishes referents of a
word from other objects in an image should be
less penalized for making errors on objects that
are categorically related. For instance, the clas-
sifier for child should be less penalized for giving
high probabilities to referents of boy than to ref-
erents of car. A straightforward way to introduce
these differences during training is by undersam-
pling negative instances that have been referred to
by very similar words. (E.g., undersampling boy
instances as negative instances for the child classi-
fier.) This should allow the word classifier to focus
on visual distinctions between objects that are se-
mantically more important. When compiling the
training set of a WAP-NOSIM classifier for word w,
we look at its 10 most similar words in the vocab-
ulary according to a distributional model (trained
with word2vec, see below) and remove their in-
stances from the set of negative instances —w.

Word as Similarity Predictors (SIM-WAP) In-
stead of removing similar objects from the training
set of a word model, we can task the model with
directly learning similarities, by training it as a lin-
ear regression on a continuous output space. When
building the training set for such a word predictor
w, instead of simply dividing objects into w and
—w instances, we label each object with a real-
valued similarity obtained from cosine similarity

87

between w and v in a distributional vector space,
where v is the word used to refer to the object.
Object instances where v = w (i.e., the positive
instances in the binary setup) have maximal simi-
larity; the remaining instances have a lower value
which is more or less close to maximal similarity.
This then yields a more fine-grained labeling of
what is uniformly considered as negative instances
in the binary set-up.

We transform the cosine similarities between
words in our vocabulary into standardised z scores
(mean: 0, sd: 1). When there are several word can-
didates used for an object in the corpus, we sim-
ply use the word v that has maximal similarity to
our target word w. The predictors are trained with
Ridge Regression.

3 Experimental Set-up

We focus on assessing to what extent similarity-
based visual word predictors capture the referen-
tial meaning of a word in a more accurate way, and
distinguish its potential referents from other ran-
dom objects. To factor out effects of composition-
ality and context that arise in reference generation
or resolution, we measure how well a predictor for
a word w is able to retrieve from a sampled test set
objects that have been referred to by w (Schlangen
et al., 2016; Zarriel and Schlangen, 2016a) evalu-
ate on full referring expressions).

Data As training data, we use the training split
of the REFERIT corpus collected by (Kazemzadeh
et al., 2014), which is based on the medium-sized
SAIAPR image collection (Grubinger et al., 2006)
(99.5k image regions). For testing, we use the
training section of REFCOCO corpus collected by
(Yu et al., 2016), which is based on the MSCOCO
collection (Lin et al., 2014) containing over 300k
images with object segmentations. This gives us
a large enough test set to make stable predictions
about the quality of individual word predictors,
which often only have a few positive instances in
the test set of the REFERIT corpus. We follow
(Schlangen et al., 2016) and select words with a
minimum frequency of 40 in these two data sets,
which gives us a vocabulary of 793 words.

Evaluation For each word, we sample a test set
that includes all its positive instances, and posi-
tive vs. negative instances at a ratio of 1:100. We
apply the word classifier to all test instances and
assess how well it identifies (retrieves) its posi-



Avg. Precision Avg. Prec.
referit  refcoco word |WAP SIM-WAP |#train #test most similar to
# samples (avg.) 1055 8176 animal (0.45  0.60 37 533 animals, dog, cat
WAP 0.369 0.183 animals |[0.31  0.53 9 13 animal, birds, sheep
Vocab WAP-NOSIM 0358  0.179 plant 041  0.68 41 123 plants, shrubs, flower
SIM-WAP 0.354  0.188 plants |0.58  0.82 18 17 plant, shrubs, flowers
# samples (avg.) 2143 11275 bird 0.58 0.76 45 196  birds, parrot, turtle
Entrv-level Nouns WAP 0.506 0.228 birds [0.06 0.22 11 7 bird, animals, parrot
y WAP-NOSIM 0.497 0.211 vehicle |[0.44  0.67 9 101 car, cars, truck
SIM-WAP 0.489  0.296 food 0.21 044 13 669  meat, drink, eating

Table 1: Mean average precision for word predic-
tors, on small (referit) and large (refcoco) test set

tive instances, i.e. visual objects that have been re-
ferred to by the word. We measure this using aver-
age precision, corresponding to the area under the
curve (AUC) metric. In Section 4, we report per-
formance over the entire vocabulary and the subset
of entry-level nouns extracted from annotations in
the REFERIT corpus (Kazemzadeh et al., 2014).

Image and Word Embeddings Following
(Schlangen et al., 2016), we derive representa-
tions of our visual inputs with a convolutional
neural network, “GoogleNet” (Szegedy et al.,
2015), that was trained on data from the ImageNet
corpus (Deng et al., 2009), and extract the final
fully-connected layer before the classification
layer, to give us a 1024 dimensional representation
of the region. We add 7 features that encode infor-
mation about the region relative to the image: the
(relative) coordinates of two corners, its (relative)
area, distance to the center, and orientation of the
image. The full representation hence is a vector of
1031 features. As distributional word vectors, we
use the word2vec representations provided by
Baroni et al. (2014) (trained with 5-word context
window, 10 negative samples, 400 dimensions).

4 Results

Overall In Table 1, we show the means of the
average precision scores achieved by the individ-
ual word predictors. Generally, the differences be-
tween the overall means for the different models
are mostly small, but we will see below that there
are more pronounced differences when looking at
particular parts of the vocabulary. On the REFERIT
test set, the simple binary classifiers (WAP) have
a slight advantage over the similarity-based meth-
ods. On REFCOCO, SIM-WAP performs best, im-
proving slightly over wac on the entire vocabulary
and substantially when looking at the subset of
entry-level nouns. By contrast, the WAP-NOSIM
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Table 2: Evaluation of word predictors for hyper-
nyms in singular and plural on REFCOCO

classifiers (trained with under sampling of simi-
lar objects) perform slightly worse as compared
to the standard binary classifiers on all test sets.
First, this suggests that there is an effect of cor-
pus or domain. Performance is substantially lower
on REFCOCO than on REFERIT, but the similarity-
based predictors generalize better across the data
sets. Second, this shows that under sampling is not
a good way of dealing with similar objects when
training word predictors whereas in similarity-
based training the model does take advantage of
distributional knowledge, at least in certain cases.

Individual Words As shown in Table 1, the
similarity-based training has a strong positive ef-
fect for entry-level nouns, whereas the effect on
the overall vocabulary is rather small. This further
suggests that distributional similarities improve
certain word predictors substantially, whereas oth-
ers might be affected even negatively. Therefore,
in the following, we report average precision for
individual words, namely for those cases where
similarity-based regression has the strongest posi-
tive or negative effect as compared to binary clas-
sification (see Tables 3 and 4 showing average pre-
cision scores, number of positive instances of the
word in the train and test set, and their seman-
tic neighbours in the vocabulary, according to the
vector space). We also look at hypernyms (Table
2) which are not easy to learn in realistic referring
expression data as more specific nouns are usually
more common or natural (Ordonez et al., 2016).

Where similarities help Table 3 shows results
for words where SIM-WAP improves most over
the binary WAP model on REFCOCO. It seems
that especially some low-frequent words benefit
from knowledge about object similarities, improv-
ing their average precision by more than 30% or
40% on the test set that contains more positive in-
stances even than were observed during training.



AP AP
word |WAP SIM-WAP |# train # test most similar to  word wac SIM-WAP |#train #test most similar to
# positive training instances < 50 # positive training instances < 50
trailer [0.16  0.54 1 28 truck, vehicle, car  pie 0.44  0.10 1 86 cake, cheese, pastry
suv 042 0.79 2 40 vehicle, car, cars surf 0.56 0.20 1 43 surfboard, snowboard
pillow[0.21  0.57 2 66 pillows, bed, nightstand  number |0.44  0.07 1 172 four, two, three
doors {0.10  0.44 6 11 door, curtains, window  anywhere|0.59  0.21 88 34 anything, anyone
sheep |0.40 0.74 1 524 lamb, goat, animals ~ monitor [0.65 0.15 2 228 watch, handle, laptop
# positive training instances > 50 # positive training instances > 50
kid ]0.22 043 74 1641 kids, boy, girl  pink 0.18  0.10 52 814 purple, blue, yellow
boy [0.22 041 55 1330 girl, boys, kid  green 0.19 0.11 257 1393  blue, yellow, greens
bike [0.50 0.69 76 842 bicycle, motorcycle, car  area 0.17  0.09 167 253 city, land, square
horse [0.57 0.73 55 757 dog, donkey, cow  big 0.15 0.06 74 737 huge, bigger, biggest
bottle [0.39  0.55 61 213 bottles, jar, glasses  upper 0.25 0.07 116 633 lower, middle

Table 3: Top 5 improvements for SIM-WAP over
WAP, for rare and more-frequent words

Similarly, predictors for hypernyms and their plu-
ral versions improve substantially, see Table 2. All
of these example words have semantic neighbours
that are also visually similar. Similarity-based
training of word predictors hence is very bene-
ficial for rare words (during training) that have
near-synonymy relations to other words in the cor-
pus. The positive effect here probably relates to
“feature-sharing”, as the predictor for “trailer” is
allowed to learn from the positive instances of
“truck”, rather than having to discriminate be-
tween the referents of the two words.

Where similarities do not help In Table 4, we
can see results for words where similarity-based
training does not help. For words with more
than 50 training instances, distributional similar-
ities degrade performance most for adjectives and
words expressing visual attributes (color, shape,
location). In these cases, distributional similarities
group attributes from the same scale (color or loca-
tion), but do not account for the fact that these are
visually distinct, such as in the case of e.g "upper’
and ’lower’. Similarly, distributional similarities
between colors seem to be misleading rather than
helpful, cf. (Zarrie} and Schlangen, 2016b) for a
study on color adjectives on the same corpus. This
effect seems to be related to findings on antonyms
in distributional modeling (Nguyen et al., 2016).
Overall, as words corresponding to attributes are
quite frequent in the referring expression data, the
negative effect of similarity-based training seems
to balance out the positive effect found for certain
nouns in the overall evaluation. Similar effects can
also be found for nouns where semantic similar-
ities predicted by a distributional model seem to
diverge strongly from visual similarity that would
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Table 4: Top 5 degradations for SIM-WAP over
WAP, shown for rare and frequent words

be helpful for learning the referential meaning of
the word, e.g. ‘monitor’ and ‘watch’.

5 Discussion and Conclusion

Even with access to powerful state-of-the-art ob-
jectrecognizers that classify objects in images into
thousands of categories with high accuracy, it is
still a challenging task to model referential mean-
ings of individual words and to capture various vi-
sual distinctions between semantically similar and
dissimilar words and their referents. In contrast to
abstract objects labels that are annotated consis-
tently in image corpora, word use in referring ex-
pressions is more flexible, and subject to a range
of communicative factors, in such a way that e.g.
some instances of child will be named not by this
but by similar words.

Our findings suggest that linking distributional
similarity to models for visual word predictors
capturing referential meaning is promising to ac-
count for the fact that the negative instances used
for training word predictors vary in their degree
of semantic similarity to the positive instances of
a word. We explored two different ways of inte-
grating this information—by undersampling and
by directly predicting similarity—and found the
prediction approach to work better, especially for
low- and medium-frequent words that have a range
of lexically similar neighbors in the model’s vo-
cabulary.

In a similar vein, zero-shot learning approaches
to object recognition (Frome et al., 2013; Lazari-
dou et al.,, 2014; Norouzi et al., 2013) have
transferred visual knowledge from known object
classes to unknown classes via distributional simi-
larity. Here, we show that visual knowledge can be



transferred between words in a corpus of referring
expressions, by taking into account their semantic
relation while learning.

Our results suggest that the exploration of joint
improvement of inferential (i.e., similarity-based)
and referential aspects of meaning should be a
fruitful avenue for future work.
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Abstract

We propose the semantic proto-role
linking model, which jointly induces both
predicate-specific semantic roles and
predicate-general semantic proto-roles
based on semantic proto-role property
likelihood judgments. We use this model
to empirically evaluate Dowty’s thematic
proto-role linking theory.

1 Introduction

A linking theory explains how predicates’ se-
mantic arguments—e.g. HITTER, HITTEE, and
HITTING-INSTRUMENT for hit—are mapped to
their syntactic arguments—e.g. subject, direct ob-
ject, or prepositional object (see Fillmore 1970;
Zwicky 1971; Jackendoff 1972; Carter 1976;
Pinker 1989; Grimshaw 1990; Levin 1993).

1) a
b.

[JOhn]HITTER hlt [the fence]HITTEE.
[The stick];nst hit [the fence]nirree.

A semantic role labeling (SRL) system imple-
ments the inverse of a linking theory: where a
linking theory maps a predicate’s observed seman-
tic arguments to its latent syntactic arguments, an
SRL system maps a predicate’s observed syntac-
tic arguments to its latent semantic arguments (see
Gildea and Jurafsky 2002; Litkowski 2004; Car-
reras and Marquez 2004; Marquez et al. 2008).

SRL is generally treated as a supervised task—
requiring semantic role annotation, which is ex-
pensive, time-consuming, and hard to scale. This
has led to the development of unsupervised sys-
tems for semantic role induction (SRI), which in-
duce predicate-specific roles—cf. PropBank roles
(Palmer et al., 2005)—from syntactic and lexical
features of a predicate and its arguments.

One approach to SRI that has proven fruitful
is to explicitly implement linking as a compo-
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nent of generative (cf. Grenager and Manning,
2006) or discriminative (cf. Lang and Lapata,
2010) models. But while most SRI systems have
some method for generalizing across predicate-
specific roles, few explicitly induce predicate-
general roles—cf. VerbNet roles (Kipper-Schuler,
2005)—separately from predicate-specific roles.
This is a missed opportunity, since the nature of
such roles is a contentious topic in the theoreti-
cal literature, and the SRI task seems likely to be
useful for approaching questions about them in an
empirically rigorous way.

We focus in particular on empirically assess-
ing the semantic proto-role theory developed by
Dowty (1991). We propose the semantic proto-
role linking model (SPROLIM), which jointly in-
duces both predicate-specific roles and predicate-
general semantic proto-roles (Dowty, 1991) based
on semantic proto-role property likelihood judg-
ments (Reisinger et al., 2015; White et al., 2016).

We apply SPROLIM to Reisinger et al.’s proto-
role property annotations of PropBank. To
evaluate SPROLIM’s ability to recover predicate-
specific roles, we compare the predicate-specific
roles it induces against PropBank, finding that
SPROLIM outperforms baselines that do not dis-
tinguish predicate-specific and predicate-general
roles. We then compare the predicate-general
roles that SPROLIM induces against those Dowty
proposes, finding a predicate-general role that
matches Dowty’s PROTOAGENT. Finally, our
work could be viewed as an approach to associat-
ing a vector-space semantics to the categorical la-
bels of existing type-level semantic role resources,
and so we release a resource that maps from Prop-
Bank roles to semantic vectors as fit by SPROLIM.

2 Related work

Prior work in SRI has tended to focus on using
syntactic and lexical features to cluster arguments

Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 92-98,

Valencia, Spain, April 3-7, 2017. (©2017 Association for Computational Linguistics
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into semantic roles. Swier and Stevenson (2004)
introduce the first such system, which uses a boot-
strapping procedure to first associate verb tokens
with frames containing typed slots (drawn from
VerbNet), then iteratively compute probabilities
based on cooccurrence counts and fill unfilled slots
based on these probabilities.

Grenager and Manning (2006) introduce the
idea of generating syntactic position based on a
latent semantic role representation learned from
syntactic and selectional features. Lang and La-
pata (2010) expand on Grenager and Manning
(2006) by introducing the notion of a canonical-
ized linking. The idea behind canonicalization is
to account for the fact that the syntactic argument
that a particular semantic argument is mapped to
can change depending on the syntax. For instance,
when hit is passivized, the HITTEE argument is
mapped to subject position, where it would nor-
mally be mapped to object position.

(2) [The fence]yrree Was hit.

We incorporate both ideas into our Semantic
Proto-Role Linking Model (SPROLIM).

SRI approaches that do not explicitly incorpo-
rate the idea of a linking theory have also been
popular. Lang and Lapata (2011a, 2014) use graph
clustering methods and Lang and Lapata (2011b)
use a split-merge algorithm to cluster arguments
based on syntactic context. Titov and Klementiev
(2011) use a non-parametric clustering method
based on the Pitman-Yor Process, and Titov and
Klementiev (2012) propose nonparametric cluster-
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Algorithm 1 Semantic Proto-Role Linking Model
1: for verb type v € V do

2: for argument type i € A, do

3: draw semantic protorole z,; ~ Cat(0.;)

4: for verb token j € C, do

5 draw canonicalization k ~ Cat(¢y|7, ;)
6: Cuj < element of symmetric group S|,k
7: let r : |7,;|-length tuple

8: for argument token ¢ € 7,; do

9: ¢ < semantic protorole zyc, ;,

10: for property p € P do

11: draw a,;; ~ Bern(n;,;,p)

12: if ay;+ = 1 then

13: draw [, j; ~ Cat(Ord, (fr.p))
14: let p : |S!7vil|-length vector

15: for linking s’ € S!7vi! do

16: ps [ ], softmax (w” + ZO# 53253)
17: draw linking k£ ~ Cat(p)

18: Suj — S,LT”j

ing models based on the Chinese Restaurant Pro-
cess (CRP) and distance dependent CRP.

While each of these SRI systems have some
method for generalizing across predicate-specific
roles, few induce explicit predicate-general roles,
like AGENT and PATIENT, separately from
predicate-specific roles. One obstacle is that there
is no agreed upon set of roles in the theoretical
literature, making empirical evaluation difficult.
One reason that such a set does not exist is that
reasonably wide-coverage linking theories require
an ever-growing number of roles to capture linking
regularities—a problem that Dowty (1991) refers
to as role fragmentation (see also Dowty, 1989).

As a solution to role fragmentation, Dowty
proposes the proto-role linking theory (PRLT).
Instead of relying on categorical roles, such as
AGENT and PATIENT—Ilike traditional linking the-
ories do—PRLT employs a small set of relational
properties (e.g. volition, instigation, change of
state, etc.) that a predicate can entail about its ar-
guments. Dowty partitions these relational prop-
erties into two sets, indexed by two profo-roles:
PROTOAGENT and PROTOPATIENT. The syntac-
tic position that a particular predicate-specific role
is mapped to is then determined by how many
properties from each set hold of arguments that
fill that role. The reason PROTOAGENT and PRO-
TOPATIENT are known as proto-roles is that they
amount to role prototypes (Rosch and Mervis,
1975): a particular predicate-specific role can be
closer or further from a PROTOAGENT or PRO-
TOPATIENT depending on its properties.

Reisinger et al. (2015) crowd-sourced annota-



Figure 2: Linking model factor graph for token j of predi-
cate v with three arguments.

tions of Dowty’s proto-role properties by gather-
ing answers to simple questions about how likely,
on a five-point scale, it is that particular relational
properties hold of arguments in PropBank (cf.
Kako, 2006; Greene and Resnik, 2009; Hartshorne
et al., 2013). We use these annotations, known as
SPR1 (White et al., 2016), to train our semantic
proto-role linking model (SPROLIM).!

3 Semantic Proto-Role Linking Model

SPROLIM implements a generalization of Dowty’s
semantic proto-role linking theory that allows for
any number of proto-roles—i.e. predicate-general
roles. Figure 1 shows a plate diagram for the full
model, and Algorithm 1 gives its generative story.
There are two main components of SPROLIM: (i)
the property model and (i) the mapping model.

Property model The property model relates
each predicate-general role—i.e. proto-role—to
(1) the likelihood that a property is applicable to an
argument with that role and, (ii) if applicable, how
likely it is the property holds of that argument.

We implement this model using a cumulative
link logit hurdle model (see Agresti, 2014). In this
model, each semantic proto-role r € R is associ-
ated with two |P|-length real-valued vectors: 7,,
which gives the probability that each property p is
applicable to an argument that has role r, and p,,
which corresponds to the likelihood of each prop-
erty p € P when an argument has role 7.

In the hurdle portion of the model, a Bernoulli
probability mass function for applicability a €
{0,1} is given by P(a | ) = n%(1 — n)*~%. What
makes this a hurdle model is that the rating prob-
ability only kicks in if the rating crosses the ap-
plicability “hurdle” (cf. Mullahy, 1986). The pro-

'SPR1 is available at http: //decomp.net.
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cedural way of thinking about this is that, first, a
rater decides whether a property is applicable; if
it is not, they stop; if it is, they generate a rating.
The joint probability of [ and a is then defined as

Pl alp,n, k) < Pla| )P p, k)"

In the cumulative link logit portion of the model, a
categorical probability mass function with support
on the property likelihood ratings I € {1,...,5}
is determined by a latent ;x and a nondecreasing
real-valued cutpoint vector k.

{

where ¢; = logit™!(kj41 — 1) and go = 0. In
Algorithm 1, we denote the parameters of this dis-
tribution as Ord, (p).

ifj=5

otherwise

1—gj
q; —qj—1

P(l=j|pkK)

Mapping model The mapping model has two
components: (i) the canonicalizer, which maps
from argument tokens to predicate-specific roles,
and (ii) the linking model, which maps from
predicate-specific roles to syntactic positions.

We implement the canonicalizer by assuming
that, for each predicate (verb) v, there is some
canonical ordering of its predicate-specific roles
and that for each sentence (clause) j € C, that
v occurs in, there is some permutation of v’s argu-
ment tokens in that sentence that aligns them with
their predicate-specific role in the canonical order.
Denoting the set of argument tokens in sentence j
with 7,5, the set of possible mappings is the sym-
metric group S|ij|‘ We place a categorical distri-
bution with parameter ¢,, on this group.

We implement the linking model using the con-
ditional random field whose factor graph is de-
picted in Figure 2. This diagram corresponds to
the s node and all of its parents in Figure 1.

4 Experiments

In this experiment, we fit SPROLIM to the SPR1
data and investigate the predicate-specific and
predicate-general roles it learns.”

Baseline models We use two kinds of Gaus-
sian Mixture Models (GMMs) as baselines: one
that uses only the property judgments associated
with each argument and another that uses both

2All code, along with the learned predicate and role rep-
resentations, are available at http://decomp.net.
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Figure 3: Cluster purity for predicate-specific roles with
baselines and SPROLIM.

those property judgments and the syntactic posi-
tion. We treat each GMM component as a seman-
tic role, extracting each argument’s role by taking
the maximum over that argument’s mixture distri-
bution. Since there is no principled distinctions
among GMM components, these baselines imple-
ment systems that does not distinguish between
predicate-specific and predicate-general roles.

Model fitting To fit SPROLIM, we use projected
gradient descent with AdaGrad (Duchi et al.,
2011) to find an approximation to the maximum
likelihood estimates for ®, ®, M, E, ¥, A, and
k, with the categorical variables Z and C inte-
grated out of the likelihood. To fit the GMM base-
lines, we use Expectation Maximization.

Results Following Lang and Lapata (2010) and
others, we evaluate the model using cluster purity.

IC|

Z

purity(C, T') — max

|C | |Ci N tj|
where C' = {¢;} is the partition of a predicate’s ar-
guments given by a model, and 7" = {¢;} is some
ground truth partition—here, PropBank roles.

Figure 3 shows the micro- and macro-average
cluster purity for both the GMM baselines and
SPROLIM fit with differing numbers of semantic
roles. We see that even with only two predicate-
general proto-roles, SPROLIM is better able to as-
sign correct predicate-specific roles than the two
baseline GMMs. SPROLIM reaches maximum
cluster purity at six proto-roles.
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Figure 4 shows the estimates of the property
likelihood centroids L for |R| € {2, 6}. Columns
give the prototype centroid for a single proto-role.

At |R| = 2, the first proto-role centroid corre-
sponds nearly perfectly to the PROTOAGENT role
proposed by Dowty. Furthermore, by inspect-
ing the role-syntax associations W, we see that
this proto-role is more strongly associated with
the subject position than proto-role 2, and so we
henceforth refer to it as the PROTOAGENT role.

A proto-role analogous to the PROTOAGENT
role is found for all other values of |R| that we fit.
For instance, at |R| = 6, the first proto-role cen-
troid is highly correlated with the first proto-role
centroid at |R| = 2. The only difference between
this centroid and the one found at |R| = 2 is that
the one at |R| = 6 loads even more positively on
Dowty’s proto-agent properties.

At |R| = 6, the second proto-role centroid ap-
pears to be a modified version of the PROTOA-
GENT role that does not require physical exis-
tence or sentience and is negatively associated
with physical contact. By investigating the proto-
role mixtures ® for each argument, we see that
this captures cases of nonsentient or abstract—but
still agentive—subjects—e.g. Mobil in (3).

(3) Mobil restructured the entire company dur-
ing an industrywide shakeout.

The rest of the roles are more varied. For |R| =
2, the second proto-role centroid loads negatively
(or near zero) on all PROTOAGENT properties, and
really, all other properties besides MANIPULATED
BY ANOTHER. This non-PROTOAGENT role ap-
pears to split into four separate roles at |R| = 6,
three of which load heavily on manipulated by an-
other (proto-roles 4-6) and the fourth of which
(proto-role 3) requires makes physical contact.
Each of these four non-PROTOAGENT roles might
be considered to be different flavors of PROTOPA-
TIENT, which does not appear to be a unified con-
cept. This is corroborated by examples of argu-
ments that load on each of these four proto-roles.

For instance, the objects of sign, want, and di-
vert load heavily on the third proto-role.

(4) a. President Bush signed a disaster decla-
ration covering seven CA counties.
b. The U.S. wants a higher won to make

South Korea ’s exports more expensive
and help trim Seoul’s trade surplus.



c. They divert law-enforcement resources
at a time they are most needed for pro-

tecting lives and property.

The subjects of verbs like date, stem, and recover
(in their intransitive form) load heavily on the
fourth proto-role.

(5) a. His interest in the natural environment
dates from his youth.
b. Most of the telephone problems
stemmed from congestion.
c. Junk bonds also recovered somewhat,

though trading remained stalled.

The objects of verbs like reduce, lower, and slash
load heavily on the fifth proto-role.

(6) a. The firm reduced those stock holdings
to about 70%.
It also lowered some air fares.
c. Robertson Stephens slashed the value of

the offering by 7%.

And the objects of verbs like gain, lose, and drop,
which tend to involve measurements, load heavily
on the sixth proto-role.

(7) a. Fujisawa gained 50 to 2,060.
b. A&W Brands lost 1/4 to 27 .
c. B.F. Goodrich dropped 7 3/8to 49 1/8 .

This last category is interesting because it raises
a question about how sensitive SPROLIM is to the
particular domain on which the proto-role prop-
erties are annotated. For instance, outside of
newswire, the senses of the verbs in (7) are less
likely to include measure arguments, and so per-
haps SPROLIM would not find such a proto-role in
annotations of text from a different genre.

We believe this warrants further investigation.
But we also note that (7) does not exhaust the
kinds of arguments that load heavily on the sixth
proto-role: the objects of consume and borrow
(among many others) also do so.

8) a.
b.

In fact, few consume much of anything.
All they are trying to do is borrow some
of the legitimacy of the Bill of Rights.

The fact that the arguments in (8) are at least su-
perficially unlike the measure arguments found in
(7) may suggest that SPROLIM is discovering that
measure arguments such as those in (7) fall into a
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Figure 4: Heatmap of prototype centroids for property like-
lihood ratings for models with 2 proto-roles and 6 proto-roles.
Black is 4 and red is —.

larger category, in spite of genre-related biases.

5 Conclusion

In this paper, we proposed the semantic proto-
role linking model, which jointly induces both
predicate-specific semantic roles and predicate-
general semantic proto-roles based on semantic
proto-role property likelihood judgments. We
used this model to empirically evaluate Dowty’s
thematic proto-role linking theory, confirming the
existence of Dowty’s PROTOAGENT role but find-
ing evidence that his PROTOPATIENT role may
consist of at least four subtypes.

We have three aims for future work: (i) to as-
sess how robust the proto-roles we induce here are
to genre effects; (ii) to assess whether languages
differ in the set of proto-roles they utilize; and
(iii) to extend this model to incorporate annota-
tions that semantically decompose noun meanings
and verb meanings in theoretically motivated ways
(cf. White et al., 2016).
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Abstract

There is a relationship between what we
say and where we say it. Word embed-
dings are usually trained assuming that
semantically-similar words occur within
the same fextual contexts. We investigate
the extent to which semantically-similar
words occur within the same geospatial
contexts. We enrich a corpus of ge-
olocated Twitter posts with physical data
derived from Google Places and Open-
StreetMap, and train word embeddings us-
ing the resulting geospatial contexts. In-
trinsic evaluation of the resulting vectors
shows that geographic context alone does
provide useful information about semantic
relatedness.

1 Introduction

Words follow geographic patterns of use. At times
the relationship is obvious; we would expect to
hear conversations about actors in and around a
movie theater. Other times the connection be-
tween location and topic is less clear; people are
more likely to tweet about something they love
from a bar than from home, but vice versa for
something they hate.! Distributional semantics
is based on the theory that semantically similar
words occur within the same fextual contexts. We
question the extent to which similar words occur
within the same geospatial contexts.

Previous work validates the relationship be-
tween the content of text and its physical origin.
Geographically-grounded models of language en-
able toponym resolution (DeLozier et al., 2015),

"Under our GEO30 word embeddings, the word love
is closer to the context GooglePlaces:bar than to high-
way:residential. The relationship is inverted for the word
hate.
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document origin prediction, (Wing and Baldridge,
2011; Hong et al., 2012; Han et al., 2012b; Han
et al.,, 2013; Han et al., 2014) and tracking re-
gional variation in word use (Eisenstein et al.,
2010; Eisenstein et al., 2014; Bamman et al.,
2014; Huang et al., 2016). Our work differs
from earlier models; rather than modeling lan-
guage with respect to an absolute, physical loca-
tion (like a geographic bounding box), we model
language with respect to attributes describing a
type of location (like amenity:movie_theater or
landuse:residential). This allows us to model the
impact of geospatial context independently of lan-
guage and region.

We enrich a corpus of geolocated tweets with
geospatial information describing the physical en-
vironment where they were posted. We use
the geospatial contexts to train geo-word embed-
dings with the skip-gram with negative sampling
(SKIPGRAM) model (Mikolov et al., 2013) as
adapted to support arbitrary contexts (Levy and
Goldberg, 2014). We then demonstrate the seman-
tic value of geospatial context in two ways. First,
using intrinsic methods of evaluation, we show
that the resulting geo-word embeddings them-
selves encode information about semantic related-
ness. Second, we present initial results suggest-
ing that because the embeddings are trained with
language-agnostic features, they give a potentially
useful signal about bilingual translation pairs.

2 Geo-enriching Tweets

We collected 6.2 million geolocated English
tweets in 20 metro areas from Jan-Mar 2016.%2 The

>The metro areas, chosen based on high volume of ge-
olocated tweets collected during an initial trial period, were
Atlanta, Bandung, Bogota, Buenos Aires, Chicago, Dal-
las, Washington DC, Houston, Istanbul, Jakarta, Los An-
geles, London, Madrid, Mexico City, Miami, New York
City, Philadelphia, San Francisco Bay Area, Singapore, and
Toronto. We used only tweets explicitly tagged with geo-
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tokens in these tweets were normalized by con-
verting to lowercase, replacing @-mentions, num-
bers, and URLs with special symbols, and apply-
ing the lexical normalization dictionary of Han et
al. (2012a).

To enrich our collected tweets with geospa-
tial features, we used publicly-available geospatial
data from OpenStreetMap and the Google Places
APIL. OpenStreetMap (OSM) is a crowdsourced
mapping initiative. Users provide surveyed data
such as administrative boundaries, land use, and
road networks in their local area. In addition to ge-
ographic coordinates, each shape in the data set in-
cludes tags describing its type and attributes, such
as shop:convenience and building:retail for a con-
venience store. We downloaded metro extracts for
our 20 cities in shapefile format. To maximize
coverage, we supplemented the OSM data with
Google Places data from its web API, consisting of
places tagged with one or more types (i.e. aquar-
ium, ATM, etc).

We enrich each geolocated tweet by finding
the coordinates and tags for all OSM shapes and
Google Places located within 50m of the tweet’s
coordinates. The enumerated tags become geo-
graphic contexts for training word embeddings.
Figure 1 gives an example of geospatial data col-
lected for a single tweet.

3 Geo-Word Embeddings

SKIPGRAM learns latent fixed-length vector rep-
resentations v,, and v, for each word and context
in a corpus such that v,, - v, is highest for fre-
quently observed word-context pairs. Typically a
word’s context is modeled as a fixed-length win-
dow of words surrounding it. Levy and Gold-
berg (2014) generalized SKIPGRAM to accept ar-
bitrary contexts as input. We use their software
(word2vecf) to train word embeddings using
geospatial contexts.

word2vecf takes a list of (word, context)
pairs as input. We train 300-dimensional geo-word
embeddings denoted GEOD — where D indicates a
radius — as follows. For each length-n tweet, we
find all shapes within D meters of its origin and
enumerate the length-m list of the shapes’ geo-
graphic tags. The tweet in Figure 1, for example,
has m = 10 tags as context when training GEO30
embeddings. Under our model, each token in the
tweet shares the same contexts. Thus the input

graphic coordinates.
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“ROZESS g oo

GaoglePlaceszQAB
X poi m3971

5
«

polﬂsq'(/GooglsPlane ™
Ypoint7728

!

"It's good to reminisce while a?precxatxng the now.
Cool to see my alma mater @Penn's ENIAC again »mechmuesday #upenn”

poly1 &i/GooglePla&

poly5146/GooglePlaces9413

- ling-57,

Lo
\‘I llne<580

Intersecting Shapes

Radius Geographic Tags
(m)
15 line575 route:bus
line580 highway:tertiary
building:yes,
30 poly1903 GP:university
building:university,
poly3301 GP:university
building:university,
poly5146 GP:university
point7728 toqflsm:mformanon,
poi:marker
building:yes,
30 poly5146 GP:university
point3971 highway:crossing
GooglePlaces2948 GP:bus_station

Figure 1: Geoenriching an example tweet with ge-
ographic contexts at increasing radii D (meters).
For each D € {15,30,50}, geographic contexts
include all tags belonging to shapes within D me-
ters of the origin. In this example there are 10 tags
for the tweet at D = 30m. GP denotes tags ob-
tained via Google Places; others are from Open-
StreetMap.

to word2vect for training GEO30 embeddings
produced by the example tweet is an m X n list of
(word, context) pairs:

(it’ s,
(good,

route:bus),
route:bus),

(#TechTuesday, poi:marker),
(#UPenn, poi:marker)

The mean number of tags (m) per tweet under
each threshold is 12.3 (GEO15), 21.9 (GE030),
and 38.6 (GE050). The mean number of tokens
(n) per tweet is 15.7.

4 Intrinsic Evaluation

To determine the extent to which geo-word em-
beddings capture useful semantic information, we
first evaluate their performance on three seman-
tic relatedness and four semantic similarity bench-
marks (listed in Table 1). In each case we calcu-



late Spearman’s rank correlation between numer-
ical human judgements of semantic similarity or
relatedness for a large set of word pairs, and the
cosine similarity between the same word pairs un-
der the geo-word embedding models.

To understand the impact of geographic con-
texts on the embedding model, we compare
GEO15, GE030, and GEO50 geo-word embed-
dings to the following baselines:

TEXTS: Using our corpus of geolocated tweets,
we train word embeddings with word2vecf us-
ing traditional linear bag-of-words contexts with
window width 5.

GEO30+TEXTS: We also evaluate the impact
of combining textual and geospatial contexts. We
train a model over the geolocated tweets corpus
using both the geospatial contexts from GE0O30
and the textual contexts from TEXTS.

RAND30: Because our GEOD models assign
the same geospatial contexts to every token in
a tweet, we need to rule out the possibility that
GEOD models are simply capturing relatedness
between words that frequently appear in the same
tweets, like movie and theater. We implement
a random baseline model that captures similar-
ities arising from tweet co-location alone. For
each tweet, we enumerate the geospatial tags (i.e.
contexts) for shapes within 30m of the tweet ori-
gin. Then, before feeding the m x n list of
(word, context) pairs to word2vecf for train-
ing, we randomly map each tag type to a dif-
ferent tag type within the context vocabulary.
For example, route:bus could be mapped to
amenity :bank for input to the model. We redo
the random tag mapping for each tweet. In this
way, vectors for words that always appear together
within tweets are trained on the same set of associ-
ated contexts. But the randomly mapped contexts
do not model the geographic distribution of words.

4.1 Intrinsic Evaluation Results

Qualitatively, we find that strongly locational
words, like #nyc, and words frequently associated
with a type of place, like burger and baseball, tend
to have the most semantically and topically simi-
lar neighbors (Table 2) . Function words and oth-
ers with geographically independent use (i.e. man)
have less semantically-similar neighbors.

We can also qualitatively examine the ge-
ographic context embeddings v. output by
word2vecf. Recall that the SKIPGRAM objec-
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Target Most similar (GE030 ) Most similar (TEXTS)
#baseball, softball, softball, lacrosse,
baseball X #baseball, soccer,
marlins, nem, dodgers tourney
natural, dinosaurs, i#rr:lzztﬁzzlnll;:rtl?:ymuseum,
history #naturalhistorymuseum, #muséumse] ﬁe
Tmuseum, museums #dinosaur, dinosaurs
nyc, #newyorkcity, #ny, #iloveny,
#nyc #manhattan, #ny, #nyclife, #ilovenewyork,
ﬁ #newyorknewyork
== #burger, delicious, | #burger, =, fries,
burger Q () cheeseburger,
R burgers
man have, that, years, dude, guy, woman,
not, don’t hugging, he
when like, my, but, so, it’s t)ffi:/:a:(fg,le\g}g::ver, that,

Table 2: Most similar words based on cosine sim-
ilarity of embeddings trained using geographic
contexts within a radius of 30m (GE030) and tex-
tual contexts with a window of 5 words (TEXTS).

tive function pushes the vectors for frequently co-
occurring v. and v, close to one another in a
shared vector space. Thus we can find the words
(Table 4) and other contexts (Table 3) most closely
associated with each geographic context on the ba-
sis of cosine similarity. We find qualitatively that
the word-context and context-context associations
make intuitive sense.

In our intrinsic evaluation (Table 1), geo-word
embeddings outperformed the random baseline in
six of seven benchmarks. These results are sig-
nificant (p < .01) based on the Minimum Re-
quired Difference for Significance test of Rastogi
et al. (2015). This indicates that geospatial in-
formation does provide some useful semantic in-
formation. However, the GEOD embeddings un-
derperformed the TEXTS embeddings in all cases.
And although the combined GEO30+TEXTS em-
beddings outperformed the TEXTS embeddings
in 2 of 3 semantic relatedness benchmarks, the
results were significant only in the case of the
MEN dataset (p < .05). This suggests, incon-
clusively, that geospatial contextual information
may improve the semantic relatedness content of
word embeddings in some cases, but that geospa-
tial context is no substitute for textual context in
capturing semantic relationships. Nevertheless,
geospatial context does provide some signal for
semantic relatedness that may be useful in com-
bination with other multimodal signals. Finally,
it should be noted that the Spearman correlation
achieved by all models in our tests is significantly



Data Set Data Type | Rand30 | Geol5 | Geo30 | Geo50 | Geo30+Text5S | TextS | Ref

MEN rel 0.1377 0.319 0.337 0.298 0.528' 0.514 | (Brunietal., 2012)
MTURK-771 | rel 0.0767 0.224 | 0.225 0.206 0.357 0.364 | (Halawi and Dror, 2012)
WS353-R rel 0.0957 0.312 | 0.334 | 0.244 | 0.396 0.382 | (Agirre et al., 2009)
WS353-S sim 0.0527 0.314 | 0.275 0.249 0.525 0.555 | (Agirre et al., 2009)

RW sim 0.012? 0.176 0.167 0.167 0.323 0.362" | (Luong et al., 2013)
SCWS sim 0.3167 0.392 | 0.383 0.385 0.470 0.499" | (Huang et al., 2012)
SimLex sim 0.081 0.069 0.068 0.052 | 0.100 0.192" | (Hill et al., 2015)

! Indicates a significant difference between TEXTS and GEO30+TEXTS results (p < 0.05, (Rastogi et al., 2015))
2 Indicates RAND30 results are significantly lower than any GEO or WORD embedding results (p < 0.01, (Rastogi et al., 2015))

Table 1: We calculate the Spearman correlation between pairwise human semantic similarity (sim) and
relatedness (rel) judgements, and cosine similarity of the associated word embeddings, over 7 benchmark

datasets.

5-most-similar contexts
GP.food,
GP.point_of_interest,
GP.establishment,
GP.cafe,

GP.bar
boundary.postal_code,
place.neighbourhood,
landuse.commercial,
landuse.retail,
operator.metro
religion.christian,
building.church,
GP.place_of _worship,
GP.church,
religion.muslim
GP.furniture_store,
GP.store,
GP.point_of_interest,
GP.establishment,
GP.electrician

Geographic context

GP.restaurant

landuse.residential

amenity.place_of_worship

GP.home_goods_store

Table 3: Most similar contexts, based on cosine
similarity of the associated GEO30 context vec-
tors.

below the current state-of-the-art; this is to be ex-
pected given the relatively small size of our train-
ing corpus (approx. 400M tokens).

5 Translation Prediction

Our intrinsic evaluation established that geospa-
tial context provides semantic information about
words, but it is weaker than information provided
by textual context. So a natural question to ask
is whether geospatial context can be useful in any
setting. One potential strength of word embed-
dings trained using geospatial contexts is that the
features are language-independent. Thus we in-

Geospatial context | Most similar words (GE030)

#aquarium, #jellyfish
#hike, overlook, #hiking,
coit, mulholland

history, #dinosaur,

#naturalhistorymuseum,
american, natural

GP.aquarium

natural.peak

amenity.museum

. , saray, bowling,

idarts, #bowling

camii, masjid, sultan,
mosque, ahmed

#bridge, #manhattanbridge,
#brooklynbridge, #eastriver,

GP.bowling_alley

religion.muslim

man_made.bridge

Table 4: Most similar words for target contexts,
based on cosine similarity of their associated
GEO030 word and context vectors.

fer that training geo-word embeddings jointly over
two languages might yield translation pairs that
are close to one another in vector space. This type
of model could be applicable in a low-resource
language setting where large parallel texts are un-
available but geolocated text is. To test this hy-
pothesis, we collect an additional 236k geolocated
Turkish tweets and re-train GE030, TEXTS, and
GEO030+TEXTS vectors on the larger set.

Similar to Irvine and Callison-Burch (2013), we
use a supervised method to make a binary trans-
lation prediction for Turkish-English word pairs.
We build a dataset of positive Turkish-English
word pairs by all Turkish words in a Turkish-
English dictionary (Pavlick et al., 2014) that ap-
pear in our vector vocabulary and do not translate
to the same word in English (528 words in total).
We add these words and their translations to our
dataset as positive examples. Then, for each Turk-
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ish word in the dataset we also select a random
English word and add this pair as a negative ex-
ample. Our resulting data set has 1056 word pairs,
50% of which are correct translations. We split
this into 80% train and 20% test examples.

We construct a logistic regression model, where
the input for each word pair is the difference be-
tween its Turkish and English word vectors, vy —
ve. We evaluate the results using precision, recall,
and F-score of positive translation predictions.

Table 5 gives our results, which we compare to
a model that makes a random guess for each word
pair. Combining geographic and textual contexts
to train embeddings leads to better translation per-
formance than using textual or geospatial contexts
in isolation. In particular, with a seed dictionary
of just 528 Turkish words and monolingual text of
just 236k tweets, our supervised method is able to
predict correct translation pairs with 67.8% preci-
sion. While the not signficant under McNemar’s
test (p=0.07), they are suggestive that geospatial
contextual information may provide a useful sig-
nal for bilingual lexicon induction when used in
combination with other methods, as in Irvine and
Callison-Burch (2013).

Vector Precision | Recall | FScore
Texth 0.600 0.574 0.587
Geo30 0.570 0.542 0.556
Geo30+Text5 | 0.678 0.588 0.630
Random 0.500 0.500 0.500

Table 5: We make a binary translation prediction
for Turkish-English word pairs using their embed-
dings in a simple logistic regression model.

6 Conclusion

Typically word embeddings are generated using
the text surrounding a word as context from which
to derive semantic information. We explored what
happens when we use the geospatial context — in-
formation about the physical location where text
originates — instead. Intrinsic evaluation of word
embeddings trained over a set of geolocated Twit-
ter data, using geospatial information derived from
OpenStreetMap and the Google Places API as
context, indicated that the geospatial context does
encode information about semantic relatedness.
We also suggested an extrinsic evaluation
method for geo-word embeddings: predicting
translation pairs without bilingual parallel cor-
pora. Our experiments suggested that while
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geospatial context is not as semantically-rich as
textual context, it does provide useful semantic re-
latedness information that may be complementary
as part of a multimodal model. As future work,
another extrinsic evaluation task that may be ap-
propriate for geo-word embeddings is geolocation
prediction.
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Abstract

Emojis are ideograms which are natu-
rally combined with plain text to visually
complement or condense the meaning of
a message. Despite being widely used
in social media, their underlying seman-
tics have received little attention from a
Natural Language Processing standpoint.
In this paper, we investigate the relation
between words and emojis, studying the
novel task of predicting which emojis are
evoked by text-based tweet messages. We
train several models based on Long Short-
Term Memory networks (LSTMs) in this
task. Our experimental results show that
our neural model outperforms two base-
lines as well as humans solving the same
task, suggesting that computational mod-
els are able to better capture the underly-
ing semantics of emojis.

1 Introduction

The advent of social media has brought along a
novel way of communication where meaning is
composed by combining short text messages and
visual enhancements, the so-called emojis. This
visual language is as of now a de-facto standard
for online communication, available not only in
Twitter, but also in other large online platforms
such as Facebook, Whatsapp, or Instagram.
Despite its status as language form, emojis have
been so far scarcely studied from a Natural Lan-
guage Processing (NLP) standpoint. Notable ex-
ceptions include studies focused on emojis’ se-
mantics and usage (Aoki and Uchida, 2011; Barbi-
eri et al., 2016a; Barbieri et al., 2016b; Barbieri et
al., 2016c; Eisner et al., 2016; LjubeSic and FiSer,
2016), or sentiment (Novak et al., 2015). How-
ever, the interplay between text-based messages
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and emojis remains virtually unexplored. This pa-
per aims to fill this gap by investigating the rela-
tion between words and emojis, studying the prob-
lem of predicting which emojis are evoked by text-
based tweet messages.

Miller et al. (2016) performed an evaluation
asking human annotators the meaning of emojis,
and the sentiment they evoke. People do not al-
ways have the same understanding of emojis, in-
deed, there seems to exist multiple interpretations
of their meaning beyond their designer’s intent or
the physical object they evoke!. Their main con-
clusion was that emojis can lead to misunderstand-
ings. The ambiguity of emojis raises an interesting
question in human-computer interaction: how can
we teach an artificial agent to correctly interpret
and recognise emojis’ use in spontaneous conver-
sation?”> The main motivation of our research is
that an artificial intelligence system that is able
to predict emojis could contribute to better natu-
ral language understanding (Novak et al., 2015)
and thus to different natural language processing
tasks such as generating emoji-enriched social me-
dia content, enhance emotion/sentiment analysis
systems, and improve retrieval of social network
material.

In this work, we employ a state of the art clas-
sification framework to automatically predict the
most likely emoji a Twitter message evokes. The
model is based on Bidirectional Long Short-term
Memory Networks (BLSTMs) with both standard
lookup word representations and character-based
representation of tokens. We will show that the
BLSTMs outperform a bag of words baseline, a
baseline based on semantic vectors, and human
annotators in this task.

"https://www.washingtonpost.com/news/the-
intersect/wp/2016/02/19/the-secret-meanings-of-emoji/

Zhttp://www.dailydot.com/debug/emoji-
miscommunicate/
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Table 1: The 20 most frequent emojis that we use
in our experiments and the number of thousand
tweets they appear in.

2 Dataset and Task

Dataset: We retrieved 40 million tweets with the
Twitter APIs®>. Tweets were posted between Oc-
tober 2015 and May 2016 geo-localized in the
United States of America. We removed all hyper-
links from each tweet, and lowercased all textual
content in order to reduce noise and sparsity. From
the dataset, we selected tweets which include one
and only one of the 20 most frequent emojis, re-
sulting in a final dataset* composed of 584,600
tweets. In the experiments we also consider the
subsets of the 10 (502,700 tweets) and 5 most fre-
quent emojis (341,500 tweets). See Table 1 for the
20 most frequent emojis that we consider in this
work.

Task: We remove the emoji from the sequence of
tokens and use it as a label both for training and
testing. The task for our machine learning models
is to predict the single emoji that appears in the
input tweet.

3 Models

In this Section, we present and motivate the mod-
els that we use to predict an emoji given a tweet.
The first model is an architecture based on Recur-
rent Neural Networks (Section 3.1) and the sec-
ond and third are the two baselines (Section 3.2.1
and 3.2.2). The two major differences between the
RNNS and the baselines, is that the RNNs take into
account sequences of words and thus, the entire
context.

3.1 Bi-Directional LSTMs

Given the proven effectiveness and the impact
of recurrent neural networks in different tasks
(Chung et al., 2014; Vinyals et al., 2015; Dzmitry
etal., 2014; Dyer et al., 2015; Lample et al., 2016;
Wang et al., 2016, inter-alia), which also includes
modeling of tweets (Dhingra et al., 2016), our
emoji prediction model is based on bi-directional

3https://dev.twitter.com
* Available at http:/sempub.taln.upf.edu/tw/eacl17
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Long Short-term Memory Networks (Hochreiter
and Schmidhuber, 1997; Graves and Schmidhu-
ber, 2005). The B-LSTM can be formalized as
follows:

s = max {0, W[fw; bw| 4 d}

where W is a learned parameter matrix, fw is the
forward LSTM encoding of the message, bw is
the backward LSTM encoding of the message, and
d is a bias term, then passed through a component-
wise ReLLU. The vector s is then used to compute
the probability distribution of the emojis given the
message as:

exp (g;l' S + QE)
Poce e (848 +4e)
where g,/ is a column vector representing the (out-
put) embedding® of the emoji e, and ¢, is a bias
term for the emoji e. The set £ represents the list

of emojis. The loss/objective function the network
aims to minimize is the following:

plels) =

Loss = —log(p(em | s))

where m is a tweet of the training set 7, s is the
encoded vector representation of the tweet and e,
is the emoji contained in the tweet m. The inputs
of the LSTMs are word embeddings®. Following,
we present two alternatives explored in the exper-
iments presented in this paper.
Word Representations: We generate word em-
beddings which are learned together with the up-
dates to the model. We stochastically replace
(with p = 0.5) each word that occurs only once in
the training data with a fixed represenation (out-
of-vocabulary words vector). When we use pre-
trained word embeddings, these are concatenated
with the learned vector representations obtaining
a final representation for each word type. This is
similar to the treatment of word embeddings by
Dyer et al. (2015).
Character-based Representations: We compute
character-based continuous-space vector embed-
dings (Ling et al., 2015b; Ballesteros et al., 2015)
of the tokens in each tweet using, again, bidi-
rectional LSTMs. The character-based approach
learns representations for words that are ortho-
graphically similar, thus, they should be able to
handle different alternatives of the same word type
occurring in social media.

>The output embeddings of the emojis have 100 dimen-
s101mS.

6100 dimensions.



3.2 Baselines

In this Section we describe the two baselines. Un-
like the previous model, the baselines do not take
into account the word order. However, in the sec-
ond baseline (Section 3.2.2) we abstract on the
plain word representation using semantic vectors,
previously trained on Twitter data.

3.2.1 Bag of Words

We applied a bag of words classifier as baseline,
since it has been successfully employed in se-
veral classification tasks, like sentiment analysis
and topic modeling (Wallach, 2006; Blei, 2012;
Titov and McDonald, 2008; Maas et al., 2011;
Davidov et al., 2010). We represent each mes-
sage with a vector of the most informative to-
kens (punctuation marks included) selected using
term frequency —inverse document frequency (TF-
IDF). We employ a L2-regularized logistic regres-
sion classifier to make the predictions.

3.2.2 SKkip-Gram Vector Average

We train a Skip-gram model (Mikolov et al., 2013)
learned from 65M Tweets (where testing instances
have been removed) to learn Twitter semantic vec-
tors. Then, we build a model (henceforth, AVG)
which represents each message as the average of
the vectors corresponding to each token of the
tweet. Formally, each message m is represented
with the vector V,,:

ZteT St
Vm==—2=m"—
T

Where T, are the set of tokens included in the
message m, S; is the vector of token ¢ in the Skip-
gram model, and |7}, | is the number of tokens in
m. After obtaining a representation of each mes-
sage, we train a L2-regularized logistic regression,
(with € equal to 0.001).

4 Experiments and Evaluation

In order to study the relation between words and
emojis, we performed two different experiments.
In the first experiment, we compare our machine
learning models, and in the second experiment, we
pick the best performing system and compare it
against humans.

4.1 First Experiment

This experiment is a classification task, where
in each tweet the unique emoji is removed and

107

5 10 20

P R F1|P R F1|P R F1

BOW | .59 .60 .58|.43 46 .41|.32 .34 .29
AVG | .60 .60 .57|.44 47 40|.34 36 .29
W|.59 59 59|46 46 46|35 36 .33
C|.61 .61 .61|.44 44 44|36 .37 .32
W+P | .61 .61 .61|.45 45 45|.34 36 .32
C+P|.63 .63 .63|.48 .47 47|42 .39 .34

Table 2: Results of 5, 10 and 20 emojis. Precision,
Recall, F-measure. BOW is bag of words, AVG
is the Skipgram Average model, C refers to char-
BLSTM and W refers to word-BLSTM. +P refers
to pretrained embeddings.

used as a label for the entire tweet. We use
three datasets, each containing the 5, 10 and 20
most frequent emojis (see Section 2). We ana-
lyze the performance of the five models described
in Section 3: a bag of words model, a Bidirec-
tional LSTM model with character-based repre-
sentations (char-BLSTM), a Bidirectional LSTM
model with standard lookup word representa-
tions (word-BLSTM). The latter two were trained
with/without pretrained word vectors. To pretrain
the word vectors, we use a modified skip-gram
model (Ling et al., 2015a) trained on the English
Gigaword corpus’ version 5.

We divide each dataset in three parts, train-
ing (80%), development (10%) and testing (10%).
The three subsets are selected in sequence start-
ing from the oldest tweets and from the training
set since automatic systems are usually trained on
past tweets, and need to be robust to future topic
variations.

Table 2 reports the results of the five models
and the baseline. All neural models outperform
the baselines in all the experimental setups. How-
ever, the BOW and AVG are quite competitive,
suggesting that most emojis come along with spe-
cific words (like the word love and the emoji ®).
However, considering sequences of words in the
models seems important for encoding the mean-
ing of the tweet and therefore contextualize the
emojis used. Indeed, the B-LSTMs models always
outperform BOW and AVG. The character-based
model with pretrained vectors is the most accurate
at predicting emojis. The character-based model
seems to capture orthographic variants of the same
word in social media. Similarly, pretrained vec-
tors allow to initialize the system with unsuper-

"https://catalog.1dc.upenn.edu/LDC2003T05



vised pre-trained semantic knowledge (Ling et al.,
2015a), which helps to achieve better results.

Emoji | P R F1 | Rank | Num
2 1048 074 058 | 2.12 | 783
@ 032 074 045] 159 | 757
T 1035 022 027 358 | 470
2 1031 015 021 42 | 260

= 1024 01 014 439 | 212
046 049 047 | 3.76 | 207

v 1 0 001 ]| 469 | 206
22 1044 0.19 027 5.15 | 200
2 (044 054 048 | 471 | 165

033 0.11 0.17 | 579 | 150

=3 03 0.12 0.17 | 578 | 148
054 0.11 0.18 | 6.73 | 131

045 0.19 027 | 643 | 120

< 056 009 0.15| 7.58 | 112
] 02 001 002 9.01 | 110

W 046 033 039 583 | 108

05 008 0.13| 49 | 105
#1032 025 028 6.13 | 89
044 053 048 | 535 | 34

2 022 067 033 1.67 3

Table 3: Precision, Recall, F-measure, Ranking
and occurrences in the test set of the 20 most fre-
quent emojis using char-BLSTM + Pre.

Qualitative Analysis of Best System: We an-
alyze the performances of the char-BLSTM with
pretrained vectors on the 20-emojis dataset, as it
resulted to be the best system in the experiment
presented above. In Table 3 we report Precision,
Recall, F-measure and Ranking® of each emoji.
We also added in the last column the occurrences
of each emoji in the test set.

The frequency seems to be very relevant. The
Ranking of the most frequent emojis is lower than
the Ranking of the rare emojis. This means that if
an emoji is frequent, it is more likely to be on top
of the possible choices even if it is a mistake. On
the other hand, the F-measure does not seem to de-
pend on frequency, as the highest F-measures are
scored by a mix of common and uncommon emo-
jis (B , and ) which are respectively the

= s

8The Ranking is a number between 1 and 20 that repre-
sents the average number of emojis with higher probability

than the gold emoji in the probability distribution of the clas-
sifier.
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first, second, the sixth and the second last emoji in
terms of frequencies.

The frequency of an emoji is not the only im-
portant variable to detect the emojis properly; it is
also important whether in the set of emojis there
are emojis with similar semantics. If this is the
case the model prefers to predict the most frequent
emojis. This is the case of the " emoji that is al-
most never predicted, even if the Ranking is not
too high (4.69). The model prefers similar but
most frequent emojis, like @ (instead of #°). The
same behavior is observed for the & emoji, but
in this case the performance is a bit better due
to some specific words used along with the blue
heart: “blue”, “sea” and words related to child-
hood (e.g. “little” or “Disney”).

Another interesting case is the Christmas tree
emoji &, that is present only three times in the
test set (as the test set includes most recent tweets
and Christmas was already over; this emoji is
commonly used in tweets about Christmas). The
model is able to recognize it twice, but missing
it once. The correctly predicted cases include the
word “Christmas”; and it fails to predict: “get-
ting into the holiday spirit with this gorgeous pair
of leggings today ! #festiveleggings”, since there
are no obvious clues (the model chooses @ instead
probably because of the intended meaning of “hol-
iday” and “gorgeous”.).

In general the model tends to confuse similar
emojis to @ and 2, probably for their higher fre-
quency and also because they are used in multiple
contexts. An interesting phenomenon is that % is
often confused with &. The first one represent a
small face crying, and the second one a small face
laughing, but the results suggest that they appear
in similar tweets. The punctuation and tone used is
often similar (many exclamation marks and words
like “omg” and “hahaha’). Irony may also play a
role to explain the confusion, e.g. “I studied jour-
nalism and communications , I'll be an awesome
speller! Wrong. % haha so much fun”.

4.2 Second Experiment

Given that Miller et al. (2016) pointed out that
people tend to give multiple interpretations to
emojis, we carried out an experiment in which
we evaluated human and machine performances
on the same task. We randomly selected 1,000
tweets from our test set of the 5 most frequent
emojis used in the previous experiment, and asked



Humans B-LSTM
Emo| P | R | F1 | P | R | F1
2 10.73]056|063| 07 | 084077
© 053|051 052061078 | 0.69
< | 043]038| 04 |052] 03 | 038
2 10.19| 04 | 026062026037
0.24 | 0.26 | 0.25 | 0.66 | 0.51 | 0.58

| Avg | 0.53]0.48 | 0.50 | 0.65 [ 0.65 | 0.65 |

Table 4: Precision, Recall and F-Measure of hu-
man evaluation and the character-based B-LSTM
for the 5 most frequent emojis and 1,000 tweets.

humans to predict, after reading a tweet (with the
emoji removed), the emoji the text evoked. We
opted for the 5 emojis task to reduce annotation
efforts. After displaying the text of the tweet, we
asked the human annotators “What is the emoji
you would include in the tweet?”, and gave the
possibility to pick one of 5 possible emojis &,
¥, T, 2 and “¥. Using the crowdsourcing plat-
form ’ CrowdFlower”, we designed an experiment
where the same tweet was presented to four anno-
tators (selecting the final label by majority agree-
ment). Each annotator assessed a maximum of
200 tweets. The annotators were selected from
the United States of America and of high qual-
ity (level 3 of CrowdFlower). One in every ten
tweets, was an obvious test question, and anno-
tations from subjects who missed more than 20%
of the test questions were discarded. The overall
inter-annotator agreement was 73% (in line with
previous findings (Miller et al., 2016)). After cre-
ating the manually annotated dataset, we com-
pared the human annotation and the char-BLSTM
model with the gold standard (i.e. the emoji used
in the tweet).

We can see in Table 4, where the results of the
comparison are presented, that the char-BLSTM
performs better than humans, with a F1 of 0.65
versus 0.50. The emojis that the char-BLSTM
struggle to predict are = and 2 , while the human
annotators mispredict 2 and *¥ mostly. We can
see in the confusion matrix of Figure 1 that ¥ is
misclassified as @ by both human and LSTM, and
the 22 emoji is mispredicted as 2 and ®. An in-
teresting result is the number of times 2 was cho-
sen by human annotators; this emoji occurred 100
times (by chance) in the test set, but it was chosen
208 times, mostly when the correct label was the
laughing emoji &. We do not observe the same be-
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True label

Predicted label

Figure 1: Confusion matrix of the second experi-
ment. On the left the human evaluation and on the
right the char-BLSTM model.

havior in the char-BLSTMSs, perhaps because they
encoded information about the probability of these
two emojis and when in doubt, the laughing emoji
was chosen as more probable.

5 Conclusions

Emojis are used extensively in social media, how-
ever little is known about their use and seman-
tics, especially because emojis are used differently
over different communities (Barbieri et al., 2016a;
Barbieri et al., 2016b). In this paper, we provide
a neural architecture to model the semantics of
emojis, exploring the relation between words and
emojis. We proposed for the first time an auto-
matic method to, given a tweet, predict the most
probable emoji associated with it. We showed
that the LSTMs outperform humans on the same
emoji prediction task, suggesting that automatic
systems are better at generalizing the usage of
emojis than humans. Moreover, the good accuracy
of the LSTMs suggests that there is an important
and unique relation between sequences of words
and emojis.

As future work, we plan to make the model able
to predict more than one emoji per tweet, and ex-
plore the position of the emoji in the tweet, as
close words can be an important clue for the emoji
prediction task.
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Abstract

A traditional claim in linguistics is that all
human languages are equally expressive—
able to convey the same wide range of
meanings.  Morphologically rich lan-
guages, such as Czech, rely on overt in-
flectional and derivational morphology to
convey many semantic distinctions. Lan-
guages with comparatively limited mor-
phology, such as English, should be able
to accomplish the same using a combi-
nation of syntactic and contextual cues.
We capitalize on this idea by training a
tagger for English that uses syntactic fea-
tures obtained by automatic parsing to re-
cover complex morphological tags pro-
jected from Czech. The high accuracy
of the resulting model provides quantita-
tive confirmation of the underlying lin-
guistic hypothesis of equal expressivity,
and bodes well for future improvements in
downstream HLT tasks including machine
translation.

1 Introduction

Different languages use different grammatical
tools to convey the same meanings. For ex-
ample, to indicate that a noun functions as a
direct object, English—a morphologically poor
language—places the noun after the verb, while
Czech—a morphologically rich language—uses
an accusative case suffix. Consider the follow-
ing two glossed Czech sentences: ryba jedla (“the
fish ate”) and oni jedli rybu (“they ate the fish”).
The key insight is that the morphology of Czech
(i.e., the case ending -u), carries the same seman-
tic content as the syntactic structure of English
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(i.e., the word order) (Harley, 2015). Theoreti-
cally, this common underlying semantics should
allow syntactic structure to be transformed into
morphological structure and vice versa. We ex-
plore the veracity of this claim computationally
by asking the following: Can we develop a tag-
ger for English that uses the signal available in
English-only syntactic structure to recover the rich
semantic distinctions conveyed by morphology in
Czech? Can we, for example, accurately detect
which English contexts would have a Czech trans-
lation that employs the accusative case marker?

Traditionally, morphological analysis and tag-
ging is a task that has been limited to morphologi-
cally rich languages (MRLs) (Haji¢, 2000; Drabek
and Yarowsky, 2005; Miiller et al., 2015; Buys
and Botha, 2016). In order to build a rich mor-
phological tagger for a morphologically poor lan-
guage (MPL) like English, we need some way to
build a gold standard set of richly tagged English
data for training and testing. Our approach is to
project the complex morphological tags of Czech
words directly onto the English words they align
to in a large parallel corpus. After evaluating the
validity of these projections, we develop a neural
network tagging architecture that takes as input a
number of English features derived from off-the-
shelf dependency parsing and attempts to recover
the projected Czech tags.

A tagger of this sort is interesting in many ways.
Whereas the best NLP tools are typically available
for English, morphological tagging at this gran-
ularity has until now been applied almost exclu-
sively to MRLs. The task is also scientifically in-
teresting, in that it takes semantic properties that
are latent in the syntactic structure of English and
transforms them into explicit word-level annota-
tions. Finally, such a tool has potential utility in a
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Subtag | Values

GENDER FEM, MASC, NEUT

NUMBER SG, DU, PL

CASE NOM, GEN, DAT, ACC, VOC, ESS, INS
PERSON 1,2,3

TENSE FUT, PRS, PST

GRADE CMPR, SPRL

NEGATION | POS, NEG

VOICE ACT, PASS

Table 1: The subset of the UniMorph Schema used here.

range of downstream tasks, such as machine trans-
lation into MRLs (Sennrich and Haddow, 2016).

2 Projecting Morphological Tags

Training a system to tag English text with multi-
dimensional morphological tags requires a corpus
of English text annotated with those tags. Since
no such corpora exist, we must construct one.
Past work (focused on translating out of English
into MRLs) assigned a handful of morphologi-
cal annotations using manually-developed heuris-
tics (Drabek and Yarowsky, 2005; Avramidis and
Koehn, 2008), but this is hard to scale. We there-
fore instead look to obtain rich morphological tags
by projecting them (Yarowsky et al., 2001) from
a language (such as Czech) where such rich tags
have already been annotated.

We use the Prague Czech—English Dependency
Treebank (PCEDT) (Haji€ et al., 2012), a com-
plete translation of the Wall Street Journal por-
tion of the Penn Treebank (PTB) (Marcus et al.,
1993). Each word on the Czech side of the
PCEDT was originally hand-annotated with com-
plex 15-dimensional morphological tags contain-
ing positional subtag values for morphological cat-
egories specific to Czech.! We manually mapped
these tags to the UniMorph Schema tagset (Sylak-
Glassman et al., 2015), which provides a uni-
versal, typologically-informed annotation frame-
work for representing morphological features of
inflected words in the world’s languages. Uni-
Morph tags are in principle up to 23-dimensional,
but tags are not positionally dependent, and not
every dimension needs to be specified. Table 1
shows the subset of UniMorph subtags used here.
PTB tags have no formal internal subtag structure.

"For our purposes, a morphological fag is a complex,
multiclass entity comprising the morphological features that
a word bears across many different inflectional categories
(e.g., CASE, NUMBER, and so on). We call these features sub-
tags, and each takes one of several values (e.g., PRS ‘present’
in the TENSE category of the UniMorph Schema).
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PTB  Expected UM Match %
NN SG 87.8
NNP SG 73.9
NNS PL 83.3
NNPS PL 65.1
JIR CMPR 89.0
JIS SPRL 79.3
RBR CMPR 76.3
RBS SPRL 68.7
VBZ SG 91.3
VBZ 3 90.7
VBZ PRS 89.4
VBG PRS 559
VBP PRS 87.2
VBD PST 93.9
VBN PST 78.7
Average Match % 80.7

Table 2: To evaluate the validity of projecting morpholog-
ical tags from Czech onto English text, we compare these
projected features to features obtained from the original PTB
tags (listed on the left). The expected UniMorph (UM) sub-
tag (center) is from a manual ‘translation’ of PTB tags into
UniMorph tags. The match percentage indicates how often
the feature projected from a UniMorph ‘translation’ of the
original PCEDT annotation of Czech matches the feature that
would be expected subtag. Note that the core part-of-speech
must agree as a precondition for further evaluation.

See Figure 1 for a comparison of the PCEDT, Uni-
Morph, and PTB tag systems for a Czech word and
its aligned English translation.

The PCEDT also contains automatically gener-
ated word alignments produced by using GIZA++
(Och and Ney, 2003) to align the Czech and En-
glish sides of the treebank. We use these align-
ments to project morphological tags from the
Czech words to their English counterparts through
the following process. For every English word,
if the word is aligned to a single Czech word,
take its tag. If the word is mapped to multiple
Czech words, take the annotation from the align-
ment point belonging to the intersection of the
two underlying GIZA++ models used to produce
the many-many alignment.? If no such alignment
point is found, take the leftmost aligned word. Un-
aligned English words get no annotation.

3 Validating Projections

If we believe that we can project semantic distinc-
tions over bitext, we must ensure that the elements
linked by projection in both source and target lan-
guages carry roughly the same meaning. This is
difficult to automate, and no gold-standard dataset
or metric has been developed. Thus, we offer the
following approximate evaluation.

*This intersection is marked as int.gdfa in the PCEDT.



Czech PCEDT tag
je VB-S---3P-AA---

UniMorph tag
V;ACT;POS;PRS;3;SG

English PTB tag
is VBZ

Figure 1: The PCEDT tag of the Czech word je was mapped to an equivalent UniMorph tag. The English translation of je,
which is the copula is, has the PTB tag VBZ. While the PCEDT and UniMorph tags are composed of subtags, the PTB tag has

no formal internal composition.

English is not bereft of morphological marking,
and its use of it, though limited, does sometimes
coincide with that of Czech. For example, both
languages use overt morphology to mark nouns
as singular or plural, adjectives and adverbs as
superlative or comparative, and verbs as either
present or past.> In these cases it is possible to
directly map word-level PTB tags in English to
word-level UniMorph tags in Czech, and to com-
pare how often projected tags conform to this ex-
pected mapping. For example, the PTB tag VBZ
is mapped to the UniMorph tag V;PRS;3;SG. Ta-
ble 2 shows a set of expected projections along
with how often the expectations are met across the
PCEDT. In particular, we calculate the percent-
age of cases when an English word with a partic-
ular PTB tag has the expected Czech tag projected
onto it. This calculation is only performed in those
cases where where the aligned words agree in their
core part of speech, since we would not expect, for
example, verbs to have superlative/comparative
morphology.

A qualitative examination of these results sug-
gests that projections are usually valid in at least
those cases where our limited linguistic intuitions
predict they should be. For example, the dual
number feature (DU) was projected in only 12 in-
stances, but was almost always projected to the
English words “two,” “eyes,” “feet,” and “hands.”
These concepts naturally come in pairs, and this
distinction is explicitly marked in Czech, but not
English. We interpret this evaluation as suggesting
that we can trust projection even in cases where we
do not have pre-existing expectations of how En-
glish and Czech grammars should align.

4 Neural Morphological Tag Prediction

4.1 Features

With our projections validated, we turn to the pre-
diction model itself. Based on the idea that lan-
guages with rich morphology use that morphol-
ogy to convey similar distinctions in meaning to

3English also uses morphology to mark the 3rd person sin-
gular verb form.
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that conveyed by syntax in a morphologically poor
language, we extract lexical and syntactic features
from English text itself as well as both depen-
dency and CFG parses. We use the following
basic features derived directly from the text: the
word itself, the single-word lexical context, and
the word’s POS tag neighbors. We also use fea-
tures derived from dependency trees.

e Head features. The word’s head word, and
separately, the head word’s POS.

e Head chain POS. The chain of POS tags be-
ginning with the word and moving upward
along the dependency graph.

e Head chain labels. The chain of dependency
labels moving upward.

e Child words. The identity of any child word
having an arc label of det or case, under the
Universal Dependency features.*

Finally, we use features from CFG parsing:

e POS features. A word’s part-of-speech
(POS) tag, its parent’s, and its grandparent’s.

o Chain features. We compute chains of the
tree nodes, starting with its POS tag and mov-
ing upward (NN_NP_S).

e The distance to the root.

Non-lexical features are treated as real-valued
when appropriate (such as in the case of the dis-
tance to the root), while all others are treated as
binary. For lexical features, we use pretrained
GLoVe embeddings, specifically 200-dimensional
400K-vocab uncased embeddings from Penning-
ton et al. (2014). This is an approach similar to
Tran et al. (2015), but we additionally augment
the pretrained embeddings with randomly initial-
ized embeddings for vocabulary items outside of
the 400K lexicon.

4.2 Neural Model

In order to take advantage of correlated informa-
tion between subtags, we present a neural model

4 . .
universaldependencies.org



Other companies are

introducing related  products

PL,NOM PL,NOM ACT,3,PRS,PL ACT,3,PRS,PL PL,ACC PL,ACC

Table 3: An English sentence from the test set, WSJ §22, tagged with rich morphological tags by our neural tagger. Note, for
example, that case is tagged correctly, with Other companies tagged as nominative and related products tagged as accusative.
Legend here: CASE (NOM = nominative, ACC = accusative), TENSE (PRS = present), NUMBER (PL = plural), VOICE (ACT

= active), and PERSON (3).

which learns a common representation of input to-
kens, and passes it on to a series of subtag classi-
fiers that are trained jointly. Informally, this means
that we learn a shared representation in the hid-
den layers and then use separate weight functions
to predict each component of the morphological
analysis from this shared representation of the in-
put. We use a feed-forward neural net with two
hidden layers and rectified linear unit (ReLU) ac-
tivation functions (Glorot et al., 2011). A Uni-
Morph tag m can be decomposed into its N sub-
tags as m = [m) m® ... m)], where each
m() may be represented as a one-hot vector. The
weight matrices (W(l), W(Q)) and bias vectors
(bM), b)) connecting the hidden layers are pa-
rameters for the whole model, but each of the
N subtag classes has its own weight matrix and
bias vector m(g), bl(?’). All are randomly initial-
ized from truncated normal distributions. Given
an input vector x, we first compute a new input
= [xnon-lex : E-rlexo : E$lex1 D Exlexn],
where [a : b] represents vector concatenation. All
lexical features ., are replaced by their embed-
dings from the embedding matrix F.

f(a)=relu (b(2)+W(2)relu (b(l)—H/V(l)x’)) (1)

p(m¥ |z, 0) =softmax (bg?’) +Wi(3)f(x’)) (2)
Then the definition of p(m) follows:

N .
p(m | 2,6) = [ pm | 2,0)

i=1

3)

The set of parameters is § = {E, Wy W@,
b(2),W1(3),b§3), ce 1(\13)71’53)}- The loss is de-
fined as the cross-entropy, and the model is trained
using gradient descent with minibatches. The
models were trained using TensorFlow (Abadi et
al.,, 2015). We complete a coarse-grained grid
search over the learning rate, hidden layer size,
and batch size. Based on performance on the de-
velopment set, we choose a hidden layer size of
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1000. We tune model parameters on whole-tag ac-
curacy on WSJ §00. We find that a learning rate of
0.01 and batch size of 50 work best.

S Experiment Setup

Our goal is to predict rich morphological tags for
monolingual English text. The tagger was trained
on §02-21 of the WSJ portion of the PTB. §00 was
used for tuning. Training tags were projected from
the equivalent Czech portion of the PCEDT, across
the standard alignments provided by the PCEDT,
as described in §2. Projected tags were treated
as a gold standard to be recovered by the tagger.
The full training set consisted of 39,832 sentences
(726,262 words). Evaluation of the tagger was
done on §22 of the WSJ portion of the PCEDT.

6 Results and Analysis

Table 4 shows the accuracy of the neural tagger for
each subtag category from Table 1, indicating how
often the tagger recovered the English projections
of the Czech subtags. Baseline 1 is computed by
selecting the most common Czech (sub)tag value
in every case.

Baseline 2 is computed similarly to the evalu-
ation of projection validity presented in §3. For
each English word, the UniMorph subtag values
which can be obtained by translating the PTB tag
are compared to the projected subtag value in the
same category (e.g. TENSE). This baseline penal-
izes cases in which a value for a category exists in
the gold projection, but the value from the PTB tag
translation either does not match or is not present
at all. The poor performance of this baseline high-
lights how little information can be gleaned from
traditional English PTB tags themselves, which is
caused by the poverty of English inflectional mor-
phology. In baselines 2 and 3, values for negation
and voice were never present from the PTB tags
since both negation and passive voice are indicated
by separate words in English.

>The tag VBN cannot be used in isolation to conclusively
find use of the passive voice since it may occur in construc-



source \case tense per num neg grade voice\ all features case tense person num. neg. grade voice
Baseline 1 [35.0 86.7 942 456 68.8 99.0 86.7|14.1 POS 464 912 953 68.7 842 993 91.8
Baseline2| 0.7 615 293 460 — 626 —| 43 Word 562 91.5 955 724 859 994 919
Baseline 3| 46.4 89.1 99.8 863 — 995 —| 86 Word, POS 586 921 959 744 883 994 926
PCEDT [69.1 933 96.5 783 894 995 937547 Word, POS, POS ctxt | 63.8 927 96.1 775 89.1 99.5 932

CFG 65.0 927 962 775 888 994 93.1
Table 4: Performance of the neural tagger on §22 of the WSJ dep 67.0 929 963 779 893 99.5 93
portion of the PTB. We report both subtag and whole tag ac- dep, CFG 691 929 964 78.0 892 99'5 930
curacies. Baseline 1 simply outputs the most frequent subtag dep, CFG, lex. ctxt |69.0 932 96.6 79.1 89.8 99.5 93.7

value. Baseline 2 outputs the subtag value that can be ob-
tained from a human-annotated PTB tag with the gold subtag,
and penalizes both values from the PTB tag that are either in-
correct or missing. Baseline 3 does the same comparison,
but penalizes only incorrect values, not those which are miss-
ing. Accuracy which exceeds or equals all baselines is bolded
while that which exceeds only baselines 1 and 2 is italicized.

In baseline 3, we remove the effect of morpho-
logical poverty from consideration by comparing
the values obtained from PTB tag translation to
gold projected values only when both sources pro-
vide a value for a given category. The strong per-
formance of this baseline, particularly in person
and number, may be partly due to the fact that the
tags are human-annotated as well as the fact that
fewer comparisons are made in an attempt to iso-
late the effects of morphological poverty. In addi-
tion, baseline 3 need only predict instances of 3rd
person, since person is only marked by PTB tags
for one tag, VBZ. Similarly, PTB tags only ex-
plicitly mark number for the tags VBZ, NN, NNS,
NNP, and NNPS.

The neural tagger outperforms baselines 1 and
2 everywhere, showing that the syntactic structure
of English does contain enough signal to recover
the complex semantic distinctions that are overt
in Czech morphology. For case, especially, accu-
racy is nearly double that of baseline 1. Table 3
shows an example English sentence, where case
and number have been tagged correctly. We ex-
amined the contribution of different grammatical
aspects of English by training standard MaxEnt
classifiers for each subtag using different subsets
of features. The individual classifiers were trained
with Liblinear’s (Fan et al., 2008) MaxEnt model.
We varied the regularization constant from 0.001
to 100 in multiples of 10, choosing the value in
each situation that maximized performance on the
dev set, PCEDT §00. Table 5 contains the re-
sults. First, word identity contributes more than
POS on its own. This suggests that the distribution
of morphological features is at least partially con-
ditioned by lexical factors, in addition to grammat-

tions such as ‘have given’ in which the VP as a whole is not
passive.
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Table 5: Performance of the PCEDT-trained MaxEnt clas-
sifiers on §22 of the WSJ portion of the Penn Treebank.
Bolding indicates the highest performance among the Max-
Ent classifiers.

ical properties such as POS. The addition of POS
context, which includes the POS of the preceding
and the following word, yields modest gains, ex-
cept for case, in which it leads to a 5.2% increase
in accuracy. POS context can be viewed as an ap-
proximation of true syntactic features, which yield
greater improvements. Dependency parse features
are particularly effective in helping to predict case
since case is typically assigned by a verb govern-
ing a noun in a head-dependency relationship. The
direct encoding of this relationship yields an espe-
cially salient feature for the case classifier. Even
with these improvements, the case feature remains
the most difficult to predict, suggesting that even
more salient features have yet to be discovered.

7 Conclusion

To our knowledge, this is the first work to con-
struct a rich morphological tagger for English that
does not rely on manually-developed syntactic
heuristics. This significantly extends the applica-
bility and usability of the proposed general tagging
framework, which offers the ability to use auto-
matic parsing features in one language and (poten-
tially automatically generated) morphological fea-
ture annotation in the other. Validating the claim
that languages apply different aspects of gram-
mar to represent equivalent meanings, we find that
English-only lexical, contextual, and syntactic fea-
tures derived from off-the-shelf parsing tools en-
code the complex semantic distinctions present in
Czech morphology. In addition to allowing this
scientific claim to be computationally validated,
we expect this approach to generalize to tagging
any morphologically poor language with the mor-
phological distinctions made in another morpho-
logically rich language.
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Abstract

Derivational morphology is a fundamen-
tal and complex characteristic of language.
In this paper we propose the new task of
predicting the derivational form of a given
base-form lemma that is appropriate for
a given context. We present an encoder—
decoder style neural network to produce a
derived form character-by-character, based
on its corresponding character-level repre-
sentation of the base form and the context.
We demonstrate that our model is able to
generate valid context-sensitive derivations
from known base forms, but is less accurate
under a lexicon agnostic setting.

1 Introduction

Understanding how new words are formed is a
fundamental task in linguistics and language mod-
elling, with significant implications for tasks with
a generation component, such as abstractive sum-
marisation and machine translation. In this paper
we focus on modelling derivational morphology, to
learn, e.g., that the appropriate derivational form of
the verb succeed is succession given the context As
third in the line of ..., butis success in The
play was a great .

English is broadly considered to be a morpho-
logically impoverished language, and there are cer-
tainly many regularities in morphological patterns,
e.g., the common usage of -able to transform a verb
into an adjective, or -Iy to form an adverb from an
adjective. However there is considerable subtlety
in English derivational morphology, in the form
of: (a) idiosyncratic derivations; e.g. picturesque
vs. beautiful vs. splendid as adjectival forms of
the nouns picture, beauty and splendour, respec-
tively; (b) derivational generation in context, which
requires the automatic determination of the part-

of-speech (POS) of the stem and the likely POS
of the word in context, and POS-specific deriva-
tional rules; and (c) multiple derivational forms
often exist for a given stem, and these must be se-
lected between based on the context (e.g. success
and succession as nominal forms of success, as
seen above). As such, there are many aspects that
affect the choice of derivational transformation, in-
cluding morphotactics, phonology, semantics or
even etymological characteristics. Earlier works
(Thorndike, 1941) analysed ambiguity of deriva-
tional suffixes themselves when the same suffix
might present different semantics depending on the
base form it is attached to (cf. beautiful vs. cup-
ful). Furthermore, as Richardson (1977) previously
noted, even words with quite similar semantics and
orthography such as horror and terror might have
non-overlapping patterns: although we observe reg-
ularity in some common forms, for example, hor-
rify and terrify, and horrible and terrible, nothing
tells us why we observe terrorize and no instances
of horrorize, or horrid, but not terrid.

In this paper, we propose the new task of pre-
dicting a derived form from its context and a base
form. Our motivation in this research is primarily
linguistic, i.e. we measure the degree to which it
is possible to predict particular derivation forms
from context. A similar task has been proposed in
the context of studying how children master deriva-
tions (Singson et al., 2000). In their work, children
were asked to complete a sentence by choosing
one of four possible derivations. Each derivation
corresponded either to a noun, verb, adjective, or
adverbial form. Singson et al. (2000) showed that
childrens’ ability to recognize the correct form cor-
relates with their reading ability. This observation
confirms an earlier idea that orthographical regular-
ities provide a clearer clues to morphological trans-
formations comparing to phonological rules (Tem-
pleton, 1980; Moskowitz, 1973), especially in lan-
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guages such as English where grapheme-phoneme
correspondences are opaque. For this reason we
consider orthographic rather than phonological rep-
resentations.

In our approach, we test how well models in-
corporating distributional semantics can capture
derivational transformations. Deep learning mod-
els capable of learning real-valued word embed-
dings have been shown to perform well on a range
of tasks, from language modelling (Mikolov et al.,
2013a) to parsing (Dyer et al., 2015) and machine
translation (Bahdanau et al., 2015). Recently, these
models have also been successfully applied to mor-
phological reinflection tasks (Kann and Schiitze,
2016; Cotterell et al., 2016a).

2 Derivational Morphology

Morphology, the linguistic study of the internal
structure of words, has two main goals: (1) to de-
scribe the relation between different words in the
lexicon; and (2) to decompose words into mor-
phemes, the smallest linguistic units bearing mean-
ing. Morphology can be divided into two types:
inflectional and derivational. Inflectional morphol-
ogy is the set of processes through which the word
form outwardly displays syntactic information, e.g.,
verb tense. It follows that an inflectional affix typi-
cally neither changes the part-of-speech (POS) nor
the semantics of the word. For example, the En-
glish verb fo run takes various forms: run, runs
and ran, all of which convey the concept “mov-
ing by foot quickly”, but appear in complementary
syntactic contexts.

Derivation, on the other hand, deals with the
formation of new words that have semantic shifts
in meaning (often including POS) and is tightly
intertwined with lexical semantics (Light, 1996).
Consider the example of the English noun discon-
tentedness, which is derived from the adjective
discontented. 1t is true that both words share a
close semantic relationship, but the transformation
is clearly more than a simple inflectional marking
of syntax. Indeed, we can go one step further and
define a chain of words content — contented —
discontented — discontentedness.

In this work, we deal with the formation of dever-
bal nouns, i.e., nouns that are formed from verbs.
Common examples of this in English include agen-
tives (e.g., explain — explainer), gerunds (e.g.,
explain — explaining), as well as other nominal-
isations (e.g., explain — explanation). Nominal-
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Figure 1: The encoder—decoder model, showing the stem
devastate in context producing the form devastation. Coloured
arrows indicate shared parameters

isations have varyingly different meanings from
their base verbs, and a key focus of this study is
the prediction of which form is most appropriate
depending on the context, in terms of syntactic and
semantic concordance. Our model is highly flex-
ible and easily applicable to other related lexical
problems.

3 Related Work

Although in the last few years many neural mor-
phological models have been proposed, most of
them have focused on inflectional morphology (e.g.,
see Cotterell et al. (2016a)). Focusing on deriva-
tional processes, there are three main directions
of research. The first deals with the evaluation of
word embeddings either using a word analogy task
(Gladkova et al., 2016) or binary relation type clas-
sification (Vylomova et al., 2016). In this context,
it has been shown that, unlike inflectional mor-
phology, most derivational relations cannot be as
easily captured using distributional methods. Re-
searchers working on the second type of task at-
tempt to predict derived forms using the embedding
of its corresponding base form and a vector encod-
ing a “derivational” shift. Guevara (2011) notes
that derivational affixes can be modelled as a geo-
metrical function over the vectors of the base forms.
On the other hand, Lazaridou et al. (2013) and Cot-
terell and Schiitze (2017) represent derivational
affixes as vectors and investigate various functions
to combine them with base forms. Kisselew et al.



(2015) and Padoé et al. (2016) extend this line of
research to model derivational morphology in Ger-
man. This work demonstrates that various factors
such as part of speech, semantic regularity and ar-
gument structure (Grimshaw, 1990) influence the
predictability of a derived word. The third area of
research focuses on the analysis of derivationally
complex forms, which differs from this study in
that we focus on generation. The goal of this line
of work is to produce a canonicalised segmenta-
tion of an input word into its constituent morphs,
e.g., unhappiness—un-+happy+ness (Cotterell et
al., 2015; Cotterell et al., 2016b). Note that the
orthographic change y—i has been reversed.

4 Dataset

As the starting point for the construction of our
dataset, we used the CELEX English dataset
(Baayen et al., 1993). We extracted verb—noun
lemma pairs from CELEX, covering 24 differ-
ent nominalisational suffixes and 1,456 base lem-
mas. Suffixes only occurring in 5 or fewer lemma
pairs mainly corresponded to loan words and con-
sequently were filtered out. We augmented this
dataset with verb—verb pairs, one for each verb
present in the verb—noun pairs, to capture the case
of a verbal form being appropriate for the given
context.! For each noun and verb lemma, we gener-
ated all their inflections, and searched for sentential
contexts of each inflected token in a pre-tokenised
dump of English Wikipedia.> To dampen the effect
of high-frequency words, we applied a heuristic log
function threshold which is basically a weighted
logarithm of the number of the contexts. The final
dataset contains 3,079 unique lemma pairs repre-
sented in 107,041 contextual instances.>

5 Experiments

In this paper we model derivational morphology
as a prediction task, formulated as follows. We
take sentences containing a derivational form of a
given lemma, then obscure the derivational form by
replacing it with its base form lemma. The system
must then predict the original (derivational) form,
which may make use of the sentential context. Sys-
tem predictions are judged correct if they exactly

'We also experimented without verb—verb pairs and didn’t
observe much difference in the results.

*Based on a 2008/03/12 dump. Sentences shorter than 3
words or longer than 50 words were removed from the dataset.

*The code and the dataset are available at https://
github.com/ivri/dmorph

match the original derived form.

5.1 Baseline

As a baseline we considered a trigram model with
modified Kneser-Ney smoothing, trained on the
training dataset. Each sentence in the testing data
was augmented with a set of confabulated sen-
tences, where we replaced a target word with other
its derivations or a base form. Unlike the general
task, where we generate word forms as character
sequences, here we use a set of known inflected
forms for each lemma (from the training data). We
then use the language model to score the collections
of test sentences, and selected the variant with the
highest language model score, and evaluate accu-
racy of selecting the original word form.

5.2 Encoder-Decoder Model

We propose an encoder—decoder model. The en-
coder combines the left and the right contexts as
well as a character-level base form representation:

t = max(0, H - [Rief; Pier; Pright; Prignis
— g
hbase> hbase] + bh)7

— —

where hle_%t’ hi;ft’ right> ! “right> h’l;;se’h’l()_ase corre-
spond to the last hidden states of an LSTM (Hochre-
iter and Schmidhuber, 1997) over left and right
contexts and the character-level representation of
the base form (in each case, applied forwards and
backwards), respectively; H € RI>Ex1:5hxIx6] jg
a weight matrix, and by, € RI"*!*1.5] i a bias term.
[; ] denotes a vector concatenation operation, A is
the hidden state dimensionality, and [ is the number
of layers.

Next we add an extra affine transformation, o =
T -t + by, where T € RXIXL5-xI and b, €
R[hX”, then o is then fed into the decoder:

gejrile); 0,1541) =
softmax(R - ¢j + max (B - 0,5 - lj11) + bg),

where ¢; is an embedding of the j-th character of
the derivation, I is an embedding of the corre-
sponding base character, B, .S, R are weight matri-
ces, and b, is a bias term.

We now elaborate on the design choices behind
the model architecture which have been tailored to
our task. We supply the model with the /41 char-
acter prefix of the base word to enable a copying
mechanism, to bias the model to generate a derived
form that is morphologically-related to the base
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Shared  Split
baseline 0.63 —
biLSTM+BS 0.58 0.36
biLSTM+CTX 0.80 0.45
biLSTM+CTX+BS 0.83 0.52
biLSTM+CTX+BS+POS 0.89 0.63
LSTM+CTX+BS+POS 0.90 0.66

Table 1: Accuracy for predicted lemmas (bases and deriva-
tions) on shared and split lexicons

verb. In most cases, the derived form is longer than
its stem, and accordingly, when we reach the end of
the base form, we continue to input an end-of-word
symbol. We provide the model with the context
vector o at each decoding step. It has been previ-
ously shown (Hoang et al., 2016) that this yields
better results than other means of incorporation.*
Finally, we use max pooling to enable the model to
switch between copying of a stem or producing a
new character.

5.3 Settings

We used a 3-layer bidirectional LSTM network,
with hidden dimensionality h for both context
and base-form stem states of 100, and charac-
ter embedding c¢; of 100.°> We used pre-trained
300-dimensional Google News word embeddings
(Mikolov et al., 2013a; Mikolov et al., 2013b). Dur-
ing the training of the model, we keep the word em-
beddings fixed, for greater applicability to unseen
test instances. All tokens that didn’t appear in this
set were replaced with UNK sentinel tokens. The
network was trained using SGD with momentum
until convergence.

5.4 Results

With the encoder—decoder model, we experimented
with the encoder—decoder as described in Sec-
tion 5.2 (“biLSTM+CTX+BS”), as well as several
variations, namely: excluding context information
(“biLSTM+BS”), and excluding the bidirectional
stem (“biLSTM+CTX”). We also investigated how
much improvement we can get from knowing the
POS tag of the derived form, by presenting it ex-
plicitly to the model as extra conditioning context
(“biLSTM+CTX+BS+P0S”). The main motiva-
tion for this relates to gerunds, where without the

*We tried to feed the context information at the initial step
only, and this led to worse prediction in terms of context-aware
suffixes.

SWe also experimented with 15 dimensions, but found this
model to perform worse.
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Figure 2: An example of t-SNE projection (Maaten and Hin-
ton, 2008) of context representations for simulate

POS, the model often overgenerates nominalisa-
tions. We then tried a single-directional context
representation, by using only the last hidden states,
ie., h;; and h;fghv corresponding to the words to
the immediate left and right of the wordform to be
predicted (“LSTM+CTX+BS+P0OS”).

We ran two experiments: first, a shared lexicon
experiment, where every stem in the test data was
present in the training data; and second, using a
split lexicon, where every stem in the test data was
unseen in the training data. The results are pre-
sented in Table 1, and show that: (1) context has a
strong impact on results, particularly in the shared
lexicon case; (2) there is strong complementarity
between the context and character representations,
particularly in the split lexicon case; and (3) POS
information is particularly helpful in the split lexi-
con case. Note that most of the models significantly
outperform our baseline under shared lexicon set-
ting. The baseline model doesn’t support the split
lexicon setting (as the derivational forms of interest,
by definition, don’t occur in the training data), so
we cannot generate results in this setting.

5.5 Error Analysis

We carried out error analysis over the produced
forms of the LSTM+CTX+BS+P0OS model. First,
the model sometimes struggles to differentiate be-
tween nominal suffixes: in some cases it puts an
agentive suffix (-er or -or) in contexts where a non-
agentive nominalisation (e.g. -ation or -ment) is
appropriate. As an illustration of this, Figure 2 is a
t-SNE projection of the context representations for
simulate vs. simulator vs. simulation, showing that
the different nominal forms have strong overlap.
Secondly, although the model learns whether to



copy or produce a new symbol well, some forms
are spelled incorrectly. Examples of this are studint,
studion or even studyant rather than student as the
agentive nominalisation of study. Here, the issue
is opaqueness in the etymology, with student be-
ing borrowed from the Old French estudiant. For
transformations which are native to English, for
example, -ate — -ation, the model is much more
accurate. Table 2 shows recall values achieved for
various suffix types. We do not present precision
since it could not be reliably estimated without
extensive manual analysis.

In the split lexicon setting, the model sometimes
misses double consonants at the end of words, pro-
ducing wraper and winer and is biased towards
generating mostly productive suffixes. An exam-
ple of the last case might be stoption in place of
stoppage. We also studied how much the training
size affects the model’s accuracy by reducing the
data from 1,000 to 60,000 instances (maintaining
a balance over lemmas). Interestingly, we didn’t
observe a significant reduction in accuracy. Finally,
note that under the split lexicon setting, the model
is agnostic of existing derivations, sometimes over-
generating possible forms. A nice illustration of
that is trailation, trailment and trailer all being pro-
duced in the contexts of trailer. In other cases, the
model might miss some of the derivations, for in-
stance, predicting only government in the contexts
of governance and government. We hypothesize
that it is either due to very subtle differences in
their contexts, or the higher productivity of -ment.

Finally, we experimented with some nonsense
stems, overwriting sentential instances of tran-
scribe to generate context-sensitive derivational
forms. Table 3 presents the nonsense stems, the
correct form of transcribe for a given context, and
the predicted derivational form of the nonsense
word. Note that the base form is used correctly
(top row) for three of the four nonsense words, and
that despite the wide variety of output forms, they
resemble plausible words in English. By looking at
a larger slice of the data, we observed some regu-
larities. For instance, fapery was mainly produced
in the contexts of transcript whereas fapication
was more related to transcription. Table 3 also
shows that some of the stems appear to be more
productive than others.
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Affix R Affix R Affix R Affix R
-age .93 -al .95 -ance .75 -ant .65
-ation .93 -ator .77 -ee .52 -ence .82

-ent .65 -er .87 -ery .84 -ion .93
-ist .80 -ition .89 -ment .90 -or .64
-th .95 -ure .77 -y .83 NULL .98

Table 2: Recall for various suffix types. Here “NULL” corre-
sponds to verb—verb cases

Original Target Lemma

transcribe laptify fape crimmle  beteive
transcribe laptify fape crimmle  beterve
transcription laptification  fapery crimmler  betention
transcription laptification  fapication — crimmler  beteption
transcription laptification  fapionment crimmler  betention
transcription laptification  fapist crimmler  betention
transcription laptification  fapist crimmler  beteption
transcript laptification  fapery crimmler  betention
transcript laptification  fapist crimmler  beteption

Table 3: An experiment with nonsense “target” base forms
generated in sentence contexts of the “original” word tran-
scribe

6 Conclusions and Future Work

We investigated the novel task of context-sensitive
derivation prediction for English, and proposed
an encoder—decoder model to generate nominalisa-
tions. Our best model achieved an accuracy of 90%
on a shared lexicon, and 66% on a split lexicon.
This suggests that there is regularity in derivational
processes and, indeed, in many cases the context
is indicative. As we mentioned earlier, there are
still many open questions which we leave for future
work. Further, we plan to scale to other languages
and augment our dataset with Wiktionary data, to
realise much greater coverage and variety of deriva-
tional forms.
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Abstract

What is the information captured by neural
network models of language? We address
this question in the case of character-level
recurrent neural language models. These
models do not have explicit word repre-
sentations; do they acquire implicit ones?
We assess the lexical capacity of a network
using the lexical decision task common in
psycholinguistics: the system is required
to decide whether or not a string of charac-
ters forms a word. We explore how accu-
racy on this task is affected by the architec-
ture of the network, focusing on cell type
(LSTM vs. SRN), depth and width. We
also compare these architectural properties
to a simple count of the parameters of the
network. The overall number of parame-
ters in the network turns out to be the most
important predictor of accuracy; in partic-
ular, there is little evidence that deeper net-
works are beneficial for this task.

1 Introduction

Neural networks have rapidly become ubiquitous
in natural language processing systems, but our
ability to understand those networks has not kept
pace: we typically have little understanding of a
typical neural network beyond its accuracy on the
task it was trained to do. One potential way to gain
insight into the ability of a trained model is to eval-
uate it on an interpretable auxiliary task that is dis-
tinct from the task that the network was trained on:
a network that performs a particular auxiliary task
successfully is likely to have internal representa-
tions that encode the information relevant for that
task (Adi et al., 2017; Mikolov et al., 2013). Lin-
guistics and psycholinguistics offer a rich reper-
toire of tasks that have been used for decades to
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study the components of the human mind; it is nat-
ural to use these tasks to understand the abilities
of artificial neural networks (Dunbar et al., 2015;
Linzen et al., 2016).

The present work takes up character-level neu-
ral network language models. Such models
have been surprisingly competitive in applica-
tions, even though they do not explicitly represent
words (Chung et al., 2016; Kim et al., 2016). Our
goal is to shed light on the ability of character-
level models to implicitly learn a lexicon. We
use a task designed to investigate humans lexical
processes. This task is based on a simple ques-
tion: how well can the subject distinguish real
words from character strings that do not belong
to the language (nonwords)? Since character-level
language models define a probability distribution
over all character strings, we can perform this
task in a particularly straightforward way: given a
word and a nonword that are matched on low-level
properties such as length and character bigram fre-
quency, we expect the probability of the word to be
higher than the probability of the nonword.

We systematically explore how the performance
of the network on this task is affected by three ar-
chitectural parameters. First, we vary the depth
of the network (number of layers); second, we
vary the number of units in each layer; and finally,
we compare simple recurrent networks (SRN)
to networks with long short-term memory cells
(LSTM). We find that the main factor that deter-
mines the lexical capacity of the network is the to-
tal number of parameters rather than any one of
these architectural properties.

2 Lexical decision

The lexical decision task is widely used in cog-
nitive psychology to probe human lexical repre-
sentations (Meyer and Schvaneveldt, 1971; Balota
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et al., 2006). In the standard version of the task,
which we refer to as yes/no lexical decision, the
subject is presented with a string of characters—
e.g., horse in one trial or porse in another—and
is requested to indicate whether or not the string
makes up a word. A large array of properties of
the word (or nonword) have been found to influ-
ence human performance on the task, measured
in accuracy and reaction time; most famously, hu-
mans recognize frequent words more quickly and
accurately than infrequent ones.

Our goal is to administer the lexical decision
task to a character-level language model. Such a
language model should assign a higher probability
to words than to nonwords. At first blush, it ap-
pears straightforward to perform the task by fixing
a probability threshold and classifying all of the
strings whose probability falls above this threshold
as words and all of the strings that fall below it as
nonwords. In preliminary experiments, however,
we found it difficult to define such a threshold. At
a minimum, the probability assigned by the model
to strings strongly depends on their length, so nor-
malization for length is essential (see Lau et al.
(2016) for discussion); even after normalization,
however, it remained challenging to set a thresh-
old distinguishing words from nonwords.

Instead of the standard yes/no lexical decision
task, then, we use a forced choice variant of the
task (Baddeley et al., 1993). In this version, two
strings are simultaneously presented, one of which
is always a word and the other always a nonword;
subjects are instructed to select the item that they
believe is a word. The advantage of this setup is
that we can match each word with a nonword that
is maximally similar to it in length or any other
properties that may be relevant, thus avoiding
complicated probability normalization schemes.

3 Models

We tested two types of recurrent units: the classic
Elman (1990) architecture, which we refer to as
simple recurrent network (SRN), and Long Short-
Term Memory units, or LSTM (Hochreiter and
Schmidhuber, 1997). Since each LSTM unit con-
tains several gates and a memory cell, it has ap-
proximately four times as many connections as an
SRN unit, and therefore four times as many pa-
rameters.

The first layer of each network is a character
embedding. This layer is followed by one or more
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recurrent layers with a tanh nonlinearity, each fol-
lowed by a batch normalization layer (Ioffe and
Szegedy, 2015). A pair of ‘view’ layers then re-
shape the tensor with a linear transformation be-
tween them, yielding predicted scores for each el-
ement of the vocabulary. Finally, the output is pro-
duced by a softmax layer that gives a probability
distribution over the next character.

How many parameters does each network have?
Let n be its number of recurrent layers, V' the size
of the vocabulary (all possible characters), D the
size of the character embedding, and H the num-
ber of units per layer. Table 1 shows the number
of parameters in each layer:

Layer Parameters
Character embedding layer VD

First SRN layer HD+H+1)
First LSTM layer 4H(D+ H +1)
Additional SRN layer H(2H +1)
Additional LSTM layer 4H(2H +1)
Batch normalization layers H

First ‘view’ H

Linear transformation Hv

Second ‘view’ Vv

Table 1: Number of parameters in each of the com-
ponents of the model.

In addition to the RNNs, we test two simple
baselines: a bigram and a unigram model of the
training set. The goal of these baselines is to eval-
uate the nonwords: if a unigram model can reli-
ably distinguish nonwords from words, the non-
words are not sufficiently challenging; this could
happen, for example, if the nonwords tend to have
rare characters such as Q or Z.

4 Methods

Corpus: We trained our language models on a
subset of the movie book project corpus (Zhu
et al., 2015); the subset contained approximately
50M characters (10M words). The corpus was
lowercased by its creators. We split the corpus
into training, validation and test sets (80%, 10%
and 10% of the data, respectively); this test set
was used only to calculate perplexity (see below).
The vocabulary we used to test our network in the
lexical decision task only included words that oc-
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curred in the training set.!

Nonword generation: We generated nonwords
using a slightly modified version of Wuggy
(Keuleers and Brysbaert, 2010); we refer the
reader to the original paper and our published code
for further details.

The algorithm takes a list of words as its input
and outputs a matching nonword for each word of
the list. Matching is performed using a phono-
tactic grammar of the lexicon. This phonotactic
grammar is based on a segmentation of the words
into syllables and subsyllabic elements (onset, nu-
cleus and coda). A syllabification dictionary splits
the words into a sequence of syllables. Each syl-
lable is then segmented into subsyllabic elements
using a grammar of legal subsyllabic sequences.
Each subsyllabic element is represented by a tuple
that records its letters, position in the word, total
number of subsyllabic elements in the word and
the subsyllabic element that follows it. The first
three elements of the tuples form a “link”. The
frequency of a link is computed from the lexicon,
along with its possible next subsyllabic elements.
This makes up a “bigram chain” that describes the
phonotactics of the lexicon. For a given word, a
nonword is generated by the bigram chain with pa-
rameters as similar as possible as the input word.

'A network may be able to correctly perform a lexical
decision on words to which it has not been exposed if those
words follow the word formation rules of the language (e.g.,
Frenchify); we are exploring this issue in ongoing work.

Such parameters defined by the bigram chain can
be, but are not limited to, the total length of the
word and the transition probabilities between its
subsyllabic elements.

Task: The RNN defines a probability distribu-
tion over character strings. We performed the
forced choice task by calculating the probability
of the word and the probability of the nonword,
and selecting the string that had a higher proba-
bility; trials in which the probability of nonword
was higher were considered to be errors. To en-
sure that we were computing the probability of a
word rather than a prefix or suffix (e.g., cat as a
prefix of category), we added spaces on either side
of the word; e.g., we computed the probability of
‘ cat ’ rather than ‘cat’. We transformed the train-
ing corpus accordingly, to ensure that all words en-
countered during training contribute to the lexical
decision, including words preceded or followed by
a punctuation mark or a sentence boundary.

Experiments: We trained networks with all
combinations of unit type (LSTM or SRN), width
(16, 32, 64 or 128 hidden units per layer) and
depth (one, two or three hidden layers). To es-
timate the impact of random initialization on the
results, we trained six networks with each combi-
nation of parameters.”

We used a slightly modified version of Justin

20ur code can be found at https://github.com/
bootphon/char_rnn_lexical_decision.
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Figure 2: The relationship between character-level
perplexity and lexical decision accuracy. Each
point represent a single fitted model.

Johnson’s Torch implementation of character-level
RNNs.>  To prevent overfitting, the networks
were trained using early stopping based on vali-
dation set loss. They were optimized using Adam
(Kingma and Ba, 2015) with a learning rate of
2¢73.  The number of distinct characters was
95, and the dimension of the character embed-
dings was 64. During training, the networks op-
erated over minibatches of size 50 and sequences
of length 50.

5 Results

The accuracy of the unigram and bigram baselines
was 49.6% and 52.1% respectively, very close to
chance accuracy (50%). This suggests that the
nonwords we generated were sufficiently difficult
to distinguish from the words. The results of the
RNNs we trained are shown in Figure la. All
of the three architectural parameters affected per-
formance in the task: networks with LSTM cells
performed better than SRNs with the same num-
ber of units and layers. Increasing the number
of units per layer was beneficial across the board.
Additional layers improved performance as well,
though the addition of the third layer was often
less beneficial than the addition of the second one.
Given a fixed budget of units, it was more useful
to deploy them in a wide and shallow network than
a narrow and deep network (e.g., an SRN with 32
hidden units in one layer outperformed an SRN
with 16 hidden units in two layers).

*https://github.com/jcjohnson/
torch-rnn
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How much of the advantage of LSTMs is due to
the fact that they have more parameters per unit?
Figure 1b plots the accuracy of the same networks,
this time against the log-transformed number of
parameters. While there remains a slight advan-
tage for LSTMs over SRNs, especially as the num-
ber of parameters increases, it is evident that the
number of parameters is an excellent predictor of
the performance of the network. Of course, since
the dependencies that the network needs to model
to perform the lexical decision task are relatively
short, this task may not bring out the competitive
advantage of LSTMs, which are argued to excel in
tasks that require long dependencies.

We plot the relationship between the perplexity
of the language model and its accuracy in the lex-
ical decision task in Figure 2. This relationship is
not entirely surprising, given that low perplexity
indicates that the model assigns high likelihood to
the character sequences that occurred in the test
set, which are of course much more likely to be
words than nonwords. The two measures are far
from being identical, however. Perplexity incor-
porates the model’s ability to predict dependencies
across words; this is not the case for lexical deci-
sion, where performance may in fact be hindered
by irrelevant contextual information, as it is for hu-
mans (McDonald and Shillcock, 2001). Perplexity
also weights accurate prediction of frequent words
much more highly than infrequent words. Given
these differences, the measures could potentially
diverge in subsets of the lexicon.

6 Discussion

The lexical capacity measure that we have pro-
posed assigns the same weight to rare and frequent
words. As such, it may provide an alternative eval-
uation metric for character-based language mod-
els, supplementing the more standard measure of
perplexity, which is biased in favor of frequent
words and conflates lexical knowledge with longer
dependencies across words.

One advantage of the evaluation metric we have
proposed is that it is in principle possible to com-
pare it to human performance. This contrasts
with perplexity, which does not map onto any task
that can be given to humans, especially when the
model is at the character level. For example, our
preliminary analyses showed that the model makes
more errors on low-frequency than high-frequency
words, a pattern that is qualitatively similar to hu-



mans (Ratcliff et al., 2004).

Some challenges remain, however, before a
quantitative comparison before humans and neu-
ral network language models can be performed.
Existing large-scale human behavioral datasets are
based on a speeded yes/no version of the task, in
which participants are instructed to make a lex-
ical decision on a single string of characters as
quickly as possible (Balota et al., 2007), whereas
our evaluation is based on the forced choice task
and does not incorporate time pressure. A be-
havioral dataset with the paradigm we have used
should be easy to collect using crowdsourcing. Al-
ternatively, direct comparison to existing human
datasets could be made possible by developing re-
liable ways to map language model probabilities
onto timed yes/no lexical decisions; our initial ex-
periments suggest that some nontrivial challenges
would need to be overcome before this direction
can be pursued.

Our work is related to early work that aimed
to measure the phonotactic knowledge of recur-
rent networks (Stoianov et al., 1998; Stoianov
and Nerbonne, 2000). This idea was developed
by Testolin et al. (2016), who use the lexical de-
cision task to measure the orthographic knowl-
edge of various neural networks and n-gram mod-
els. The Naive Discriminative Learner (Baayen
et al., 2011), which can be seen as a simple non-
recurrent neural network, has been used to model
human lexical decision reaction times. Finally, our
work is related to work on syntax that evaluated
whether a word-level language model assigns a
higher probability to an grammatical sentence than
to a minimally different ungrammatical one (Lau
et al., 2016; Linzen et al., 2016; Sennrich, 2017).

In summary, the main result of this study is that
with a sufficient number of parameters character-
level neural networks are able to perform lexical
decisions with high levels of performance, despite
not being trained on this task. A second important
result is that the main predictor of lexical decision
accuracy was the total number of parameters in the
network; we found no evidence that deep networks
are superior to shallow and wide ones on this task.
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Abstract

In this paper we argue that the distribution
of article omission in newspaper headlines
is constrained by information-theoretical
principles (Shannon 1948). To this effect,
we present corpus data and results from an
acceptability rating study. Both point in
the same direction: In our corpus, articles
are significantly more frequent, when they
precede a less predictable head noun. And
subjects perceive article omission as more
acceptable, if the head noun is (compara-
bly) more predictable. This is in line with
the information-theoretical prediction that
article omission should be preferred over
the overt realization of an article (provided
that article omission is grammatical in the
first place), if the head noun is comparably
predictable in its local context.

1 Introduction

Functional deletion, that is the non-realization of,
for example, complementizers (1), or articles (2),
is a frequent phenomenon across text types.

e)) My boss thinks (that) I’'m absolutely crazy.

(Jaeger 2010:31)
2

Giindogan set to miss () rest of () season
with () cruciate injury.

(guardian.co.uk, 16.12.2016)

As the brackets in example (1) indicate, functional
deletion is typically optional. However, if it is in
fact an optional process (in a given genre), this
raises the question why functional expressions are
overtly realized in some cases, but not in others.
In this paper, we want to argue that Information

*  We would like to thank four anonymous reviewers
for valuable comments and suggestions. All remaining errors
are, of course, ours.
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Theory is at least part of the story. This has al-
ready been shown in Jaeger (2010) with respect to
the phenomenon of complementizer deletion, and
we would like to add further evidence in support
of this hypothesis from article omission.

In contrast to standard written German, see (4),
newspaper headlines in German (and many other
languages) allow for bare singular noun phrases
(NPs), see for example the headline in (3) from the
online newspaper Zeit.de (2016/12/01); for a more
thorough overview over the phenomenon, see e.g.
Sandig (1971), Stowell (1996), or Reich in press
as well as the references cited therein.

A3) () Niederlage fiir die ganze Gesellschaft
() defeat for the whole society
4) Er berichtet von *(einer) Niederlage fiir

he reports of *(a) defeat for
die ganze Gesellschaft

the whole society

Like complementizer deletion, article omission in
newspaper headlines is an optional process. Both
the attested Niederlage fiir die ganze Gesellschaft
and the constructed Eine Niederlage fiir die ganze
Gesellschaft are, at least in principle, grammatical
/ acceptable newspaper headlines in German.

Previous research on article omission focused
on specific structural constraints (e.g. to account
for the structural asymmetry in article omission
observed in Stowell 1996), and on specific con-
structions (like article omission in the complement
of a preposition; see Kiss 2010), but less so on
the question why in a given utterance token in a
specific context an article is or is not realized. A
notable exception is the work by De Lange and
colleagues (see for example De Lange 2008, De
Lange et al. 2009). De Lange and colleagues,
however, investigate article omission in newspa-
per headlines primarily from a typological per-
spective and relate omission frequencies (on the

Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 131-135,
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basis of Information Theory) to the overall com-
plexity of the respective article systems along the
following lines: The more complex an article sys-
tem is, the less predictable is a given article (like
German der, die or das, for example); and the
less predictable a given article is, the more pres-
sure there is to overtly realize the article. Like De
Lange and colleagues, we will also argue in the
following that information-theoretical considera-
tions are relevant in the description and analysis
of article omission. In contrast to De Lange and
colleagues, however, we consider article omission
as a function of the predictability of the follow-
ing head noun in a given local linguistic context
(rather than as a function of the predictability of
an article relative to a given article system).

2 Background: Information Theory and
functional deletion

Information Theory relies on a probabilistic no-
tion of information, whereby the amount of in-
formation conveyed by some unit is derived from
its probability to occur given the previous con-
text. Applied to sentence comprehension, the in-
formation, or surprisal (Hale 2001), of a word «
in a given context c¢ is calculated as the negative
logarithm of the probability of « in ¢, in short
Surprisal(a)) = —loga P(c|c). Hence, highly pre-
dictable words are less informative while highly
unpredictable words are more informative. Com-
munication is modeled as occurring through a
noisy channel with limited capacity, which speak-
ers should approximate in order to communicate
efficiently. Exceedance of channel capacity is to
be avoided and penalized with additional process-
ing load. Consequently, speakers tend to distribute
information uniformly across an utterance at a
transmission rate close to channel capacity. This
is argued for by Aylett & Turk (2004), De Lange
et al. (2009), Genzel & Charniak (2002), Levy &
Jaeger (2007), among others. In Jaeger (2010) the
principle guiding the speaker in choosing between
grammatical alternatives is called the Uniform In-
formation Density Hypothesis (UID):

Uniform Information Density (UID)

Within the bounds defined by grammar,
speakers prefer utterances that distribute
information uniformly across the signal
(information density). Where speakers
have a choice between several variants
to encode their message, they prefer the
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variant with more uniform information
density (ceteris paribus).
(Jaeger 2010: 25)

To get an idea of how the UID might relate to arti-
cle omission, consider figure 1. Figure 1 illustrates
the surprisal profiles of three different encodings
of one and the same message (that tomorrow the
judge pronounces the sentence). These encodings
only differ in the (non-)realization of the relevant
articles. As is apparent from the surprisal profiles,
the low surprisal values of the articles der and das
create substantial troughs. As a result, the sur-
prisal profile of the encoding with overt articles is
significantly less uniform than the surprisal profile
without articles. The UID thus predicts that, other
things being equal, the latter encoding should be
preferred over the former encoding.
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Figure 1: The surprisal profile of the headline
Morgen verkiindet der Richter das Urteilis more
uniform in case of article omission across the
board (based on trigrams calculated on the FraC
corpus)

Jaeger (2010) argues, based on a corpus study, that
the UID constrains the distribution of complemen-
tizer deletion in English. He shows that the inser-
tion of a complementizer systematically reduces
the surprisal on the following word(s). Thus, if
the occurrence of a complement clause is highly
unpredictable, the insertion of a complementizer
might lead to a more uniform surprisal profile
by significantly reducing the high surprisal of the
word(s) to follow. On the other hand, if a comple-
ment clause is highly predictable and its onset less
informative, dropping the complementizer might
be the better option with respect to the UID.



A similar reasoning could apply to article omis-
sion: Again, speakers have to choose between
grammatical alternatives which convey essentially
the same proposition, which however differ in the
way they distribute the relevant information across
the utterance. Horch & Reich (2016) argue, based
on language models trained on POS tags, that the
insertion of an article systematically lowers the
surprisal of the following noun. Now, given the
results in Jaeger (2010), it seems straightforward
to assume that speakers also exploit this kind of
variation in order to optimize the surprisal pro-
files of their utterances. Specifically, speakers are
expected to prefer overt articles if they precede
nouns with rather high surprisal, and to prefer ar-
ticle omission, if they precede nouns with rather
low surprisal (in order to raise the surprisal on
the noun and to distribute the information encoded
more uniformly across the utterance).

3 Corpus study

If speakers (and writers) try to optimize their ut-
terances w.r.t. information-theoretic constraints,
this should be reflected in production preferences
and therefore in corpora of text types which allow
for the respective omissions. However, accurately
finding all instances of article omission is not a
trivial issue, as there are several special cases of
singular nouns which allow for or even require ar-
ticle omission even in standard written German,
e.g. predicative (5a) or mass nouns (5b). The dis-
tinction between those cases and “genuine” cases
of article omission thus requires a corpus, in which
the relevant cases are explicitly annotated.

&) a. Ich bin (ein) Student.
I ama student.
I am a student.
b.  Wir brauchen noch (*ein/#das)
We need still a/the
Mehl.
flour

We still need flour.

Therefore, we tested our hypothesis on the FraC
corpus (Horch 2016), which is text type-balanced
and has been annotated by hand for different types
of ellipses. Omitted articles are annotated with
a placeholder NoArt in the corpus. The corpus
contains about 17 different text types (2.000 sen-
tences each) ranging from prototypically written
(e.g. newspaper articles) to prototypically spoken
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(e.g. dialogues) text types.

We pre-processed the corpus by removing all ar-
ticles and lemmatizing it. Then we computed each
word’s surprisal by training a bigram language
model using Kneser-Ney smoothing (Kneser &
Ney 1995) in an interpolated backing-off scheme
(Katz 1987) with the SRILM toolkit (SRI Interna-
tional). Bigram surprisal was chosen in order to
obtain a sensible measure given the small size of
the corpus.

For reasons of comparison, we restricted our in-
vestigation to noun phrases that immediately fol-
low a finite verb. The (bigram) surprisal of a noun
is then equivalent to —logap(noun|verb). Due to
the elimination of the articles from the training set,
this figure only reflects the subcategorization pref-
erences of the verb lemma in question and is not
affected by the occurrence of an article in the orig-
inal corpus. We take this to be a psychologically
sensible measure of noun informativity.

For the analysis, we extracted all 131 postver-
bal nouns from the corpus. 50 of these are headed
by an overt article, while the remaining 81 are
not. The histogram in figure 2 shows the distribu-
tion of article omission across surprisal values and
indicates that article omission is preferred more
strongly for less informative nouns. We analyzed
the data with a mixed effects logistic regression
with random intercepts for noun lemmata and verb
lemmata using the 1me4 (Bates et al., 2015) pack-
age in R (R Core Team, 2016). The integration of
random slopes into the model were not appropri-
ate due to the small size of the data set. A likeli-
hood ratio test computed with the anova function
in R shows that the model containing SURPRISAL
as main effect fits significantly better to the data
than a baseline model with random effects and the
intercept only (x?> = 9.7, p < 0.01). The main ef-
fect of SURPRISAL indicates that, as predicted by
the UID, article omission is more likely the less
informative the corresponding noun is.

4 Experimental study

The corpus study provides first support for our hy-
pothesis, but the amount of appropriate data in the
FraC headlines is rather small in absolute terms. It
would be desirable to test the validity of the hy-
pothesis on a larger corpus, but this is complicated
by the reasons discussed in the previous section.
If speakers have a general preference for encod-
ings conforming to UID though, these are proba-
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Figure 2: Histogram of NPs with and without
overt articles in the headlines in FraC.

bly not only reflected in their production choices
but also in the perception of well-formedness. We
therefore shifted towards investigating our hypoth-
esis with an acceptability rating study, which com-
pared the acceptability of ARTICLEOMISSION as
a function of SURPRISAL of a postverbal noun in
constructed newspaper headlines a 2 x 2 design.

In order to obtain verb subcategorization pref-
erences from a larger corpus, in this occasion
we used the German Reference Corpus DeReKo
(Kupietz & Keibel 2009), which contains mostly
written text of different text types, e.g. scientific
literature, fiction and newspaper articles. The cor-
pus is accessible and searchable with the COS-
MAS II web interface, which we used to extract
around 3.1 M instances of immediately postverbal
nouns from the corpus. By “immediately postver-
bal” we understand such nouns that are at most
separated by an article and/or one adjective from
the preceding verb. The data set was pre-processed
by removing all intervening articles and adjec-
tives between noun and verb and lemmatized. Af-
ter that, we computed surprisal as Surprisal
—logap(noun|verb). Our measure of surprisal is
hence identical to the one used in the corpus study
and reflects the subcategorization preference of the
verb.

A sample item is given in (6). We constructed
versions of the items with and without article
omission and with a low (Projekt in (6)) and a
highly informative noun (Klage), yielding 4 condi-
tions. While surprisal was treated as a binary vari-
able for distributing the materials across subjects,
in the statistical analysis it was a numeric predictor
in order to account for relative differences between
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more and less informative nouns.

(6) Papst Franziskus unterstiitzt (das| &)
pope Francis  supports (das|@)
(Projekt|Klage) gegen Kinderarbeit.
(project|claim) against child.labor

‘Pope Francis supports the project/claim

against child labor.’

74 subjects rated 28 items (7 per condition) which
were mixed with 92 unrelated fillers (constructed
headlines as well) in a web-based questionnaire on
a 7-point Likert scale. Subjects participated in a
lottery of 10 x 30 euros as a reward. The rolling
averages plot in figure 3 provides an overview of
the distribution of ratings across the range of sur-
prisal values tested and indicates that article omis-
sion is preferred for uninformative nouns.

6.00-

5.75-
g
= Article
=5.501 absent
P — present
=

5.25+

5.00-

4 6 8 10 12

Interval mean

Figure 3: Rolling averages plot for the rating data.
The plot shows mean ratings for all items con-
tained in an interval of size 3, whose mean is dis-
played on the x-axis of the plot. For instance, the
value at x = 6 is equivalent to the mean rating of
all items ranging from a noun surprisal of 4.5 to
7.4. This smoothing technique allows to observe a
general trend by averaging over individual values.

We analyzed the data with Cumulative Link
Mixed Models for ordinal data with the ordinal
package in R (Christensen, 2015). Besides a gen-
eral preference for article omission across our
items in fillers which is in line with the prefer-
ence for article omission in the postverbal NPs
in the corpus and is thus not of theoretic inter-
est to us on itself, there is a significant interac-
tion (z = 2.9, p < 0.01) between ARTICLEOMIS-
SION and NOUNPREDICTABILITY indicating that
article omission is specifically preferred for low



informative nouns, while the difference between
conditions vanishes for informative nouns. This
indicates that the article is specifically redundant
in the context of uninformative nouns.

5 Discussion and outlook

Starting from the observation that the insertion of
articles lowers the surprisal of the following noun
(Horch & Reich 2016), we investigated in this pa-
per whether article omission is the more preferred
the less informative the following head noun is,
as predicted by Information Theory. We modeled
the linguistic context by falling back on the sub-
categorization preferences of verbs and confirmed
our hypothesis with both a corpus study on article
omission in German newspaper headlines and an
acceptability rating study. The rating study sug-
gests that subjects are in fact aware of the sub-
tle and gradient contrasts in terms of information
density and indicates that their preferences mirror
the corpus data. Our results are thus in line with
Jaeger’s (2010) study on complementizer deletion
and provide further evidence for the usefulness of
applying information-theoretical concepts to the
analysis of natural language.

It would be desirable, of course, to confirm
these results with larger corpora and for a larger
variety of contexts. This, however, requires high
quality automatic annotation of article omissions
in large-scale corpora, which is to the best of our
knowledge currently not yet available.
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A Computational Analysis of the Language of Drug Addiction
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Abstract

We present a computational analysis of the
language of drug users when talking about
their drug experiences. We introduce a
new dataset of over 4,000 descriptions of
experiences reported by users of four main
drug types, and show that we can predict
with an F1-score of up to 88% the drug be-
hind a certain experience. We also perform
an analysis of the dominant psycholinguis-
tic processes and dominant emotions asso-
ciated with each drug type, which sheds
light on the characteristics of drug users.

1 Introduction

The World Drug Report globally estimated that in
2012, between 162 million and 324 million peo-
ple, corresponding to between 3.5 per cent and
7.0 per cent of the world population aged 15-64,
had used an illicit drug (United Nations Office,
2014). Moreover, in recent years, drug users have
started to share their experiences on Web forums. !
The availability of this new and very large form
of data presents new opportunities to analyse and
understand the “drug use phenomenon.” Recent
studies have shown how by processing these data
with language processing techniques, it is possible
to perform tasks of toxicovigilance, e.g., finding
new drugs trends, adverse reactions, geographic
and demographic characterizations (Chary et al.,
2013). Other studies have also focused on the phe-
nomenon of intoxication (Schuller et al., 2014).
However, despite the interest around these topics,
as far as we know, textual corpora of drug addicts
experiences are not yet available.

lwww.erowid.org: 95000 unique visitor per day;
www .drugs—forum. com: 210000 members with 3.6 mil-
lion unique visitor per month; www.psychonaut .com:
46000 members.
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In this paper we introduce a corpus that can be
exploited as a basis for a number of computational
explorations on the language of drug users. One
of the most controversial and interesting issues in
addictionology studies is to understand why drug
consumers prefer a particular type of drug over an-
other. Actually differentiating drugs with respect
to their subjective effects can have an important
impact on clinical drug treatment, since it can al-
low clinicians to better characterize the patient in
therapy, with regard to the effect they seek through
the drugs they use.

The paper is organized as follows. We first re-
view the related work, followed by a description of
the dataset of drug addict experiences that we con-
structed. Next, we present a classification experi-
ment on predicting the drug behind an experience.
We then present specific analyses of the language
of drug users, i.e. their psycholinguistic processes
and the emotions associated with an experience.
Lastly, we conclude the paper and present some
directions for future work.

2 Related Work

An important research on texts from social me-
dia was the platform PreDOSE (Cameron et al.,
2013), designed to facilitate the epidemiologi-
cal study of prescription (and related) drug abuse
practices, or its successors: eDrugTrends? and
iN3.3  Another significant work was that of Paul
and Dredze (2012; 2013). They developed a
new version of Blei’s LDA, factorial LDA, and
for each drug, they were able to collect multi-
ple topics (route of administration, culture, chem-
istry, etc.) over posts collected from the website
www .drugs—forum. com. The main directions

Zhttp://medicine.wright.edu/citar/edrugtrends
3http://medicine.wright.edu/citar/nida-national-early-
warning-system-network-in3-an-innovative-approach
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of research on the state of consciousness are fo-
cused on alcoholic intoxication and mostly per-
formed on the Alcohol Language Corpus (Schiel
et al., 2012), only available in German: for ex-
ample, speech analysis (Wang et al., 2013; Bone
et al.,, 2014) and a text based system (Jauch et
al., 2013) were used to analyse this data. Re-
garding alcohol intoxication detection, (Joshi et
al., 2015) developed a system for automatic de-
tection of drunk people by using their posts on
Twitter. (Bedi et al., 2014) performed their anal-
ysis on transcriptions from a free speech task,
in which the participants were volunteers previ-
ously administered with a dose of MDMA (3,4-
methylenedioxy-methamphetamine). Even if this
is an ideal case study for analyzing cognitively the
intoxication state, it is difficult to replicate on a
large scale. Finally, as far as we know, the only
attempt to classify and characterize experiences
over different kinds of drugs was the project of
(Coyle et al., 2012). Using a random-forest clas-
sifier over 1,000 random-collected reports of the
website www .erowid.org they identified sub-
sets of words differentiated by drugs.

Our research is also related to the broad theme
of latent user attribute prediction, which is an
emerging task within the natural language process-
ing community, having recently been employed
in fields such as public health (Coppersmith et
al., 2015) and politics (Conover et al., 2011; Co-
hen and Ruths, 2013). Some of the attributes tar-
geted for extraction focus on demographic related
information, such as gender/age (Koppel et al.,
2002; Mukherjee and Liu, 2010; Burger et al.,
2011; Van Durme, 2012; Volkova et al., 2015),
race/ethnicity (Pennacchiotti and Popescu, 2011;
Eisenstein et al., 2011; Rao et al., 2011; Volkova
et al., 2015), location (Bamman et al., 2014), yet
other aspects are mined as well, among them emo-
tion and sentiment (Volkova et al., 2015), per-
sonality types (Schwartz et al., 2013; Volkova et
al., 2015), user political affiliation (Cohen and
Ruths, 2013; Volkova and Durme, 2015), men-
tal health diagnosis (Coppersmith et al., 2015)
and even lifestyle choices such as coffee prefer-
ence (Pennacchiotti and Popescu, 2011). The task
is typically approached from a machine learning
perspective, with data originating from a variety
of user generated content, most often microblogs
(Pennacchiotti and Popescu, 2011; Coppersmith
et al., 2015; Volkova et al., 2015), article com-
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ments to news stories or op-ed pieces (Riordan
et al., 2014), social posts (originating from sites
such as Facebook, MySpace, Google+) (Gong et
al., 2012), or discussion forums on particular top-
ics (Gottipati et al., 2014). Classification labels
are then assigned either based on manual annota-
tions (Volkova et al., 2015), self identified user at-
tributes (Pennacchiotti and Popescu, 2011), affilia-
tion with a given discussion forum type, or online
surveys set up to link a social media user iden-
tification to the responses provided (Schwartz et
al., 2013). Learning has typically employed bag-
of-words lexical features (ngrams) (Van Durme,
2012; Filippova, 2012; Nguyen et al., 2013), with
some works focusing on deriving additional sig-
nals from the underlying social network structure
(Pennacchiotti and Popescu, 2011; Yang et al.,
2011; Gong et al.,, 2012; Volkova and Durme,
2015), syntactic and stylistic features (Bergsma
et al., 2012), or the intrinsic social media gener-
ation dynamic (Volkova and Durme, 2015). We
should note that some works have also explored
unsupervised approaches for demographic dimen-
sions extraction, among them large-scale cluster-
ing (Bergsma et al., 2013) and probabilistic graph-
ical models (Eisenstein et al., 2010).

3 Dataset

A corpus of drug experiences was collected from
the user forum section of the www.erowid.
org website. The data collection was performed
semi-automatically, considering the most well-
known drugs and those with a large number of re-
ports. The corpus consists of 4,636 documents,
any user ID removed, split into four main cate-
gories according to their main effects (U.S. De-
partment of Justice, 2015): (1) Empathogens
(EMP), covering the following substances: MDA,
MDAI, MDE, MBDB, MDMA; (2) Hallu-
cinogens (HAL), which include 5-MeO-DiPT,
ayahuasca, peyote, cacti (trichocerus pachanoi,
peruvianus, terschekcii, cuzcoensis, bridgesi and
calea zachatechichi), mescaline, cannabis, LSD,
belladonna, DMT, ketamine, salvia divinorum,
hallucinogen mushrooms (psilocybe cubensis,
semilanceata, ‘magic mushrooms’), PCP, 2C-B
and its derivatives (2C-B-FLY, 2C-E, 2C-I, 2C-
T-2,2C-T-7); (3) Sedatives (SED), which in-
clude alcohol, barbitures, buprenorphine, heroin,
morphine, opium, oxycodone, oxymorphone, hy-
drocodone, hydromorphone, methadone, nitrous-



oxide, DXM (dextromethorphan) and benzodi-
azepines (alprazolam, clonazepam, diazepam, flu-
nitrazepam, flurazepam, lorazepam, midazolam,
phenazepam, temazepam); (4) Stimulants (STI),
including cocaine, caffeine, khata edulis, nicotine,
tobacco, methamphetamines, amphetamines.

In the scientific literature about drug users,
“purists” (i.e., consumers of only one specific sub-
stance) are rare. Nonetheless, when collecting the
data, we decided to consider only reports describ-
ing one single drug in order to avoid the pres-
ence of a report in multiple categories, as well as
to avoid descriptions of the interaction of multi-
ple drugs, which are hard to characterize and still
mostly unknown. Table 1 presents statistics on the
dataset, while Table 2 shows excerpts from expe-
riences reported for each drug type.*

Drug type Number reports Total words
EMP 399 378,478
HAL 2,806 3,494,223
SED 954 692,121
STI 480 449,596

Table 1: Corpus statistics.

4 Predicting the Drug behind an
Experience

To determine if an automatic classifier is able to
identify the drug behind a certain reported expe-
rience, we create a document classification task
using Multinomial Naive Bayes, and use the de-
fault information gain feature weighting associ-
ated with this classifier. Each document corre-
sponds to a report labelled with its corresponding
drug category. Only minimal preprocessing was
applied, i.e., part-of-speech tagging and lemma-
tization. No particular feature selection was per-
formed, only stopwords were removed, keeping
nouns, adjectives, verbs, and adverbs. Since the
major class in the experiment was the hallucino-
gens category, we set the baseline corresponding
to its percentage: 61%. In evaluating the sys-
tem we perform a five-fold cross-validation, with
an overall Fl-score (micro-average) of 88%, in-
dicating that good separation can be obtained by

“Note that each report is annotated with a set of metadata
attributes, such as gender, age at time of experience, dose and
number of views; these attributes are not used in the exper-
iments reported in this paper, but we plan to use them for
additional analyses in the future.
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an automatic classifier (see Table 3). Not surpris-
ingly, the hallucinogen experiences are the easiest
to classify, probably due to the larger amount of
data available for this drug.

Table 4 shows a sample of the most informa-
tive features for the four categories. For exam-
ple, we can observe that those using emphatogens
are more “night”’-oriented, while those addicted to
sedatives and stimolants are “day”-oriented. In-
stead, the use of hallucinogens seems to be as-
sociated with a perceptual visual experience (i.e.,
see#v).

5 Understanding Drug Users

5.1 Psycholinguistic Processes

To gain a better understanding of the character-
istics of drug users, we analyse the distribution
of psycholinguistic word classes according to the
Linguistic Inquiry and Word Count (LIWC) lex-
icon — a resource developed by Pennebaker and
colleagues (Pennebaker and Francis, 1999). The
2015 version of LIWC includes 19,000 words and
word stems grouped into 73 broad categories rele-
vant to psychological processes. The LIWC lexi-
con has been validated by showing significant cor-
relation between human ratings of a large number
of written texts and the rating obtained through
LIWC-based analyses of the same texts.

For each drug type 7', we calculate the domi-
nance score associated with each LIWC class C'
(Mihalcea and Strapparava, 2009). This score is
calculated as the ratio between the percentage of
words that appear in T and belong to C, and the
percentage of words that appear in any other drug
type but T" and belong to C'. A score significantly
higher than 1 indicates a LIWC class that is dom-
inant for the drug type 7', and thus likely to be a
characteristic of the experiences reported by users
of this drug.

Table 5 shows the top five dominant psycholin-
guistic word classes associated with each drug
type. Interestingly, descriptions of experiences
reported by users of empathogens are centered
around people (e.g., Affiliation — which includes
words such as club, companion, collaborate; We;
Friend). Hallucinogens result in experiences that
relate to the human senses (e.g., See, Hear, Per-
ception). The experiences of users of sedatives
and stimulants appear to be more concerned with
mundane topics (e.g., Money, Work, Health).

To quantify the similarity of the distributions



Drug Type |

Example

EMP

I found myself witnessing an argument between a man and a woman whom I’ve never met. I felt empathetic
towards both of them, recognizing their struggle, he meant well, but couldn’t find the right words, she, ob-
viously cared a great deal for him but was doubtful of his intentions. The Argument escalated and I became
very disturbed...I had to open my eyes again. My heart rate was up, my breathing was heavy, I had found a
window to my own fears, to see what frustrates you the most, and not be able to do anything about it.

HAL

After watching TV for a bit I looked around the room and was suddenly jerked awake, I felt vibrant, alive and
aware of my entire physical body. The friction of blood in my veins, the movement of my diaphragm, the
tensing of muscles, the clenching of my heart. I looked down at my hands and was acutely aware of the bones
within, I could feel the flesh sliding over the bone internally while my normal sense of touch was reduced so
every thing felt like cold chrome.

SED

Feeling kind of nausea, but I'm not worried about throwing up. Shooting great pool, I'm making several shots
in a row. I’'m so happy right now, I would like to be like this all day. I’'m begining to notice that I’'m having
slight audio hallucinations, like hearing small noises that aren’t there. Also some slight visual hallucinations,
thinking I see something move nearby but nothing alive is even close to me.

STI

I get up in the morning for work and do about two lines while I'm getting ready and somehow manage to
make it through work without a line. Not that I don’t want to only because of the fear of getting caught. I can
say that it takes the edge off things at work though. Through the evening I do a line whenever I feel like it. At
bedtime I tell myself over and over that it’s time to go to sleep. Sometimes I sleep but if I can’t I know I have
my friend to help me through the next day.

Table 2: Sample entries in the drug dataset.

Prec. Rec. Fl

methodology similar to the one described above,

EMP
HAL
SED
STI

and calculate the dominance score for each of six
emotion word classes: anger, disgust, fear, joy,
sadness, and surprise (Ortony et al., 1987; Ekman,
1993). As a resource, we use WordNet Affect

0.84
0.93
0.86
0.73

0.71
0.92
0.86
0.85

0.77
0.92
0.86
0.78

micro-average

0.88 (Strapparava and Valitutti, 2004), in which words

Table 3: Naive Bayes classification performance.

from WordNet are annotated with several emo-
tions. As before, the dominance scores are cal-
culated for the experiences reported for each drug

EMP

HAL

SED day#n drug#n start#v about#r try#v
good#a hour#n still#r effect#n
STI  day#n drug#n coke#n good#a try#v

experience#n good#a pill#n people#n
about#r drug#n night#n start#v
see#v experience#n trip#n

back#r say#v try#v down#r as#r

start#v about#r want#v really#r

type when compared to the other drug types.
Table 7 shows the scores for the four drug types
and the six emotions. A score significantly higher
than 1 indicates a class that is dominant in that
category. Clearly, interesting differences emerge
from this table: the use of emphathogens leads
to experiences that are high on joy and surprise,
whereas the dominant emotion in the use of hallu-

look#v

cinogens as compared to the other drugs is fear.

Table 4: Most informative features (words and
parts-of-speech).

of psycholinguistic processes across the four drug
types, we also calculate the Pearson correla-
tion between the dominance scores for all LIWC
classes. As seen in Table 6, empathogens appear
to be the most dissimilar with respect to the other
drug types. Hallucinogens instead seem to be most
similar to stimulants and sedatives.

5.2 Emotions and Drugs

Another interesting dimension to explore in rela-
tion to drug experiences is the presence of various
emotions. To quantify this dimension, we use a
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Sedatives lead to an increase in disgust, while
stimulants have a mix of anger and joy.

6 Conclusions

Automating language assessment of drug addict
experiences has a potentially large impact on both
toxicovigilance and prevention. Drug users are in-
clined to underreport symptoms to avoid negative
consequences, and they often lack the self aware-
ness necessary to report a drug abuse problem. In
fact, often times people with drug misuse prob-
lems are reported on behalf of a third party (social
services, police, families), when the situation is no
longer ignorable.

In this paper, we introduced a new dataset



EMP HAL SED STI
Affiliation 1.76 | See 1.81 | Health 2.26 | Money 2.25
We 1.63 | Relig 1.72 | Ingest 1.59 | Ingest 1.75
Friend 1.46 | Hear 1.44 | Money 1.51 | Work 1.64
Positive Emotions  1.41 | Perception 1.24 | Bio 1.50 | Sexual 1.58
Sexual 1.34 | Home 1.23 | Swear 1.40 | Swear 1.39
Table 5: Psycholinguistic word classes dominant for each drug type.
EMP HAL SED STI personalities may be more prone to a particular
EMP | 1.00 034 0.03 0.15 drug with respect to its subjective effects. Char-
HAL 1.00 0.80 0.83 acterizing subjects by their potential drug prefer-
SED 1.00 0.67 ences could enable clinicians, like in a reversed
STI 1.00 “recommender system,” to explicitly warn their

Table 6: Pearson correlations of the LIWC domi-
nance Scores.

EMP HAL SED STI
Anger 1.09 091 1.01 1.13
Disgust | 0.82 053 2.68 0.94
Fear 0.89 126 0.78 0.84
Joy 1.26 085 1.07 1.11
Sadness | 1.08 095 096 1.09
Surprise | 1.46 092 094 0.90

Table 7: Emotion word classes dominant for each
drug type. Dominance scores larger than 1.10 are
shown in bold face.

of drug use experiences, which can facilitate
additional research in this space. @ We have
described preliminary classification experiments,
which showed that we can predict the drug behind
an experience with a performance of up to 88%
Fl-score. To better understand the characteristics
of drug users, we have also presented an analysis
of the psycholinguistic process and emotions as-
sociated with different drug types.

We would like to continue the present work
along the following directions: (i) Extend the cor-
pus with texts written by people who supposedly
do not ordinarily make use of drugs, using pa-
tient submitted forum posts when talking about
ordinary medicines. The style of such patient
submitted posts is expected to be similar to the
one of drug experience reports, since both address
writing about an experience with some particu-
lar substance; (ii) Explore the association between
drug preferences and personality types. Following
Khantzian’s hypothesis (Khantzian, 1997), certain
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patients to avoiding particular kind of substances
since they could become addictive.

The dataset introduced in this paper is available
for research purposes upon request to the authors.
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Abstract

Latent structured prediction theory pro-
poses powerful methods such as Latent
Structural SVM (LSSVM), which can po-
tentially be very appealing for coreference
resolution (CR). In contrast, only small
work is available, mainly targeting the la-
tent structured perceptron (LSP). In this
paper, we carried out a practical study
comparing for the first time online learn-
ing with LSSVM. We analyze the intrica-
cies that may have made initial attempts
to use LSSVM fail, i.e., a huge training
time and much lower accuracy produced
by Kruskal’s spanning tree algorithm. In
this respect, we also propose a new effec-
tive feature selection approach for improv-
ing system efficiency. The results show
that LSP, if correctly parameterized, pro-
duces the same performance as LSSVM,
being at the same time much more effi-
cient.

1 Introduction

Recent research on CR has shown effective ap-
plications of structured prediction, e.g., the latent
structured perceptron (LSP) by Fernandes et al.
(2014) obtained the top rank in the CoNLL-2012
Shared Task (Pradhan et al., 2012). There has been
an exploration of LSP variants (Chang et al., 2011;
Bjorkelund and Kuhn, 2014; Lassalle and De-
nis, 2015), and also of SGD-like methods (Chang
et al., 2013; Peng et al., 2015; Kummerfeld et al.,
2015). Surprisingly, no study was devoted to
LSSVM by Yu and Joachims (2009), which of-
fers theoretical guarantees on reducing the error
upper-bound. The major advantage of such a the-
ory is the possibility to stop the optimization pro-
cess, carried out using the Concave-Convex Pro-
cedure (CCCP) by Yuille and Rangarajan (2003),
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when the approximation to the optimum is close
as much as we want. In contrast, the gradient de-
scent operated by perceptron-like algorithms does
not allow us to estimate how much our solution is
far away from the optimum. In other words, we
do not know at which epoch our algorithm should
stop. Thus, LSSVM holds an important advantage
over online methods.

In this paper, we empirically compare LSSVM
with two online learning algorithms, LSP and
LSPA (a structured passive-aggressive (PA) algo-
rithm (Crammer et al., 2006) that we extended
with latent variables) using the exact setting of the
CoNLL-2012 dataset. This preserves comparabil-
ity with the work in CR. For example, we use the
latest version of the MELA scorer!.

It should be noted that implementing a sound
comparison was rather complex as it required test-
ing all the algorithms in the same conditions and
optimally setting their parameters. In particu-
lar, LSSVM and LSP adopt different graph mod-
els and use different methods to extract spanning
trees from a document graph, namely, Kruskal’s
(Kruskal, 1956) and Edmonds’ (Chu and Liu,
1965; Edmonds, 1967). Although both extract op-
timal spanning trees, they provide different solu-
tions, which critically impact on accuracy and ef-
ficiency. The latter is problematic as LSSVM re-
quires too long time for convergence on the large
CoNLL dataset.

To tackle this issue, we applied two kinds of ef-
ficiency boost: feature and mention pair selection.
Feature selection was rather challenging as the CR
feature space is different from a standard text cat-
egorization setting. We could not apply a filtering
threshold on simple and effective statistics such as
document frequency since almost all the features
appear in many documents. For solving this prob-
lem, we explored the use of efficient binary SVMs
for computing feature weights, which we used for

'conll.cemantix. org/2012/software.html
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our selection. Additionally, we also provided a
parallelized version of LSSVM to afford the com-
putation requirement of the full CoNLL dataset.

The results of our study show that LSSVM can
be trained on large data and achieve the state of
the art of online methods. However, the latter us-
ing optimal parameters can even surpass its accu-
racy and outperform the current state of the art of
LSP by 2 points. Finally, our feature selection al-
gorithm is rather efficient and effective.

2 Related Work

The first work of structured prediction for CR is
an SVMst" approach by Finley and Joachims
(2005), who couple the structural SVM (Tsochan-
taridis et al., 2004) with approximate clustering
inference. They maximize the clustering objec-
tive by either (i) a simple greedy approach or (ii) a
relaxation of the correlation clustering technique.
Both methods resulted computationally very ex-
pensive. To overcome such inefficiency, Yu and
Joachims (2009) proposed LSSVM performing in-
ference on undirected (latent) graphs built on doc-
ument mentions using Kruskal’s spanning algo-
rithm.

Fernandes et al. (2014) specialized the la-
tent structured perceptron proposed by Sun et al.
(2009) for solving CR tasks (LSP). This is based
on (i) the Minimum Spanning Tree algorithm on
the directed mention graph and (ii) the structured
perceptron, updated on a per-document basis.

The same approach, referred to as antecedent
trees, is included in the generalized latent structure
framework of Martschat and Strube (2015). The
authors report that the mention-ranking approach,
which uses the LSP inference and mention-based
updates?, produces slightly better results.

It should be noted that the LSP inference is
equivalent to the best-left-link inference of Chang
et al. (2013), who coupled it with SGD updates
on a per-mention basis. Chang et al. (2011, 2012,
2013); Peng et al. (2015) reformulated the best-
left-link in terms of Integer Linear Programming
inference.

Bjorkelund and Kuhn (2014) experimented with
updates both on a per-mention and document basis
to enable inference with non-local features. Las-
salle and Denis (2015) experimented with a sim-
ilar inference procedure by also jointly modeling

2A perceptron update is performed after selecting the best
antecedent for a mention.
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Model Parameters
LSSVMX | ¢ =100.0r = 0.5
LSSVM? | C =100.07 = 1.0
LSPX C =1000.0 = 0.1
LSPZ C =1000.07 = 1.0

Table 1: Best parameter combinations.

anaphoricity and mention coreference.

In summary, although many models have been
tested, LSSVM has never been trained on a re-
alistic CR dataset. Chang et al. (2013) tested it
on the CoNLL-2012 dataset but they could not
use CCCP, exactly for efficiency reasons, and thus
they applied an SGD approach.

2.1 Algorithm Equivalence

LSSVM, LSP, LSPA can reach the same accuracy
subject to different convergence rates and bounds.
Indeed, LSSVM solves an optimization problem
using a CCCP iteration, the cost of the latter is
nearly a cost of one SVM*"™' problem, which in
turn is polynomial.

LSP and LSPA require linear times, however, in
contrast to LSSVM, they do not have stopping cri-
teria - the number of epochs 7" has to be set. The
CCCP procedure is guaranteed to converge to a lo-
cal minimum or a saddle point. LSP and LSPA,
in essence, perform an update, which is equiva-
lent, up to some constant, to an SGD update of the
LSSVM objective, with a gradient taken w.r.t. a
document variable.

They can approach the local minimum as close
as possible, which is supported by our experi-
ments, reflecting the results compatible among the
three algorithms. For LSP and LSPA though, we
do not know a priori when to stop training. While,
for LSPA, there are error bounds derived by Cram-
mer et al. (2006), there are no bounds for LSP at
all.

However, for CR, as it can be seen from our
experiments, values of 7' for LSP and LSPA
can be reliably selected on a validation set for
a fixed training data size and a choice of fea-
tures/instances. Since the algorithms optimize a
surrogate objective, it is often the case that accu-
rately tuned LSP and LSPA result in higher perfor-
mance than LSSVM, not mentioning an excessive
complexity of the latter.
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Figure 1: LSP learning curves, with 100 random
documents used for training (all the features, all
the edges), tested on all the dev. documents.

3 Experiments

3.1 Setup

Data We performed our experiments on the En-
glish part of the corpus from CoNLL 2012-Shared
Task?, containing 2,802, 343 and 348 documents
for training, development and test sets, respec-
tively.

Evaluation measure We report our coreference
results in terms of the MELA score (Pradhan et al.,
2012) computed using the version 8 of the official
CoNLL scorer.

Models and software As baselines, we used
(1) the original implementation of the Latent
SVMsiruct 4 (denoted as LSSVMP) performing
inference on undirected graphs using Kruskal’s
spanning algorithm, (ii) LSP¥ — our implemen-
tation of the LSP algorithm with a tree mod-
eling of Fernandes et al. (2014) and Edmonds’
spanning tree algorithm, (iii) cort — coreference
toolkit by Martschat and Strube (2015), precisely
its antecedent tree approach, encoding, as well as
LSP¥ | the modeling of Fernandes et al. (denoted
as LSP?, where ”O” stands for Original).

In LSP, the candidate graph, by construction,
does not contain cycles, and the inference by Ed-
monds’ algorithm is reduced to selecting for each
node an incoming edge with a maximum weight,
in other words, the best antecedent or no an-
tecedent for each mention. Thus, the difference
between our LSP¥ and cort is only due to a differ-
ent implementation.

3conll.cemantix.org/2012/data.html
*www.cs.cornell.edu/ ~cnyu/latentssvm/
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Model Dev. Test Tpest | Time, h
LSSVMX | 61.03 | 59.89 - | 1164.09
LSSVM?” | 62.91 | 61.88 — 210.01
LSPK 61.08 | 60.00 | 10 27.77
LSP¥ 64.01 | 63.04 | 43 32.55
LSPAK 61.15 | 60.16 6 47.73
LSPAF 64.14 | 62.81 8 37.33
LSP? 62.92 | 62.00 5 —
*LSPY 62.31 | 61.24° | 5 -

Table 2: Main results for the systems evaluated on
CoNLL-2012 English development and test sets,
using all the training documents for training. Tpeg;
is evaluated on the development set and used on
the test set. *LSPC is the result published in
Martschat and Strube (2015).

Along with the baselines, we consider the fol-
lowing models: (i) LSSVMPZ, i.e., LSSVM with
the latent trees and Edmonds’, (ii) LSPX, i.e., LSP
using Kruskal’s on undirected graphs, and (iii) two
structured versions of the PA online learning algo-
rithms, LSPA” and LSPAX.

We employed the cort toolkit both to preprocess
the CoNLL data and to extract candidate mentions
and features (the basic cort feature set).

As emphasized by Fernandes et al., averaging
the perceptron weights renders the learning curve
rather smooth. We applied weight averaging in all
the LSP and LSPA variants.

Parametrization All the models require tuning
of a regularization parameter C' and of a specific
loss parameter 7. In LSSVMX and LSPX, r is a
penalty for adding an incorrect edge; in LSSVM¥
and LSP?, r is a penalty for selecting an incor-
rect root arc. We selected the parameters on the
entire development set by training on 100 random
documents from the training set. We picked a C'
from {1.0, 100.0, 1000.0, 2000.0}, the r values for
LSSVMX and LSPX from {0.05,0.1,0.5}, and
the r values for LSSVM? and LSP¥ from the in-
terval [0.5, 2.5] with step 0.5. The values reported
in Table 1 were used for all our experiments.

3.2 Selecting the epoch number

A standard previous work setting for the number
of epochs T' of the online learning algorithms is
5 (Martschat and Strube, 2015). Fernandes et al.

5This result is obtained using a concatenation of the train-
ing and the development set.
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Figure 2: LSP¥ training time and accuracy with
respect to the number of features NV, selected ac-
cording to the binary classifier weights.

(2014) noted that T' = 50 was sufficient for con-
vergence. Figure 1 shows that setting 7" is cru-
cial for achieving a high accuracy. We also note
that the dataset size and the selected sets of fea-
tures and/or instances highly affect the best epoch
number, thus, for each particular experiment, we
selected the best 7" from 1 to 50 on the dev. set.

3.3 Model Comparison

Table 2 reports the results of the models trained on
the entire training set, and the numbers of epochs
Thpest for LSP and LSPA, tuned on the develop-
ment set. LSP? denotes the result of our run of the
original cort software. We note that (i) LSP and
LSPA perform on a par in both the settings; (ii) the
latent trees used with Edmonds’ algorithm outper-
form the undirected graphs used with Kruskal’s;
(iii) LSSVMZ is around one point less than LSPE
and LSPAZ; (iv) the training time of LSSVMYF is
one order of magnitude longer than that of LSPZ;
and (v) LSSVM¥ took more than 1.5 months to
converge.

3.4 Feature Selection

The number of distinct features extracted from
cort and used for training in the above experiments
is around 16.8 millions. Training systems with
such a large model size is nearly prohibitive, this
especially concerns SVMs, which may require a
substantial number of iterations for convergence.
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Figure 3: LSP¥ training time and accuracy with
respect to d (max number of candidate antecedent
edges for each mention).

We tried to filter out less relevant features re-
moving those that appear in a fewer number of
documents but these were too few, e.g., less than
1% of all features have document frequency < 3.

Thus, we proposed a feature selection technique
consisting in (i) training a binary classification
model, w, on all mention-pair feature vectors and
(i1) removing features with lower absolute weights
in . Figure 2 plots the accuracy of CR models,
using different numbers of features selected as de-
scribed above. Interestingly, only retaining 5% of
the features (N = 10°) results in a small loss.

3.5 Candidate edge selection

Using all the candidate edges in the CR graph is
another cause of computational burden, which is
overcome by the best CR systems by exploiting
heuristic linguistic filters.

In cort, filtering is not implemented and all the
candidate edges are used for training. We simply
adopted one of the filters, the so-called sieves, of
Fernandes et al. (2014) to reduce the number of
candidate links. Such a sieve retains links between
two mentions only if their distance is lower than
or equal to d, i.e., we consider only links (m;, m;)
with |j — i| < d. Fernandes et al. use d = 8.

Figure 3 shows that, although the training time
is reduced considerably, the accuracy suffers. In
our experiments, we used d = 20, which causes
a loss smaller than 0.5 in MELA. It should be



noted that we also had to enable the LSSVM
implementation to operate on non-complete can-
didate graphs as it was originally designed for
making inference on fully-connected graphs only
(Haponchyk and Moschitti, 2014).

3.6 Results on Filtered Data

Table 3 reports the results using filtering corre-
sponding to the setting N = 10%, d = 20. We note
that (i) the training time is reduced by more than
10 times; (i) LSSVMX is outperformed by LSP¥
(2 points) and performs worse than LSSVMY; (iii)
LSPAX seems to generalize better on filtered data
than LSPX; and (iv) w.r.t. no filtering, LSSVM¥
faces a lower drop in performance than LSP¥
does, approaching nearer to the latter.

3.7 Discussion

The results of our study are the following:

(i) for the first time, we show that LSSVM
can be applied to a realistic CR dataset and
achieve the same state of the art of the online
methods;

(i1) although the optimum found by CCCP pro-

duces better results than online learning algo-

rithms, the latter, when parameterized, pro-
vide similar accuracy, while at the same time
being much more efficient;

(iii) in this respect, we studied the optimal model

parameterization and found that LSP can be

highly improved, almost 2 points (63.04 vs.

61.24) over the previous best LSP result, by

accurately selecting the number of epochs on

a validation set;

(iv) the results of all the approaches using
an undirected graph model coupled with
Kruskal’s are 3 — 7 absolute percent points
lower than their results obtained with a di-
rected tree model coupled with Edmonds’.
Our outcome is supported by Chang et al.
(2013) who employed a fast SGD approach
with the best-left-link inference, which is
equivalent to Edmonds’ algorithm applied to
the directed latent trees. They compared the
previous inference approach with the span-
ning graph algorithm by Kruskal on undi-
rected graphs. They explain that the better
accuracy of the first method is due to the fact
that the latent tree structure considers the or-
der of the mentions in the document. Apart
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Model Dev. | Test | Tpest | Time, h
LSSVMX | 56.16 | 54.50 | - 23.06
LSSVME | 62.82 | 61.75 | - 24.09
LSPX 57.98 | 56.81 | 6 1.82
LSPE 63.11 | 61.98 | 49 1.62
LSPAK 58.69 | 57.38 | 3 3.50
LSPAF 63.28 | 62.11 | 6 1.98

Table 3: Main results for the systems evaluated on
CoNLL-2012 English development and test sets,
using all training documents with filtered features
(N=105) and edges (d=20).

from that, by using an artificial root, it implic-
itly models the cluster initial elements (i.e.,
discourse-new mentions).

The use of direct trees in Edmonds’ method
delivers comparable results among all the al-
gorithms; and

(v)

(vi) our new approach to feature selection based
on binary SVMs turned out to be efficient and
effective and, together with mention pair in-
stance filtering, sped up training by 88% only

losing 0.15 of a point in accuracy.

4 Conclusions

This work provides a comparative analysis of on-
line and batch methods for structured prediction in
CR. Although LSSVM can reliably select a stop-
ping point of its learning, LSP and LSPA, when
well parameterized, can achieve the same accu-
racy. This empirically demonstrates that all these
methods, inherently optimizing the same objec-
tive, are able to achieve the same optimum.

Additionally, we show a very positive impact of
our new feature selection method for CR, based on
a pairwise classifier, which we can efficiently train
thanks to linear SVMs.

Finally, we also demonstrate that a noticeable
benefit to all online methods comes from accu-
rately parameterizing the epoch number. The lat-
ter is rather stable between development and test
sets but must be parametrized when using differ-
ent training data, feature or instance sets.
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Abstract

The task of implicit discourse relation
classification has received increased atten-
tion in recent years, including two CoNNL
shared tasks on the topic. Existing ma-
chine learning models for the task train
on sections 2-21 of the PDTB and test on
section 23, which includes a total of 761
implicit discourse relations. In this paper,
we’d like to make a methodological point,
arguing that the standard test set is too
small to draw conclusions about whether
the inclusion of certain features constitute
a genuine improvement, or whether one
got lucky with some properties of the test
set, and argue for the adoption of cross val-
idation for the discourse relation classifi-
cation task by the community.

1 Introduction

Discourse-level relation analysis is relevant to
a variety of NLP tasks such as summarization
(Yoshida et al., 2014), question answering (Jansen
et al., 2014) and machine translation (Meyer et al.,
2015). Recent years have seen more and more
works on this topic, including two CoNNL shared
tasks (Xue et al., 2015; Xue et al., 2016). The
community most often uses the Penn Discourse
Treebank (PDTB) (Prasad et al., 2008) as a re-
source, and has adopted the usual split into train-
ing and test data as used for other tasks such as
parsing. Because discourse relation annotation is
at a higher level than syntactic annotation, this
however means that the test set is rather small,
and with the amount of alternative features and,
more recently, neural network architectures being
applied to the problem, we run a serious risk as a
community of believing in features that are suc-
cessful in getting some improvement on the spe-
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cific test set but don’t generalize at all.

In discourse relation parsing, we usually distin-
guish between implicit and explicit discourse re-
lations. Explicit relations are marked with a dis-
course connective such as “because”, “but”, “if”,
while implicit discourse relations are not marked
with any discourse connective. The connective
serves as a strong cue for the discourse relation,
as the example below demonstrates:

“ Typically, money-fund yields beat compara-
ble short-term investments because portfolio man-
agers can vary maturities and go after the highest
rates” (Explicit, Contingency.Cause)

“ They desperately needed somebody who
showed they cared for them, who loved them.
(But) The last thing they needed was an-
other drag-down blow.”  (Implicit, Compari-
son.Contrast)

Previous studies show that the presence of con-
nectives can greatly help with classification of the
relation and can be disambiguated with 0.93 accu-
racy (4-ways) solely on the discourse relation con-
nectives (Pitler et al., 2008). In implicit relations,
no such strong cue is available and the discourse
relation instead needs to be inferred based on the
two textual arguments.

In recent studies, various classes of features
are explored to capture lexical and semantic reg-
ularities for identifying the sense of implicit re-
lations, including linguistically informed features
like polarity tags, Levin verb classes, length of
verb phrases, language model based features, con-
textual features, constituent parse features and de-
pendency parse features (Lin et al., 2009; Pitler et
al., 2009; Zhou et al., 2010; Zhang et al., 2015;
Chen et al., 2016). For some of second-level rela-
tions (a level of granularity that should be much
more meaningful to downstream tasks than the
four-way distinction), there are only a dozen in-
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stances, so that it’s important to make maximal
use of both the data set for training and testing.
The test set that is currently most often used for 11
way classification is section 23 (Lin et al., 2009;
Ji and Eisenstein, 2015; Rutherford et al., 2017),
which contains only about 761 implicit relations.
This small size implies that a gain of 1 percentage
point in accuracy corresponds to just classifying
an additional 7-8 instances correctly.

This paper therefore aims to demonstrate the
degree to which conclusions about the effective-
ness of including certain features would depend on
whether one evaluates on the standard test section
only, or performs cross validation on the whole
dataset for second-level discourse relation classi-
fication. The model that we use is a neural net-
work that takes the words occurring in the rela-
tion arguments as input, as well as traditional fea-
tures mentioned above, to make comparisons with
most-used section splits. To our knowledge, this is
the first paper that systematically evaluates the ef-
fect of the train/test split for the implicit discourse
relation classification task on PDTB. We report the
classification performances on random and con-
ventional split sections.

As a model, we use a neural network that also
includes some of the surface features that have
been shown to be successful in previous work. Our
model is competitive with the state of the art. The
experiments here are exemplary for what kind of
conclusions we would draw from the cross valida-
tion vs. from the usual train-test split. We find that
results are quite different in the different splits of
dataset, which we think is a strong indication that
cross validation is important to adopt as a stan-
dard practice for the discourse relation classifica-
tion community. We view cross validation as an
important method in case other unseen datasets are
not available (note that at least for English, new
datasets have recently been made available as part
of the shared task (Xue et al., (2015; 2016); as well
as Rehbein et al., (2016)).

2 Background on Discourse Relation
Parsing

Soricut and Marcu (2003) firstly addressed the
task of parsing discourse structure within the same
sentence. Many of the useful features proposed
by them, syntax in particular, revealed that both
arguments of the connectives are found in the
same sentence. The release of PDTB, the largest
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available annotated corpora of discourse relations,
opened the door to machine learning based dis-
course relation classification.

Feature-based methods exploit discriminative
features for implicit relation classification. Pitler
et al. (2009) demonstrated that features developed
to capture word polarity, verb classes and orienta-
tion, as well as some lexical features are strong
indicator of the type of discourse relation. Lin
et al. (2009) further introduced contextual, con-
stituent and dependency parse features. They
achieved an accuracy of 40.2% for 11-way classi-
fication, a 14.1% absolute improvement over the
baseline. With these features, Park and Cardie
(2012) provided a systematic study of previously
proposed features and identified feature combina-
tions. Additional features proposed later include
relation specific word similarity (Biran and McK-
eown, 2013), Brown clusters and Coreference Pat-
terns (Rutherford and Xue, 2014).

Data selection and extension is another main
aspect for discourse relation classification, given
that the number of training instances is limited and
only from a single domain. Wang et al. (2012) pro-
posed a novel single centroid clustering algorithm
to differentiate typical and atypical examples for
each discourse relation. Mihil et al. (2014) and
Hernault et al. (2010) proposed semi-supervised
learning methods to recognise relations. Ruther-
ford and Xue (2015) collected additional training
data from unannotated data, selecting instances
based on two criteria (the degree to which a con-
nective can generally be omitted and the degree
to which a connective typically changes the inter-
pretation of the relation) improved the inference
of implicit discourse relation. Hidey and McK-
eown (2016), Quirk and Poon (2016) extended
training data with weakly labeled data which are
cheaply obtained by distant-supervised learning.

Recently the distributed word representations
(Bengio et al., 2003; Mikolov et al., 2013) have
shown an advantage in dealing with data sparsity
problem (Braud and Denis, 2015). Many deep
learning methods have been proved to be helpful
in discourse relation parsing and achieved some
significant progresses. Zhang et al. (2015) pro-
posed a shallow convolutional neural network for
implicit discourse recognition to alleviate the over-
fitting problem and help preserve the recognition
and generalization ability with the model. Ji et
al. (2015) computed distributed meaning represen-



tations for each discourse argument with recur-
sive neural network. Ji et al. (2016) introduced
a latent variable to recurrent neural network and
outperformed in two tasks. Chen et al. (2016)
adopted a gated relevance network to capture the
semantic interaction between word pairs. Zhang
et al. (2016) proposed a neural discourse relation
recognizer with a semantic memory and attention
weights for implicit discourse relation recognition.

The model we use in this paper is most closely
related to the neural network model proposed in
Rutherford et al. (2017). The model also has
access to the traditional features, which are con-
catenated to the neural representations of the argu-
ments in the output layer. In order to simulate what
conclusions we would be drawing from comparing
the contributions of the handcrafted surface fea-
tures, we calculate accuracy for each of the hand-
crafted features.

3 Corpora

The Penn Discourse Treebank (PDTB) We use
the Penn Discourse Treebank (Prasad et al., 2008),
the largest available manually annotated corpora
of discourse on top of one million word tokens
from the Wall Street Journal (WSJ). The PDTB
provides annotations for explicit and implicit dis-
course relations. By definition, an explicit relation
contains an explicit discourse connective while the
implicit one does not. The PDTB provides a three
level hierarchy of relation tags for its annotation.
Previous work in this task has been done over two
schemes of evaluation: first-level 4-ways classi-
fication (Pitler et al., 2009; Rutherford and Xue,
2014; Chen et al., 2016), second-level 11-way
classification (Lin et al., 2009; Ji and Eisenstein,
2015). The distribution of second-level relations
in PDTB is illustrated in Table 1.

We follow the preprocessing method in (Lin et
al., 2009; Rutherford et al., 2017). If the instance
is annotated with two relations, we adopt the first
one shown up, and remove those relations with
too few instances. We treat section 2-21 as train-
ing set, section 22 as development set and section
23 as test set for our results reported as “most-
used split”. In order to investigate whether the re-
sults for benefit of including a certain feature to
the model are stable, we conduct 10-fold cross-
validation on the whole corpus including sections
0-24. Note that we here included also the valida-
tion section for our experiments, to have maximal
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data for our demonstration of variability between
folds. For best practice when testing new mod-
els, we instead recommend to keep the validation
set completely separate and do cross-validation for
the remaining data. Also note that you might want
to choose repeated cross-validation (which simply
repeats the cross-validation step several times with
the data divided up into different folds) as an alter-
native to simple cross-validation performed here.
For a more in-detail discussion of cross validation
methods, see (Kim, 2009; Bengio and Grandvalet,
2005).

In Table 1, we can see that the different re-
lations’ proportions on the training and test set
are quite different in the most-used split. For in-
stance, temporal relations are under-represented
which may lead to a misestimation of the useful-
ness of features that are relevant for classifying
temporal relations. For our cross validation ex-
periments, we evenly divided all the instances in
section 0-24 into 10 balanced folds'. The propor-
tions of each class in the training and testing set are
identical. With the same distribution of each class,
we here avoid having an unbalanced number of in-
stances per class among training and testing set.

4 Model

The task is to predict the discourse relation given
the two arguments of an implicit instance. As a la-
bel set, we use 11-way distinction as proposed in
Lin et al., (2009); Ji and Eisenstein (2015). Word
Embeddings are trained with the Skip-gram archi-
tecture in Word2Vec (Mikolov et al., 2013), which
is able to capture semantic and syntactic patterns
with an unsupervised method, on the training sec-
tions of WSJ data.

Our model is illustrated in Figure 1. Each
word is represented as a vector, which is found
through a look-up word embedding. Then we get
the representations of argument 1 and argument 2
separately after transforming semantic word vec-
tors into distributed continuous-value features by
LSTM recurrent neural network. With concate-
nating feature vector and the instance’s representa-
tion, we classify it with a softmax layer and output
its label.

Implementation All the models are implemented

"While we here chose balanced distributions, other de-
signs of splitting up the data into folds such that different
folds have organically different distributions of classes can
alternatively be argued for, on the basis of more accurately
representing new in-domain data distributions.
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Figure 1: Long Short-Term Memory Model with surface features.

Relation Most-used Split Cross Validation *
Train Test Train Test
Temporal. Asynchronous 542 (4.25%) 12 (1.58%) | 583 65
Temporal.Synchrony 150 (1.18%) 5 (0.66%) 155 18
Contingency.Cause 3259 (25.53%) 193 (25.36%) | 3581 398
Contingency.Pragmatic cause 55  (0.43%) 5  (0.66%) 61 7
Comparison.Contrast 1600 (12.54%) 126 (16.56%) | 1843 205
Comparison.Concession 189  (1.48%) 5 (0.66%) 194 22
Expansion.Conjunction 2869 (22.48%) 116 (15.24%) | 3075 342
Expansion.Instantiation 1130  (8.85%) 69  (9.07%) | 1254 140
Expansion.Restatement 2481 (19.44%) 190 (24.97%) | 2792 311
Expansion.Alternative 151 (1.18%) 15  (1.97%) 160 18
Expansion.List 337  (2.64%) 25  (3.29%) | 347 39
Total 12763 761 14045 1565

* Numbers are averaged over different folds

Table 1: The distribution of training and test sets in Most-used Split and Cross Validation
on level 2 relations in PDTB. Five types that have only have very few training instances are

removed.

Models Most-used Split  Cross Validation

Most common class 25.36 25.59
Lin et al. (2009) 40.20 -1
Ji & Eisenstein (2015) (surface features only) 40.66 -
Rutherford et al. (2017) 39.56 -
. No additional surface features 37.68 34.44 (£1.37)
g Inquirer Tags 40.46 33.58 (+1.36) (2+,8-)
% BrownCluster 38.77 33.83 (£1.59) (3+,7-)
:E Levin Class 40.92 34.17 (£1.48) (4+,6-)
§ Verbs 40.21 34.26 (£1.22) (5+,5-)
2 Modality 40.82 37.65 (£1.83) (6+,4-)

All Features above 38.56 35.90 (£1.32) (2+,8-)

I« means no result currently.

Table 2: Performance comparison of different features in Most-used Split and Cross Validation on
second-level relations. Numbers for cross validation indicate the mean accuracy across folds, the
standard deviation, and the number of folds that show better vs. worse performance when including

the feature.
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in Keras?, which runs on top of Theano. The archi-
tecture of the model we use is illustrated in Figure
1. Regarding the initialization, regularization and
learning algorithm, we follow all the settings in
(Rutherford et al., 2017). We adopt cross-entropy
as our cost function, adagrad as the optimization
algorithm, initialized all the weights in the model
with uniform random and set dropout layers after
the embedding and output layer with a drop rate of
0.2 and 0.5 respectively.

5 Features

For the sake of our cross-validation argument,
we choose five kinds of most popular features in
discourse relation classification, namely Inguirer
Tags (semantic classification tags), Brown Clus-
ters, Verb features, Levin classes and Modality.

6 Results

We tested five frequently-used surface features
with our model. Results are shown in Table 2. We
can see that our implemented model is comparable
with state of the art models. Our main point here is
however not to argue that we outperform any par-
ticular model, but rather we’d like to discuss what
conclusions we’d be drawing from adding surface
features to our NN model if using the standard test
set vs. doing cross validation.

For each cross validation with different features,
the separation into train and test sets are identical.
We can see that the performances on Most-used
Split section is generally 3-7% better than the re-
sults for the rest of the corpus. While we would
also conclude from our model when evaluated on
the standard test set that each of these features
contribute some useful information, we can also
see that we would come to very different conclu-
sions if actually running the cross-validation ex-
periment.

Cross Validation is primarily a way of measur-
ing the predictive performance of a model. With
such a small test set, improvements on the classifi-
cation could be the results of many factors. For
instance, take a look at the effectiveness of in-
cluding Inquirer Tags: these lead to an increase
in performance by 2.8% in Most-used Split, but
actually only helped on two out of 10-fold in the
cross-validation set, overall leading to a small de-
crease in performance of the classifier. Similarly,

*https://keras.io/
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the verb features seem to indicate a substantial im-
provement in relation classification accuracy on
the standard test set, but there is no effect at all
across the folds.

Other works, such as Berg-Kirkpatrick et
al. (2012) strongly recommend significance test-
ing to validate metric gains in NLP tasks, even
though the relationship between metric gain and
statistical significance is complex. We observed
that recent papers in discourse relation parsing
do not always perform significance testing, and if
they do report significance, then oftentimes they
do not report the test that was used. We would
here like to argue in favour of significance testing
with cross validation, as opposed to boot strapping
methods that only use the standard test set. Due to
the larger amount of data, calculating significance
based on the cross validation will give us substan-
tially better estimates about the robustness of our
results, because it can quantify more exactly the
amount of variation with respect to transferring to
a new (in-domain) dataset.

7 Conclusion

We have argued that the standard test section of
the PDTB is too small to draw conclusions about
whether a feature is generally useful or not, espe-
cially when using a larger label set, as is the case
in recent work using second level labels. While
these ideas are far from new and apply also to
other NLP tasks with small evaluation sets, we
think it is important to discuss this issue, as recent
work in the field of discourse relation analysis has
mostly ignored the issue of small test set sizes in
the PDTB. Our experiments support our claim by
showing that features that may look like they im-
prove performance on the 11-way classification on
the standard test set, did not always show a consis-
tent improvement when the training / testing was
split up differently. This means that we run a large
risk of drawing incorrect conclusions about which
features are helpful if we only stick out our small
standard test set for evaluation.
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Abstract

We study the topmost weight matrix of
neural network language models. We
show that this matrix constitutes a valid
word embedding. When training language
models, we recommend tying the input
embedding and this output embedding.
We analyze the resulting update rules and
show that the tied embedding evolves in
a more similar way to the output embed-
ding than to the input embedding in the
untied model. We also offer a new method
of regularizing the output embedding. Our
methods lead to a significant reduction in
perplexity, as we are able to show on a va-
riety of neural network language models.
Finally, we show that weight tying can re-
duce the size of neural translation models
to less than half of their original size with-
out harming their performance.

1 Introduction

In a common family of neural network language
models, the current input word is represented as
the vector ¢ € IRY and is projected to a dense
representation using a word embedding matrix U.
Some computation is then performed on the word
embedding U " ¢, which results in a vector of ac-
tivations hs. A second matrix V' then projects ho
to a vector hg containing one score per vocabulary
word: hg = V hs. The vector of scores is then con-
verted to a vector of probability values p, which
represents the models’ prediction of the next word,
using the softmax function.

For example, in the LSTM-based language
models of (Sundermeyer et al., 2012; Zaremba
et al., 2014), for vocabulary of size C', the one-
hot encoding is used to represent the input ¢ and
U € RY*H. An LSTM is then employed, which
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results in an activation vector ho that similarly to
UTe, is also in IR . In this case, U and V are of
exactly the same size.

We call U the input embedding, and V' the out-
put embedding. In both matrices, we expect rows
that correspond to similar words to be similar: for
the input embedding, we would like the network
to react similarly to synonyms, while in the out-
put embedding, we would like the scores of words
that are interchangeable to be similar (Mnih and
Teh, 2012).

While U and V' can both serve as word embed-
dings, in the literature, only the former serves this
role. In this paper, we compare the quality of the
input embedding to that of the output embedding,
and we show that the latter can be used to improve
neural network language models. Our main results
are as follows: (i) We show that in the word2vec
skip-gram model, the output embedding is only
slightly inferior to the input embedding. This is
shown using metrics that are commonly used in or-
der to measure embedding quality. (ii) In recurrent
neural network based language models, the output
embedding outperforms the input embedding. (iii)
By tying the two embeddings together, i.e., enforc-
ing U =V, the joint embedding evolves in a more
similar way to the output embedding than to the in-
put embedding of the untied model. (iv) Tying the
input and output embeddings leads to an improve-
ment in the perplexity of various language mod-
els. This is true both when using dropout or when
not using it. (v) When not using dropout, we pro-
pose adding an additional projection P before V,
and apply regularization to P. (vi) Weight tying
in neural translation models can reduce their size
(number of parameters) to less than half of their
original size without harming their performance.
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2 Related Work

Neural network language models (NNLMs) assign
probabilities to word sequences. Their resurgence
was initiated by (Bengio et al., 2003). Recur-
rent neural networks were first used for language
modeling in (Mikolov et al., 2010) and (Pascanu
et al., 2013). The first model that implemented
language modeling with LSTMs (Hochreiter and
Schmidhuber, 1997) was (Sundermeyer et al.,
2012). Following that, (Zaremba et al., 2014) in-
troduced a dropout (Srivastava, 2013) augmented
NNLM. (Gal, 2015; Gal and Ghahramani, 2016)
proposed a new dropout method, which is referred
to as Bayesian Dropout below, that improves on
the results of (Zaremba et al., 2014).

The skip-gram word2vec model introduced
in (Mikolov et al., 2013a; Mikolov et al., 2013b)
learns representations of words. This model learns
a representation for each word in its vocabulary,
both in an input embedding matrix and in an out-
put embedding matrix. When training is com-
plete, the vectors that are returned are the input
embeddings. The output embedding is typically
ignored, although (Mitra et al., 2016; Mnih and
Kavukcuoglu, 2013) use both the output and input
embeddings of words in order to compute word
similarity. Recently, (Goldberg and Levy, 2014)
argued that the output embedding of the word2vec
skip-gram model needs to be different than the in-
put embedding.

As we show, tying the input and the output em-
beddings is indeed detrimental in word2vec. How-
ever, it improves performance in NNLMs.

In neural machine translation (NMT) mod-
els (Kalchbrenner and Blunsom, 2013; Cho et
al., 2014; Sutskever et al., 2014; Bahdanau et
al., 2014), the decoder, which generates the trans-
lation of the input sentence in the target lan-
guage, is a language model that is conditioned on
both the previous words of the output sentence
and on the source sentence. State of the art re-
sults in NMT have recently been achieved by sys-
tems that segment the source and target words
into subword units (Sennrich et al., 2016a). One
such method (Sennrich et al., 2016b) is based on
the byte pair encoding (BPE) compression algo-
rithm (Gage, 1994). BPE segments rare words into
their more commonly appearing subwords.

Weight tying was previously used in the log-
bilinear model of (Mnih and Hinton, 2009), but the
decision to use it was not explained, and its effect
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on the model’s performance was not tested. In-
dependently and concurrently with our work (Inan
et al., 2016) presented an explanation for weight
tying in NNLMs based on (Hinton et al., 2015).

3 Weight Tying

In this work, we employ three different model cat-
egories: NNLMs, the word2vec skip-gram model,
and NMT models. Weight tying is applied sim-
ilarly in all models. For translation models, we
also present a three-way weight tying method.

NNLM models contain an input embedding ma-
trix, two LSTM layers (h; and hs), a third hidden
scores/logits layer hs, and a softmax layer. The
loss used during training is the cross entropy loss
without any regularization terms.

Following (Zaremba et al., 2014), we employ
two models: large and small. The large model em-
ploys dropout for regularization. The small model
is not regularized. Therefore, we propose the fol-
lowing regularization scheme. A projection matrix
P e R¥*H is inserted before the output embed-
ding, i.e., hs V Phy. The regularizing term
A||P||2 is then added to the small model’s loss
function. In all of our experiments, A = 0.15.

Projection regularization allows us to use the
same embedding (as both the input/output embed-
ding) with some adaptation that is under regular-
ization. It is, therefore, especially suited for WT.

While training a vanilla untied NNLM, at
timestep ¢, with current input word sequence
i1+ = li1,...,1] and current target output word
o, the negative log likelihood loss is given by:
L; = —logpi(otlir.e), where pi(o¢lit.)
o0t 1 is the kth row of U (V
ST (VI AP’ 1 (V) is the kth row of U (V),
which corresponds to word k, and hgt) is the vector
of activations of the topmost LSTM layer’s output
at time ¢t. For simplicity, we assume that at each
timestep ¢, iy # o;. Optimization of the model is
performed using stochastic gradient descent.

The update for row k of the input embedding is:

(5 pelaline) - Vi = Vo) k=i

oLy
0 k # i

U
For the output embedding, row k’s update is:
0L: _ {(pt(0t|i1:t) - l)hét) k= o

onsH)
aU,,

Vi | pe(klirs) - b k% o
Therefore, in the untied model, at every timestep,
the only row that is updated in the input embed-
ding is the row Uj;, representing the current input



word. This means that vectors representing rare
words are updated only a small number of times.
The output embedding updates every row at each
timestep.

In tied NNLMs, we set U = V = S. The
update for each row in S is the sum of the updates
obtained for the two roles of S as both an input and
output embedding.

The update for row k& # 4, is similar to the up-
date of row £ in the untied NNLM’s output embed-
ding (the only difference being that U and V are
both replaced by a single matrix S). In this case,
there is no update from the input embedding role
of S.

The update for row k = i;, is made up of a term
from the input embedding (case k = i;) and a term
from the output embedding (case k # o). The
second term grows linearly with p;(i¢|i1.¢), which
is expected to be close to zero, since words sel-
dom appear twice in a row (the low probability
in the network was also verified experimentally).
The update that occurs in this case is, therefore,
mostly impacted by the update from the input em-
bedding role of S.

To conclude, in the tied NNLM, every row of S
is updated during each iteration, and for all rows
except one, this update is similar to the update of
the output embedding of the untied model. This
implies a greater degree of similarity of the tied
embedding to the untied model’s output embed-
ding than to its input embedding.

The analysis above focuses on NNLMs for
brevity. In word2vec, the update rules are simi-
lar, just that hgt) is replaced by the identity func-
tion. As argued by (Goldberg and Levy, 2014), in
this case weight tying is not appropriate, because
if p¢(i¢]i1.¢) is close to zero then so is the norm
of the embedding of 7;. This argument does not
hold for NNLMs, since the LSTM layers cause a
decoupling of the input and output embedddings.

Finally, we evaluate the effect of weight ty-

ing in neural translation models. In this model:
. erp(VOIG(t))
plodier) = gor o vrom

(r1,...,7n) is the set of words in the source sen-
tence, U and V are the input and output embed-
dings of the decoder and W is the input embed-
ding of the encoder (in translation models U,V €
R and W e R *H, where C, / Cy is the
size of the vocabulary of the source / target). G(*)
is the decoder, which receives the context vector,

the embedding of the input word (¢;) in U, and its

where r
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Language Subwords Subwords Subwords
pairs only in source  only in target in both
EN—FR 2K 7K 85K
EN—DE 3K 11K 80K

Table 1: Shared BPE subwords between pairs of languages.

previous state at each timestep. c¢; is the context
vector at timestep t, ¢; = > jer ag;hj, where ag;

is the weight given to the jth annotation at time ¢:

Qri = - xple)
07 Therexplein)
the alignment model. F'is the encoder which pro-

duces the sequence of annotations (hy, ..., hy).

The output of the decoder is then projected to
a vector of scores using the output embedding:
l; = VG®. The scores are then converted to prob-
ability values using the softmax function.

In our weight tied translation model, we tie the
input and output embeddings of the decoder.

We observed that when preprocessing the ACL
WMT 2014 EN—FR! and WMT 2015 EN—DE?
datasets using BPE, many of the subwords ap-
peared in the vocabulary of both the source and
the target languages. Tab. 1 shows that up to
90% (85%) of BPE subwords between English and
French (German) are shared.

Based on this observation, we propose three-
way weight tying (TWWT), where the input em-
bedding of the decoder, the output embedding of
the decoder and the input embedding of the en-
coder are all tied. The single source/target vocab-
ulary of this model is the union of both the source
and target vocabularies. In this model, both in the
encoder and decoder, all subwords are embedded
in the same duo-lingual space.

, and e;; = a¢(h;), where a is

4 Results

Our experiments study the quality of various em-
beddings, the similarity between them, and the
impact of tying them on the word2vec skip-gram
model, NNLMs, and NMT models.

4.1 Quality of Obtained Embeddings

In order to compare the various embeddings, we
pooled five embedding evaluation methods from
the literature. These evaluation methods involve
calculating pairwise (cosine) distances between
embeddings and correlating these distances with
human judgments of the strength of relationships
between concepts. We use: Simlex999 (Hill et al.,

1
http://statmt.org/wmtl4/translation-task.html
http://statmt.org/wmtl5/translation-task.html



Input  Output | Tied
Simlex999 | 0.30 0.29 0.17
Verb-143 0.41 0.34 0.12
MEN 0.66 0.61 0.50
Rare-Word | 0.34 0.34 0.23
MTurk-771 | 0.59 0.54 0.37

Table 2: Comparison of input and output embeddings
learned by a word2vec skip-gram model. Results are also
shown for the tied word2vec model. Spearman’s correlation p
is reported for five word embedding evaluation benchmarks.

A B | p(A,B) p(A,B)  p(A,B)
word2vec  NNLM(S) NNLM(L)

In Out 0.77 0.13 0.16

In  Tied | 0.19 031 045

Out Tied | 0.39 0.65 0.77

Table 4: Spearman’s rank correlation p of similarity values
between all pairs of words evaluated for the different embed-
dings: input/output embeddings (of the untied model) and the
embeddings of our tied model. We show the results for both
the word2vec models and the small and large NNLM models
from (Zaremba et al., 2014).

PTB text8

Embedding | In Out | Tied || In Out | Tied Model Size Train Val. Test
Simlex999 | 0.02 0.13 | 0.14 || 0.17 0.27 | 0.28 Large (Zaremba et al., 2014) |66M 37.8 82.2 78.4
Verb143 0.12 037 | 032 || 020 035 | 042 Large + Weight Tying 5IM 48.5 77.7 743
MEN 0.11 021 | 0.26 || 0.26 0.50 | 0.50 Large + BD (Gal, 2015) + WD | 66M  24.3 78.1 75.2
Rare-Word | 0.28 0.38 | 0.36 || 0.14 0.15 | 0.17 Large + BD + WT 51IM 282 75.8 73.2
MTurk771 | 0.17 0.28 | 0.30 || 0.26 0.48 | 0.45 RHN (Zilly et al., 2016) + BD |32M 67.4 71.2 68.5

RHN + BD + WT 24M 74.1 68.1 66.0

Table 3: Comparison of the input/output embeddings of the
small model from (Zaremba et al., 2014) and the embeddings
from our weight tied variant. Spearman’s correlation p is pre-
sented.

2016), Verb-143 (Baker et al., 2014), MEN (Bruni
et al., 2014), Rare-Word (Luong et al., 2013) and
MTurk-771 (Halawi et al., 2012).

We begin by training both the tied and untied
word2vec models on the text8? dataset, using a
vocabulary consisting only of words that appear
at least five times. As can be seen in Tab. 2,
the output embedding is almost as good as the
input embedding. As expected, the embedding
of the tied model is not competitive. The situa-
tion is different when training the small NNLM
model on either the Penn Treebank (Marcus et
al., 1993) or text8 datasets (for PTB, we used the
same train/validation/test set split and vocabulary
as (Mikolov et al., 2011), while on text8 we used
the split/vocabulary from (Mikolov et al., 2014)).
These results are presented in Tab. 3. In this case,
the input embedding is far inferior to the output
embedding. The tied embedding is comparable to
the output embedding.

A natural question given these results and the
analysis in Sec. 3 is whether the word embedding
in the weight tied NNLM model is more similar to
the input embedding or to the output embedding
of the original model. We, therefore, run the fol-
lowing experiment: First, for each embedding, we
compute the cosine distances between each pair of
words. We then compute Spearman’s rank corre-
lation between these vectors of distances. As can
be seen in Tab. 4, the results are consistent with

3
http://mattmahoney.net/dc/textdata
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Table 5: Word level perplexity (lower is better) on PTB
and size (number of parameters) of models that use either
dropout (baseline model) or Bayesian dropout (BD). WD —
weight decay.

our analysis and the results of Tab. 2 and Tab. 3:
for word2vec the input and output embeddings are
similar to each other and differ from the tied em-
bedding; for the NNLM models, the output em-
bedding and the tied embeddings are similar, the
input embedding is somewhat similar to the tied
embedding, and differs considerably from the out-
put embedding.

4.2 Neural Network Language Models

We next study the effect of tying the embeddings
on the perplexity obtained by the NNLM models.
Following (Zaremba et al., 2014), we study two
NNLMs. The two models differ mostly in the size
of the LSTM layers. In the small model, both
LSTM layers contain 200 units and in the large
model, both contain 1500 units. In addition, the
large model uses three dropout layers, one placed
right before the first LSTM layer, one between h;
and ho and one right after hs. The dropout proba-
bility is 0.65. For both the small and large models,
we use the same hyperparameters (i.e. weight ini-
tialization, learning rate schedule, batch size) as
in (Zaremba et al., 2014).

In addition to training our models on PTB and
text8, following (Miyamoto and Cho, 2016), we
also compare the performance of the NNLMs on
the BBC (Greene and Cunningham, 2006) and
IMDB (Maas et al., 2011) datasets, each of which
we process and split into a train/validation/test



Model Size Train Val. Test
KN 5-gram 141
RNN 123
LSTM 117
Stack RNN 8.48M 110
FOFE-FNN 108
Noisy LSTM 4.65M 111.7 108.0
Deep RNN 6.16M 107.5
Small model 4.65M 38.0 120.7 1145
Small + WT 2.65M 364 1175 1124
Small + PR 4.69M 508 1160 111.7
Small + WT+PR | 2.69M 535 1049 100.9

Table 6: Word level perplexity on PTB and size for mod-
els that do not use dropout. The compared models are:
KN 5-gram (Mikolov et al., 2011), RNN (Mikolov et al.,
2011), LSTM (Graves, 2013), Stack / Deep RNN (Pas-
canu et al., 2013), FOFE-FNN (Zhang et al., 2015), Noisy
LSTM (Giilgehre et al., 2016), and the small model from
(Zaremba et al., 2014). The last three models are our models,
which extend the small model. PR — projection regulariza-
tion.

Model [Small [S+WT S+PR S+ WT+PR
[Train [ 904 | 956 926 953

2| Val. ; : - ;

2l Test 1953 187.1  199.0 183.2

= [Train | 713 | 754 720 72.9
Olval. |941| 946 940 91.2
Z|Test | 943 | 948 944 91.5

| Traim | 286 | 300 425 357

Bl val. [103.6| 994 1049 96.4

M| Test |110.8| 106.8 108.7 98.9

Table 7: Word level perplexity on the text8, IMDB and
BBC datasets. The last three models are our models, which
extend the small model (S) of (Zaremba et al., 2014).

split (we use the same vocabularies as (Miyamoto
and Cho, 2016)).

In the first experiment, which was conducted
on the PTB dataset, we compare the perplexity
obtained by the large NNLM model and our ver-
sion in which the input and output embeddings are
tied. As can be seen in Tab. 5, weight tying sig-
nificantly reduces perplexity on both the valida-
tion set and the test set, but not on the training set.
This indicates less overfitting, as expected due to
the reduction in the number of parameters. Re-
cently, (Gal and Ghahramani, 2016), proposed a
modified model that uses Bayesian dropout and
weight decay. They obtained improved perfor-
mance. When the embeddings of this model are
tied, a similar amount of improvement is gained.
We tried this with and without weight decay and
got similar results in both cases, with slight im-
provement in the latter model. Finally, by re-
placing the LSTM with a recurrent highway net-
work (Zilly et al., 2016), state of the art results are
achieved when applying weight tying. The contri-
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Size Validation Test

EN—FR Baseline 168M 29.49 33.13
Decoder WT | 122M 29.47 33.26

TWWT 80M 29.43 33.46

EN—DE Baseline 165M 20.96 16.79
Decoder WT | 119M 21.09 16.54

TWWT 79M 21.02 17.15

Table 8: Size (number of parameters) and BLEU score of
various translation models. TWWT — three-way weight tying.

bution of WT is also significant in this model.

Perplexity results are often reported separately
for models with and without dropout. In Tab. 6, we
report the results of the small NNLM model, that
does not utilize dropout, on PTB. As can be seen,
both WT and projection regularization (PR) im-
prove the results. When combining both methods
together, state of the art results are obtained. An
analog table for text8, IMDB and BBC is Tab. 7,
which shows a significant reduction in perplexity
across these datasets when both PR and WT are
used. PR does not help the large models, which
employ dropout for regularization.

4.3 Neural Machine Translation

Finally, we study the impact of weight tying in at-
tention based NMT models, using the DL4MT*
implementation. We train our EN—FR models
on the parallel corpora provided by ACL WMT
2014. We use the data as processed by (Cho et al.,
2014) using the data selection method of (Axelrod
et al., 2011). For EN—DE we train on data from
the translation task of WMT 2015, validate on
newstest2013 and test on newstest2014 and new-
stest2015. Following (Sennrich et al., 2016b) we
learn the BPE segmentation on the union of the
vocabularies that we are translating from and to
(we use BPE with 89500 merge operations). All
models were trained using Adadelta (Zeiler, 2012)
for 300K updates, have a hidden layer size of 1000
and all embedding layers are of size 500.

Tab. 8 shows that even though the weight tied
models have about 28% fewer parameters than the
baseline models, their performance is similar. This
is also the case for the three-way weight tied mod-
els, even though they have about 52% fewer pa-
rameters than their untied counterparts.

4
https://github.com/nyu-dl/dl4mt-tutorial
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Identifying beneficial task relations for multi-task learning
in deep neural networks

Joachim Bingel
Department of Computer Science
University of Copenhagen
bingel@di.ku.dk

Abstract

Multi-task learning (MTL) in deep neural
networks for NLP has recently received in-
creasing interest due to some compelling
benefits, including its potential to effi-
ciently regularize models and to reduce the
need for labeled data. While it has brought
significant improvements in a number of
NLP tasks, mixed results have been re-
ported, and little is known about the con-
ditions under which MTL leads to gains in
NLP. This paper sheds light on the specific
task relations that can lead to gains from
MTL models over single-task setups.

1 Introduction

Multi-task learning is receiving increasing inter-
est in both academia and industry, with the po-
tential to reduce the need for labeled data, and
to enable the induction of more robust models.
The main driver has been empirical results push-
ing state of the art in various tasks, but prelimi-
nary theoretical findings guarantee that multi-task
learning works under various conditions. Some
approaches to multi-task learning are, for exam-
ple, known to work when the tasks share opti-
mal hypothesis classes (Baxter, 2000) or are drawn
from related sample generating distributions (Ben-
David and Borberly, 2003).

In NLP, multi-task learning typically involves
very heterogeneous tasks. However, while great
improvements have been reported (Luong et al.,
2016; Klerke et al., 2016), results are also of-
ten mixed (Collobert and Weston, 2008; Sggaard
and Goldberg, 2016; Martinez Alonso and Plank,
2017), and theoretical guarantees no longer apply.
The question what task relations guarantee gains
or make gains likely in NLP remains open.

*Both authors contributed to the paper in equal parts.
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Contributions This paper presents a systematic
study of when and why MTL works in the context
of sequence labeling with deep recurrent neural
networks. We follow previous work (Klerke et al.,
2016; S¢gaard and Goldberg, 2016; Bollman and
S@gaard, 2016; Plank, 2016; Braud et al., 2016;
Martinez Alonso and Plank, 2017) in studying
the set-up where hyperparameters from the single
task architectures are reused in the multi-task set-
up (no additional tuning), which makes predict-
ing gains feasible. Running MTL experiments on
90 task configurations and comparing their per-
formance to single-task setups, we identify data
characteristics and patterns in single-task learn-
ing that predict task synergies in deep neural net-
works. Both the LSTM code used for our single-
task and multi-task models, as well as the script
we used for the analysis of these, are available at
github.com/jbingel/eacl2017_mtl.

2 Related work

In the context of structured prediction in NLP,
there has been very little work on the conditions
under which MTL works. Luong et al. (2016) sug-
gest that it is important that the auxiliary data
does not outsize the target data, while Benton et
al. (2017) suggest that multi-task learning is par-
ticularly effective when we only have access to
small amounts of target data. Martinez Alonso
and Plank (2017) present a study on different task
combinations with dedicated main and auxiliary
tasks. Their findings suggest, among others, that
success depends on how uniformly the auxiliary
task labels are distributed.

Mou et al. (2016) investigate multi-task learn-
ing and its relation to transfer learning, and un-
der which conditions these work between a set of
sentence classification tasks. Their main finding
with respect to multi-task learning is that success

Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 164—169,

Valencia, Spain, April 3-7, 2017. (©2017 Association for Computational Linguistics



depends largely on “how similar in semantics the
source and target datasets are”, and that it gener-
ally bears close resemblance to transfer learning in
the effect it has on model performance.

3 Multi-task Learning

While there are many approaches to multi-task
learning, hard parameter sharing in deep neural
networks (Caruana, 1993) has become extremely
popular in recent years. Its greatest advantages
over other methods include (i) that it is known to
be an efficient regularizer, theoretically (Baxter,
2000), as well as in practice (Sggaard and Gold-
berg, 2016); and (ii) that it is easy to implement.

The basic idea in hard parameter sharing in deep
neural networks is that the different tasks share
some of the hidden layers, such that these learn
a joint representation for multiple tasks. Another
conceptualization is to think of this as regulariz-
ing our target model by doing model interpolation
with auxiliary models in a dynamic fashion.

Multi-task linear models have typically been
presented as matrix regularizers. The parame-
ters of each task-specific model makes up a row
in a matrix, and multi-task learning is enforced
by defining a joint regularization term over this
matrix. One such approach would be to define
the joint loss as the sum of losses and the sum
of the singular values of the matrix. The most
common approach is to regularize learning by the
sum of the distances of the task-specific models to
the model mean. This is called mean-constrained
learning. Hard parameter sharing can be seen as
a very crude form of mean-constrained learning,
in which parts of all models (typically the hidden
layers) are enforced to be identical to the mean.

Since we are only forcing parts of the models to
be identical, each task-specific model is still left
with wiggle room to model heterogeneous tasks,
but the expressivity is very limited, as evidenced
by the inability of such networks to fit random
noise (Sggaard and Goldberg, 2016).

3.1 Models

Recent work on multi-task learning of NLP mod-
els has focused on sequence labeling with recur-
rent neural networks (Klerke et al., 2016; Sggaard
and Goldberg, 2016; Bollman and Sggaard, 2016;
Plank, 2016; Braud et al., 2016; Martinez Alonso
and Plank, 2017), although sequence-to-sequence
models have been shown to profit from MTL as
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well (Luong et al., 2016). Our multi-task learn-
ing architecture is similar to the former, with a
bi-directional LSTM as a single hidden layer of
100 dimensions that is shared across all tasks. The
inputs to this hidden layer are 100-dimensional
word vectors that are initialized with pretrained
GloVe embeddings, but updated during training.
The embedding parameters are also shared. The
model then generates predictions from the bi-
LSTM through task-specific dense projections.
Our model is symmetric in the sense that it does
not distinguish between main and auxiliary tasks.

In our MTL setup, a training step consists of
uniformly drawing a training task, then sampling a
random batch of 32 examples from the task’s train-
ing data. Every training step thus works on ex-
actly one task, and optimizes the task-specific pro-
jection and the shared parameters using Adadelta.
As already mentioned, we keep hyper-parameters
fixed across single-task and multi-task settings,
making our results only applicable to the scenario
where one wants to know whether MTL works in
the current parameter setting (Collobert and We-
ston, 2008; Klerke et al., 2016; Sggaard and Gold-
berg, 2016; Bollman and Sggaard, 2016; Plank,
2016; Braud et al., 2016; Martinez Alonso and
Plank, 2017).

3.2 Tasks

In our experiments below, we consider the follow-
ing ten NLP tasks, with one dataset for each task.
Characteristics of the datasets that we use are sum-
marized in Table 1.

1. CCG Tagging (CCG) is a sequence tagging
problem that assigns a logical type to every
token. We use the standard splits for CCG
super-tagging from the CCGBank (Hocken-
maier and Steedman, 2007).

. Chunking (CHU) identifies continuous spans
of tokens that form syntactic units such as
noun phrases or verb phrases. We use the
standard splits for syntactic chunking from
the English Penn Treebank (Marcus et al.,
1993).

. Sentence Compression (COM) We use the
publicly available subset of the Google Com-
pression dataset (Filippova and Altun, 2013),
which has token-level annotations of word
deletions.



Task Size #Labels Tok/typ %OOV H(y) || X||r JSD | Fi

CCG | 39,604 1,285 23.08 1.13 328 9813 0.41 | 86.1
CHU 8,936 22 12.01 135 1.84 4664 0.47 | 93.9
coM | 9,600 2 9.47 0.99 047 5193 044|519
FNT 3,711 2 8.44 1.79 051 286.8 0.30 | 58.0
POS 1,002 12 3.24 1415 227 1169 0.24 | 82.6
HYP 2,000 2 6.14 214 047 2693 048 | 393
KEY 2,398 2 9.10 446 0.61 289.1 0.39 | 645
MWE | 3,312 3 9.07 073 053 2173 0.18 | 43.3
SEM | 15,465 73 11.16 472 219 6146 035 ] 70.8
STR 3,312 118 9.07 0.73 243 2173 0.26 | 61.5

Table 1: Dataset characteristics for the individual tasks as defined in Table 2, as well as single-task model

performance on test data (micro-averaged F7).

Semantic frames (FNT) We use
FrameNet 1.5 for jointly predicting tar-
get words that trigger frames, and deciding
on the correct frame in context.

. POS tagging (POS) We use a dataset of
tweets annotated for Universal part-of-speech
tags (Petrov et al., 2011).

Hyperlink Prediction (HYP) We use the hy-
pertext corpus from Spitkovsky et al. (2010)
and predict what sequences of words have
been bracketed with hyperlinks.

. Keyphrase Detection (KEY) This task
amounts to detecting keyphrases in scientific
publications. We use the SemEval 2017 Task
10 dataset.

. MWE Detection (MWE) We use the Streusle
corpus (Schneider and Smith, 2015) to learn
to identify multi-word expressions (on my
own, cope with).

Super-sense tagging (SEM) We use the stan-
dard splits for the Semcor dataset, predicting
coarse-grained semantic types of nouns and
verbs (super-senses).

10. Super-sense Tagging (STR) As for the MWE
task, we use the Streusle corpus, jointly pre-
dicting brackets and coarse-grained semantic

types of the multi-word expressions.

4 Experiments

We train single-task bi-LSTMs for each of the ten
tasks, as well as one multi-task model for each of
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Data features

Size Number of training sentences.

# Labels The number of labels.

Tokens/types Type/token ratio in training data.

OOV rate Percentage of training words not in
GloVe vectors.

Label Entropy Entropy of the label distribution.

Frobenius norm || X||r = [Z” X212, where
X;,; is the frequency of term j in
sentence %.

JSD Jensen-Shannon Divergence be-

tween train and test bags-of-words.

Learning curve features

See text.
See text.

Curve gradients
Fitted log-curve

Table 2: Task features

the pairs between the tasks, yielding 90 directed
pairs of the form (Zpain, {Tmain, Zauz}). The
single-task models are trained for 25,000 batches,
while multi-task models are trained for 50,000
batches to account for the uniform drawing of the
two tasks at every iteration in the multi-task setup.
The relative gains and losses from MTL over the
single-task models (see Table 1) are presented in
Figure 1, showing improvements in 40 out of 90
cases. We see that chunking and high-level se-
mantic tagging generally contribute most to other
tasks, while hyperlinks do not significantly im-
prove any other task. On the receiving end, we
see that multiword and hyperlink detection seem
to profit most from several auxiliary tasks. Sym-
biotic relationships are formed, e.g., by POS and
CCG-tagging, or MWE and compression.

We now investigate whether we can predict
gains from MTL given features of the tasks and
single-task learning characteristics. We will use



CCG CHU COM FNT POS HYP KEY MWE SEM STR

CCG 14 045 058 18 024 03 045 14 084
CHU -0.052 -0.15 -0.12 -0.45 -0.5 -0.22 -0.27-0.099 -0.32
coMm -5 1.3 13 -14 -24 -48 082 -3 -063

FNT -58 -1 6.1 94 57 -36 94 -3 -068

POS 49 29 19 09 085 026 13 34 29
HYP 4 11 92 15 —7.7 8.1

KEY 57 32 -1 4.7 059 0.69

MWE QiR 7.4 55 16 -3.8 -5.8 8.6

SeM 5 076 -1.2 -0.81 -0.85 -1.3 -0.83 -1.1 =dlo7

sTR -1.7 15 -0.26 -0.72 0.037 -15 -14 -16 17

Figure 1: Relative gains and losses (in percent)
over main task micro-averaged F; when incor-
porating auxiliary tasks (columns) compared to
single-task models for the main tasks (rows).

the induced meta-learning for analyzing what such
characteristics are predictive of gains.

Specifically, for each task considered, we ex-
tract a number of dataset-inherent features (see Ta-
ble 2) as well as features that we derive from the
learning curve of the respective single-task model.
For the curve gradients, we compute the gradients
of the loss curve at 10, 20, 30, 50 and 70 percent
of the 25,000 batches. For the fitted log-curve pa-
rameters, we fit a logarithmic function to the loss
curve values, where the function is of the form:
L(i) = a-In(c-i+d)+b. We include the fitted pa-
rameters a and c as features that describe the steep-
ness of the learning curve. In total, both the main
and the auxiliary task are described by 14 features.
Since we also compute the main/auxiliary ratios
of these values, each of our 90 data points is de-
scribed by 42 features that we normalize to the
[0, 1] interval. We binarize the results presented
in Figure 1 and use logistic regression to predict
benefits or detriments of MTL setups based on the
features computed above.!

4.1 Results

The mean performance of 100 runs of randomized
five-fold cross-validation of our logistic regression

'An experiment in which we tried to predict the magni-
tude of the losses and gains with linear regression yielded
inconclusive results.

Acc. F} (gain)
Majority baseline 0.555 0.615
All features 0.749 0.669
Best, data features only  0.665 0.542
Best combination 0.785 0.713

Table 3: Mean performance across 100 runs of 5-
fold CV logistic regression.

model for different feature combinations is listed
in Table 3. The first observation is that there is a
strong signal in our meta-learning features. In al-
most four in five cases, we can predict the outcome
of the MTL experiment from the data and the sin-
gle task experiments, which gives validity to our
feature analysis. We also see that the features de-
rived from the single task inductions are the most
important. In fact, using only data-inherent fea-
tures, the Fj score of the positive class is worse
than the majority baseline.

4.2 Analysis

Table 4 lists the coefficients for all 42 features. We
find that features describing the learning curves
for the main and auxiliary tasks are the best pre-
dictors of MTL gains. The ratios of the learning
curve features seem less predictive, and the gra-
dients around 20-30% seem most important, af-
ter the area where the curve typically flattens a bit
(around 10%). Interestingly, however, these gradi-
ents correlate in opposite ways for the main and
auxiliary tasks. The pattern is that if the main
tasks have flattening learning curves (small neg-
ative gradients) in the 20-30% percentile, but the
auxiliary task curves are still relatively steep, MTL
is more likely to work. In other words, multi-task
gains are more likely for target tasks that quickly
plateau with non-plateauing auxiliary tasks. We
speculate the reason for this is that multi-task
learning can help target tasks that get stuck early in
local minima, especially if the auxiliary task does
not always get stuck fast.

Other features that are predictive include the
number of labels in the main task, as well as
the label entropy of the auxiliary task. The
latter supports the hypothesis put forward by
Martinez Alonso and Plank (2017) (see Related
work). Note, however, that this may be a side
effect of tasks with more uniform label distribu-
tions being easier to learn. The out-of-vocabulary
rate for the target task also was predictive, which
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Feature Task Coefficient
Curve grad. (30%) Main -1.566
Curve grad. (20%) Main -1.164
Curve param. c Main 1.007
# Labels Main 0.828
Label Entropy Aux 0.798
Curve grad. (30%) Aux 0.791
Curve grad. (50%) Main 0.781
OOV rate Main 0.697
OOV rate Main/Aux 0.678
Curve grad. (20%) Aux 0.575
Fr. norm Main -0.516
# Labels Main/Aux 0.504
Curve grad. (70%) Main 0.434
Label entropy Main/Aux -0.411
Fr. norm Aux 0.346
Tokens/types Main -0.297
Curve param. a Aux -0.297
Curve grad. (70%) Aux -0.279
Curve grad. (10%) Aux 0.267
Tokens/types Aux 0.254
Curve param. a Main/Aux -0.241
Size Aux 0.237
Fr. norm Main/Aux -0.233
JSD Aux -0.207
# Labels Aux -0.184
Curve param. ¢ Aux -0.174
Tokens/types Main/Aux -0.117
Curve param. ¢ Main/Aux -0.104
Curve grad. (20%) Main/Aux 0.104
Label entropy Main -0.102
Curve grad. (50%) Aux -0.099
Curve grad. (50%) Main/Aux 0.076
OQV rate Aux 0.061
Curve grad. (30%) Main/Aux -0.060
Size Main -0.032
Curve param. a Main 0.027
Curve grad. (10%) Main/Aux 0.023
JSD Main 0.019
JSD Main/Aux -0.015
Curve grad. (10%) Main 6-1072
Size Main/Aux ~ —6-1073
Curve grad. (70%) Main/Aux —4- 10~4

Table 4: Predictors of MTL benefit by logistic re-
gression model coefficient (absolute value).
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makes sense as the embedding parameters are also
updated when learning from the auxiliary data.
Less predictive features include Jensen-
Shannon divergences, which is surprising, since
multi-task learning is often treated as a transfer
learning algorithm (Sggaard and Goldberg, 2016).
It is also surprising to see that size differences
between the datasets are not very predictive.

5 Conclusion and Future Work

We present the first systematic study of when MTL
works in the context of common NLP tasks, when
single task parameter settings are also applied for
multi-task learning. Key findings include that
MTL gains are predictable from dataset character-
istics and features extracted from the single-task
inductions. We also show that the most predictive
features relate to the single-task learning curves,
suggesting that MTL, when successful, often helps
target tasks out of local minima. We also observed
that label entropy in the auxiliary task was also
a good predictor, lending some support to the hy-
pothesis in Martinez Alonso and Plank (2017); but
there was little evidence that dataset balance is a
reliable predictor, unlike what previous work has
suggested.

In future work, we aim to extend our experi-
ments to a setting where we optimize hyperparam-
eters for the single- and multi-task models individ-
ually, which will give us a more reliable picture of
the effect to be expected from multi-task learning
in the wild. Generally, further conclusions could
be drawn from settings where the joint models do
not treat the two tasks as equals, but instead give
more importance to the main task, for instance
through a non-uniform drawing of the task con-
sidered at each training iteration, or through an
adaptation of the learning rates. We are also in-
terested in extending this work to additional NLP
tasks, including tasks that go beyond sequence la-
beling such as language modeling or sequence-to-
sequence problems.
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Abstract

We present a novel, unsupervised, and dis-
tance measure agnostic method for search
space reduction in spell correction using
neural character embeddings. The embed-
dings are learned by skip-gram word2vec
training on sequences generated from dic-
tionary words in a phonetic information-
retentive manner. We report a very high
performance in terms of both success rates
and reduction of search space on the Birk-
beck spelling error corpus. To the best of
our knowledge, this is the first application
of word2vec to spell correction.

1 Introduction

Spell correction is now a pervasive feature, with
presence in a wide range of applications such
as word processors, browsers, search engines,
OCR tools, etc. A spell corrector often re-
lies on a dictionary, which contains correctly
spelled words, against which spelling mistakes
are checked and corrected. Usually a measure
of distance is used to find how close a dictio-
nary word is to a given misspelled word. One
popular approach to spell correction is the use of
Damerau-Levenshtein distance (Damerau, 1964;
Levenshtein, 1966; Bard, 2007) in a noisy chan-
nel model (Norvig, 2007; Norvig, 2009). For
huge dictionaries, Damerau-Levenshtein distance
computations between a misspelled word and all
dictionary words lead to long computation times.
For instance, Korean and Japanese may have as
many as 0.5 million words!. A dictionary fur-
ther grows when inflections of the words are also
considered. In such cases, since an entire dic-
tionary becomes the search space, large number

"http://www.lingholic.com/how-many-words-do-i-need-
to-know-the-955-rule-in-language-learning-part-2/
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of distance computations blows up the time com-
plexity, thus hindering real-time spell correction.
For Damerau-Levenshtein distance or similar edit
distance-based measures, some approaches have
been tried to reduce the time complexity of spell
correction. Norvig (2007) does not check against
all dictionary words, instead generates all possi-
ble words till a certain edit distance threshold from
the misspelled word. Then each of such generated
words is checked in the dictionary for existence,
and if it is found in the dictionary, it becomes a
potentially correct spelling. There are two short-
comings of this approach. First, such search space
reduction works only for edit distance-based mea-
sures. Second, this approach too leads to high time
complexity when the edit distance threshold is
greater than 2 and the possible characters are large.
Large character set is real for Unicode characters
used in may Asian languages. Hulden (2009) pro-
poses a Finite-State-Automata (FSA) algorithm
for fast approximate string matching to find sim-
ilarity between a dictionary word and a misspelled
word. There have been other approaches as well
using FSA, but such FSA-based approaches are
approximate methods for finding closest match-
ing word to a misspelled word. Another more re-
cent approach to reduce the average number of dis-
tance computations is based on anomalous pattern
initialization and partition around medoids (de
Amorim and Zampieri, 2013).

In this paper, we propose a novel, unsuper-
vised, distance measure agnostic, highly accurate,
method of search space reduction for spell cor-
rection with a high reduction ratio. Our method
is unsupervised because we use only a dictionary
of correctly spelled words during the training pro-
cess. It is distance measure agnostic because once
the search space has been reduced then any dis-
tance measure of spell correction can be used. It
is novel because to the best of our knowledge, it
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is the first application of neural embeddings learn-
ing word2vec techniques (Mikolov et al., 2013a;
Mikolov et al., 2013b) to spell correction. The
goal of this paper is not to find a novel spell cor-
rection algorithm. Rather, the goal is to reduce the
time complexity of spell correction by reducing
the search space of words over which the search
for correct spelling is to be done. The reduced
search space contains only a fraction of words of
the entire dictionary, and we refer to that fraction
as reduction ratio. So, our method is used as a
filter before a spell correction algorithm. We dis-
cuss a closely related work in Section 2, which is
followed by description of our method in Section
3. Then we present our experiments and results in
Section 4, which demonstrates the effectiveness of
our approach.

2 Related Work

As discussed in Section 1, there have been studies
to reduce the time complexity of spell correction
by various methods. However, the recent work of
de Amorim and Zampieri (2013) is closest to our
work in terms of the goal of the study. We briefly
describe their method and evaluation measure, as
it would help us in comparing our results to theirs,
though the results are not exactly comparable.

De Amorim and Zampieri (2013) cluster a dic-
tionary based on anomalous pattern initialization
and partition around medoids, where medoids be-
come the representative words of the clusters and
the candidacy of a good cluster is determined by
computing the distance between the misspelled
word and the medoid word. This helps in reduc-
ing the average number of distance computations.
Then all the words belonging to the selected clus-
ters become candidates for further distance com-
putations. Their method on average needs to per-
form 3,251.4 distance calculations for a dictionary
of 57,046 words. This amounts to 0.057 reduction
ratio. They also report a success rate of 88.42%
on a test data set known as Birkbeck spelling er-
ror corpus.” However, it is important to note that
they define success rate in a rather relaxed manner
- one of the selected clusters contains either the
correct spelling or contains a word with a smaller
distance to the misspelled word than the correct
word. Later in Section 4, we define a stricter and
natural definition of success rate for our studies.
This difference in relaxed vs strict success rates

“http://www.dcs.bbk.ac.uk/ ROGER/corpora.html
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along with the inherent differences in approach
render their method and our method not entirely
comparable.

3 Method

Recent word2vec techniques (Mikolov et al.,
2013a; Mikolov et al., 2013b) have been very ef-
fective for representing symbols such as words in
an n-dimensional space R™ by using information
from the context of the symbols. These vectors are
also called neural embeddings because of the one
hidden layer neural network architecture used to
learn these vectors. In our method, the main idea
is to represent dictionary words as n-dimensional
vectors, such that with high likelihood the vec-
tor representation of the correct spelling of a mis-
spelled word is in the neighborhood of the vector
representation of the misspelled word. To quickly
explore the neighborhood of the misspelled word
vector, fast k-nearest-neighbor (k-NN) search is
done using a Ball Tree (Omohundro, 1989; Liu et
al., 2006; Kibriya and Frank, 2007). A Ball Tree
(aka Metric Tree) retrieves k-nearest-neighbors of
a point in time complexity that is logarithmic of
the total number of points (Kibriya and Frank,
2007). There are other methods, such as Locally-
Sensitive Hashing (LSH) and KD-Tree, which can
also be used to perform fast k-NN search. We use
Ball Tree because in our experiments, Ball Tree
outperforms both KD-Tree and LSH in terms of
speed of computation.

We treat a word as a bag of characters. For each
character, an n-dimensional vector representation
is learned using all the words from a dictionary of
correctly spelled words. Each word is then repre-
sented as an n-dimensional vector formed by sum-
ming up the vectors of the characters in that word.
Then in a similar manner, a vector is obtained for
the misspelled word by summing up the vectors
of the characters in the misspelled word. We start
with a few notations:

n : dimension of neural embedding

m : window size for word2vec training

W : set of all dictionary words

w : input misspelled word

k : size of the reduced search space

C': set of all the language characters present
in W

e C2Vmap : a map of all characters in C to
their n-dimensional vector representations



* V2Wmap : a map of vectors to the list of
words represented by the vectors®

e BT : aBall Tree of all the vectors

Our method is divided into two procedures.
The first procedure is a preprocessing step, which
needs to be done only once, and the second proce-
dure is the search space reduction step.

3.1 Procedure 1: preprocessing

1. Prepare sequences for word2vec training:
each word w’ in W is split into a sequence
such that each symbol of such sequence con-
tains the longest possible contiguous vowels*
or consonants but not both. E.g. “affiliates”

generates the sequence “affiliates”

Train skip-gram word2vec model with se-
quences generated in the previous step with
hidden layer size as n and window size as m.
Training yields neural embeddings for sym-
bols present in training sequences. For each
character c in C, store the neural embeddings
in C2V map for future retrieval.

. For each word w’ in W, compute the
n-dimensional vector representation of w’
by summing up neural embeddings (using
C2V map) of the characters in w’.

. Fill V2Wmap with key as vector computed
in the previous step and value as list of words
represented by that vector. Also construct
BT for the word vectors computed in the pre-
vious step.

The peculiar way of sequence generation in step
1 of Procedure 1 is chosen for both empirical and
intuitive reasons. Experimentally, we tried mul-
tiple ways of sequence generation, such as sim-
ply breaking a word into all it’s characters, mak-
ing symbols that are longest possible contiguous
consonants but each vowel is a separate symbol,
making symbols that are longest possible contigu-
ous vowels but each consonant is a separate sym-
bol, and the one given in the step 1 of Procedure
1. We found that the sequence generation given in
step 1 of Procedure 1 gives the best success rates.
An intuitive reasoning is that if each symbol of a
sequence contains the longest possible contiguous

*multiple words may have same vector representation,
€.g. anagrams
“we include character y in the vowel set
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vowels or consonants but not both, then it retains
phonetic information of a word. Phonetic infor-
mation is vital for correcting spelling mistakes.

3.2 Procedure 2: search space reduction

1. Compute v,,, the n-dimensional vector repre-
sentation of misspelled word w, by summing
up the vector representations of the characters
in w (using C2Vmap).

. Find kNearNeighb : k nearest-neighbors of
vy using BT

. Using V2Wmap fetch the reduced search
space of words corresponding to each vector
in kNearestNeighb

Once the reduced search space of words is ob-
tained as in step 3 of procedure 2, then any spell
correction algorithm can be used to find the correct
spelling of misspelled word w. This also means
that our search space reduction method is com-
pletely decoupled from the final spell correction
algorithm.

4 Experiments and Evaluation

In this section, we describe our experiments and
their effectiveness in search space reduction of
spell correction. As discussed in Section 2, recent
work of de Amorim and Zampieri (2013) is clos-
est to our work in terms of the goal of the study,
so we make comparisons with their work wherever
possible.

4.1 Data

We chose a dictionary W containing 109,582
words>, which is almost twice the size of dictio-
nary used by de Amorim and Zampieri (2013).
For testing, we use the same Birkbeck spelling er-
ror corpus as used by de Amorim and Zampieri
(2013). However, de Amorim and Zampieri
(2013) remove those test cases from the Birkbeck
corpus for which the correctly spelled word is not
present in their dictionary. We on the other hand
include such words in our dictionary and enhance
the size of our dictionary. This leads to the final
size of 109,897 words in the enhanced dictionary.
It is also worth mentioning that Birkbeck corpus is
a very challenging test data set, with some spelling
mistakes as wide as 10 edit distances apart.

Shttp://www-01.sil.org/linguistics/wordlists/english/



4.2 Evaluation Measure

We use success rate as a measure of accuracy. De
Amorim and Zampieri (2013) used a relaxed def-
inition of success rate (see Section 2), which we
call relaxed success rate. We have a stricter defi-
nition of success rate, where success is defined as
occurrence of the correct spelling of a misspelled
word in the reduced search space. Reduction ra-
tio for our method is 1.1k/|W|. The 1.1 factor
is present because average number of words per
vector in V2Wmap is 1.1. Thus, on average, we
need to do 1.1k distance computations post search
space reduction. It is worth noting that %k is in
fact flexible, and thus it is vital that £ << ||
to achieve a significant improvement in time com-
plexity of spell correction.

4.3 Experimental Setup

We implemented the procedures given in Section 3
partly in Java and partly in Python. For word2vec
training Deep Learning library DL4J® was used,
and Scikit-learn (Pedregosa et al., 2011) library
was used for Ball Tree’ to facilitate fast k-NN
search. All the experiments were conducted on an
Ubuntu 16.04 machine with Intel® Core™ 2 Duo
CPU P8800 @ 2.66GHz with 8 GB of RAM.

4.4 Results

In Section 3.1, we already discussed how the se-
quence generation given in step 1 of Procedure 1
gave the best success rates as compared to other
sequence generation methods. Similarly, window
size m = 4 in word2vec training gave best success
rates. Al