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Abstract

Enabling machines to read and compre-
hend unstructured text remains an unful-
filled goal for NLP research. Recent re-
search efforts on the “machine compre-
hension” task have managed to achieve
close to ideal performance on simulated
data. However, achieving similar lev-
els of performance on small real world
datasets has proved difficult; major chal-
lenges stem from the large vocabulary
size, complex grammar, and the frequent
ambiguities in linguistic structure. On the
other hand, the requirement of human gen-
erated annotations for training, in order to
ensure a sufficiently diverse set of ques-
tions is prohibitively expensive. Moti-
vated by these practical issues, we propose
a novel curriculum inspired training pro-
cedure for Memory Networks to improve
the performance for machine comprehen-
sion with relatively small volumes of train-
ing data. Additionally, we explore various
training regimes for Memory Networks to
allow knowledge transfer from a closely
related domain having larger volumes of
labelled data. We also suggest the use of a
loss function to incorporate the asymmet-
ric nature of knowledge transfer. Our ex-
periments demonstrate improvements on
Dailymail, CNN, and MCTest datasets.

1 Introduction

A long-standing goal of NLP is to imbue machines
with the ability to comprehend text and answer
natural language questions. The goal is still dis-
tant and yet generates tremendous amount of in-
terest due to the large number of potential NLP
applications that are currently stymied because of

their inability to deal with unstructured text. Also,
the next generation of search engines are aiming
to provide precise and semantically relevant an-
swers in response to questions-as-queries; similar
to the functionality of digital assistants like Cor-
tana and Siri. This will require text understanding
at a non-superficial level, in addition to reasoning,
and, making complex inferences about the text.

As pointed out by Weston et al. (2016), the
Question Answering (QA) task on unstructured
text is a sound benchmark on which to evaluate
machine comprehension. The authors also intro-
duced bAbI: a simulation dataset for QA with mul-
tiple toy tasks. These toy tasks require a machine
to perform simple induction, deduction, multi-
ple chaining of facts, and, complex reasoning;
which make them a sound benchmark to measure
progress towards AI-complete QA (Weston et al.,
2016). The recently proposed Memory Network
architecture and its variants have achieved close to
ideal performance, i.e., more than 95% accuracy
on 16 out of a total of 20 QA tasks (Sukhbaatar et
al., 2015; Weston et al., 2016).

While this performance is impressive, and is
indicative of the memory network having suf-
ficient capacity for the machine comprehension
task, the performance does not translate to real
world text (Hill et al., 2016). Challenges in real-
world datasets stem from the much larger vocab-
ulary, the complex grammar, and the often am-
biguous linguistic structure; all of which further
impede high levels of generalization performance,
especially with small datasets. For instance, the
empirical results reported by Hill et al. (2016)
show that an end-to-end memory network with a
single hop surpasses the performance achieved us-
ing multiple hops (i.e, higher capacity), when the
model is trained with a simple heuristic. Similarly,
Tapaswi et al. (2015) show that a memory net-
work heavily overfits on the MovieQA dataset and
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yields near random performance. These results
suggest that achieving good performance may not
always be merely a matter of training high capac-
ity models with large volumes of data. In addition
to exploring new models there is a pressing need
for innovative training methods, especially when
dealing with real world sparsely labelled datasets.

With the advent of deep learning, the state of
art performance for various semantic NLP tasks
has seen a significant boost (Collobert and We-
ston, 2008). However, most of these techniques
are data-hungry, and require a large number of
sufficiently diverse labeled training samples, e.g.,
for QA, training samples should not only encom-
pass an entire range of possible questions but also
have them in sufficient quantity (Bordes et al.,
2015). Generating annotations for training deep
models requires a tremendous amount of manual
effort and is often too expensive. Hence, it is nec-
essary to develop effective techniques to exploit
data from a related domain in order to reduce de-
pendence on annotations. Recently, Memory Net-
works have been successfully applied to QA and
dialogue-systems to work with a variety of dis-
parate data sources such as movies, images, struc-
tured, and, unstructured text (Weston et al., 2016;
Weston, 2016; Tapaswi et al., 2015; Bordes et al.,
2015). Inspired from the recent success of Mem-
ory Networks, we study methods to train mem-
ory networks with small datasets by allowing for
knowledge transfer from related domains where
labelled data is more abundantly available.

The focus of this paper is to improve general-
ization performance of memory networks via an
improved learning procedure for small real-world
datasets and knowledge transfer from a related do-
main. In the process, this paper makes the follow-
ing major contributions:

(i) A curriculum inspired training procedure for
memory network is introduced, which yields
superior performance with smaller datasets.

(ii) The exploration of knowledge transfer meth-
ods such as pre-training, joint-training and
the proposed curriculum joint-training with a
related domain having abundant labeled data.

(iii) A modified loss function for joint-training to
incorporate the asymmetric nature of knowl-
edge transfer, and also investigate the appli-
cation of a pre-trained memory network on
very small datasets such as MCTest dataset.

The remainder of the paper is organized as fol-
lows: Firstly, we provide a summary of related
work in Section 2. Next in Section 3, we describe
the machine comprehension task and the datasets
utilized in our experiments. An introduction to
memory networks for machine comprehension is
presented in Section 4. Section 5 outlines the pro-
posed methods for learning and knowledge trans-
fer. Experimental details are provided in Section
6. We summarize our conclusions in Section 7.

2 Related Work

Memory Networks have been successfully ap-
plied to a broad range of NLP and machine learn-
ing tasks. These tasks include but are not lim-
ited to: performing reasoning over a simulated en-
vironment for QA (Weston et al., 2016), factoid
and non-factoid based QA using both knowledge
bases and unstructured text (Kumar et al., 2015;
Hill et al., 2016; Chandar et al., 2016; Bordes
et al., 2015), goal driven dialog(Bordes and We-
ston, 2016; Dodge et al., 2016; Weston, 2016),
automatic story comprehension from both video
and text (Tapaswi et al., 2015), and, transferring
knowledge from one knowledge-base while learn-
ing to answer questions on a different knowledge
base (Bordes et al., 2015). Recently, various other
attention based neural models (similar to Memory
Networks) have been proposed to tackle the ma-
chine comprehension task by QA from unstruc-
tured text (Kadlec et al., 2016; Sordoni et al.,
2016; Chen et al., 2016). To the best of our knowl-
edge, knowledge transfer from an unstructured
text dataset to another unstructured text dataset for
machine comprehension is not explored yet.
Training deep networks is known to be a notori-
ously hard problem and often the success of these
techniques hinges upon achieving higher gener-
alization performance with high capacity models
(Blundell et al., 2015; Larochelle et al., 2009; Glo-
rot and Bengio, 2010). To address this issue, Cur-
riculum learning was firstly introduced by Ben-
gio et al. (2009), which showed that training with
gradually increasing difficulty leads to a better lo-
cal minima, specially when working with non-
convex loss functions. Although devising a uni-
versal curriculum strategy is hard, as even humans
do not converge to one particular order in which
concepts should be introduced (Rohde and Plaut,
1999) some notion of concept difficulty is nor-
mally utilized. With similar motivations, this pa-
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per makes an attempt to exploit curriculum learn-
ing for machine comprehension with a memory
network. Recently, curriculum learning has also
been utilized to avoid negative transfer and make
use of task relatedness for multi-task learning (Lee
et al., 2016). Concurrently, Sachan and Xing
(2016) have also studied curriculum learning for
QA and unlike this paper, they do not consider
learning and knowledge transfer on small real-
world machine comprehension dataset in the set-
ting of memory networks.

Pre-training & word2vec: Pre-training can of-
ten mitigate the issue that comes with random ini-
tialization used for network weights, by guiding
the optimization process towards the basins of bet-
ter local minima (Mishkin and Matas, 2016; Kra-
henbuhl et al., 2016; Erhan et al., 2010). An in-
spiration from the ripples created by the success
of pre-training and as well as word2vec, this pa-
per explores pre-training to utilize data from a
related domain and also pre-trained vectors from
word2vec tool (Mikolov et al., 2013). However,
finding an optimal dimension for these pre-trained
vectors and other involved hyper-parameters re-
quires computationally extensive experiments.

Joint-training / Co-training / Multi-task learn-
ing / Domain adaptation: Previously, the utiliza-
tion of common structures and similarities across
different tasks / domains has been instrumental for
various closely related learning tasks refereed as
joint-training, co-training, multi-task learning and
domain adaptation (Collobert and Weston, 2008;
Liu et al., 2015; Chen et al., 2011; Maurer et al.,
2016). To mitigate this ambiguity, in this paper,
we limit ourselves to using “joint-training” and
refrain from co-training, as unlike this work, co-
training was initially introduced to exploit unla-
belled data in the presence of small labelled data
and two different and complementary views about
the instances (Blum and Mitchell, 1998).

While this work looks conceptually similar, the
proposed method tries to exploit information from
a related domain and aims to achieve an asym-
metric transfer only towards the specified do-
main, without any interest in the source domain,
and hence should not be confused with the long-
standing pioneering work on multi-task learning
(Caruana, 1997). Another field of work that is re-
lated to this paper is on domain adaptation which
appears to have two major related branches. The
first branch is the recent work that has primar-

ily focused on unsupervised domain adaptation
(Nguyen and Grishman, 2015; Zhang et al., 2015),
and the other is the traditional work on domain
adaptation which has focussed on problems like
entity recognition and not on machine comprehen-
sion and modern neural architectures (Ben-David
et al., 2010; Daume III, 2007).

3 Machine Comprehension : Datasets
and Tasks Description

Machine comprehension is the ability to read and
comprehend text, i.e., understand its meaning, and
can be evaluated by tasks involving the answer-
ing of questions posed on a context document.
Formally, a set of tuples (q, C, S, s) is provided,
where q is the question,C is the context document,
S is a list of possible answers, and, s indicates
the correct answer. Each of q, C, and S are se-
quence or words from a vocabulary V . Our aim is
to train a memory network model to perform QA
with small training datasets. We propose two pri-
mary ways to achieve this: 1) Improve the learning
procedure to obtain better models, and 2) Demon-
strate knowledge transfer from a related domain.

3.1 Data Description

Several corpora have been introduced for the
machine comprehension task such as MCTest-
160, MCTest-500, CNN, Dailymail, and, Children
Boot Test (CBT) (Richardson et al., 2013; Her-
mann et al., 2015; Hill et al., 2016). The MCTest-
160 and MCTest-500 have multiple-choice ques-
tions with associated narrative stories. Answers in
these datasets can be one of these forms: a word,
a phrase, or, a full sentence.

The remaining datasets are generated using
Cloze-style questions; which are created by delet-
ing a word from a sentence and asking the model
to predict the deleted word. A place-holder token
is substituted in place of the deleted word which is
also the correct answer (Hermann et al., 2015). We
have created three subsets of CNN namely, CNN-
11K, CNN-22K and CNN-55K from the entire
CNN dataset, and Dailymail-55K from the Daily-
mail dataset. Statistics on the number of samples
comprising these datasets is presented in Table 1.

3.2 Improve Learning Procedure

It has been shown in the context of language
modelling that presenting the training samples
in an easy to hard ordering allows for shielding
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MCTest-160 MCTest-500 CNN-11K CNN-22K CNN-55K Dailymail-55K
# Train 280 1400 11,000 22,000 55,000 55,000
# Validation 120 200 3,924 3,924 3,924 2,500
# Test 200 400 3,198 3,198 3,198 2,000
# Vocabulary 2856 4279 26,550 31,932 40,833 42,311
# Words /∈ Dailymail-55K — — 1,981 2,734 6,468 —

Table 1: Number of samples in training, valdiation, and, test samples in the MCTest-160, MCTest-500,
CNN-11K, CNN-22K, CNN-55K, and, Dailymail-55K datasets; along with the size of vocabulary.

the model from very hard samples during train-
ing, yielding faster convergence and better models
(Bengio et al., 2009). We investigate a curricu-
lum learning inspired training procedure for mem-
ory networks to improve performance on the three
subsets of the CNN dataset described below.

3.3 Demonstrate Knowledge Transfer

We plan to demonstrate knowledge transfer from
Dailymail-55K to three subsets of CNN of varying
sizes utilizing the proposed join-training method.
For learning, we make use of smaller subsets of
the CNN dataset. The smaller size of these subsets
enables us to assess the performance boost due
to knowledge transfer: As our aim is to demon-
strate transfer when less labelled data is available,
choosing the complete dataset would render gains
from knowledge transfer as insignificant. We also
demonstrate knowledge transfer for the case of
MCTest dataset using embeddings obtained after
training the memory network with CNN datasets.

4 End-to-end Memory Network for
Machine Comprehension

End-to-end Memory Network is a recently intro-
duced neural network model that can be trained
in an end-to-end fashion; directly on the tu-
ples (q, C, S, s) using standard back-propagation
(Sukhbaatar et al., 2015). The complete train-
ing procedure can be described in the three steps:
i) encoding the training tuples into the contex-
tual memory, ii) attending context in memory
to retrieve relevant information with respect to
a question, and, iii) predicting the answer us-
ing the retrieved information. To accomplish the
first step, an embedding matrix A ∈ Rp×d is
used to map both question and context into a p-
dimensional embedding space; by applying the
following transformations: −→q = AΦ(q) and
{−→mi = AΦ(ci)}i=1,2,...,n. Where n is the num-
ber of items in context C and Φ is a bag-of-words
representation in d-dimensional space, where d is
typically the size of the vocabulary V . In the

second step, the network senses relevant informa-
tion present in the memory −→mi for query −→q , by
computing the attention distribution {αi}i=1,2,...,n,
where αi = softmax(−→mi

T−→q ). Thereafter, αi is
used to aggregate the retrieved information into
a vector representation −→ro by utilizing another
memory −→ri ; as stated in Equation 1. The mem-
ory representation −→ri is also defined as {−→ri =
BΦ(ci)}i=1,2,...,n in a manner similar to −→mi using
another embedding matrix B ∈ Rp×d.

−→ro =
n∑

i=1

αi
−→ri (1)

âi = softmax((−→ro +−→q )TUΦ(si)) (2)

In the last step, prediction distribution âi is
computed as in Equation 2, where U ∈ Rp×d is
an embedding matrix similar to A and can poten-
tially be tied with A, and si is one of the answers
in S. Using the prediction step, a probability dis-
tribution âi over all si can be obtained and the fi-
nal answer is selected as the one with the highest
probability âi corresponding to the option si.

L(P,D) =
1

ND

ND∑
n=1

an × log(ân(P,D))

+(1− an)× log(1− ân(P,D))

(3)

To train a memory network, the cross-entropy
loss function L between the true label distribution
ai ∈ {0, 1}s (which is a one hot vector to indi-
cate the correct label s in the training tuples) and
the predicted distribution âi is used, as in Equa-
tion 3. Where P , D and ND represent the set of
model parameters to learn, training dataset, and
the number of tuples in the training set respec-
tively. Such an objective can be easily optimized
using stochastic gradient descent (SGD). A mem-
ory network can easily be extended to perform
several hops over the memory before predicting
the answer. For details, we refer to Hill et al.
(2016). However, we constrain this study to use
a single-hop network in order to reduce number of
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parameters to learn and also the chances of over-
fitting; as we are dealing with small scale datasets.

Self-Supervision is a heuristic introduced to
provide memory supervision and the rationale be-
hind is that if the memory supporting the cor-
rect answer is retrieved than the model is more
likely to predict the correct answer (Hill et al.,
2016). More precisely, this is achieved by keep-
ing a hard attention over memory while training,
i.e., m

′
o = argmax αi. At each step of SGD, the

model computes m
′
o and updates only using those

examples which do not select the memorym
′
o hav-

ing the correct answer in the corresponding ci.

5 Proposed Methods

We attempt to improve the training procedure for
Memory Networks in order to increase the perfor-
mance for machine comprehension by QA with
small scale datasets. Firstly, we introduce an im-
proved training procedure for memory networks
using curriculum learning which is termed as Cur-
riculum Inspired Training (CIT) and offer details
about this in Section 5.1. Thereafter, Section
5.2 explains joint-training method for knowledge
transfer from an abundantly labelled dataset to an-
other dataset with limited label information .

5.1 CIT: Curriculum Inspired Training
Curriculum learning makes use of the fact that
model performance can be significantly improved
if the training samples are not presented randomly
but in such a way so as to make the learning task
gradually more difficult by presenting examples
in an easy to hard ordering (Bengio et al., 2009).
Such a training procedure allows the learner to
waste less time with noisy or hard to predict data
when the model is not ready to incorporate such
samples. However, what remains unanswered and
is left as a matter of further exploration is how to
devise an effective strategy for a given task?

SF (q, S, C, s) =

∑
word∈{q∪S∪C}

log(Freq.(word))

#{q ∪ S ∪ C} (4)

In this work, we formulate a curriculum strat-
egy to train a memory network for machine com-
prehension. Formally, we rank training tuples
(q, S, C, s) from easy to hard based on the nor-
malized word frequency for passage, question, and
context initially; using the score function (SF)
mentioned in Equation 4 (i.e. easier passages have

more frequent words). The training data is then
divided into a fixed number of chapters, with each
successive chapter resulting in addition of more
difficult tuples. The model is then trained sequen-
tially on each chapter with the final chapter con-
taining the complete training data. The presence
of both the number of chapters and the fixed num-
ber of epochs per chapter makes such a strategy
flexible and allows to be tailored to different data
after optimizing the like other hyper-parameters.

L(P,D, en) =
1

ND

ND∑
n=1

(an × log(ân(P,D))+

(1− an)× log(1− ân(P,D))× 1(en, c(n)× epc)
(5)

The loss function used for curriculum inspired
training varies with epoch number; as mentioned
in Equation 5. Note, in Equation 5, en and c(n)
represents the current epoch number and chapter
number for nth tuple assigned using rank allocated
based on SF mentioned in Equation 4 respectively.
epc, P ,D, and 1 is the number of epochs per chap-
ter, model parameters, training set, and an indica-
tor function which is one if first argument is >=
the second argument or else zero; respectively.

5.2 Joint-Training for Knowledge Transfer
While joint-training methods offer knowledge
transfer by exploiting similarities and regularities
across different tasks or datasets, the asymmet-
ric nature of transfer and skewed proportion of
datasets is usually not handled in a sound way.
Here, we devise a training loss function L̂ to re-
lieve both of these involved issues while doing
joint-training with a target dataset (TD) with fewer
training samples and a source dataset (SD) having
label information for higher number of examples;
as mentioned in Equation 6.

L̂(P, TD, SD) = 2× γ × L(P, TD) + 2× (1− γ)

×L(P, SD)× F (NTD, NSD)
(6)

Where L̂ represents the devised loss function
for joint-training for transfer, L the cross-entropy
loss function also mentioned earlier in Equation 3,
γ is a weighting factor which varies between zero
and one, F (NTD, NSD) is an another weighting
factor which is a function of number of samples
in the target domain NTD and in the source do-
main NSD. The rationale behind γ factor is to
control the relative update in the network due to
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samples from source and target datasets; which
permits biasing of the model performance towards
one dataset. F (NTD, NSD) factor can be inde-
pendently utilized to mitigate the effect of skewed
proportion in the number of samples present in
both target and source domains. Note, maintain-
ing both γ and F (NTD, NSD) as separate param-
eters allows for restricting γ within (0,1) without
any extra computation as described below.

5.3 Improved Loss Functions
This paper explores the following variants of the
introduced loss function L̂ for knowledge transfer
via joint-training:

1. Joint-training (Jo-Train):- γ = 1/2 and
F (NTD, NSD) = 1.

2. Weighted joint-training (W+Jo-Train):- γ =
(0, 1) and F (NTD, NSD) = NTD/NSD.

3. Curriculum joint-training (CIT+Jo-Train):-
L(P, TD) & L(P, SD) of Equation 6
are replaced by their analogous terms
L(P, TD, en) & L(P, SD, en) generated us-
ing Equation 5; γ = 1/2 and F (NTD, NSD)
= 1.

4. Weighted curriculum joint-training
(W+CIT+Jo-Train):- L(P, TD) & L(P, SD)
of Equation 6 are replaced by analogous
L(P, TD, en) & L(P, SD, en) generated us-
ing Equation 5; γ = (0,1) and F (NTD, NSD)
= NTD/NSD.

5. Source only (SrcOnly) :- γ = 0.

The F (NTD, NSD) factor does not increase
computation as it is not optimized for any of the
cases. Jo-Train (Liu et al., 2015), SrcOnly and a
method similar to W+Jo-Train (Daume III, 2007)
have also been explored previously for other NLP
tasks and models.

6 Experiments

We evaluate the performance on datasets intro-
duced earlier in Section 3. We first present
baseline methods, pre-processing and training de-
tails. In Section 6.3, we present results on CNN-
11/22/55K, MCTest-160 and MCTest-50 to vali-
date our claims mentioned in Section 1. All of
the methods presented here are implemented in
Theano (Bastien et al., 2012) and Lasagne (Diele-
man et al., 2015) and are run on a single GPU
(Tesla K40c) server with 500GB of memory.

6.1 Baseline Methods

We implemented Sliding Window (SW) and Slid-
ing Window + Distance (SW+D)(Richardson et
al., 2013) as baselines to compare against our ex-
periments. Further, we augment SW (or SW+D)
to incorporate distances between word vectors
of the question and the context over the slid-
ing window; in a manner similar to the way
SW+D is augmented from SW by Richardson et
al. (2013). These approaches are named based
upon the source of pre-trained word vectors,
e.g., SW+D+CNN-11K+W2V utilizes vectors es-
timated from both CNN-11K and word2vec pre-
trained vectors1. In case of more than one source,
individual distances are summed and utilized for
final scoring. Results on MCTest for SW, SW+D,
and their augmented approaches are reported us-
ing online available scores for all answers 2.

Meaningful Comparisons: To ascertain that
the improvement is due to the proposed training
methods, and not merely because of addition of
more data, we built multiple baselines, namely,
initialization using word vectors from word2vec,
pre-training, Jo-train, and SrcOnly. For pre-
training and word2vec, words ∈ target dataset and
/∈ source dataset are initialized, by a uniform ran-
dom sampling with the limits set to the extremes
spanned by the word vectors in the source domain.
It is worth to note that the pre-training and Jo-
train utilizes as much label information and data
as other proposed variants of joint-training. Also,
SrcOnly method is an indicative of how much di-
rect knowledge transfer from source domain to tar-
get domain can be achieved without any learning.

6.2 Pre-processing & Training Details

While processing data, we replace words occur-
ring less than 5 times by <unk> token except
for MCTest datasets. Additionally, all entities are
included in vocabulary. All models are trained
by carrying out the optimization using SGD with
learning rate in {10−4, 10−3}, momentum value
set to 0.9, weight decay in {10−5, 10−4}, and, max
norm in {1, 10, 40}. We kept length of window
equal to 5 for CNN / Dailymail datasets(Hill et
al., 2016) and for MCTest datasets is chosen from
{3, 5, 8, 10, 12}. For embedding size, we look for
the optimal value in {50, 100, 150, 200, 300} for

1http://code.google.com/p/word2vec
2http://research.microsoft.com/en-us/um/redmond/

projects/mctest/results.htm
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CNN-11 K CNN-22 K CNN-55 K
Model + Training Methods Train Valid Test Train Valid Test Train Valid Test
SW § 21.33 20.35 21.48 21.80 20.61 20.76 21.54 19.87 20.66
SW+D § 25.45 25.40 25.90 25.61 25.25 26.47 25.85 25.74 26.94
SW+W2V § 43.90 43.01 42.60 45.70 44.10 42.23 45.06 44.50 43.50
MemNN § 98.98 45.96 46.08 98.07 49.28 51.42 97.31 54.98 56.69
MemNN+CIT § 96.44 47.17 49.04 98.36 52.43 52.73 91.14 57.26 57.68
SW+Dailymail ‡ 30.19 31.21 30.60 31.70 30.87 32.01 31.56 33.07 31.08
MemNN+W2V ‡ 86.57 43.78 45.99 94.1 49.98 51.06 95.2 51.47 53.66
MemNN+SrcOnly ‡ 25.12 26.78 27.08 25.43 26.78 27.08 24.79 26.78 27.08
MemNN+Pre-train ‡ 92.82 52.87 52.06 95.12 53.59 55.35 96.33 56.64 59.19
MemNN+Jo-train ‡ 65.78 53.85 55.06 64.85 55.94 55.69 77.32 57.76 57.99
MemNN+CIT+Jo-train ‡ 77.74 55.93 55.74 78.96 55.98 56.85 71.89 56.83 59.07
MemNN+W+Jo-train‡ 71.72 54.30 55.70 79.64 55.91 56.73 71.15 57.62 58.34
MemNN+W+CIT+Jo-train ‡ 80.14 56.91 57.02 79.04 57.90 57.71 76.91 58.14 59.88

Table 2: Train, validation and test percentage accuracy on CNN-11/22/55K datasets. § and ‡ indicate
that the data used comes from either of CNN-11/22/55K and also from Dailymail-55K along with either
of CNN-11/22/55K respectively. Random test accuracy on these datasets is 3.96% approximately.

CNN / Dailymail datasets. For CNN / Dailymail,
we have trained memory network using a single
batch with self-supervision heuristic (Hill et al.,
2016). In case of curriculum learning, the num-
ber of chapters are optimized out of {3, 5, 8, 10}
and number of epochs per chapter is set equal to
2M

M+1 × edncl
edcl
× EN which is estimated by equat-

ing to the number of network update found for the
optimal case of non-curriculum learning. Here M
and edcl represents the number of chapter and em-
bedding size for curriculum learning, and edncl &
EN represents the optimal value found for em-
bedding size and number of epochs without cur-
riculum learning. We use early stopping with a
validation set while training the network.

6.3 Results & Discussion

In this section, we present results to validate con-
tributions mentioned in Section 1. Table 2 presents
the results of our approaches along with results
from baseline methods SW, SW+D, SW+W2V,
and a standard memory network (MemNN). Re-
sults for CIT on CNN-11/22/55K (MemNN+CIT)
show an absolute improvement of 2.96%, 1.31%,
and, 1.00% respectively, when compared with
the memory network (MemNN) (contribution (i)).
Figure 1 shows that the CIT leads to better conver-
gence when compared without CIT on CNN-11K.

As baselines for knowledge transfer
from the Dailymail-55K dataset to CNN-
11/22/55K datasets, Table 2 presents results
for SW+Dailymail, memory network initialized
with word2vec (MemNN+W2V), memory net-
work trained on Dailymail (MemNN+SrcOnly),
memory network initialized with pre-trained

embeddings from Dailymail (MemNN+Pre-
train) and memory network jointly-trained
with both Dailymail and CNN (MemNN+Jo-
train) (contribution (ii)). Further, results
show the knowledge transfer observed when
MemNN+CIT+Jo-train and MemNN+W+Jo-
Train are utilized to train Dailymail-55K
with CNN-11/22/55K. On combining the
MemNN+CIT+Jo-train with MemNN+W+Jo-
Train (which is MemNN+W+CIT+Jo-Train),
a significant and consistent improvement can
be observed; as the performance goes up by
1.96%, 2.03%, and, 1.89% on CNN-11/22/55K
respectively; when compared against the other
competitive baselines (contribution (ii) & (iii)).

Results empirically support the major premise
of this study, i.e., CIT and knowledge transfer
from a related dataset with memory network can
significantly improve the performance; improve-
ments of 10.94%, 6.28%, and, 3.19% are ob-
served with CNN-11/22/55K respectively when
compared with the standard memory network. The
improvement in knowledge transfer decreases as
the amount of data in the target domain starts in-
creasing from 11K to 55K, as the volume of data
in the target domain starts becoming comparable
to source domain, and is enough to achieve similar
level of performance without knowledge transfer.

Previously, Chen et al. (2016) annotated a sam-
ple of 100 questions on CNN stories based on the
type of capabilities required to answer the ques-
tion. We report results for all 6 specific categories
in Table 3. Even with CNN-11K and Dailymail-
55K which is roughly 20% of the complete CNN
dataset, the proposed methods achieve similar per-
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Model + Training Methods Exact Para. Part.Clue Multi.Sent. Co-ref. Ambi./Hard
SW § 3(23.1%) 12(29.2%) 2(10.5%) 0(0.0%) 0(0.0%) 2(11.7%)
SW+D § 6(46.1%) 14(34.1%) 2(10.5%) 0(0.0%) 0(0.0%) 3(17.6%)
SW+W2V § 10(76.9%) 20(48.7%) 5(26.3%) 0(0.0%) 0(0.0%) 7(41.1%)
MemNN § 8(61.5%) 20(48.7%) 12(63.1%) 1(50.0%) 0(0.0%) 2(11.7%)
MemNN+CIT § 10(76.9%) 19(46.3%) 12(63.1%) 1(50.0%) 3(37.5%) 2(11.7%)

SW+Dailymail ‡ 6(46.1%) 19(46.3%) 5(26.3%) 0(0.0%) 0(0.0%) 2(11.7%)
MemNN+W2V ‡ 6(46.1%) 27(65.8%) 5(26.3%) 0(0.0%) 0(0.0%) 7(41.1%)
MemNN+SrcOnly § 6(46.1%) 12(29.2%) 2(10.5%) 0(0.0%) 0(0.0%) 2(11.7%)
MemNN+Pre-train ‡ 11(84.6%) 25(60.9%) 12(63.1%) 0(0.0%) 0(0.0%) 1(5.9%)
MemNN+Jo-train ‡ 8(61.5%) 29(70.7%) 10(52.6%) 2(100%) 0(0.0%) 5(29.4%)
MemNN+CIT+Jo-train ‡ 10(76.9%) 27(65.8%) 10(52.6%) 0(0.0%) 3(37.5%) 5(29.4%)
MemNN+W+Jo-train ‡ 11(84.6%) 29(70.7%) 10(52.6%) 2(100%) 0(0.0%) 5(29.4%)
MemNN+W+CIT+Jo-train ‡ 11(84.6%) 27(65.8%) 10(52.6%) 2(100%) 3(37.5%) 5(29.4%)

Chen et al. (2016) $ 13(100%) 39(95.1%) 17(89.5%) 1(50.0%) 3(37.5%) 1(5.9%)
Sordoni et al. (2016) $ 13(100%) 39(95.1%) 16(84.2%) 1(50.0%) 3(37.5%) 5(29.4%)

Total Number Of Samples 13 41 19 2 8 17

Table 3: Question-specific category analysis of percentage test accuracy with only learning and knowl-
edge transfer methods on CNN-11K dataset. § and ‡ indicates that the data used comes from CNN-11K
and from Dailymail-55K along with CNN-11K respectively. $ indicate results from Sordoni et al. (2016).

Figure 1: Percentage training error v/s
number of million updates while train-
ing on CNN-11K with or without cur-
riculum inspired training.

MCTest-160 MCTest-500
Training Methods One Multi. All One Multi. All
SW 66.07 53.12 59.16 54.77 53.04 53.83
SW+D 75.89 60.15 67.50 63.23 57.01 59.83
SW+D+W2V 79.46 59.37 68.75 65.07 58.84 61.67
SW+D+CNN-11K 79.78 59.37 67.67 64.33 57.92 60.83
SW+D+CNN-22K 76.78 60.93 68.33 64.70 59.45 61.83
SW+D+CNN-55K 78.57 59.37 68.33 65.07 59.75 62.16
SW+D+CNN-11K+W2V 77.67 59.41 68.69 65.07 61.28 63.00
SW+D+CNN-22K+W2V 78.57 60.16 69.51 66.91 60.00 63.13
SW+D+CNN-55K+W2V 79.78 60.93 70.51 66.91 60.67 63.50

Table 4: Knowledge transfer results on MCTest-160 and
MCTest-500 datasets. One and Multi. indicates the ques-
tions that require one and multiple supporting facts. Random
test accuracy is 25% here, as number of options are 4.

formance on 4 out of 6 categories, when compared
to latest models (2nd & 3rd last rows of Table 3).

On very small datasets such as MCTest-160 and
MCTest-500, it is not feasible to train memory
network (Smith et al., 2015), therefore, we ex-
plore the use of word vectors from the embedding
matrix of a model pre-trained on CNN datasets.
Here, the embedding matrix refers to the encod-
ing matrix A used in the first step of memory net-
work as mentioned in Section 4. SW+D+CNN-
11/22/55K are the results when the similarity mea-
sures comes from SW+D as mentioned in Sec-
tion 6.1 and also using the word vectors from en-
coding matrix A obtained after training on CNN-
11/22/55K. From table 4, it is evident that perfor-
mance improves as the amount of data increases in
CNN domain (contribution(iii)). Further, on com-
bining with word2vec distance (SW+D+CNN-
11/22/55K+W2V), an improvement is observed.

7 Conclusion

Looking at the widespread applications of Mem-
ory Networks and the prohibitive data require-
ments for training them, this paper seeks to im-
prove the performance of memory networks on
small datasets in two different ways. Firstly,
this paper introduces an effective CIT procedure
for machine comprehension. Secondly, this pa-
per explores various methods to exploit labelled
data from closely related domains; in order to
perform knowledge transfer and improve perfor-
mance. Additionally, this paper suggests the use of
a modified loss function to further incorporate the
asymmetric nature of knowledge transfer. Beyond
machine comprehension, we believe that the pro-
posed methods are likely to achieve higher gener-
alization for other tasks utilizing memory network
style architectures, by virtue of the proposed CIT
method and joint-training for knowledge transfer.
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