Parsing Mildly Non-projective Dependency Structures

David Weir and John Carroll
Department of Informatics
University of Sussex, United Kingdom
{davi dw, j ohnca}@ussex. ac. uk

Carlos Gomez-Rodiiguez
Departamento de Computaai
Universidade da Coiia, Spain

cgonezr @dc. es

Abstract the problem is intractable in the absence of this as-
sumption (McDonald and Satta, 2007).

Nivre and Nilsson (2005) observe that most
non-projective dependency structures appearing
in practice are “close” to being projective, since
they contain only a small proportion of non-
projective arcs. This has led to the study of

classes of dependency structures that lie be-

We present parsing algorithms for vari-
ous mildly non-projective dependency for-
malisms. In particular, algorithms are pre-
sented for: all well-nested structures of
gap degree at mogt with the same com-

plexity as the best existing parsers for con-

stituency formalisms of equivalent genera-
tive power; all well-nested structures with
gap degree bounded by any constant
and a new class of structures with gap de-

tween projective and unrestricted non-projective
structures (Kuhlmann and Nivre, 2006; Havelka,
2007). Kuhlmann (2007) investigates several such
classes, based on well-nestedness and gap degree

gree up tok that includes some ill-nested
structures. The third case includes all the
gap degreé structures in a number of de-
pendency treebanks.

constraints (Bodirsky et al., 2005), relating them
to lexicalised constituency grammar formalisms.
Specifically, he shows that: linear context-free
rewriting systems (LCFRS) with fan-okt(Vijay-
Shanker et al., 1987; Satta, 1992) induce the set
of dependency structures with gap degree at most

. k — 1; coupled context-free grammars in which
Dependency parsers analyse a sentence in Mg maximal rank of a nonterminal is(Hotz and

of a set of directed links (dependencies) expresspitsch, 1996) induce the set of well-nested depen-
ing the head-modifier and head-complement reladency structures with gap degree at mbst 1;
tionships which form the basis of predicate argu-ynq | TAGs (Joshi and Schabes, 1997) induce the

menF structure. We take dependency structures t@qt of well-nested dependency structures with gap
be directed trees, where each node corresponds {gree at most.

a word and the root of the tree marks the syn-

) - These results establish that there must be
tactic head of the sentence. For reasons of eﬁ'polynomial-time dependency parsing algorithms

ciency, many practical implementations of depenzy,"\ve|l-nested structures with bounded gap de-
dency parsing are restricted fojective struc- gree since such parsers exist for their correspond-
tures, in which the subtree rooted at each worc?ng lexicalised constituency-based formalisms.
covers a contiguous substring of the sentencqqqyever, since most of the non-projective struc-
However, while free word order languages suchieg in treebanks are well-nested and have a small
as Czech do not satisfy this constraint, parsingan degree (Kuhimann and Nivre, 2006), devel-
without the projectivity cor_lst'raint is _computation— oping efficient dependency parsing strategies for
ally complex. Although it is possible t0 parse yheqe sets of structures has considerable practical

non-projective structures in quadratic time under gnterest, since we would be able to parse directly
model in which each dependency decision is indeyity gependencies in a data-driven manner, rather

pendent of all the others (McDonald et al., 2005)4an indirectly by constructing intermediate con-

*Partially supported by MEC and FEDER (HUM2007- Stituency grammars and extracting dependencies

66607-C04) and Xunta de Galicia (PGIDITO7SINO05206PR from constituency parses.

INCITEOS8E1R104022ES, INCITEOSENA305025ES, We add thi b ith the follow
CITEO8PXIB302179PR, Rede Galega de Proc. da Linguaxe VVE address this problem wi e following

e RI, Bolsas para Estés INCITE — FSE cofinanced). contributions: (1) we define a parsing algorithm

1 Introduction

Proceedings of the 12th Conference of the European Chapter of the ACL, pages 291-299,
Athens, Greece, 30 March — 3 April 2009. (©2009 Association for Computational Linguistics

291

for well-nested dependency structures of gap deef a particular nodev, in T'is the minimuny € IN
greel, and prove its correctness. The parser runsuch that wy, | can be written as the union gft 1

in time O(n"), the same complexity as the bestintervals; that is, the number of discontinuities in
existing algorithms for LTAG (Eisner and Satta, |wy|. The gap degree of the dependency freis
2000), and can be optimised @(n5) in the non- the maximum among the gap degrees of its nodes.
lexicalised case; (2) we generalise the previous alNote that7 has gap degree O if and onlyif is
gorithm to any well-nested dependency structurgrojective. The subtrees induced by nodgsand
with gap degree at mogtin time O(n°*2¢); (3) w, areinterleavedif |w,| N |w,] = 0 and there
we generalise the previous parsers to be able tare nodesv;, w; € |w,] andwy, w; € |wy| such
analyse not only well-nested structures, but alsehati < & < j < I. A dependency tre& is
ill-nested structures with gap degree at mosat- well-nestedif it does not contain two interleaved
isfying certain constraintsin timeO(n**+3%); and subtrees. A tree that is not well-nested is said to
(4) we characterise the set of structures covered byeill-nested. Note that projective trees are always
this parser, which we cathildly ill-nestedstruc- well-nested, but well-nested trees are not always
tures, and show that it includes all the trees presergrojective.

in a number of dependency treebanks.
2.2 Dependency parsing schemata

2 Preliminaries The framework of parsing schemata (Sikkel,

A dependency grapfor a stringws ...w, is a 1997) provides a uniform way to describe, anal-
graphG = (V,E), whereV = {wi,...,w,} YS€ and compare parsing algorithms. Parsing
andE C V x V. We write the edgdw;, w;) schemata were initially defined for constituency-
asw; — w;, meaning that the word; is a syn- based grammatical formali_sms, bu_t o@ez-
tactic dependentor achild) of w; or, conversely, Rodiiguez et al. (2008a) define a variant of the
thatw; is thegovernor(paren) of w;. We write framework for dependency-based parsers. We
w; —* w; to denote that there exists a (possi-use thesedependency parsing schematia de-
bly empty) path fromw; to w;. The projection fine parsers and prove their correctness. Due to
of a nodew;, denoted w; |, is the set of reflexive- Space constraints, we only provide brief outlines
transitive dependents af;, that is: |w; | = {w; ¢ ~ Of the main concepts behind dependency parsing
V | w; —* w;}. Aninterval (with endpoints and ~ Schemata.
) is a set of the fornfi, j] = {wy, | i < k < j}. The parsing schema approach considers pars-
A dependency graph is said to béreeif itis: ing as deduction, generating intermediate results
(1) acyclic:w; € |w;]| impliesw; — w; ¢ F; and calleditems An initial set of items is obtained
(2) each node has exactly one parent, except fdfom the input sentence, and the parsing process
one node which we call th@ot or head A graph involvesdeduction stepwhich produce new items
verifying these conditions and having a vertex sefrom existing ones. Each item contains informa-
V C {wi,...,w,} is apartial dependency tree tion about the sentence’s structure, and a success-
Given a dependency trée = (V, E) and a node ful parsing process produces at least final item
u € V, thesubtreeinduced by the node is the providing a full dependency analysis for the sen-
graphT, = (|u], E,) whereE, = {w; — w; € tence or guaranteeing its existence. In a depen-

E|w; € |u]}. dency parsing schema, items are defined as sets of
' partial dependency tregs To define a parser by
2.1 Properties of dependency trees means of a schema, we must define an item set

We now define the concepts of gap degree an@nd provide a set of deduction steps that operate
well-nestedness (Kuhimann and Nivre, 2006). Lepn it. Given an item sef, the set offinal items

T be a (possibly partial) dependency tree forfor strings of lengthn is the set of items i that

wy ... wy,: We say thafl’ is projective if |w;] is contain a full dependency tree for some arbitrary
an interval for every wordy;. Thus every node string of lengthn. A final item containing a de-

in the dependency structure must dominate a corpendency tree for a particular string . .. w, is
tiguous substring in the sentence. Tdap degree said to be &orrect final itenfor that string. These

1Parsing unrestricted ill-nested structures, even when the 2The formalism allows items to contain forests, and the
gap degree is bounded, is NP-complete: these structures agependency structures inside items are defined in a notation
equivalent to LCFRS for which the recognition problem is with terminal and preterminal nodes, but these are not needed
NP-complete (Satta, 1992). here.

292

concepts can be used to prove the correctness wfhere each item of the forfw, j, h, [, r] represents
a parser: for each input string, a parsing schema'he set of all well-nested partial dependency trees
deduction steps allow us to infer a set of itemsrooted atw,, such that|w,| = {wx} U ([i,5] \
calledvalid itemsfor that string. A schema is said [/, r]), and all the nodes (except possilily have
to besoundif all valid final items it produces for gap degree at most 1. We call items of this form
any arbitrary string are correct for that string. Agapped itemsand the intervall,r] the gap of
schema is said to beompleteif all correct final the item. Note that the constrainkts # j, h #
items are valid. Acorrectparsing schemaisone i + 1,h # | — 1,h # r are added to items to
which is both sound and complete. avoid redundancy in the item set. Since the result

In constituency-based parsing schemata, deduof the expressiokwy, } U ([4, j] \ [{,r]) for a given
tion steps usually have grammar rules as side coriead can be the same for different sets of values of
ditions. In the case of dependency parsers it is, j, [, r, we restrict these values so that we cannot
also possible to use grammars (Eisner and Sattgget two different items representing the same de-
1999), but many algorithms use a data-driven appendency structures. Itemsiolating these con-
proach instead, making individual decisions aboustraints always have an alternative representation
which dependencies to create by using probabilisthat does not violate them, that we can express
tic models (Eisner, 1996) or classifiers (Yamadawith a normalising functiomm(¢) as follows:
and Matsumoto, 2003). To represent these algonm([i,,4,1,7]) = [i,5 — 1,4,1,7] (f r < j — 1 orr = o),
rithms as deduction systems, we use the notion or[i,l —1,j,0,0] (if r =j —1). _
of D-rules (Covington, 1990). D-rules take the (i, g, =1, Lr]) = [1, 4,0 = 1,0 = Lr](if >0 +1),

. or[r+1,5,l—1,0,0] (if Il =14+ 1).

form a — b, which says that word can haven ., (i ji —1,1,0]) = [i — 1,5,i — 1,1,7].
as a dependent. Deduction steps in non-grammasmn([i, j,r,1,7]) = [i, j,r, 1,7 — 1] (if | < 7),
based parsers can be tied to the D-rules associatedor [i, j, r, ¢, o] (if L =).
with the links they create. In this way, we ob- nm([i, j,h,1,r]) = [i, 4, h, 1, 7] for all other items.
tain a representation of the underlying logic of the When defining the deduction steps for this and
parser while abstracting away from control struc-other parsers, we assume that they always produce
tures (the particular model used to create the deaormalised items. For clarity, we do not explicitly
cisions associated with D-rules). Furthermore, thevrite this in the deduction steps, writingnstead
choice points in the parsing process and the inforef nm(.) as antecedents and consequents of steps.
mation we can use to make decisions are made ex- The set of initial items is defined as the set

plicit in the steps linked to D-rules. H = {[h,h,h,0,0] | h e N, 1< h<n),

3 TheWG; parser where each itenjh, h, h, o, | represents the set
. containing the trivial partial dependency tree con-
3.1 Parsing schema folWG, sisting of a single nodev, and no links. This
We defineWG,, a parser for well-nested depen-same set of hypotheses can be used for all the
dency structures of gap degreel, as follows: parsers, so we do not make it explicit for subse-
The item set i€y g1 = Z1 U Ty, With guent schemata. Note that initial items are sepa-

o o rate from the item sefy; 1 and not subject to its
Li=Ali-g:h00 i, g, h €N, 1< h <m, constraints, so they do nGot require norrjnalisation.
l<i<jsnh#jh#i-1} The set of final items for strings of lengthin
where each item of the formi, j, h, o, <] repre- WG, is defined as the set
sents the set of all well-nested partial dependency r _ {[L,n,h,0,0] | heN,1<h<n),

trees with gap degree at most 1, rooted:at, and o _ _ o
such thatwy, | = {wy,} U [4, j], and which is the set of items iffy;; containing de-

pendency trees for the complete input string (from
Ty = {li: g by L] [4,4, hs e € N, 1T < h <, position1 to n), with their head at any word,.
I<i<i<r<j<nh#jh#i-1, The deduction steps of the parser can be seen in
h#1—1,h#r} Figure 1A.
The WG, parser proceeds bottom-up, by build-

°In this and subsequent schemata, we use D-rules to e¥ng dependency subtrees and joining them to form
press parsing decisions, so partial dependency trees are 3s-

sumed to be taken from the set of trees licensed by a set JRFG€r subtrees, un_til it finds a complete de'pen—
D-rules. dency tree for the input sentence. The logic of

293

A. WG; parser:

[h1,h1, k1, 0,9]
[i2, j2, h2, 0, 0]
[i2,72, hl, 0, 9]
such thatwpe € [i2, j2] A wpr ¢ [i2, 2],

Link Ungapped:

Wh2 — Wh1

[i7j7ha<>7<>] [j+1>k7h7<>7<>]

Combine Ungapped: [i, k, b, 0, 9]

[h1,h1,h1,0,9]
(12, j2, h2,12, 2]
[i2, 72, 1, 12, 12]
such thatwsy € [i2, 2] \ [12,72] A w1 € [i2,52] \ [12,72)],

Link Gapped:

Wh2 — Wh1

) . [i, j, h,©,0] [k, 1, h,o,0]
Combine Opening Gap: AR TSNS

suchthay < k — 1,

Combine Keeping Gap Left Combine Keeping Gap Right Combine Closing Gap
[i;9,h Lr] [+ 1,k h, 0,0 [i,9,h,00] [+ 1k k7] 6,5, h,l,r] [l Ry 0,9
[i, K, h, 1, 7] [i,k, h, 1, 7] [, 3, b, 0,]
Combine Shrinking Gap Left Combine Shrinking Gap Right Combine Shrinking Gap Centre
[i7.j7 h’7l?r] [l7 k? h70’<>] [i’j7 h7l’,r] [k7r?h’707<>} [Z.’j7 h7l?r] [l7r?h7l27r2:|
[i,5,h, k+1,7] [i, 4, b1k — 1] [i, 4, b, 12,72]

B. WGk parser:
[h1,h1, h1,] Combine Shrinking Gap Right
Link: [127']2’ h27 [(1177.1)7 M (lg7 Tg)]] [inja h7 [(llarl)7) ',' ’ (ZQ*17T¢1*1)5 (lq7/r/)7 (l57rs)7 sy (lgvrg)“
[i27j2, hl, [(ll,rl), ey (lg, 7"_(,)]] [Tq +1,r 7h, [(lq+1,’l“q+1), ceuy (1571,7'571)]]
such thatwpe € [i2, 2] \ U7_, [lp, 7] [i, 3, hy [(11,71), - -5 (Ig, 79)]]
Awn1 & [i2, 52] \UZ:le’Tp}- such thay < k

Wh2 — Wh1

Combine Shrinking Gap Left
[i7.j7 h, [(llla Tl)» LR (l(h TQ)a (llv TS)v (ls+1,7’s+1), R (lgv 7‘9)”
[l ,ls — 17 h, [(lq+17 Tq+1), ey (ls_l,rs_l)]}
[i7j7 h, [(lhrl)v] (lg7 Tg)”

Combine Opening Gap
[iv lq -1, h7 [(115T1)7 B (l(l—lvrq—l)“
[rq +1,m, b, [(lg+1,7g41), - -+, (g, 7g)]]

[iv m, h7 [(1177"1)7 ey (l97 7'9)]]
such thay < k andily < rq, such thay < k

Combine Shrinking Gap Centre
) [iajv h’7 [(l}a’r/l)v) (lf17 TQ)a (1/7 7’/), (lSaTS)a sy (lg,T'g)H
[.7 +1,m,h, [(ZQ+17TQ+1)7 cr (1977'9)]] [l , T h, [(lq+17 Tq+1)7 ceey (ls—l,rs—l)]]

[iam7 ha [(lh Tl)a] (1977.9)” [imjv h7 [(l17 Tl)v sy (lmrg)”
such thay < k, such thay < k

Combine Keeping Gaps
[iajv h7 [(117 Tl)a ceey (Z%TQ)H

C. Additional steps to turn WG; into MG;:
. . i, 7, h, 1 I,k h]
[i,,h, L] Lk hyr +1, 5] Combine Interleaving Gap C[.Z’J’ bl bk hom,]

Combine Interleaving: - [i, k, b, m, 7]
[i, &, R, 0,0] such thatn < r + 1,
[’L"j7h’?l’,r} [i7j7h7l7r]
. . Lk hr+1,4] . . k,m,h,r+1,4]
Combine Interleaving Gap L———————— Combine Interleaving Gap R:
9 N kg + 1,4 9 R R o = 1]
such thatu > j, such thatc > [.
D. General form of the MG, Combine step:
[ia1) Z'ap"’l - 1: hv [(ia1+17iaz - 1)7 [N} (i”‘p—l"'l?iap - 1)“
[iblvibq+1 -1, h’v [(ibl-‘rlv ib2 - l)a) (ibq71+1v ibq - 1)]]
[imin(al,bl)a irrzaz(ap+l,bq+1) - 17 hv [(im ’ igl+1 - 1)1 sy (7:97‘7 ingrl - 1)”

for each string of length with a’s located at positions; . ..a,(1 < a1 < ... < ap < n), b’satpositiond; ... by (1 < b1 <
...<bg<n),and g's atpositiong; ... ¢gr(2< g1 < ... < gr <n-—1),suchthat <p <k, 1<qg<k0<r<k-1,
p + ¢ + r = n, and the string does not contain more than one consecutive appeafdhe same symbol.

Figure 1: Deduction steps for the parsers defined in the paper.

the parser can be understood by considering howuced bywy, is obtained from the ones correspond-
it infers the item corresponding to the subtree inding to the subtrees induced hy;, . .. wq, by: (1)
duced by a particular node, given the items for theapplying theLink Ungappedor Link Gappedstep
subtrees induced by the direct dependents of thdb each of the items corresponding to the subtrees
node. Suppose that, in a complete dependendnduced by the direct dependents, and to the hy-
analysis for a sentence; ...w,, the wordw;, pothesis|h, h, h,o,o]. This allows us to infep
haswy, . .. wq, as direct dependents (i.e. we haveitems representing the result of linking each of the
dependency linksvg, — wp,...,wq, — wy). dependent subtrees to the new head (2) ap-
Then, the item corresponding to the subtree inplying the variousCombinesteps to join all of the

294

items obtained in the previous step into a single It is possible to build a variant of this parser
item. TheCombinesteps perform a union oper- with time complexityO(n®), as with parsers for
ation between subtrees. Therefore, the result is anlexicalised TAG, if we work with unlexicalised
dependency tree containing all the dependent sul-rules specifying the possibility of dependencies
trees, and with all of them linked th: this is between pairs of categories instead of pairs of
the subtree induced byy,. This process is ap- words. In order to do this, we expand the item set
plied repeatedly to build larger subtrees, until, ifwith unlexicalised items of the fortfi, 5, C, 1, r],

the parsing process is successful, a final item isvhere C is a category, apart from the existing
found containing a dependency tree for the comitems i, j, h,[,r]. Steps in the parser are dupli-

plete sentence. cated, to work both with lexicalised and unlex-
. icalised items, except for theink steps, which
3.2 Proving correctness always work with a lexicalised item and an un-

The parsing schemata formalism can be used ttgxicalised hypothesis to produce an unlexicalised
prove the correctness of a parsing schema. Ti#em, and theCombine Shrinking Gasteps, which
prove thatWG, is correct, we need to prove can work only with unlexicalised items. Steps are
its soundness and completenéssSoundness is added to obtain lexicalised items from their unlex-
proven by checking that valid items always con-icalised equivalents by binding the head to partic-
tain well-nested trees. Completeness is proven bylar string positions. Finally, we need certain vari-
induction, taking initial items as the base case an@nts of theCombine Shrinking Gagteps that take
showing that an item containing a correct subtre@ unlexicalised antecedents and produce a lexi-
for a string can always be obtained from itemscalised consequent; an example is the following:

corresponding to smaller subtrees. In order to i Ji{j}%lig]rg]
prove this induction step, we use the concept of Combine Shrinking Gap Centre &—] B Té]

order annotations (Kuhlmann, 2007; Kuhimann h thata (w6)—C
Bhi, 2007), which are strings that lexicalise iy~ . (wr)= _ _
and Mohl, , Although this version of the algorithm reduces

the precedence relation between the nodes of a dﬁfne complexity with respect to the length of the
pendency tree. Given a correct subtree, we diVid?nput toO(n%), it also adds a factor related to the
the proof into cases according to the order annotgs her of categories, as well as constant factors
tion of its h_ead and we find_that, for every possibledue to using more kinds of items and steps than
form of this ordgr annotatl'on, we can find a S€4he originalWG, algorithm. This, together with
quence oCombinesteps to infer the relevant item o o4 antages of lexicalised dependency parsing,
from smaller correct items. may mean that the origin®/G, algorithm is more

3.3 Computational complexity practical than this version.

The time complexity ofWG, is O(n”), as the 4 TheWG, parser

stepCombine Shrinking Gap Centweorks with 7))
free string positions. This complexity with respect 1he WGi parsing schema can be generalised to

to the length of the input is as expected for thisPPtain a parser for all well-nested dependency
set of structures, since Kuhlmann (2007) showstructures with gap degree bounded by a constant

that they are equivalent to LTAG, and the best ex#(k = 1), which we callWG, parser. In order to -
isting parsers for this formalism also perform in do this, we extend the item set so that it can contain

O(n") (Eisner and Satta, 2000). Note that theltems with up tok gaps, and modify the deduction

Combinestep which is the bottleneck only uses theStePs to work with these multi-gapped items.
7 indexes, and not any other entities like D-rules
so itsO(n") complexity does not have any addi-
tional factors due to grammar size or other vari-1he item set Iy, is the set of all
ables. The space complexity WG, is O(n®) [6:4, 2 [(l1, 1), ., (Ig,mg)]] wherei, j, b, g € N
for recognition, due to thg indexes initems, and : 0 < g <k, 1<h<n,1<i<j<n,h#j
O(n") for full parsing. h#i—1; and for eachp € {1,2,...,g}:
- lp,rp € IN, i<l <rp<yg, mp <lpp1—1,
“Due to space constraints, correctness proofs for thg, #l,— 1, h#rp.

parsers are not given here. Full proofs are provided in the . D
extended version of this paper, sesé(fez-Rodiguez et al., An item [i, 7, h, [(l1,71), - - -, (lg, 7"9)]] repre-
2008b). sents the set of all well-nested partial dependency

4.1 Parsing schema foWWG;,

295

trees rooted aby, such thawy, | = {w, }U([7,j]\ the structures that occur in natural-language tree-
Ug—1[lp, mp]), where each intervdl,, r,] is called banks (Kuhlmann and Nivre, 2006), but there is
a gap. The constraints # j.h # i+ 1,h # still a significant minority of sentences that con-
l, —1,h # r, are added to avoid redundancy, andtain ill-nested structures. Unfortunately, the gen-
normalisation is defined as WG,. The set of fi- eral problem of parsing ill-nested structures is NP-
nal items is defined as the sét= {[1,n,h,[]] | complete, even when the gap degree is bounded:
h € N,1 < h < n}. Note that this set is the same this set of structures is closely related to LCFRS
as inWG,, as these are the items that we denotedavith bounded fan-out and unbounded production
[1,n, h,o,] in the previous parser. length, and parsing in this formalism has been
The deduction steps can be seen in Figure 1Bproven to be NP-complete (Satta, 1992). The
As expected, th8VG, parser corresponds WG, reason for this high complexity is the problem
when we make: = 1. WG, works in the same of unrestricted crossing configurationsppearing
way asWG,, except for the fact tha€Combine when dependency subtrees are allowed to inter-
steps can create items with more than one®>gapleave in every possible way. However, just as
The correctness proof is also analogous to that af has been noted that most non-projective struc-
WG, but we must take into account that the set ottures appearing in practice are only “slightly” non-
possible order annotations is larger whien- 1, projective (Nivre and Nilsson, 2005), we charac-
SO more cases arise in the completeness proof. terise a sense in which the structures appearing in
treebanks can be viewed as being only “slightly”
4.2 Computational complexity ill-nested. In this section, we generalise the algo-
The WG, parser runs in time)(n°+t2%): as in rithms WG, and WG, to parse a proper superset
the case ofWG,, the deduction step with most of the set of well-nested structures in polynomial
free variables isCombine Shrinking Gap Cen- time; and give a characterisation of this new set
tre, and in this case it has + 2k free indexes. Of structures, which includes all the structures in
Again, this complexity result is in line with what several dependency treebanks.
could be expected from previous research in con-
stituency parsing: Kuhlmann (2007) shows that-1 TheMG, and MGy, parsers
the set of well-nested dependency structures witfhe WG, parser presented previously is based on
gap degree at most is closely related to cou- a bottom-up process, whekénk steps are used to
pled context-free grammars in which the maxi-link completed subtrees to a head, a@dmbine
mal rank of a nonterminal i& + 1; and the con- Steps are used to join subtrees governed by a com-
stituency parser defined by Hotz and Pitsch (1996inon head to obtain a larger structure. W&, is a
for these grammars also addsrarfactor for each parser for well-nested structures of gap degree up
unit increment ofk. Note that a small value of to k, its Combinesteps correspond to all the ways
k should be enough to cover the vast majority ofin which we can join two sets of sibling subtrees
the non-projective sentences found in natural lanmeeting these constraints, and having a common
guage treebanks. For example, the Prague Depehead, into another. Thus, this parser does not use
dency Treebank contains no structures with gagcombinesteps that produce interleaved subtrees,
degree greater thah Therefore, aWG; parser since these would generate items corresponding to
would be able to analyse all the well-nested strucill-nested structures.

tures in this treebank, which repres@6t89% of We obtain a polynomial parser for a wider set of
the total. Increasing beyond4 would not pro- structures of gap degree at méstncluding some
duce further improvements in coverage. ill-nested ones, by havin@ombinesteps repre-
senting every way in which two sets of sibling sub-
5 Parsing ill-nested structures trees of gap degree at mdstvith a common head

can be joined into another, including those produc-
The WG, parser analyses dependency structures . .

. ing interleaved subtrees, like the steps for gap de-
with bounded gap degree as long as they are

. o greel shown in Figure 1C. Note that this does not
well-nested. This covers the vast majority of . Lo
mean that we can build every possible ill-nested
®In all the parsers in this pape§ombinesteps may be Structure: some structures with complex crossed
applied in different orders to produce the same result, causingonfigurations have gap degrée but cannot be
spurious ambiguity. I'WG, and WG, this can be avoided ilt b bining t truct f that d
when implementing the schemata, by adding flags to item@u' y com mmg WO Struc ures_ 0 a_- gap de-
so as to impose a particular order. gree. More specifically, our algorithm will be able

296

to parse a dependency structure (well-nested oFhis can be done systematically by considering a
not) if there exists &inarisationof that structure set of strings over an alphabet of three symbols:
that has gap degree at mdst The parser im- « andb to represent intervals of words in the pro-
plicitly works by finding such a binarisation, since jection of each of the structures, agdo repre-
Combinesteps are always applied to two items andsent intervals that are not in the projection of ei-
no intermediate item generated by them can exther structure, and will correspond to gaps in the
ceed gap degrek (not counting the position of joined structure. The legal combinations of struc-
the head in the projection). tures for gap degreg will correspond to strings
More formally, letT” be a dependency structure where symbols andb each appear at mokt+ 1
for the stringw; ... w,. A binarisation of T'is times,g appears at mogttimes and is not the first
a dependency treE’ over a set of nodes, each of or last symbol, and there is no more than one con-
which may be unlabelled or labelled with a word secutive appearance of any symbol. Given a string
in {w; ...w,}, such that the following conditions of this form, the correspondinGombinestep is
hold: (1) each node has at most two children, andjiven by the expression in Figure 1D. As a particu-
(2) wqy — wj; in T if and only if w; —* w; in lar example, th&€ombine Interleaving Gap Step
T'. A dependency structure mildly ill-nested in Figure 1C is obtained from the stringgab.
for gap degreé if it has at least one binarisation Thus, we define the parsing schemat®;,, a
of gap degree< k. Otherwise, we say that it is parser for mildly ill-nested structures for gap de-
strongly ill-nested for gap degree:. It is easy (greek, as the schema where (1) the item set is
to prove that the set of mildly ill-nested structureslike that of WG, except that items can now con-
for gap degreé includes all well-nested structures tain any mildly ill-nested structures for gap degree
with gap degree up th. k, instead of being restricted to well-nested struc-
We defineMG,, a parser for mildly ill-nested tures; and (2) the set of deduction steps consists of
structures for gap degrek as follows: (1) the alLink step as the one WG, plus a set ofCom-
item set is the same as that WG, except that binesteps obtained as expressed in Figure 1D.
items can now contain any mildly ill-nested struc- As the string used to generateCambinestep
tures for gap degreg, instead of being restricted can have length at most: + 2, and the result-
to well-nested structures; and (2) deduction stepig step contains an index for each symbol of the
are the same as WG, plus the additional steps string plus two extra indexes, thdG,, parser has
shown in Figure 1C. These extombinesteps complexityO(n?***). Note that the item and de-
allow the parser to combine interleaved subtreeduction step sets of adG; parser are always su-
with simple crossing configurations. ThéG; persets of those ONG;. In particular, the steps
parser still runs inD(n"), as these new steps do for WG, are those obtained from strings that do
not use more than 7 string positions. not containubab or baba as a scattered substring.
The proof of correctness for this parser is sim-])
ilar to that of WG,. Again, we use the concept 5.2 Mildly ill-nested dependency structures
of order annotations. The set of mildly ill-nested The MG, algorithm defined in the previous sec-
structures for gap degréecan be defined as those tion can parse any mildly ill-nested structure for a
that only contain annotations meeting certain congiven gap degre& in polynomial time. We have
straints. The soundness proof involves showingharacterised the set of mildly ill-nested structures
thatCombinesteps always generate items containfor gap degreé as those having a binarisation of
ing trees with such annotations. Completeness igap degree< k. Since a binarisation of a depen-
proven by induction, by showing that if a subtreedency structure cannot have lower gap degree than
is mildly ill-nested for gap degrek, an item for the original structure, this set only contains struc-
it can be obtained from items for smaller subtreegures with gap degree at madst Furthermore, by
by applyingCombineandLink steps. In the cases the relation betweeNG, andWG;, we know that
whereCombinesteps have to be applied, the orderit contains all the well-nested structures with gap
in which they may be used to produce a subtreelegree up td.
can be obtained from its head’s order annotation. Figure 2 shows an example of a structure that
To generalise this algorithm to mildly ill-nested has gap degrek but is strongly ill-nested for gap
structures for gap degréewe need to add@om- degreel. This is one of the smallest possible such
bine step for every possible way of joining two structures: by generating all the possible trees up
structures of gap degree at mdsinto another. to 10 nodes (without counting a dummy root node

297

Structures
Nonprojective
Language Total By gap degree By nestedness
Total | Gap Gap Gap Gap Well- Mildly Strongly
degreel | degree2 | degree3 | deg.> 3 | Nested lll-Nested | lll-Nested
Arabic | 2995 205 189 13 2 1 204 1 0
Czech| 87889 20353 19989 359 4 1 20257 96 0
Danish | 5430 864 854 10 0 0 856 8 0
Dutch | 13349 | 4865 4425 427 13 0 4850 15 0
Latin | 3473 | 1743 1543 188 10 2 1552 191 0
Portuguese| 9071 | 1718 1302 351 51 14 1711 7 0
Slovene| 1998 555 443 81 21 10 550 5 0
Swedish| 11042 | 1079 1048 19 7 5 1008 71 0
Turkish | 5583 685 656 29 0 0 665 20 0

Table 1:Counts of dependency trees classified by gap degree, and mild ang #itreestedness (for their gap degree); appear-
ing in treebanks for Arabic (Hdjiet al., 2004), Czech (H&jeet al., 2006), Danish (Kromann, 2003), Dutch (van der Beek et al.
2002), Latin (Bamman and Crane, 2006), Portuguese (Afonso, @08l2), Slovene (Beroski et al., 2006), Swedish (Nilsson
et al., 2005) and Turkish (Oflazer et al., 2003; Atalay et al., 2003).

like the fastest known parsers for LTAG, and can
be madeO(n%) if we use unlexicalised depen-
dencies. When the gap degree is greater than 1,
the time complexity goes up by a factor of
for each extra unit of gap degree, as in parsers
for coupled context-free grammars. Most of the
non-projective sentences appearing in treebanks
are well-nested and have a small gap degree, so
N , this algorithm directly parses the vast majority of
located at positiol), it can be shown that all the he non-projective constructions present in natural
structures of any gap degréevith length smaller |5ngyages, without requiring the construction of a
than 10 are well-nested or only mildly ill-nested constituency grammar as an intermediate step.
for that gap degree. Additionally, we have defined a set of struc-
E_ven if a structurel” is s‘Froneg ill-nested for {,res for any gap degreewhich we call mildly
a given gap degree, there is always some& N jj_nested. This set includes ill-nested structures

such thaff" is mildly ill-nested form (since every yerifying certain conditions, and can be parsed in
dependency structure can be binarised, and binargy ,,3k+1 with a variant of the parser for well-

sations have finite gap degree). For example, thgested structures. The practical interest of mildly
structure in Figure 2 is mildly ill-nested for gap de- j|l_nested structures can be seen in the data ob-
gree2. Therefore MG, parsers have the property (ained from several dependency treebanks, show-
of being able to parse any possible dependencyg that all of the ill-nested structures in them are
structure as long as we makdarge enough. mildly ill-nested for their corresponding gap de-
In practice, structures like the one in Figure Zgree. Therefore, oud(n3**+4) parser can analyse
do not seem to appear in dependency treebankgj| the gap degreg structures in these treebanks.
We have analysed treebanks for nine differentlan- e set of mildly ill-nested structures for gap

guages, obtaining the data presented in Table Yeqgreg; is defined as the set of structures that have
None of these treebanks contain structures that atepinarisation of gap degree at masfThis defini-

strongly ill-nested for their gap degree. There-jop, js directly related to the way tHdG;, parser
fore, in any of these treebanks, th&S, parser can \yqorks, since it implicitly finds such a binarisation.

parse every sentence with gap degree at host ap interesting line of future work would be to find
an equivalent characterisation of mildly ill-nested
structures which is more grammar-oriented and
We have defined a parsing algorithm for well-would provide a more linguistic insight into these
nested dependency structures with bounded gagiructures. Another research direction, which we
degree. In terms of computational complexity,are currently working on, is exploring how vari-
this algorithm is comparable to the best parserants of theMG, parser’s strategy can be applied
for related constituency-based formalisms: wherio the problem of binarising LCFRS @Bnez-
the gap degree is at most it runs in O(n”), Rodiguez et al., 2009).

0 1 2 3 4 5 6 7 8 9 10

Figure 2: One of the smallest strongly ill-nested structures.
This dependency structure has gap degtedut is only
mildly ill-nested for gap degree 2.

6 Conclusions and future work

298

References Giinter Hotz and Gisela Pitsch. 1996. On pars-
. . ing coupled-context-free languagddeor. Comput.
Susana Afonso, Eckhard Bick, Renato Haber, and Di- Sci, 161(1-2):205-233. Elsevier, Essex, UK.

ana Santos. 2002. “Floresta si(tt)tica”: a tree- : .
bank for Portuguese. IRroc. of LREC 2002pages Aravind K. Joshi and Yves Schabes. 1997. Tree-

1968-1703, Las Palmas, Spain adjoining grammars. InHandboo_k of for-
Nart B. Atalay, Kemal Oflazer, and Bilge Say. 2002. mal languages pages 69-124. Springer-Verlag,

The annotation process in the Turkish treebank. In Berl|n/He|dererg/NY. :
Proc. of EACL Workshop on Linguistically Inter- Matthias T. Kromann. 2003. The Danish dependency

preted Corpora - LINGBudapest, Hungary. treebank and the underlying linguistic theory. In
David Bamman and Gregory Crane. 2006. The design Proc. of the 2nd Workshop on Treebanks and Lin-
and use of a Latin dependency treebankPtac. of guistic Theories (TLT2003) .
5th Workshop on Treebanks and Linguistic TheoriedVarco Kuhimann and Mathias &hl. 2007. Mildly
(TLT2006) pages 67—78. context-sensitive dependency language$riyc. of
Manuel Bodirsky, Marco Kuhimann, and Mathias ACL 2007 Prague, Czech Republic. ACL.
Mohl. 2005. Well-nested drawings as modelsMarco Kuhimann and Joakim Nivre. 2006. Mildly
of syntactic structure. Technical Report, Saar- Nhon-projective dependency structures. moc.
land University. Electronic version available at: 0f COLING/ACL main conference poster sessjons
http://ww. ps. uni - sh. de/ Papers/ . pages 507-514, Morristown, NJ, USA. ACL.
Michael A. Covington. 1990. A dependency parserMarco Kuhimann. 2007 Dependency Structures and
for variable-word-order languages. Technical Re- Lexicalized GrammarsDoctoral dissertation, Saar-

port Al-1990-01, Athens, GA. land University, Saarliicken, Germany.

Sa&o Dzeroski, Toma Erjavec, Nina Ledinek, Petr Pa- Ryan McDonald and Giorgio Satta. 2007. On the com-
jas, Zdewk Zabokrtsk, and AndrejaZele. 2006. plexity of non-projective data-driven dependency
Towards a Slovene dependency treebank Proc. parsing. InIWPT 2007: Proc. of the 10th Confer-
of LREC 2006pages 1388-1391, Genoa, Italy. ence on Parsing TechnologiesCL.

Jason Eisner and Giorgio Satta. 1999. Efficient parsRyan McDonald, Fernando Pereira, Kiril Ribarov, and
ing for bilexical context-free grammars and head au- Jan Haj€. 2005. Non-projective dependency pars-
tomaton grammars. IRroc. of ACL-99 pages 457— ing using spanning tree algorithms. PRroc. of
464, Morristown, NJ. ACL. HLT/EMNLP 2005 pages 523-530, Morristown,

Jason Eisner and Giorgio Satta. 2000. A faster parsing NJ, USA. ACL.
algorithm for lexicalized tree-adjoining grammars. Jens Nilsson, Johan Hall, and Joakim Nivre. 2005.
In Proc. of 5th Workshop on Tree-Adjoining Gram- MAMBA meets TIGER: Reconstructing a Swedish
mars and Related Formalisms (TAG+Pages 14— treebank from antiquity. IrProc. of NODALIDA

19, Paris. 2005 Special Session on Treebanjages 119-132.
Jason Eisner. 1996. Three new probabilistic modelgoakim Nivre and Jens Nilsson. 2005. Pseudo-

for dependency parsing: An exploration. Rroc. of projective dependency parsing. Poc. of ACL'05

COLING-96 pages 340-345, Copenhagen. pages 99-106, Morristown, NJ, USA. ACL.

Carlos G®mez-Rodiguez, John Carroll, and David kemal Oflazer, Bilge Say, Dilek Zeynep HakkanisT
Weir. 2008a. A deductive approach to dependency ang Gkhan Tir. 2003. Building a Turkish tree-
parsing. InProc. of ACL'08:HLT pages 968-976, pank. In A. Abeille, ed.,Building and Exploit-
Columbus, Ohio. ACL. . . ing Syntactically-annotated Corpardluwer, Dor-

Carlos G®mez-Rodiguez, David Weir, and John Car- grecht.
roll. 2008b. Parsing mildly non-projective depen- Gigrgio Satta. 1992. Recognition of linear context-

dency structures. Technical Report CSRP 600, De- " free rewriting systems. IProc. of ACL-92 pages
partment of Informatics, University of Sussex. 89-95. Morristown. NJ. ACL.

Carlos @mez-Rodiguez, Marco Kuhimann, Giorgio :
Satta, and David Weir. 2009. Optimal reduction of Klaas Sikkel.
rule length in linear context-free rewriting systems.
In Proc. of NAACL'09:HLT(to appear).

Jan Haj€, Otakar Smit, Petr Zemanek, JarSnaidauf,
and Emanuel B&a. 2004. Prague Arabic depen-
dency treebank: Development in data and tools. In
Proc. of NEMLAR International Conference on Ara-

1997.Parsing Schemata — A Frame-
work for Specification and Analysis of Parsing Al-
gorithms Springer-Verlag, Berlin/Heidelberg/NY.

L. van der Beek, G. Bouma, R. Malouf, and G. van

Noord. 2002. The Alpino dependency treebank.

In Computational Linguistics in the Netherlands

(CLIN), Twente University.

. -~ K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
bic Language Resources and Toglages 110-117. 1987. Characterizing structural descriptions pro-

Jan Haje, Jarmila Panevay Eva Hafova, Jarmila duced by various grammatical formalisms.Rroc.

Panevo®, Petr Sgall, Petr Pajas, Jaepanek, Jii) ~ ;
Havelka, and Marie Mikuloa. 2006. Prague depen- Hiroof ggllj_ \?aznﬁ):o?ae Saigi(ul'ill\lﬂ,al\t/ls%rrrrlwzttzwnz,ol\cl)‘; ASC.’[:tis-
dency treebank 2.0. CDOROM CAT: LDC2006T01, '""%Y)l Mats : ;

tical dependency analysis with support vector ma-
ISBN 1-58563-370-4. ; .

chines. InProc. of 8th International Workshop on

Jifi Havelka. 2007. Beyond projectivity: Multilin- . .
gual evaluation of constraints and measures on non- Parsing Technologies (IWPT 2003ages 195-206.

projective structures. IRroc. of ACL 2007Prague,
Czech Republic. ACL.

299

