
Proceedings of the 12th Conference of the European Chapter of the ACL, pages 291–299,
Athens, Greece, 30 March – 3 April 2009. c©2009 Association for Computational Linguistics

Parsing Mildly Non-projective Dependency Structures∗

Carlos Gómez-Rodŕıguez
Departamento de Computación
Universidade da Corũna, Spain

cgomezr@udc.es

David Weir and John Carroll
Department of Informatics

University of Sussex, United Kingdom
{davidw,johnca}@sussex.ac.uk

Abstract

We present parsing algorithms for vari-
ous mildly non-projective dependency for-
malisms. In particular, algorithms are pre-
sented for: all well-nested structures of
gap degree at most1, with the same com-
plexity as the best existing parsers for con-
stituency formalisms of equivalent genera-
tive power; all well-nested structures with
gap degree bounded by any constantk;
and a new class of structures with gap de-
gree up tok that includes some ill-nested
structures. The third case includes all the
gap degreek structures in a number of de-
pendency treebanks.

1 Introduction

Dependency parsers analyse a sentence in terms
of a set of directed links (dependencies) express-
ing the head-modifier and head-complement rela-
tionships which form the basis of predicate argu-
ment structure. We take dependency structures to
be directed trees, where each node corresponds to
a word and the root of the tree marks the syn-
tactic head of the sentence. For reasons of effi-
ciency, many practical implementations of depen-
dency parsing are restricted toprojective struc-
tures, in which the subtree rooted at each word
covers a contiguous substring of the sentence.
However, while free word order languages such
as Czech do not satisfy this constraint, parsing
without the projectivity constraint is computation-
ally complex. Although it is possible to parse
non-projective structures in quadratic time under a
model in which each dependency decision is inde-
pendent of all the others (McDonald et al., 2005),

∗Partially supported by MEC and FEDER (HUM2007-
66607-C04) and Xunta de Galicia (PGIDIT07SIN005206PR,
INCITE08E1R104022ES, INCITE08ENA305025ES, IN-
CITE08PXIB302179PR, Rede Galega de Proc. da Linguaxe
e RI, Bolsas para Estadı́as INCITE – FSE cofinanced).

the problem is intractable in the absence of this as-
sumption (McDonald and Satta, 2007).

Nivre and Nilsson (2005) observe that most
non-projective dependency structures appearing
in practice are “close” to being projective, since
they contain only a small proportion of non-
projective arcs. This has led to the study of
classes of dependency structures that lie be-
tween projective and unrestricted non-projective
structures (Kuhlmann and Nivre, 2006; Havelka,
2007). Kuhlmann (2007) investigates several such
classes, based on well-nestedness and gap degree
constraints (Bodirsky et al., 2005), relating them
to lexicalised constituency grammar formalisms.
Specifically, he shows that: linear context-free
rewriting systems (LCFRS) with fan-outk (Vijay-
Shanker et al., 1987; Satta, 1992) induce the set
of dependency structures with gap degree at most
k − 1; coupled context-free grammars in which
the maximal rank of a nonterminal isk (Hotz and
Pitsch, 1996) induce the set of well-nested depen-
dency structures with gap degree at mostk − 1;
and LTAGs (Joshi and Schabes, 1997) induce the
set of well-nested dependency structures with gap
degree at most1.

These results establish that there must be
polynomial-time dependency parsing algorithms
for well-nested structures with bounded gap de-
gree, since such parsers exist for their correspond-
ing lexicalised constituency-based formalisms.
However, since most of the non-projective struc-
tures in treebanks are well-nested and have a small
gap degree (Kuhlmann and Nivre, 2006), devel-
oping efficient dependency parsing strategies for
these sets of structures has considerable practical
interest, since we would be able to parse directly
with dependencies in a data-driven manner, rather
than indirectly by constructing intermediate con-
stituency grammars and extracting dependencies
from constituency parses.

We address this problem with the following
contributions: (1) we define a parsing algorithm

291



for well-nested dependency structures of gap de-
gree1, and prove its correctness. The parser runs
in time O(n7), the same complexity as the best
existing algorithms for LTAG (Eisner and Satta,
2000), and can be optimised toO(n6) in the non-
lexicalised case; (2) we generalise the previous al-
gorithm to any well-nested dependency structure
with gap degree at mostk in time O(n5+2k); (3)
we generalise the previous parsers to be able to
analyse not only well-nested structures, but also
ill-nested structures with gap degree at mostk sat-
isfying certain constraints1, in timeO(n4+3k); and
(4) we characterise the set of structures covered by
this parser, which we callmildly ill-nestedstruc-
tures, and show that it includes all the trees present
in a number of dependency treebanks.

2 Preliminaries

A dependency graphfor a stringw1 . . . wn is a
graphG = (V, E), whereV = {w1, . . . , wn}
and E ⊆ V × V . We write the edge(wi, wj)
aswi → wj , meaning that the wordwi is a syn-
tacticdependent(or achild) of wj or, conversely,
that wj is thegovernor(parent) of wi. We write
wi →? wj to denote that there exists a (possi-
bly empty) path fromwi to wj . The projection
of a nodewi, denotedbwic, is the set of reflexive-
transitive dependents ofwi, that is:bwic = {wj ∈
V | wj →

? wi}. An interval (with endpointsi and
j) is a set of the form[i, j] = {wk | i ≤ k ≤ j}.

A dependency graph is said to be atree if it is:
(1) acyclic:wj ∈ bwic implieswi → wj 6∈ E; and
(2) each node has exactly one parent, except for
one node which we call theroot or head. A graph
verifying these conditions and having a vertex set
V ⊆ {w1, . . . , wn} is a partial dependency tree.
Given a dependency treeT = (V, E) and a node
u ∈ V , thesubtreeinduced by the nodeu is the
graphTu = (buc, Eu) whereEu = {wi → wj ∈
E | wj ∈ buc}.

2.1 Properties of dependency trees

We now define the concepts of gap degree and
well-nestedness (Kuhlmann and Nivre, 2006). Let
T be a (possibly partial) dependency tree for
w1 . . . wn: We say thatT is projective if bwic is
an interval for every wordwi. Thus every node
in the dependency structure must dominate a con-
tiguous substring in the sentence. Thegap degree

1Parsing unrestricted ill-nested structures, even when the
gap degree is bounded, is NP-complete: these structures are
equivalent to LCFRS for which the recognition problem is
NP-complete (Satta, 1992).

of a particular nodewk in T is the minimumg ∈ N

such thatbwkc can be written as the union ofg+1
intervals; that is, the number of discontinuities in
bwkc. The gap degree of the dependency treeT is
the maximum among the gap degrees of its nodes.
Note thatT has gap degree 0 if and only ifT is
projective. The subtrees induced by nodeswp and
wq areinterleaved if bwpc ∩ bwqc = ∅ and there
are nodeswi, wj ∈ bwpc andwk, wl ∈ bwqc such
that i < k < j < l. A dependency treeT is
well-nestedif it does not contain two interleaved
subtrees. A tree that is not well-nested is said to
beill-nested. Note that projective trees are always
well-nested, but well-nested trees are not always
projective.

2.2 Dependency parsing schemata

The framework of parsing schemata (Sikkel,
1997) provides a uniform way to describe, anal-
yse and compare parsing algorithms. Parsing
schemata were initially defined for constituency-
based grammatical formalisms, but Gómez-
Rodŕıguez et al. (2008a) define a variant of the
framework for dependency-based parsers. We
use thesedependency parsing schematato de-
fine parsers and prove their correctness. Due to
space constraints, we only provide brief outlines
of the main concepts behind dependency parsing
schemata.

The parsing schema approach considers pars-
ing as deduction, generating intermediate results
called items. An initial set of items is obtained
from the input sentence, and the parsing process
involvesdeduction stepswhich produce new items
from existing ones. Each item contains informa-
tion about the sentence’s structure, and a success-
ful parsing process produces at least onefinal item
providing a full dependency analysis for the sen-
tence or guaranteeing its existence. In a depen-
dency parsing schema, items are defined as sets of
partial dependency trees2. To define a parser by
means of a schema, we must define an item set
and provide a set of deduction steps that operate
on it. Given an item setI, the set offinal items
for strings of lengthn is the set of items inI that
contain a full dependency tree for some arbitrary
string of lengthn. A final item containing a de-
pendency tree for a particular stringw1 . . . wn is
said to be acorrect final itemfor that string. These

2The formalism allows items to contain forests, and the
dependency structures inside items are defined in a notation
with terminal and preterminal nodes, but these are not needed
here.

292



concepts can be used to prove the correctness of
a parser: for each input string, a parsing schema’s
deduction steps allow us to infer a set of items,
calledvalid itemsfor that string. A schema is said
to besoundif all valid final items it produces for
any arbitrary string are correct for that string. A
schema is said to becompleteif all correct final
items are valid. Acorrect parsing schema is one
which is both sound and complete.

In constituency-based parsing schemata, deduc-
tion steps usually have grammar rules as side con-
ditions. In the case of dependency parsers it is
also possible to use grammars (Eisner and Satta,
1999), but many algorithms use a data-driven ap-
proach instead, making individual decisions about
which dependencies to create by using probabilis-
tic models (Eisner, 1996) or classifiers (Yamada
and Matsumoto, 2003). To represent these algo-
rithms as deduction systems, we use the notion
of D-rules (Covington, 1990). D-rules take the
form a → b, which says that wordb can havea
as a dependent. Deduction steps in non-grammar-
based parsers can be tied to the D-rules associated
with the links they create. In this way, we ob-
tain a representation of the underlying logic of the
parser while abstracting away from control struc-
tures (the particular model used to create the de-
cisions associated with D-rules). Furthermore, the
choice points in the parsing process and the infor-
mation we can use to make decisions are made ex-
plicit in the steps linked to D-rules.

3 The WG1 parser

3.1 Parsing schema forWG1

We defineWG1, a parser for well-nested depen-
dency structures of gap degree≤ 1, as follows:

The item set isIWG1 = I1 ∪ I2, with

I1 = {[i, j, h, �, �] | i, j, h ∈ N, 1 ≤ h ≤ n,

1 ≤ i ≤ j ≤ n, h 6= j, h 6= i − 1},

where each item of the form[i, j, h, �, �] repre-
sents the set of all well-nested partial dependency
trees3 with gap degree at most 1, rooted atwh, and
such thatbwhc = {wh} ∪ [i, j], and

I2 = {[i, j, h, l, r] | i, j, h, l, r ∈ N, 1 ≤ h ≤ n,

1 ≤ i < l ≤ r < j ≤ n, h 6= j, h 6= i − 1,

h 6= l − 1, h 6= r}

3In this and subsequent schemata, we use D-rules to ex-
press parsing decisions, so partial dependency trees are as-
sumed to be taken from the set of trees licensed by a set of
D-rules.

where each item of the form[i, j, h, l, r] represents
the set of all well-nested partial dependency trees
rooted atwh such thatbwhc = {wh} ∪ ([i, j] \
[l, r]), and all the nodes (except possiblyh) have
gap degree at most 1. We call items of this form
gapped items, and the interval[l, r] the gap of
the item. Note that the constraintsh 6= j, h 6=
i + 1, h 6= l − 1, h 6= r are added to items to
avoid redundancy in the item set. Since the result
of the expression{wh} ∪ ([i, j] \ [l, r]) for a given
head can be the same for different sets of values of
i, j, l, r, we restrict these values so that we cannot
get two different items representing the same de-
pendency structures. Itemsι violating these con-
straints always have an alternative representation
that does not violate them, that we can express
with a normalising functionnm(ι) as follows:
nm([i, j, j, l, r]) = [i, j − 1, j, l, r] (if r ≤ j − 1 or r = �),

or [i, l − 1, j, �, �] (if r = j − 1).
nm([i, j, l − 1, l, r]) = [i, j, l − 1, l − 1, r](if l > i + 1),

or [r + 1, j, l − 1, �, �] (if l = i + 1).
nm([i, j, i − 1, l, r]) = [i − 1, j, i − 1, l, r].
nm([i, j, r, l, r]) = [i, j, r, l, r − 1] (if l < r),

or [i, j, r, �, �] (if l = r).

nm([i, j, h, l, r]) = [i, j, h, l, r] for all other items.

When defining the deduction steps for this and
other parsers, we assume that they always produce
normalised items. For clarity, we do not explicitly
write this in the deduction steps, writingι instead
of nm(ι) as antecedents and consequents of steps.

The set of initial items is defined as the set

H = {[h, h, h, �, �] | h ∈ N, 1 ≤ h ≤ n},

where each item[h, h, h, �, �] represents the set
containing the trivial partial dependency tree con-
sisting of a single nodewh and no links. This
same set of hypotheses can be used for all the
parsers, so we do not make it explicit for subse-
quent schemata. Note that initial items are sepa-
rate from the item setIWG1 and not subject to its
constraints, so they do not require normalisation.

The set of final items for strings of lengthn in
WG1 is defined as the set

F = {[1, n, h, �, �] | h ∈ N, 1 ≤ h ≤ n},

which is the set of items inIWG1 containing de-
pendency trees for the complete input string (from
position1 to n), with their head at any wordwh.

The deduction steps of the parser can be seen in
Figure 1A.

TheWG1 parser proceeds bottom-up, by build-
ing dependency subtrees and joining them to form
larger subtrees, until it finds a complete depen-
dency tree for the input sentence. The logic of

293



A. WG1 parser:

Link Ungapped:

[h1, h1, h1, �, �]
[i2, j2, h2, �, �]

[i2, j2, h1, �, �]
wh2 → wh1

such thatwh2 ∈ [i2, j2] ∧ wh1 /∈ [i2, j2],

Link Gapped:

[h1, h1, h1, �, �]
[i2, j2, h2, l2, r2]

[i2, j2, h1, l2, r2]
wh2 → wh1

such thatwh2 ∈ [i2, j2] \ [l2, r2] ∧ wh1 /∈ [i2, j2] \ [l2, r2],

Combine Ungapped:
[i, j, h, �, �] [j + 1, k, h, �, �]

[i, k, h, �, �]
Combine Opening Gap:

[i, j, h, �, �] [k, l, h, �, �]

[i, l, h, j + 1, k − 1]
such thatj < k − 1,

Combine Keeping Gap Left:
[i, j, h, l, r] [j + 1, k, h, �, �]

[i, k, h, l, r]

Combine Keeping Gap Right:
[i, j, h, �, �] [j + 1, k, h, l, r]

[i, k, h, l, r]

Combine Closing Gap:
[i, j, h, l, r] [l, r, h, �, �]

[i, j, h, �, �]

Combine Shrinking Gap Left:
[i, j, h, l, r] [l, k, h, �, �]

[i, j, h, k + 1, r]

Combine Shrinking Gap Right:
[i, j, h, l, r] [k, r, h, �, �]

[i, j, h, l, k − 1]

Combine Shrinking Gap Centre:
[i, j, h, l, r] [l, r, h, l2, r2]

[i, j, h, l2, r2]

B. WGK parser:

Link:

[h1, h1, h1, []]
[i2, j2, h2, [(l1, r1), . . . , (lg, rg)]]

[i2, j2, h1, [(l1, r1), . . . , (lg, rg)]]
wh2 → wh1

such thatwh2 ∈ [i2, j2] \
⋃g

p=1[lp, rp]

∧wh1 /∈ [i2, j2] \
⋃g

p=1[lp, rp].

Combine Shrinking Gap Right:
[i, j, h, [(l1, r1), . . . , (lq−1, rq−1), (lq, r

′), (ls, rs), . . . , (lg, rg)]]
[rq + 1, r′, h, [(lq+1, rq+1), . . . , (ls−1, rs−1)]]

[i, j, h, [(l1, r1), . . . , (lg, rg)]]
such thatg ≤ k

Combine Opening Gap:
[i, lq − 1, h, [(l1, r1), . . . , (lq−1, rq−1)]]

[rq + 1, m, h, [(lq+1, rq+1), . . . , (lg, rg)]]

[i, m, h, [(l1, r1), . . . , (lg, rg)]]
such thatg ≤ k andlq ≤ rq,

Combine Shrinking Gap Left:
[i, j, h, [(l1, r1), . . . , (lq, rq), (l

′, rs), (ls+1, rs+1), . . . , (lg, rg)]]
[l′, ls − 1, h, [(lq+1, rq+1), . . . , (ls−1, rs−1)]]

[i, j, h, [(l1, r1), . . . , (lg, rg)]]
such thatg ≤ k

Combine Keeping Gaps:
[i, j, h, [(l1, r1), . . . , (lq, rq)]]

[j + 1, m, h, [(lq+1, rq+1), . . . , (lg, rg)]]

[i, m, h, [(l1, r1), . . . , (lg, rg)]]
such thatg ≤ k,

Combine Shrinking Gap Centre:
[i, j, h, [(l1, r1), . . . , (lq, rq), (l

′, r′), (ls, rs), . . . , (lg, rg)]]
[l′, r′, h, [(lq+1, rq+1), . . . , (ls−1, rs−1)]]

[i, j, h, [(l1, r1), . . . , (lg, rg)]]
such thatg ≤ k

C. Additional steps to turn WG1 into MG1:

Combine Interleaving:
[i, j, h, l, r] [l, k, h, r + 1, j]

[i, k, h, �, �]
Combine Interleaving Gap C:

[i, j, h, l, r] [l, k, h, m, j]

[i, k, h, m, r]
such thatm < r + 1,

Combine Interleaving Gap L:

[i, j, h, l, r]
[l, k, h, r + 1, u]

[i, k, h, j + 1, u]
such thatu > j,

Combine Interleaving Gap R:

[i, j, h, l, r]
[k, m, h, r + 1, j]

[i, m, h, l, k − 1]
such thatk > l.

D. General form of the MGk Combine step:
[ia1

, iap+1 − 1, h, [(ia1+1, ia2
− 1), . . . , (iap−1+1, iap

− 1)]]
[ib1 , ibq+1 − 1, h, [(ib1+1, ib2 − 1), . . . , (ibq−1+1, ibq

− 1)]]

[imin(a1,b1), imax(ap+1,bq+1) − 1, h, [(ig1
, ig1+1 − 1), . . . , (igr

, igr+1 − 1)]]
for each string of lengthn with a’s located at positionsa1 . . . ap(1 ≤ a1 < . . . < ap ≤ n), b’s at positionsb1 . . . bq(1 ≤ b1 <
. . . < bq ≤ n), and g’s at positionsg1 . . . gr(2 ≤ g1 < . . . < gr ≤ n − 1), such that1 ≤ p ≤ k, 1 ≤ q ≤ k, 0 ≤ r ≤ k − 1,
p + q + r = n, and the string does not contain more than one consecutive appearance of the same symbol.

Figure 1: Deduction steps for the parsers defined in the paper.

the parser can be understood by considering how
it infers the item corresponding to the subtree in-
duced by a particular node, given the items for the
subtrees induced by the direct dependents of that
node. Suppose that, in a complete dependency
analysis for a sentencew1 . . . wn, the wordwh

haswd1 . . . wdp
as direct dependents (i.e. we have

dependency linkswd1 → wh, . . . , wdp
→ wh).

Then, the item corresponding to the subtree in-

duced bywh is obtained from the ones correspond-
ing to the subtrees induced bywd1 . . . wdp

by: (1)
applying theLink Ungappedor Link Gappedstep
to each of the items corresponding to the subtrees
induced by the direct dependents, and to the hy-
pothesis[h, h, h, �, �]. This allows us to inferp
items representing the result of linking each of the
dependent subtrees to the new headwh; (2) ap-
plying the variousCombinesteps to join all of the

294



items obtained in the previous step into a single
item. TheCombinesteps perform a union oper-
ation between subtrees. Therefore, the result is a
dependency tree containing all the dependent sub-
trees, and with all of them linked toh: this is
the subtree induced bywh. This process is ap-
plied repeatedly to build larger subtrees, until, if
the parsing process is successful, a final item is
found containing a dependency tree for the com-
plete sentence.

3.2 Proving correctness

The parsing schemata formalism can be used to
prove the correctness of a parsing schema. To
prove that WG1 is correct, we need to prove
its soundness and completeness.4 Soundness is
proven by checking that valid items always con-
tain well-nested trees. Completeness is proven by
induction, taking initial items as the base case and
showing that an item containing a correct subtree
for a string can always be obtained from items
corresponding to smaller subtrees. In order to
prove this induction step, we use the concept of
order annotations (Kuhlmann, 2007; Kuhlmann
and Möhl, 2007), which are strings that lexicalise
the precedence relation between the nodes of a de-
pendency tree. Given a correct subtree, we divide
the proof into cases according to the order annota-
tion of its head and we find that, for every possible
form of this order annotation, we can find a se-
quence ofCombinesteps to infer the relevant item
from smaller correct items.

3.3 Computational complexity

The time complexity ofWG1 is O(n7), as the
stepCombine Shrinking Gap Centreworks with7
free string positions. This complexity with respect
to the length of the input is as expected for this
set of structures, since Kuhlmann (2007) shows
that they are equivalent to LTAG, and the best ex-
isting parsers for this formalism also perform in
O(n7) (Eisner and Satta, 2000). Note that the
Combinestep which is the bottleneck only uses the
7 indexes, and not any other entities like D-rules,
so itsO(n7) complexity does not have any addi-
tional factors due to grammar size or other vari-
ables. The space complexity ofWG1 is O(n5)
for recognition, due to the5 indexes in items, and
O(n7) for full parsing.

4Due to space constraints, correctness proofs for the
parsers are not given here. Full proofs are provided in the
extended version of this paper, see (Gómez-Rodŕıguez et al.,
2008b).

It is possible to build a variant of this parser
with time complexityO(n6), as with parsers for
unlexicalised TAG, if we work with unlexicalised
D-rules specifying the possibility of dependencies
between pairs of categories instead of pairs of
words. In order to do this, we expand the item set
with unlexicalised items of the form[i, j, C, l, r],
where C is a category, apart from the existing
items [i, j, h, l, r]. Steps in the parser are dupli-
cated, to work both with lexicalised and unlex-
icalised items, except for theLink steps, which
always work with a lexicalised item and an un-
lexicalised hypothesis to produce an unlexicalised
item, and theCombine Shrinking Gapsteps, which
can work only with unlexicalised items. Steps are
added to obtain lexicalised items from their unlex-
icalised equivalents by binding the head to partic-
ular string positions. Finally, we need certain vari-
ants of theCombine Shrinking Gapsteps that take
2 unlexicalised antecedents and produce a lexi-
calised consequent; an example is the following:

Combine Shrinking Gap Centre L:

[i, j, C, l, r]
[l + 1, r, C, l2, r2]

[i, j, l, l2, r2]

such thatcat(wl)=C

Although this version of the algorithm reduces
time complexity with respect to the length of the
input toO(n6), it also adds a factor related to the
number of categories, as well as constant factors
due to using more kinds of items and steps than
the originalWG1 algorithm. This, together with
the advantages of lexicalised dependency parsing,
may mean that the originalWG1 algorithm is more
practical than this version.

4 The WGk parser

The WG1 parsing schema can be generalised to
obtain a parser for all well-nested dependency
structures with gap degree bounded by a constant
k(k ≥ 1), which we callWGk parser. In order to
do this, we extend the item set so that it can contain
items with up tok gaps, and modify the deduction
steps to work with these multi-gapped items.

4.1 Parsing schema forWGk

The item set IWGk is the set of all
[i, j, h, [(l1, r1), . . . , (lg, rg)]] wherei, j, h, g ∈ N

, 0 ≤ g ≤ k, 1 ≤ h ≤ n, 1 ≤ i ≤ j ≤ n , h 6= j,
h 6= i − 1; and for eachp ∈ {1, 2, . . . , g}:
lp, rp ∈ N, i < lp ≤ rp < j, rp < lp+1 − 1,
h 6= lp − 1, h 6= rp.

An item [i, j, h, [(l1, r1), . . . , (lg, rg)]] repre-
sents the set of all well-nested partial dependency

295



trees rooted atwh such thatbwhc = {wh}∪([i, j]\⋃g
p=1

[lp, rp]), where each interval[lp, rp] is called
a gap. The constraintsh 6= j, h 6= i + 1, h 6=
lp − 1, h 6= rp are added to avoid redundancy, and
normalisation is defined as inWG1. The set of fi-
nal items is defined as the setF = {[1, n, h, []] |
h ∈ N, 1 ≤ h ≤ n}. Note that this set is the same
as inWG1, as these are the items that we denoted
[1, n, h, �, �] in the previous parser.

The deduction steps can be seen in Figure 1B.
As expected, theWG1 parser corresponds toWGk

when we makek = 1. WGk works in the same
way asWG1, except for the fact thatCombine
steps can create items with more than one gap5.
The correctness proof is also analogous to that of
WG1, but we must take into account that the set of
possible order annotations is larger whenk > 1,
so more cases arise in the completeness proof.

4.2 Computational complexity

The WGk parser runs in timeO(n5+2k): as in
the case ofWG1, the deduction step with most
free variables isCombine Shrinking Gap Cen-
tre, and in this case it has5 + 2k free indexes.
Again, this complexity result is in line with what
could be expected from previous research in con-
stituency parsing: Kuhlmann (2007) shows that
the set of well-nested dependency structures with
gap degree at mostk is closely related to cou-
pled context-free grammars in which the maxi-
mal rank of a nonterminal isk + 1; and the con-
stituency parser defined by Hotz and Pitsch (1996)
for these grammars also adds ann2 factor for each
unit increment ofk. Note that a small value of
k should be enough to cover the vast majority of
the non-projective sentences found in natural lan-
guage treebanks. For example, the Prague Depen-
dency Treebank contains no structures with gap
degree greater than4. Therefore, aWG4 parser
would be able to analyse all the well-nested struc-
tures in this treebank, which represent99.89% of
the total. Increasingk beyond4 would not pro-
duce further improvements in coverage.

5 Parsing ill-nested structures

The WGk parser analyses dependency structures
with bounded gap degree as long as they are
well-nested. This covers the vast majority of

5In all the parsers in this paper,Combinesteps may be
applied in different orders to produce the same result, causing
spurious ambiguity. InWG1 andWGk, this can be avoided
when implementing the schemata, by adding flags to items
so as to impose a particular order.

the structures that occur in natural-language tree-
banks (Kuhlmann and Nivre, 2006), but there is
still a significant minority of sentences that con-
tain ill-nested structures. Unfortunately, the gen-
eral problem of parsing ill-nested structures is NP-
complete, even when the gap degree is bounded:
this set of structures is closely related to LCFRS
with bounded fan-out and unbounded production
length, and parsing in this formalism has been
proven to be NP-complete (Satta, 1992). The
reason for this high complexity is the problem
of unrestricted crossing configurations, appearing
when dependency subtrees are allowed to inter-
leave in every possible way. However, just as
it has been noted that most non-projective struc-
tures appearing in practice are only “slightly” non-
projective (Nivre and Nilsson, 2005), we charac-
terise a sense in which the structures appearing in
treebanks can be viewed as being only “slightly”
ill-nested. In this section, we generalise the algo-
rithms WG1 andWGk to parse a proper superset
of the set of well-nested structures in polynomial
time; and give a characterisation of this new set
of structures, which includes all the structures in
several dependency treebanks.

5.1 TheMG1 and MGk parsers

TheWGk parser presented previously is based on
a bottom-up process, whereLink steps are used to
link completed subtrees to a head, andCombine
steps are used to join subtrees governed by a com-
mon head to obtain a larger structure. AsWGk is a
parser for well-nested structures of gap degree up
to k, its Combinesteps correspond to all the ways
in which we can join two sets of sibling subtrees
meeting these constraints, and having a common
head, into another. Thus, this parser does not use
Combinesteps that produce interleaved subtrees,
since these would generate items corresponding to
ill-nested structures.

We obtain a polynomial parser for a wider set of
structures of gap degree at mostk, including some
ill-nested ones, by havingCombinesteps repre-
senting every way in which two sets of sibling sub-
trees of gap degree at mostk with a common head
can be joined into another, including those produc-
ing interleaved subtrees, like the steps for gap de-
gree1 shown in Figure 1C. Note that this does not
mean that we can build every possible ill-nested
structure: some structures with complex crossed
configurations have gap degreek, but cannot be
built by combining two structures of that gap de-
gree. More specifically, our algorithm will be able

296



to parse a dependency structure (well-nested or
not) if there exists abinarisationof that structure
that has gap degree at mostk. The parser im-
plicitly works by finding such a binarisation, since
Combinesteps are always applied to two items and
no intermediate item generated by them can ex-
ceed gap degreek (not counting the position of
the head in the projection).

More formally, letT be a dependency structure
for the stringw1 . . . wn. A binarisation of T is
a dependency treeT ′ over a set of nodes, each of
which may be unlabelled or labelled with a word
in {w1 . . . wn}, such that the following conditions
hold: (1) each node has at most two children, and
(2) wi → wj in T if and only if wi →? wj in
T ′. A dependency structure ismildly ill-nested
for gap degreek if it has at least one binarisation
of gap degree≤ k. Otherwise, we say that it is
strongly ill-nested for gap degreek. It is easy
to prove that the set of mildly ill-nested structures
for gap degreek includes all well-nested structures
with gap degree up tok.

We defineMG1, a parser for mildly ill-nested
structures for gap degree1, as follows: (1) the
item set is the same as that ofWG1, except that
items can now contain any mildly ill-nested struc-
tures for gap degree1, instead of being restricted
to well-nested structures; and (2) deduction steps
are the same as inWG1, plus the additional steps
shown in Figure 1C. These extraCombinesteps
allow the parser to combine interleaved subtrees
with simple crossing configurations. TheMG1

parser still runs inO(n7), as these new steps do
not use more than 7 string positions.

The proof of correctness for this parser is sim-
ilar to that of WG1. Again, we use the concept
of order annotations. The set of mildly ill-nested
structures for gap degreek can be defined as those
that only contain annotations meeting certain con-
straints. The soundness proof involves showing
thatCombinesteps always generate items contain-
ing trees with such annotations. Completeness is
proven by induction, by showing that if a subtree
is mildly ill-nested for gap degreek, an item for
it can be obtained from items for smaller subtrees
by applyingCombineandLink steps. In the cases
whereCombinesteps have to be applied, the order
in which they may be used to produce a subtree
can be obtained from its head’s order annotation.

To generalise this algorithm to mildly ill-nested
structures for gap degreek, we need to add aCom-
bine step for every possible way of joining two
structures of gap degree at mostk into another.

This can be done systematically by considering a
set of strings over an alphabet of three symbols:
a andb to represent intervals of words in the pro-
jection of each of the structures, andg to repre-
sent intervals that are not in the projection of ei-
ther structure, and will correspond to gaps in the
joined structure. The legal combinations of struc-
tures for gap degreek will correspond to strings
where symbolsa andb each appear at mostk + 1
times,g appears at mostk times and is not the first
or last symbol, and there is no more than one con-
secutive appearance of any symbol. Given a string
of this form, the correspondingCombinestep is
given by the expression in Figure 1D. As a particu-
lar example, theCombine Interleaving Gap Cstep
in Figure 1C is obtained from the stringabgab.

Thus, we define the parsing schema forMGk, a
parser for mildly ill-nested structures for gap de-
greek, as the schema where (1) the item set is
like that ofWGk, except that items can now con-
tain any mildly ill-nested structures for gap degree
k, instead of being restricted to well-nested struc-
tures; and (2) the set of deduction steps consists of
a Link step as the one inWGk, plus a set ofCom-
binesteps obtained as expressed in Figure 1D.

As the string used to generate aCombinestep
can have length at most3k + 2, and the result-
ing step contains an index for each symbol of the
string plus two extra indexes, theMGk parser has
complexityO(n3k+4). Note that the item and de-
duction step sets of anMGk parser are always su-
persets of those ofWGk. In particular, the steps
for WGk are those obtained from strings that do
not containabab or baba as a scattered substring.

5.2 Mildly ill-nested dependency structures

The MGk algorithm defined in the previous sec-
tion can parse any mildly ill-nested structure for a
given gap degreek in polynomial time. We have
characterised the set of mildly ill-nested structures
for gap degreek as those having a binarisation of
gap degree≤ k. Since a binarisation of a depen-
dency structure cannot have lower gap degree than
the original structure, this set only contains struc-
tures with gap degree at mostk. Furthermore, by
the relation betweenMGk andWGk, we know that
it contains all the well-nested structures with gap
degree up tok.

Figure 2 shows an example of a structure that
has gap degree1, but is strongly ill-nested for gap
degree1. This is one of the smallest possible such
structures: by generating all the possible trees up
to 10 nodes (without counting a dummy root node

297



Language

Structures

Total
Nonprojective

Total
By gap degree By nestedness

Gap
degree1

Gap
degree2

Gap
degree3

Gap
deg.> 3

Well-
Nested

Mildly
Ill-Nested

Strongly
Ill-Nested

Arabic 2995 205 189 13 2 1 204 1 0
Czech 87889 20353 19989 359 4 1 20257 96 0

Danish 5430 864 854 10 0 0 856 8 0
Dutch 13349 4865 4425 427 13 0 4850 15 0
Latin 3473 1743 1543 188 10 2 1552 191 0

Portuguese 9071 1718 1302 351 51 14 1711 7 0
Slovene 1998 555 443 81 21 10 550 5 0
Swedish 11042 1079 1048 19 7 5 1008 71 0
Turkish 5583 685 656 29 0 0 665 20 0

Table 1:Counts of dependency trees classified by gap degree, and mild and strong ill-nestedness (for their gap degree); appear-
ing in treebanks for Arabic (Hajič et al., 2004), Czech (Hajič et al., 2006), Danish (Kromann, 2003), Dutch (van der Beek et al.,
2002), Latin (Bamman and Crane, 2006), Portuguese (Afonso et al., 2002), Slovene (Ďzeroski et al., 2006), Swedish (Nilsson
et al., 2005) and Turkish (Oflazer et al., 2003; Atalay et al., 2003).

Figure 2: One of the smallest strongly ill-nested structures.
This dependency structure has gap degree1, but is only
mildly ill-nested for gap degree≥ 2.

located at position0), it can be shown that all the
structures of any gap degreek with length smaller
than10 are well-nested or only mildly ill-nested
for that gap degreek.

Even if a structureT is strongly ill-nested for
a given gap degree, there is always somem ∈ N

such thatT is mildly ill-nested form (since every
dependency structure can be binarised, and binari-
sations have finite gap degree). For example, the
structure in Figure 2 is mildly ill-nested for gap de-
gree2. Therefore,MGk parsers have the property
of being able to parse any possible dependency
structure as long as we makek large enough.

In practice, structures like the one in Figure 2
do not seem to appear in dependency treebanks.
We have analysed treebanks for nine different lan-
guages, obtaining the data presented in Table 1.
None of these treebanks contain structures that are
strongly ill-nested for their gap degree. There-
fore, in any of these treebanks, theMGk parser can
parse every sentence with gap degree at mostk.

6 Conclusions and future work

We have defined a parsing algorithm for well-
nested dependency structures with bounded gap
degree. In terms of computational complexity,
this algorithm is comparable to the best parsers
for related constituency-based formalisms: when
the gap degree is at most1, it runs in O(n7),

like the fastest known parsers for LTAG, and can
be madeO(n6) if we use unlexicalised depen-
dencies. When the gap degree is greater than 1,
the time complexity goes up by a factor ofn2

for each extra unit of gap degree, as in parsers
for coupled context-free grammars. Most of the
non-projective sentences appearing in treebanks
are well-nested and have a small gap degree, so
this algorithm directly parses the vast majority of
the non-projective constructions present in natural
languages, without requiring the construction of a
constituency grammar as an intermediate step.

Additionally, we have defined a set of struc-
tures for any gap degreek which we call mildly
ill-nested. This set includes ill-nested structures
verifying certain conditions, and can be parsed in
O(n3k+4) with a variant of the parser for well-
nested structures. The practical interest of mildly
ill-nested structures can be seen in the data ob-
tained from several dependency treebanks, show-
ing that all of the ill-nested structures in them are
mildly ill-nested for their corresponding gap de-
gree. Therefore, ourO(n3k+4) parser can analyse
all the gap degreek structures in these treebanks.

The set of mildly ill-nested structures for gap
degreek is defined as the set of structures that have
a binarisation of gap degree at mostk. This defini-
tion is directly related to the way theMGk parser
works, since it implicitly finds such a binarisation.
An interesting line of future work would be to find
an equivalent characterisation of mildly ill-nested
structures which is more grammar-oriented and
would provide a more linguistic insight into these
structures. Another research direction, which we
are currently working on, is exploring how vari-
ants of theMGk parser’s strategy can be applied
to the problem of binarising LCFRS (Ǵomez-
Rodŕıguez et al., 2009).

298



References
Susana Afonso, Eckhard Bick, Renato Haber, and Di-

ana Santos. 2002. “Floresta sintá(c)tica”: a tree-
bank for Portuguese. InProc. of LREC 2002, pages
1968–1703, Las Palmas, Spain.

Nart B. Atalay, Kemal Oflazer, and Bilge Say. 2002.
The annotation process in the Turkish treebank. In
Proc. of EACL Workshop on Linguistically Inter-
preted Corpora - LINC, Budapest, Hungary.

David Bamman and Gregory Crane. 2006. The design
and use of a Latin dependency treebank. InProc. of
5th Workshop on Treebanks and Linguistic Theories
(TLT2006), pages 67–78.

Manuel Bodirsky, Marco Kuhlmann, and Mathias
Möhl. 2005. Well-nested drawings as models
of syntactic structure. Technical Report, Saar-
land University. Electronic version available at:
http://www.ps.uni-sb.de/Papers/.

Michael A. Covington. 1990. A dependency parser
for variable-word-order languages. Technical Re-
port AI-1990-01, Athens, GA.

Sǎso Ďzeroski, Tomǎz Erjavec, Nina Ledinek, Petr Pa-
jas, Zdeňek Žabokrtsḱy, and AndrejaŽele. 2006.
Towards a Slovene dependency treebank. InProc.
of LREC 2006, pages 1388–1391, Genoa, Italy.

Jason Eisner and Giorgio Satta. 1999. Efficient pars-
ing for bilexical context-free grammars and head au-
tomaton grammars. InProc. of ACL-99, pages 457–
464, Morristown, NJ. ACL.

Jason Eisner and Giorgio Satta. 2000. A faster parsing
algorithm for lexicalized tree-adjoining grammars.
In Proc. of 5th Workshop on Tree-Adjoining Gram-
mars and Related Formalisms (TAG+5), pages 14–
19, Paris.

Jason Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. InProc. of
COLING-96, pages 340–345, Copenhagen.

Carlos Ǵomez-Rodŕıguez, John Carroll, and David
Weir. 2008a. A deductive approach to dependency
parsing. InProc. of ACL’08:HLT, pages 968–976,
Columbus, Ohio. ACL.

Carlos Ǵomez-Rodŕıguez, David Weir, and John Car-
roll. 2008b. Parsing mildly non-projective depen-
dency structures. Technical Report CSRP 600, De-
partment of Informatics, University of Sussex.

Carlos Ǵomez-Rodŕıguez, Marco Kuhlmann, Giorgio
Satta, and David Weir. 2009. Optimal reduction of
rule length in linear context-free rewriting systems.
In Proc. of NAACL’09:HLT(to appear).

Jan Hajǐc, Otakar Smřz, Petr Zeḿanek, JaňSnaidauf,
and Emanuel Běska. 2004. Prague Arabic depen-
dency treebank: Development in data and tools. In
Proc. of NEMLAR International Conference on Ara-
bic Language Resources and Tools, pages 110–117.

Jan Hajǐc, Jarmila Panevov́a, Eva Hajǐcová, Jarmila
Panevov́a, Petr Sgall, Petr Pajas, JanŠťeṕanek, Jǐrı́
Havelka, and Marie Mikulov́a. 2006. Prague depen-
dency treebank 2.0. CDROM CAT: LDC2006T01,
ISBN 1-58563-370-4.

Jǐrı́ Havelka. 2007. Beyond projectivity: Multilin-
gual evaluation of constraints and measures on non-
projective structures. InProc. of ACL 2007, Prague,
Czech Republic. ACL.

Günter Hotz and Gisela Pitsch. 1996. On pars-
ing coupled-context-free languages.Theor. Comput.
Sci., 161(1-2):205–233. Elsevier, Essex, UK.

Aravind K. Joshi and Yves Schabes. 1997. Tree-
adjoining grammars. InHandbook of for-
mal languages, pages 69–124. Springer-Verlag,
Berlin/Heidelberg/NY.

Matthias T. Kromann. 2003. The Danish dependency
treebank and the underlying linguistic theory. In
Proc. of the 2nd Workshop on Treebanks and Lin-
guistic Theories (TLT2003).

Marco Kuhlmann and Mathias M̈ohl. 2007. Mildly
context-sensitive dependency languages. InProc. of
ACL 2007, Prague, Czech Republic. ACL.

Marco Kuhlmann and Joakim Nivre. 2006. Mildly
non-projective dependency structures. InProc.
of COLING/ACL main conference poster sessions,
pages 507–514, Morristown, NJ, USA. ACL.

Marco Kuhlmann. 2007.Dependency Structures and
Lexicalized Grammars. Doctoral dissertation, Saar-
land University, Saarbrücken, Germany.

Ryan McDonald and Giorgio Satta. 2007. On the com-
plexity of non-projective data-driven dependency
parsing. InIWPT 2007: Proc. of the 10th Confer-
ence on Parsing Technologies. ACL.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajǐc. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. InProc. of
HLT/EMNLP 2005, pages 523–530, Morristown,
NJ, USA. ACL.

Jens Nilsson, Johan Hall, and Joakim Nivre. 2005.
MAMBA meets TIGER: Reconstructing a Swedish
treebank from antiquity. InProc. of NODALIDA
2005 Special Session on Treebanks, pages 119–132.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. InProc. of ACL’05,
pages 99–106, Morristown, NJ, USA. ACL.

Kemal Oflazer, Bilge Say, Dilek Zeynep Hakkani-Tür
and G̈okhan T̈ur. 2003. Building a Turkish tree-
bank. In A. Abeille, ed.,Building and Exploit-
ing Syntactically-annotated Corpora. Kluwer, Dor-
drecht.

Giorgio Satta. 1992. Recognition of linear context-
free rewriting systems. InProc. of ACL-92, pages
89–95, Morristown, NJ. ACL.

Klaas Sikkel. 1997.Parsing Schemata — A Frame-
work for Specification and Analysis of Parsing Al-
gorithms. Springer-Verlag, Berlin/Heidelberg/NY.

L. van der Beek, G. Bouma, R. Malouf, and G. van
Noord. 2002. The Alpino dependency treebank.
In Computational Linguistics in the Netherlands
(CLIN), Twente University.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
1987. Characterizing structural descriptions pro-
duced by various grammatical formalisms. InProc.
of ACL-87, pages 104–111, Morristown, NJ. ACL.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. InProc. of 8th International Workshop on
Parsing Technologies (IWPT 2003), pages 195–206.

299


