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Abstract

Citation count prediction (CCP) has been an

important research task for automatically esti-

mating the future impact of a scholarly paper.

Previous studies mainly focus on extracting or

mining useful features from the paper itself

or the associated authors. An important kind

of data signals, i.e., peer review text, has not

been utilized for the CCP task. In this paper,

we take the initiative to utilize peer review

data for the CCP task with a neural prediction

model. Our focus is to learn a comprehensive

semantic representation for peer review text

for improving the prediction performance. To

achieve this goal, we incorporate the abstract-

review match mechanism and the cross-review

match mechanism to learn deep features from

peer review text. We also consider integrating

hand-crafted features via a wide component.

The deep and wide components jointly make

the prediction. Extensive experiments have

demonstrated the usefulness of the peer review

data and the effectiveness of the proposed

model. Our dataset has been released online.

1 Introduction

In recent years, the number of scientific pub-

lications has been growing in a dramatic rate.

For example, the numbers of submissions and

accepted papers of EMNLP 2019 have increased

to 2,877 and 684 respectively1. Given the huge

volume of scholarly papers, a long-standing re-

search challenge is how to effectively evaluate

the impact of scientific literature (Garfield, 1999;

Saha et al., 2003; Bornmann, 2013). A typical

way to measure the impact of a scholarly paper is

through the number of citations received after pub-

lication (Garfield, 1979; Aksnes, 2006), reflecting

the influence in the research community.

∗Corresponding author
1https://emnlp2019.org

Since citation count is an important evaluation

measure for scientific impact, many researchers

aim to develop automatic ways to predict the

future citation of a paper (Castillo et al., 2007;

Ibáñez et al., 2009; Davletov et al., 2014; Xiao

et al., 2016). A typical approach is to casting

the problem into a classification or regression

task, focusing on extracting useful feature infor-

mation (Yan et al., 2011; Chen and Zhang, 2015;

Singh et al., 2015; Park et al., 2017) (e.g., h-index

and topic distribution). Although these studies

have achieved important progress on this task,

they mainly utilize information from the papers

themselves or their associated authors. They have

neglected an important kind of data signal for the

prediction task, i.e., peer review data.

Peer review is a widely adopted paper e-

valuation mechanism, in which three or more

reviewers would be assigned to decide whether

to accept or reject a paper. During the review

process, the reviewers should assess the paper

quality in terms of several important factors,

including originality, correctness, substance and

readability2. Intuitively, peer review data should

be useful to predict future impact of a paper, since

the review text contains assessment comments

from domain experts. Fortunately, the mechanism

of open review (Soergel et al., 2013) has made it

possible to obtain peer review data for the citation

count prediction (CCP) task.

Although it is appealing to leverage peer re-

views for the CCP task, it is difficult to effectively

extract supporting evidence and learn comprehen-

sive semantic representations from peer review da-

ta. Reviews are usually written in natural language

text, covering the assessment comments of a paper

in multiple aspects. Some comments may not

focus on the main contribution of a paper. For

2https://acl2018.org
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example, a review typically contains the reminders

for minor spelling errors or format problems.

Another interesting observation is that different

reviewers may focus on different aspects in their

comments, and even raise divergent attitudes on

the same aspect. Hence, it is important to consider

both coverage and divergence of review comments

for making a comprehensive decision on the paper

impact.

In this paper, we take the initiative to study

how to utilize the peer review data in the CCP

task. We focus on how to learn a comprehen-

sive semantic representation from peer review

text for improving the prediction performance.

To identify relevant evidence from long text,

we utilize the abstract-review match method to

learn abstract-aware review representations by

using abstract text as an attentive query. In this

way, we can reduce the influence of irrelevant

content or noise. To further characterize the

interaction among multiple reviews, we propose

a novel cross-review match mechanism. With

such a mechanism, a review representation will

be decomposed into a parallel representation and

an orthogonal representation by referring to the

rest of the reviews. Our model can derive an

effective semantic representation for capturing the

comprehensive semantics of all the reviewers.

To evaluate our model, we have constructed

two peer review datasets with citation counts.

Extensive experiments have demonstrated the

superiority of the proposed model over several

competitive baselines. To our knowledge, it is the

first time that peer review data has been utilized

in the CCP task. Our work has shown that peer

review data is important to improve the prediction

performance. Our code and dataset have been

released at https://github.com/RUCAIBox/

Citation-Count-Prediction.

2 Related Work

Citation count prediction has been a hot research

topic in the literature (Castillo et al., 2007; Ibáñez

et al., 2009; Chakraborty et al., 2014). Early stud-

ies casted this task as a classification or regression

task (Fu and Aliferis, 2008). Their focus was

to identify features in a certain aspect to explore

the factors of the impact of papers. Following

works formally defined this task and thoroughly

examined various possible factors correlated with

citation counts (Yan et al., 2011; Bhat et al., 2015;

Chen and Zhang, 2015; Singh et al., 2015; Chen

and Zhang, 2015; Park et al., 2017). These studies

mainly model the long-term scientific impact (Wu

et al., 2019; Abrishami and Aliakbary, 2018; Yuan

et al., 2018). Furthermore, some researchers

casted the problem as a time series task, and

focused on analyzing temporal features or patterns

in the process of citation growth (Davletov et al.,

2014; Xiao et al., 2016; Yuan et al., 2018).

However, to the best of our knowledge, no work

has utilized peer review data of scholarly papers

for citation count prediction.

As an important paper evaluation mechanism,

peer review has been widely adopted in various

journals and conferences (Ross et al., 2006; Fisher

et al., 1994). Based on private review data,

researchers have explored the usefulness of peer

reviews in several aspects, such as issue localiza-

tion (Xiong et al., 2010), review utility (Xiong and

Litman, 2011) and quality/tone (Ramachandran

and Gehringer, 2011). More recently, to lower the

barrier to studying peer reviews for the scientific

community, a public dataset of peer reviews has

been released for research purpose (Kang et al.,

2018). Based on this dataset, Wang and Wan

(2018) have employed peer review text to predict

the overall decision status for a paper submission.

Compared with (Wang and Wan, 2018), we focus

on a different task by studying how to leverage

peer review for future impact estimation instead

of paper acceptance, which has its own technical

challenges. Besides, we have released our dataset

with citation counts online.

Our work is also related to the studies that

analyze scientific literature or citation data, in-

cluding concept or keyphrase extraction (Shen

et al., 2018; Gordon et al., 2016; Luan et al.,

2017; Caragea et al., 2014), citation or influence

analysis (Lauscher et al., 2018; Chakraborty and

Narayanam, 2016; Bonab et al., 2018; Chen et al.,

2018), context modeling (Cohan and Goharian,

2017; Jin and Szolovits, 2018) and automatic

paper rating (Yang et al., 2018).

3 Problem Formulation

Let d denote a scientific paper from a literature

corpus D. Following (Ibáñez et al., 2009), we

only consider the abstract text for modeling paper

content, which summarizes the main contributions

of a paper. Let ad denote the abstract text of

d, which consists of multiple abstract sentences.
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Figure 1: The overview of the proposed citation count prediction model.

We also assume that K peer reviews are available

for paper d, characterized by {rk}Kk=1, where rk
denotes the k-th review consisting of multiple

review sentences. We assume that both abstract

and review text share the same vocabulary V .

Besides these features, we also assume other types

of information (e.g., authors’ h-index) are also

available for our task. We use a vectorized rep-

resentation xd to encode all non-review features.

Based on the above preliminaries, we now

define the Citation Count Prediction (CCP) task.

We aim to learn an effective predictive function

that takes as input the abstract text, review text

and other available information and estimates the

future citation count after a given time period:

f(xd,ad, {rk}Kk=1) → ĉd, (1)

where ĉd is the estimated citation count for d. To

make the citation number more predictable, we

normalize the value range of cd within the interval

(0, 1). Here, we consider long-term citation count

prediction in terms of years.

4 The Proposed Model

In this section, we present a neural citation count

prediction model based on peer review text. Our

model consists of two major components, namely

the deep component and wide component, which

model review-based text features and other hand-

crafted features, respectively. Figure 1 presents an

illustrative sketch for our model architecture. The

notations and the descriptions are shown in Table

1.

Symbols Descriptions

xd the non-review features of paper d
zd the final review representation of paper d
cd the citation count of paper d
ad the abstract text of paper d
rk the k-th review consisting of multiple review

sentences

sA
j the learned representations of the j-th

sentence in the abstract text

sR
k,j the learned representations of the j-th

sentence in the k-th review text
hS the dimension of sentence vectors
nd the number of sentences in abstract of paper d
nk the number of sentences in the k-th review of

paper d

uR
t the updated representation of the t-th sentence

in a review after abstract-review match
hH the GRU hidden size

vR
k the representation of the k-th review

vR
k,‖ the parallel representation of the k-th review

vR
k,⊥ the orthogonal representation of the k-th

review

vR
¬k the representation of other reviews excluding

the k-th review

v̂R
k the refined representation of the k-th review

after cross-review match

Table 1: Notations used in the paper.

4.1 The Deep Component

The deep component is the core part of our model,

which aims to extract important semantic charac-
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teristics from peer review text for the CCP task.

We first encode abstract and review sentences into

embedding vectors, and then distill the relevant

evidence from review text by referring to the

abstract. To characterize the interaction of mul-

tiple reviewers, we further design a cross-review

match mechanism to capture both consistency and

divergence among different reviews.

4.1.1 Encoding Abstract and Review
Sentences

We first pretrain the word embeddings using the

word2vec model (Mikolov et al., 2013) using

all the scientific corpus. To effectively encode

the abstract and review sentences, we adopt the

convolution-based method in (Kim, 2014) to mod-

el the sentences, sequentially consisting of a

lookup layer, a convolution layer of 100 filters,

and a max pooling layer. We denote the learned

sentence representations of the abstract text as

{sAj }nd
j=1 and the k-th review text is denoted

as {sRk,j}nk
j=1, where each sAj or sRk,j is a hS-

dimensional vector for the j-th sentence in the

abstract or the k-th review, and nd and nk is the

number of sentences in abstract of paper d and its

k-th review.

4.1.2 Improving the Review Representations
with Abstract-Review Match

Review text reflects the subject assessment on

a paper by the reviewers. A review is likely

to cover the detailed comments from multiple

aspects. It may contain irrelevant information for

the prediction task, such as requesting source code

release or pointing out minor spelling errors. It is

key to identify relevant information focusing on

the core contributions of a paper.

Intuitively, we can utilize the abstract informa-

tion to purify the original review sentence repre-

sentations, since it provides a good summary for

the main contributions of a paper. Inspired by the

recent progress on machine reading comprehen-

sion, we adopt the gated attention-based recurrent

networks (Wang et al., 2017) for refining the

review representations regarding to the abstract

text. In our task, the abstract is considered as a

question, and a review is considered as a passage.

Similar to machine reading comprehension, we

aim to learn a “question"-relevant review sentence

representation that focuses on the core content

from the abstract. For simplicity, we only consider

the interaction between the abstract and an indi-

vidual review, and omit the review index from the

notations. Formally, we update the representation

of the t-th sentence in a review as uR
t ∈ R

hH :

uR
t = BiGRU(uR

t−1, [s
R
t ,pt]

∗), (2)

where pt ∈ R
hS is an attentional vector of a

review computed based on the interaction between

review and abstract sentence representations:

pt =

nd∑
i=1

αt
i · sA

i , (3)

αt
i = exp(ht

i)/

nd∑
j=1

exp(ht
j),

ht
j = u�

tanh(WA
s sA

j +WR
s sR

t +WR
u uR

t−1),

where W s ∈ R
hH×hSare parameter matrices to

learn, sAj and sRt are the learned sentence repre-

sentations for abstract and review text respectively

in Sec. 4.1.1, αs are the attention coefficients, and

[sRt ,pt]
∗ is a gated update of the concatenation

vector [sRt ,pt]:

[sRt ,pt]
∗ = gt � [sRt ,pt], (4)

gt = sigmoid(Wg[s
R
t ,pt]), (5)

where “� ” is an element-wise product operation

for vectors.

In this way, for a review, we can obtain

the abstract-aware review sentence representations

{uR
j }nd

j=1, which encode more relevant informa-

tion emphasized by the abstract. To learn the

overall representation for the k-th review, we

concatenate the sentence embeddings of the first

and last sentences in it:

vR
k = [uR

1 ,u
R
nk
], (6)

where uR
1 and uR

nk
are learned sentence embed-

dings using bidirectional Gated Recurrent Unit

(BiGRU) in Eq. 2.

4.1.3 Improving Review Representations
with Cross-Review Match

Previously, we have considered the interaction

between the abstract and an individual review. The

evaluation process of a paper typically requires

multiple reviewers to make the final decision.

According to (Hirschauer, 2010), coverage and di-

vergence should be considered for the acceptance

decision of a paper. Therefore, we propose to uti-

lize cross-review match to learn a comprehensive

semantic representation from different reviewers.
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Given a review, we take the rest of the reviews

as a reference source. We aim to learn the

common semantics that are also discussed by

other reviews (maybe with different attitudes),

and identify unmentioned semantics by other

reviews. To implement this idea, we adopt the

orthogonal decomposition strategy proposed in

(Wang et al., 2016). We decompose the original

review representation into a parallel representa-

tion and an orthogonal representation. Formally,

the representation of the k-th review vR
k ∈ R

hH

(Eq. 6) is decomposed to:

vR
k,‖ =

vR�
k · vR

¬k
vR�
¬k · vR

¬k
· vR

¬k, (7)

vR
k,⊥ = vR

k − vR
k,‖, (8)

vR
¬k = avg-pooling({vR

j }j �=k). (9)

where the parallel representation vR
k,‖ ∈ R

hH

encodes common semantics also discussed by

other reviews, and the orthogonal representation

vR
k,⊥ ∈ R

hH encodes unmentioned semantics in

other reviews. Such a decomposition is useful

to extract more comprehensive semantics from

multiple reviews. We use average pooling to

construct the reference vector of other reviews.

We perform the above decomposition for each

review associated with a paper. The parallel rep-

resentation reflects the common semantics shared

by other reviews. Since different reviewers may

have divergent comments (or attitudes) towards

the same content, we further introduce a corre-

sponding attentional representation for enriching

the semantics of the original representation:

ṽR
k,‖ =

K∑
j=1

αkj · vR
j,‖, (10)

αk,j = exp(sk,j)/

K∑
j′=1

exp(si,j′),

sk,j =

{
0, if k = j

(vR
k,‖)

� · vR
j,‖, otherwise.

Then we combine the three representations and

adopt a fully connected layer to obtain the refined

representation for the k-th review v̂Rk ∈ R
hH :

v̂Rk = W [vR
k,⊥, v

R
k,‖, ṽ

R
k,‖]. (11)

It is able to capture the coverage and divergence

in semantics for peer review text to some extent.

Finally we use an average pooling operation over

all review representations of paper d as its final

representation zd ∈ R
hH :

zd = avg-pooling({v̂Rk }Kk=1). (12)

4.2 The Wide Component

Besides review-based features, we consider di-

rectly integrating other important features for the

prediction task, called wide features. Here, we use

a vectorized representation xd to represent all the

wide features. We construct the vector by using

the features proposed in previous studies (Yan

et al., 2011; Bhat et al., 2015):

• Topic distribution: We utilize the Latent

Dirichlet Allocation (LDA) (Blei et al., 2003) to

learn the probability distribution over topics as the

topic features.

• Diversity: We calculate the entropy of the

paper’s topic distribution to measure the topical

breadth of a paper.

• Recency: We use the year of publication as

the temporal feature to predict the citation count.

• Author influence: We use the number of

authors and the average h-index as author features.

4.3 The Joint Deep and Wide Model

Finally, we integrate the two components into a

unified model. We take as input the deep and wide

features respectively discussed in Section 4.1 and

Section 4.2, and combine them as the prediction

function (Eq. 1) :

ĉd = tanh(w�
deep · zd +w�

wide · xd + b), (13)

where zd and xd are the derived feature repre-

sentations from the deep and wide components

respectively, and wdeep and wwide are the cor-

responding parameter vectors. Furthermore, we

define the citation count prediction error over the

training set with the Mean Squared Error (MSE):

L(θ) =
1

|D|
∑
d∈D

(ĉd − cd)
2. (14)

where cd is the normalized real citation count

of each scholarly paper. We learn our model

parameters via optimizing the L(θ) loss. The

parameters in GRU and CNN are initialized by

a normal distribution with zero mean and 0.01

variance, and the biases are initialized as zeros.

To optimize our model, we adopt the Stochastic

Gradient Descent (SGD) optimizer to learn the
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Dataset
NIPS (2013-2016) ICLR (2013-2017)

Abstract Review Abstract Review

#Doc. 1,739 7,171 384 1,119
#Sent. 10,964 109,674 2,368 15,553

#Words 6,448 16,695 2,993 6,680
#Ave.
Rev.

4.12 2.91

Table 2: Statistics of our datasets after preprocessing.

model parameters. More implementation details

can be found in Section 5.1.

5 Experiments

In this section, we first set up the experiments, and

then present the results and analysis.

5.1 Experimental Setup

Datasets. Peer review data is not available for the

majority of mainstream journals and conferences.

Fortunately, ICLR and NIPS have provided the

review text on their website. NIPS does not

provide rating scores from the reviewers, and we

only consider utilizing text data in this paper.

For most of the published papers, it is difficult

to accumulate a considerable number of citations

in a short period. Hence, we only use the

data ICLR 2013-2017 and NIPS 2013-2016 for

evaluation, which has a two-year span to now for

long-term impact prediction. The data of NIPS

2013-2016 and ICLR 2017 have been shared by

Kang et al. (2018). The data of ICLR 2013-

2016 was crawled from the OpenView website3,

including abstract text, review text and author

data. Note that we only consider the accepted

papers for citation prediction. We further crawl

author data (e.g., h-index) and paper citation

from Google Scholar4. When encountering any

ambiguity on author names or paper titles, a

senior graduate student will manually collect the

corresponding data. All the Google Scholar data

has been accessed on March 31, 2019 to guarantee

the recency of citation data. We remove the

papers with only one reviewer. We perform

basic text preprocessing using NLTK5, including

tokenization, lowercase, and stopword removal,

and only retain the words that occur three times

or more. In order to simulate the real situation,

for both datasets, we take the data from the last

year as test data, and the previous data as training

3https://openreview.net/
4https://scholar.google.com
5https://www.nltk.org

set. The detailed statistics of the two datasets

are summarized in Table 2. Since both datasets

have a limited number of papers, we only hold

out 5% training data as validation set. Our dataset

and code are available at https://github.com/

RUCAIBox/Citation-Count-Prediction.

Implementation Details. We pre-trained 300-

dimensional word vectors as initial word embed-

dings using all the data in our dataset. The word

vectors were fixed during the training process. The

number of CNN filters hS and GRU hidden size

hH are set to 128. For the wide component, we

utilize the LDA to train a 100-topic model. All of

the features in the wide component and the citation

count are normalized within the interval (0, 1).
The dropout rate is set to 0.5 to prevent overfitting.

For the hyper-parameters of SGD optimizer, we

set the learning rate as 0.001.

Baseline Models. We compare our model against

a number of baseline models:

• Linear Regression (LR), K-NearestNeighbor

(KNN), Support Vector Regression (SVR) and

Gradient Boost Regression Tree (GBRT): The four

methods are commonly used regression models

for citation prediction (Yan et al., 2011; Bhat et al.,

2015). We adopt the same wide features from (Yan

et al., 2011) as our wide component.

• Wide & Deep (Cheng et al., 2016): We

borrow the Wide & Deep leaning framework

from recommender systems to predict the citation

count. We modify the deep component by

implementing it as a feed-forward neural network

on top of a bi-directional RNN component over

review text.

• MILAM (Wang and Wan, 2018): It is a

multiple instance learning network with a novel

abstract-based memory mechanism to predict the

overall decision (accept, reject, or borderline)

based on review text. We modify the loss of this

model as the MSE loss for citation regression.

For a fair comparison, we also integrate the wide

features in a similar way as our wide component.

Evaluation Metrics. To evaluate the performance

of different methods on citation count prediction,

following previous studies (Bhat et al., 2015; Yuan

et al., 2018), we adopt five evaluation metrics,

including MAE, RMSE, OR@30, OR@50, and

Spearman’s rank correlation coefficient. MAE and

RMSE measure the difference between the real

value and the predicted value for a regression task.
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Datasets Models MAE (“↓") RMSE (“↓") OR(@30) (“↑") OR(@50) (“↑") Spearman’s Rank (“↑")

NIPS

LR 0.1776 0.1903 0.27 0.33 0.4776

KNN 0.1701 0.1900 0.33 0.36 0.4848

SVR 0.1677 0.1856 0.33 0.40 0.5279

GBRT 0.1863 0.1974 0.23 0.34 0.5310

Wide&Deep 0.1470 0.1848 0.30 0.38 0.5351

MILAM 0.1426 0.1792 0.37 0.38 0.5458

Our model 0.1349 0.1726 0.4 0.42 0.5561

ICLR

LR 0.2395 0.2723 0.40 0.70 0.1475

KNN 0.2293 0.2674 0.40 0.72 0.1874

SVR 0.2226 0.2578 0.40 0.70 0.1328

GBRT 0.2223 0.2607 0.43 0.70 0.1469

Wide&Deep 0.2182 0.2607 0.47 0.72 0.2440

MILAM 0.2093 0.2510 0.47 0.72 0.2510

Our model 0.1866 0.2279 0.50 0.76 0.3026

Table 3: Performance comparisons of different methods for citation count prediction using two datasets. “↑" ( “↓")

indicates that a larger (smaller) value corresponds to a better performance.

Spearman’s Rank measures the overall correlation

between the predicted list and the ground-truth

list sorted by the citation number descendingly.

OR@k measures the overlapping ratio between

top k predicted results and the real ordered list.

5.2 Results and Analysis

In this subsection, we construct a series of experi-

ments on the effectiveness of the proposed model

for the citation count prediction task.

Main Results. Table 3 presents the performance

of different methods on citation count prediction.

We can make the following observations. First,

the four traditional baselines (LR, KNN, SVR and

GBRT) perform worse than the two deep learning

baselines (W&D, MILAM). These four baselines

only utilize the wide features with traditional

machine learning models. Second, MILAM

performs consistently better than W&D, since

it has designed a more elaborate architecture

to model the review text. Finally, our model

outperforms all the baselines with a substantial

margin, especially for the ICLR dataset. Our

model is able to integrate the wide features and

learn the comprehensive representation for peer

review text, which is the key of the performance

improvement over baselines. Overall, the two

datasets show the similar findings. In what

follows, we will report the results on ICLR dataset

due to space limit.

Ablation Analysis. The major novelty of our

model is that it utilizes abstract-review match

and cross-review match to learn a comprehensive

abstract-aware representation for peer review text.

Models MAE SR

Our full model 0.1866 0.3026
w/o abstract-review match 0.1983 0.2861
w/o cross-review match 0.2025 0.2735
w/o wide component 0.2065 0.2697

Table 4: Ablation analysis on ICLR dataset (SR =

Spearman’s Rank).

Models
MAE SR

original +review original +review

LR 0.2395 0.2289 0.1475 0.1700
KNN 0.2293 0.2176 0.1874 0.2155
SVR 0.2226 0.2174 0.1328 0.1768

GBRT 0.2223 0.2157 0.1469 0.2239
Our Model 0.1866 0.3026

Table 5: Analysis of the usefulness of peer review text

on ICLR dataset (SR = Spearman’s Rank).

Moreover, we integrate the wide features for the

prediction task. To examine the contribution of

the three parts, we examine the performance of the

model variants by removing each module from the

complete model. We present the MAE results of

our model and its three variants in Table 4. As we

can see, all components are useful to improve the

final performance.

Usefulness of Peer Review Text. A major

motivation of this paper is that peer review text

is useful to the citation prediction task, which has

been seldom studied in previous studies. Hence,

we examine whether peer review text is also

Test Datasets NIPS ICLR
Models MAE SR MAE SR
MILAM 0.1530 0.5227 0.2056 0.26

Our Model 0.1425 0.5348 0.1889 0.2933

Table 6: Analysis on cross-venue prediction (SR =

Spearman’s Rank).
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Abstract

· · · we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a
multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to
decode the target sequence from the vector. Our main result is that on an English to French translation task · · · Additionally, the LSTM did not have
difficulty on long sentences. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively
invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences)
improved the LSTM’s performance markedly.

Reviewer #1 Reviewer #2 Reviewer #3

Sentences v‖ v⊥ Sentences v‖ v⊥ Sentences v‖ v⊥
[0.31]-I think your last
translated-sentence ex-
ample kind of shows the
kind of weirdness that
can result.

0.15 0.85

[0.21]-This paper presents
the elegant idea of translat-
ing from source to target
languages with an LSTM.

0.93 0.07

[0.19]-The ideas represented
in this work are extremely in-
teresting, and I love the eleg-
ance and simplicity of the pr-
oposed RNN architecture.

0.88 0.12

[0.24]-A solution has to
be scalable in principle
to long sentences, and I
think it’s clear that your
method cannot.

0.38 0.62

[0.15]-This is an elegant mo-
del, and I am inclined to acc-
ept it, despite the fact that it
only "works" for sentences
that do not have infrequent
words.

0.63 0.37

[0.17]-The idea of the paper is
good and very interesting, pr-
oviding an elegant neural sol-
ution to machine translation.

0.91 0.09

[0.21]-I am skeptical th-
at this idea could be a
practical solution to MT.

0.44 0.56
[0.09]-The paper does have
some major holes in the ex-
periments.

0.69 0.31

[0.11]-I’m sceptical that com-
mon RNNs would find it ha-
rd to model "long-term depe-
ndencies"· · ·

0.14 0.86

[0.14]-I believe the exp-
erimental investigation
is competent and comp-
lete.

0.73 0.27
[0.05]-The experimental re-
sults are not convincing

0.71 0.29
[0.04]-It would be more conv-
incing to have some more
examples.

0.54 0.46

Table 7: Samples of the abstract and reviews from NIPS dataset. For each review, we present four comment

sentences. The similarity weights w.r.t. the abstract text have been shown in red font.

(a) Varing the word embed-
ding size

(b) Varing the RNN hidden
size

Figure 2: The impact of embedding size and hidden

size in terms of MAE scores on ICLR dataset.

useful to improve traditional prediction models

(LR, KNN, SVR and KNN). Note that our focus

is to verify the general usefulness of peer review

text instead of the most suitable text features for

the baselines. Here, we adopt the simple yet

classic doc2vec model (Le and Mikolov, 2014) to

encode peer text into a vectorized representation.

Then, we integrate these text features into the

four baseline methods. As shown in Table 5, the

performance of all the four methods have been

improved with the text features. The results have

shown that the peer text is indeed generally useful

for the citation prediction.

Cross-venue Evaluation. To examine the robust-

ness of our model, we further perform a cross-

venue evaluation. For ICLR (NIPS) test set, we

apply the models trained on the full NIPS (ICLR)

dataset. We only select the best baseline MILAM

as a comparison. As shown in Table 6, we are able

to see that the performance decreases compared

with the results in Table 3, since we use a training

set from a different venue. But the decline is not

obvious. In the future we will consider how to

improve the performance. Our model is still better

than the baseline MILAM for both datasets.

Parameter Sensitivity. Next, we investigate the

performance with respect to two major parameters

in our model, e.g., the word embedding size and

the GRU hidden size. As shown in Figure 2(a) and

Figure 2(b), our model is consistently better than

the best baseline MILAM with all the parameter

values. An embedding size of 300 and a hidden

size of 128 yield the best results for our model.

5.3 Qualitative Analysis
Previously, we have shown that both the review-

abstract match and cross-review match are useful

in the prediction performance. In Table 7, we

perform the qualitative analysis on a sample paper

with three reviews for understanding how the two

mechanisms work.

We first compute the similarity weight between

the abstract representation and a review sentence,

and sort the review sentences according to such

weights. As we can see, the comments on

model design have been overall ranked in a higher

position than those on experiments. With the

abstract-review match, our model indeed identifies
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more relevant content regarding to the abstract

text.

Then, we analyze the corresponding semantic

explanation of the cross-review match, in which

we decompose an overall review representation

into a parallel representation v‖ and an orthogonal

representation v⊥. It is difficult to directly

understand the two vectors. Instead, we compute

the similarity between a comment sentence and

the review parallel (or orthogonal) representation.

Then we normalize the two similarity values into

a distribution over two representations (parallel or

orthogonal). It can be seen that the comments

focusing on the common aspect have a larger

weight on v‖. For example, for the comments

from the first row, reviewer #2 and reviewer #3

have similar general comments about the model

architecture, and both comments have very large

weights on the parallel representation. While,

reviewer #1 raises a different comment on other

model detail, corresponding to a large weight on

the orthogonal representation. Interestingly, the

fourth row corresponds to the comments on the

experiments. The three comment sentences are

more related to the parallel representation (i.e., the

common issue), while they have conveyed differ-

ent attitudes. This phenomenon can be partially

captured by the representation ṽR
k,‖ (Eq. 10) by

attending to the parallel representations of other

reviews.

6 Conclusion

In this paper, we studied how to utilize the peer

review text to improve the citation prediction

task. We developed a joint deep and wide model

that was able to integrate both deep and wide

features into a unified predictive function. The

deep features were learned from peer review text

by applying the abstract-review and cross-review

match mechanisms. We constructed two evalu-

ation datasets with peer review text. Extensive

results have demonstrated the effectiveness of our

proposed model. Currently, we only consider the

semantic-level representations from peer review.

As future work, we will consider how to extend

our work by modeling sentiments of review text.
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