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Abstract

Deep learning models for semantics are gener-
ally evaluated using naturalistic corpora. Ad-
versarial methods, in which models are eval-
uated on new examples with known semantic
properties, have begun to reveal that good per-
formance at these naturalistic tasks can hide
serious shortcomings. However, we should in-
sist that these evaluations be fair – that the
models are given data sufficient to support the
requisite kinds of generalization. In this pa-
per, we define and motivate a formal notion
of fairness in this sense. We then apply these
ideas to natural language inference by con-
structing very challenging but provably fair ar-
tificial datasets and showing that standard neu-
ral models fail to generalize in the required
ways; only task-specific models that jointly
compose the premise and hypothesis are able
to achieve high performance, and even these
models do not solve the task perfectly.

1 Introduction

Evaluations of deep learning approaches to seman-
tics generally rely on corpora of naturalistic exam-
ples, with quantitative metrics serving as a proxy
for the underlying capacity of the models to learn
rich meaning representations and find generalized
solutions. From this perspective, when a model
achieves human-level performance on a task ac-
cording to a chosen metric, one might be tempted
to say that the task is “solved”. However, recent
adversarial testing methods, in which models are
evaluated on new examples with known semantic
properties, have begun to reveal that even these
state-of-the-art models often rely on brittle, local
solutions that fail to generalize even to examples
that are similar to those they saw in training. These
findings indicate that we need a broad and deep
range of evaluation methods to fully characterize
the capacities of our models.

However, for any evaluation method, we should
ask whether it is fair. Has the model been shown
data sufficient to support the kind of generaliza-
tion we are asking of it? Unless we can say “yes”
with complete certainty, we can’t be sure whether
a failed evaluation traces to a model limitation or
a data limitation that no model could overcome.

In this paper, we seek to address this issue by
defining a formal notion of fairness for these eval-
uations. The definition is quite general and can
be used to create fair evaluations for a wide range
of tasks. We apply it to Natural Language Infer-
ence (NLI) by constructing very challenging but
provably fair artificial datasets. We evaluate a
number of different standard architectures (vari-
ants of LSTM sequence models with attention and
tree-structured neural networks) as well as NLI-
specific tree-structured neural networks that pro-
cess aligned examples. Our central finding is that
only task-specific models are able to achieve high
performance, and even these models do not solve
the task perfectly, calling into question the viabil-
ity of the standard models for semantics.

2 Related Work

There is a growing literature that uses targeted
generalization tasks to probe the capacity of learn-
ing models. We seek to build on this work by de-
veloping a formal framework in which one can ask
whether one of these tasks is even possible.

In adversarial testing, training examples are sys-
tematically perturbed and then used for testing.
In computer vision, it is common to adversari-
ally train on artificially noisy examples to create
a more robust model (Goodfellow et al., 2015;
Szegedy et al., 2014). However, in the case of
question answering, Jia and Liang (2017) show
that training on one perturbation does not result in
generalization to similar perturbations, revealing a
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need for models with stronger generalization ca-
pabilities. Similarly, adversarial testing has shown
that strong models for the SNLI dataset (Bow-
man et al., 2015a) have significant holes in their
knowledge of lexical and compositional semantics
(Glockner et al., 2018; Naik et al., 2018; Nie et al.,
2018; Yanaka et al., 2019; Dasgupta et al., 2018).
In addition, a number of recent papers suggest that
even top models exploit dataset artifacts to achieve
good quantitative results (Poliak et al., 2018; Gu-
rurangan et al., 2018; Tsuchiya, 2018), which fur-
ther emphasizes the need to go beyond naturalistic
evaluations.

Artificially generated datasets have also been
used extensively to gain analytic insights into what
models are learning. These methods have the ad-
vantage that the complexity of individual exam-
ples can be precisely characterized without refer-
ence to the models being evaluated. Evans et al.
(2018) assess the ability of neural models to learn
propositional logic entailment. Bowman et al.
(2015b) conduct similar experiments using natu-
ral logic, and Veldhoen and Zuidema (2018) ana-
lyze models trained on those same tasks, arguing
that they fail to discover the kind of global solu-
tion we would expect if they had truly learned nat-
ural logic. Lake and Baroni (2017) apply similar
methods to instruction following with an artificial
language describing a simple domain.

These methods can provide powerful insights,
but the issue of fairness looms large. For in-
stance, Bowman (2013) poses generalization tasks
in which entire reasoning patterns are held out for
testing. Similarly, Veldhoen and Zuidema (2018)
assess a model’s ability to recognize De Morgan’s
laws without any exposure to this reasoning in
training. These extremely difficult tasks break
from standard evaluations in an attempt to expose
model limitations. However, these tasks are not
fair by our standards; brief formal arguments for
these claims are given in Appendix A.

3 Compositionality and Generalization

Many problems can be solved by recursively com-
posing intermediate representations with functions
along a tree structure. In the case of arithmetic, the
intermediate representations are numbers and the
functions are operators such a plus or minus. In
the case of evaluating the truth of propositional
logic sentences, the intermediate representation
are truth values and the functions are logical op-

Data: A composition tree C = (T,Dom,Func), a node
a ∈ NT , and an input x ∈ IC

Result: An output from Dom(a)

function compose(C, a, x)
if a ∈ NT

leaf then
i← index(a, T )
return xi

else
c1, . . . cm ← children(a, T )
return Func(a)(
compose(C, c1, x), . . . ,
compose(C, cm, x))

end

Algorithm 1: Recursive composition up a
tree. This algorithm uses helper functions
children(a, T ), which returns the left-to-right
ordered children of node a, and index(a, T ),
which returns the index of a leaf according to
left-to-right ordering.

erators such as disjunction, negation, or the ma-
terial conditional. We will soon see that, in the
case of NLI, the intermediate representations are
semantic relations between phrases and the func-
tions are semantic operators such as quantifiers or
negation. When tasked with learning some com-
positional problem, we intuitively would expect
to be shown how every function operates on ev-
ery intermediate value. Otherwise, some functions
would be underdetermined. We now formalize the
idea of recursive tree-structured composition and
this intuitive notion of fairness.

We first define composition trees (Section 3.1)
and show how these naturally determine baseline
learning models (Section 3.2). These models im-
plicitly define a property of fairness: a train/test
split is fair if the baseline model learns the task
perfectly (Section 3.3). This enables us to create
provably fair NLI tasks in Section 4.

3.1 Composition Trees

A composition tree describes how to recursively
compose elements from an input space up a tree
structure to produce an element in an output space.
Our baseline learning model will construct a com-
position tree using training data.

Definition 1. (Composition Tree) Let T be an or-
dered tree with nodes NT = NT

leaf ∪ NT
non-leaf,

where NT
leaf is the set of leaf nodes and NT

non-leaf
is the set of non-leaf nodes for T . Let Dom be a
map on NT that assigns a set to each node, called
the domain of the node. Let Func be a map on
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Data: An ordered tree T and a set of training data D
containing pairs (x, Y ) where x is an input and
Y is a function defined on NT

non-leaf providing
labels at every node of T .

Result: A composition tree (T,Dom,Func)

function learn (T,D)
Dom,Func← initialize(T )
for (x, Y ) ∈ D do

Dom,Func←
memorize(x, Y, T,Dom,Func, r)

end
return (T,Dom,Func)

function memorize (x,Y,T,Dom,Func,a)
if a ∈ NT

leaf then
i← index(a, T )
Dom[a]← Dom[a] ∪ {xi}
return Dom, Func

else
Dom[a]← Dom[a] ∪ {Y (a)}
c1, . . . , cm ← children(a, T )
Func[a][(Y (c1), . . . , Y (cm))]← Y (a)
for k ← 1 . . .m do

Dom,Func←
memorize(x, Y, T,Dom,Func, ck)

end
return Dom, Func

end

Algorithm 2: Given a tree and training data with
labels for every node of the tree, this learning
model constructs a composition tree. This al-
gorithm uses helper functions children(a, T )
and index(a, T ), as in Algorithm 1, as well as
initialize(T ), which returns Dom, a dictio-
nary mappingNT to empty sets, and Func, a dic-
tionary mapping NT

non-leaf to empty dictionaries.

NT
non-leaf that assigns a function to each non-leaf

node satisfying the following property: For any
a ∈ NT

non-leaf with left-to-right ordered children
c1, . . . , cm, we have that Func(a) : Dom(c1) ×
· · · × Dom(cm) → Dom(a). We refer to the tuple
C = (T,Dom,Func) as a composition tree. The
input space of this composition tree is the carte-
sian product IC = Dom(l1) × · · · × Dom(lk),
where l1, . . . , lk are the leaf nodes in left-to-right
order, and the output space is OC = Dom(r)
where r is the root node.

A composition tree C = (T,Dom,Func) re-
alizes a function F : IC → OC in the follow-
ing way: For any input x ∈ IC , this function is
given by F (x) = compose(C, r, x), where r is
the root node of T and compose is defined re-
cursively in Algorithm 1. For a given x ∈ IC
and a ∈ NT

non-leaf with children c1, . . . , cm, we say
that the element of Dom(c1) × · · · × Dom(cm)

that is input to Func(a) during the computation
of F (x) = compose(C, r, x) is the input real-
ized at Func(a) on x and the element of Dom(a)
that is output by Func(a) is the output realized at
Func(a) on x. At a high level, compose(C, a, x)
finds the output realized at a node a by computing
node a’s function Func(a) with the outputs real-
ized at node a’s children as inputs. This recursion
bottoms out when the components of x are pro-
vided as the outputs realized at leaf nodes.

3.2 A Baseline Learning Model

Algorithm 2 is our baseline learning model. It
learns a function by constructing a composition
tree. This is equivalent to learning the function
that tree realizes, as once the composition tree is
created, Algorithm 1 computes the realized func-
tion. Because this model constructs a composition
tree, it has an inductive bias to recursively com-
pute intermediate representations up a tree struc-
ture. At a high level, it constructs a full composi-
tion tree when provided with the tree structure and
training data that provides a label at every node
in the tree by looping through training data inputs
and memorizing the output realized at each inter-
mediate function for a given input. As such, any
learning model we compare to this baseline model
should be provided with the outputs realized at ev-
ery node during training.

3.3 Fairness

We define a training dataset to be fair with respect
to some function F if our baseline model perfectly
learns the function F from that training data. The
guiding idea behind fairness is that the training
data must expose every intermediate function of a
composition tree to every possible intermediate in-
put, allowing the baseline model to learn a global
solution:

Definition 2. (A Property Sufficient for Fairness)
A property of a training dataset D and tree T
that is sufficient for fairness with respect to a
function F is that there exists a composition tree
C = (T,Dom,Func) realizing F such that, for
any a ∈ NT

non-leaf and for any input i to Func(a),
there exists (x, Y ) ∈ D where i is the input real-
ized at Func(a) on x.

Not all fair datasets are challenging. For exam-
ple, a scenario in which one trains and tests on the
entire space of examples will be fair. The role of
fairness is to ensure that, when we separately de-
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C2 → {T,F}

C1 → {T,F}

{T,F}{¬, ε}

{⇒}{T,F}

Figure 1: A composition tree that realizes a function
evaluating propositional sentences. We define the func-
tions C1(U, V1) = U(V1) and C2(V1,⇒, V2) = V1 ⇒
V2 where V1, V2 ∈ {T,F} and U ∈ {¬, ε}.

Train Test

T ⇒ ε F T ⇒ ¬ T
T ⇒ ¬ F T ⇒ ε T
F ⇒ ¬ T F ⇒ ¬ F
F ⇒ ε T F ⇒ ε F

Table 1: A fair train/test split for the evaluation prob-
lem defined by the composition tree in Figure 1. We
give just the terminal nodes; the examples are full trees.

fine a challenging task, it is guaranteed to be pos-
sible. We noted in Section 2 that some challenging
problems in the literature fail to meet this minimal
requirement.

3.4 Fair Tasks for Propositional Evaluation

As a simple illustration of the above concepts, we
consider the task of evaluating the truth of a sen-
tence from propositional logic. We use the stan-
dard logical operators material conditional, ⇒,
and negation, ¬, as well as the unary operator ε,
which we define to be the identity function on
{T,F}. We consider a small set of eight propo-
sitional sentences, all which can be seen in Ta-
ble 1. We illustrate a composition tree that re-
alizes a function performing truth evaluation on
these sentences in Figure 1, where a leaf node l
is labeled with its domain Dom(l) and a non-leaf
node a is labeled with Func(a)→ Dom(a).

A dataset for this problem is fair if and only
if it has two specific properties. First, the binary
operator ⇒ must be exposed to all four inputs
in {T,F} × {T,F} during training. Second, the
unary operators ¬ and ε each must be exposed to
both inputs in {T,F}. Jointly, these constraints en-
sure that a model will see all the possibilities for
how our logical operators interact with their truth-
value arguments. If either constraint is not met,
then there is ambiguity about which operators the
model is tasked with learning. An example fair

symbol example set theoretic definition

x ≡ y couch ≡ sofa x = y

x @ y crow @ bird x ⊂ y

x A y bird A crow x ⊃ y

x ∧ y human ∧ nonhuman x ∩ y = ∅ ∧ x ∪ y = U

x | y cat | dog x ∩ y = ∅ ∧ x ∪ y 6= U

x^ y animal ^ nonhuman x ∩ y 6= ∅ ∧ x ∪ y = U

x# y hungry # hippo (all other cases)

Table 2: The seven basic semantic relations of Mac-
Cartney and Manning (2009): B = {# = independence,
@ = entailment, A = reverse entailment, | = alternation,
^ = cover, ∧ = negation, ≡ = equivalence}.

Pevery/some(A) = @

A

doganimal

Pevery/some

someevery

Figure 2: Natural logic inference cast as composition
on aligned semantic parse trees. The joint projectiv-
ity signature Pevery/some operates on the semantic rela-
tion A determined by the aligned pair animal/dog to
determine entailment (@) for the whole. In contrast, if
we reverse every and some, creating the example some
animal/every dog, then the joint projectivity signature
Psome/every operates on A, which determines reverse en-
tailment (A).

train/test split is given in Table 1.
Crucial to our ability to create a fair training

dataset using only four of the eight sentences is
that⇒ operates on the intermediate representation
of a truth value, abstracting away from the specific
identity of its sentence arguments. Because there
are two ways to realize T and F at the intermedi-
ate node, we can efficiently use only half of our
sentences to satisfy our fairness property.

4 Fair Artificial NLI Datasets

Our central empirical question is whether current
neural models can learn to do robust natural lan-
guage inference if given fair datasets. We now
present a method for addressing this question. To
do this, we need to move beyond the simple propo-
sitional logic example explored above, to come
closer to the true complexity of natural language.
To do this, we adopt a variant of the natural logic
developed by MacCartney and Manning (2007,
2009) (see also Sánchez-Valencia 1991; van Ben-
them 2008; Icard and Moss 2013). Natural logic
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is a flexible approach to doing logical inference
directly on natural language expressions. Thus, in
this setting, we can work directly with natural lan-
guage sentences while retaining complete control
over all aspects of the generated dataset.

4.1 Natural Logic

We define natural logic reasoning over aligned se-
mantic parse trees that represent both the premise
and hypothesis as a single structure and allow us to
calculate semantic relations for all phrases compo-
sitionally. The core components are semantic rela-
tions, which capture the direct inferential relation-
ships between words and phrases, and projectivity
signatures, which encode how semantic operators
interact compositionally with their arguments. We
employ the semantic relations of MacCartney and
Manning (2009), as in Table 2. We use B to denote
the set containing these seven semantic relations.

The essential concept for the material to come
is that of joint projectivity: for a pair of semantic
functions f and g and a pair of inputs X and Y
that are in relation R, the joint projectivity signa-
ture Pf/g : B → B is a function such that the rela-
tion between f(X) and g(Y ) is Pf/g(R). Figure 2
illustrates this with the phrases every animal and
some dog. We show the details of how the natural
logic of MacCartney and Manning (2009), with a
small extension, determines the joint projectivity
signatures for our datasets in Appendix B.

4.2 A Fragment of Natural Language

Our fragment G consists of sentences of the form:

QS AdjS NS Neg Adv V QO AdjO NO

where NS and NO are nouns, V is a verb, AdjS and
AdjO are adjectives, and Adv is an adverb. Neg is
does not, and QS and QO can be every, not every,
some, or no; in each of the remaining categories,
there are 100 words. Additionally, AdjS, AdjO,
Adv, and Neg can be the empty string ε, which
is represented in the data by a unique token. Se-
mantic scope is fixed by surface order, with earlier
elements scoping over later ones.

For NLI, we define the set of premise–
hypothesis pairs S ⊂ G×G such that (sp, sh) ∈ S
iff the non-identical non-empty nouns, adjectives,
verbs, and adverbs with identical positions in sp
and sh are in the # relation. This constraint on
S trivializes the task of determining the lexical
relations between adjectives, nouns, adverbs, and
verbs, since the relation is≡where the two aligned

elements are identical and otherwise #. Further-
more, it follows that distinguishing contradictions
from entailments is trivial. The only sources of
contradictions are negation and the negative quan-
tifiers no and not every. Consider (sp, sh) ∈ S and
letC be the number of times negation or a negative
quantifier occurs in sp and sh. If sp contradicts sh,
then C is odd; if sp entails sh, then C is even.

We constrain the open-domain vocabulary to
stress models with learning interactions between
logically complex function words; we trivialize
the task of lexical semantics to isolate the task
of compositional semantics. We also do not have
multiple morphological forms, use artificial tokens
that do not correspond to English words, and col-
lapse do not and not every to single tokens to fur-
ther simplify the task and isolate a model’s ability
to perform compositional logical reasoning.

Our corpora use the three-way labeling scheme
of entailment, contradiction, and neutral. To
assign these labels, we translate each premise–
hypothesis pair into first-order logic and use
Prover9 (McCune, 2005–2010). We assume no ex-
pression is empty or universal and encode these as-
sumptions as additional premises. This label gen-
eration process implicitly assumes the relation be-
tween unequal nouns, verbs, adjectives, and ad-
verbs is independence.

When we generate training data for NLI cor-
pora from some subset Strain ⊂ S, we perform the
following balancing. For a given example, every
adjective–noun and adverb–verb pair across the
premise and hypothesis is equally likely to have
the relation ≡, @, A, or #. Without this bal-
ancing, any given adjective–noun and adverb–verb
pair across the premise and hypothesis has more
than a 99% chance of being in the independence
relation for values of Strain we consider. Even with
this step, 98% of the sentence pairs are neutral,
so we again sample to create corpora that are bal-
anced across the three NLI labels. This balancing
across our three NLI labels justifies our use of an
accuracy metric rather than an F1 score.

4.3 Composition Trees for NLI

We provide a composition tree for inference on S
in Figure 3. This is an aligned composition tree, as
in Figure 2: it jointly composes lexical items from
the premise and hypothesis. The leaf nodes come
in sibling pairs where one sibling is a lexical item
from the premise and the other is a lexical item
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COMP→ {≡,@,A, |, ˆ,^,#}

COMP→ {≡,@,A, |, ˆ,^,#}

COMP→ {≡,@,A, |, ˆ,^,#}

COMP→ {#,@,A,≡}

{#,≡}

NH
ONP

O

PROJ→ A

AdjHOAdjPO

PROJ→ Q

QHQP

COMP→ {#,@,A,≡}

REL→ {#,≡}

V HV P

PROJ→ A

AdvHAdvP

PROJ→ N

NegHNegP

COMP→ {#,@,A,≡}

REL→ {#,≡}

NH
ONP

O

PROJ→ A

AdjHSAdjPS

PROJ→ Q

QHQP

Figure 3: An aligned composition tree for inference on our set of examples S. The superscripts P and H refer to
premise and hypothesis. The semantic relations are defined in Table 2. The set Q is {some, every, no, not, every}.
The set Neg is {ε, not}. Q is the set of 16 joint projectivity signatures between the elements of Q. N is the set
of 4 joint projectivity signatures between ε and no. A is the set of 4 joint projectivity signatures between ε and
an intersective adjective or adverb. REL computes the semantic relations between lexical items, PROJ computes
the joint projectivity between two semantic functions (Section 4.1 and Appendix B), and COMP applies semantic
relations to joint projectivity signatures. This composition tree defines over 1026 distinct examples.

from the hypothesis. If both leaf nodes in a sibling
pair have domains containing lexical items that are
semantic functions, then their parent node domain
contains the joint projectivity signatures between
those semantic functions. Otherwise the parent
node domain contains the semantic relations be-
tween the lexical items in the two sibling node
domains. The root captures the overall semantic
relation between the premise and the hypothesis,
while the remaining non-leaf nodes represent in-
termediate phrasal relations.

The sets AdjS , NS , AdjO, NO, Adv, and V each
have 100 of their respective open class lexical
items with Adv, AdjS , and AdjO also containing
the empty string ε. The set Q is {some, every, no,
not, every} and the set Neg is {ε, not}. Q is the
set of 16 joint projectivity signatures between the
quantifiers some, every, no, and not every, N is
the set of 4 joint projectivity signatures between
the empty string ε and no, and A is the set of 4
projectivity signatures between ε and an intersec-
tive adjective or adverb. These joint projectivity
signatures were exhaustively determined by us by
hand, using the projectivity signatures of negation
and quantifiers provided by MacCartney and Man-
ning (2009) as well as a small extension (details in
Appendix B).

The function PROJ computes the joint projec-
tivity signature between two semantic functions,
REL computes the semantic relation between two
lexical items, and COMP inputs semantic relations
into a joint projectivity signature and outputs the
result. We trimmed the domain of every node so
that the function of every node is surjective. Pairs

of subexpressions containing quantifiers can be in
any of the seven basic semantic relations; even
with the contributions of open-class lexical items
trivialized, the level of complexity remains high,
and all of it emerges from semantic composition,
rather than from lexical relations.

4.4 A Difficult But Fair NLI Task

A fair training dataset exposes each local function
to all possible inputs. Thus, a fair training dataset
for NLI will have the following properties. First,
all lexical semantic relations must be included in
the training data, else the lexical targets could be
underdetermined. Second, for any aligned seman-
tic functions f and g with unknown joint projec-
tivity signature Pf/g, and for any semantic relation
R, there is some training example where Pf/g is
exposed to the semantic relation R. This ensures
that the model has enough information to learn
full joint projectivity signatures. Even with these
constraints in place, the composition tree of Sec-
tion 3.1 determines an enormous number of very
challenging train/test splits. Appendix C fully de-
fines the procedure for data generation.

We also experimentally verify that our baseline
learns a perfect solution from the data we gener-
ate. The training set contains 500,000 examples
randomly sampled from Strain and the test and de-
velopment sets each contain 10,000 distinct exam-
ples randomly sampled from S̄train. All random
sampling is balanced across adjective–noun and
adverb–verb relations as well as across the three
NLI labels, as described in Section 4.2.
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5 Models

We consider six different model architectures:

CBoW Premise and hypothesis are represented
by the average of their respective word em-
beddings (continuous bag of words).

LSTM Encoder Premise and hypothesis are pro-
cessed as sequences of words using a recur-
rent neural network (RNN) with LSTM cells,
and the final hidden state of each serves as its
representation (Hochreiter and Schmidhuber,
1997; Elman, 1990; Bowman et al., 2015a).

TreeNN Premise and hypothesis are processed as
trees, and the semantic composition func-
tion is a single-layer feed-forward network
(Socher et al., 2011b,a). The value of the root
node is the semantic representation in each
case.

Attention LSTM An LSTM RNN with word-by-
word attention (Rocktäschel et al., 2015).

CompTreeNN Premise and hypothesis are pro-
cessed as a single aligned tree, following
the structure of the composition tree in Fig-
ure 3. The semantic composition function is
a single-layer feed-forward network (Socher
et al., 2011b,a). The value of the root node
is the semantic representation of the premise
and hypothesis together.

CompTreeNTN Identical to the CompTreeNN,
but with a neural tensor network as the com-
position function (Socher et al., 2013).

For the first three models, the premise and hy-
pothesis representations are concatenated. For
the CompTreeNN, CompTreeNTN, and Attention
LSTM, there is just a single representation of the
pair. In all cases, the premise–hypothesis repre-
sentation is fed through two hidden layers and a
softmax layer.

All models are initialized with random 100-
dimensional word vectors and optimized us-
ing Adam (Kingma and Ba, 2014). It would
not be possible to use pretrained word vec-
tors, due to the artificial nature of our dataset.
A grid hyperparameter search was run over
dropout values of {0, 0.1, 0.2, 0.3} on the output
and keep layers of LSTM cells, learning rates
of {1e−2, 3e−3, 1e−3, 3e−4}, L2 regularization
values of {0, 1e−4, 1e−3, 1e−2} on all weights,
and activation functions ReLU and tanh. Each

sentence adverb-verb phrase
every tall kid ε happily kicks every ε rock happily kicks

entailment @
no tall kid does not ε kicks some large rock ε kicks

negated verb phrases adjective-noun phrase
ε happily kicks every ε rock tall kid

| ≡
does not ε kicks some large rock tall kid

verb phrases single words
happily kicks every ε rock tall≡ tall

@ kid≡ kid
ε kicks some large rock happily @ ε
adjective-noun phrase single words

ε rock kicks≡ kicks
A εA large

large rock rock≡ rock

Figure 4: For any example sentence pair (top left) the
neural models are trained using the a weighted sum of
the error on 12 prediction tasks shown above. The 12
errors are weighted to regularize the loss according to
the length of the expressions being predicted on.

hyperparameter setting was run for three epochs
and parameters with the highest development set
score were used for the complete training runs.

The training datasets for this generalization task
are only fair if the outputs realized at every non-
leaf node are provided during training just as they
are in our baseline learning model. For our neu-
ral models, we accomplish this by predicting se-
mantic relations for every subexpression pair in
the scope of a node in the tree in Figure 3 and
summing the loss of the predictions together. We
do not do this for the nodes labeled PROJ → Q
or PROJ → N , as the function PROJ is a bijec-
tion at these nodes and no intermediate represen-
tations are created. For any example sentence pair
the neural models are trained using the a weighted
sum of the error on 12 prediction tasks shown in
Figure 4. The 12 errors are weighted to regularize
the loss according to the length of the expressions
being predicted on.

The CompTreeNN and CompTreeNTN models
are structured to create intermediate representa-
tions of these 11 aligned phrases and so interme-
diate predictions are implemented as in the senti-
ment models of Socher et al. (2013). The other
models process each of the 11 pairs of aligned
phrases separately. Different softmax layers are
used depending on the number of classes, but oth-
erwise the networks have identical parameters for
all predictions.

6 Results and Analysis

Table 3 summarizes our findings on the hardest
of our fair generalization tasks, where the train-
ing sets are minimal ones required for fairness.
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Model Train Dev Test

CBoW 88.04± 0.68 54.18± 0.17 53.99± 0.27
TreeNN 67.01± 12.71 54.01± 8.40 53.73± 8.36

LSTM encoder 98.43± 0.41 53.14± 2.45 52.51± 2.78
Attention LSTM 73.66± 9.97 47.52± 0.43 47.28± 0.95

CompTreeNN 99.65± 0.42 80.17± 7.53 80.21± 7.71
CompTreeNTN 99.92± 0.08 90.45± 2.48 90.32± 2.71

Table 3: Mean accuracy of 5 runs on our difficult but fair generalization task, with standard 95% confidence
intervals. These models are trained on the intermediate predictions described in Section 5.

The four standard neural models fail the task com-
pletely. The CompTreeNN and CompTreeNTN,
while better, are not able to solve the task per-
fectly either. However, it should be noted that the
CompTreeNN outperforms our four standard neu-
ral models by ≈30% and the CompTreeNTN im-
proves on this by another ≈10%. This increase
in performance leads us to believe there may be
some other composition function that solves this
task perfectly.

Both the CompTreeNN and CompTreeNTN
have large 95% confidence intervals, indicating
that the models are volatile and sensitive to ran-
dom initialization. The TreeNN also has a large
95% interval. On one of the five runs, the TreeNN
achieved a test accuracy of 65.76%, much higher
than usual, indicating that this model may have
more potential than the other three.

Figure 5, left panel, provides further insights
into these results by tracking dev-set performance
throughout training. It is evident here that the
standard models never get traction on the prob-
lem. The volatility of the CompTreeNN and
CompTreeNTN is also again evident. Notably, the
CompTreeNN is the only model that doesn’t peak
in the first four training epochs, showing steady
improvement throughout training.

We can also increase the number of training ex-
amples so that the training data redundantly en-
codes the information needed for fairness. As
we do this, the learning problem becomes one
of trivial memorization. Figure 5, right panel,
tracks performance on this sequence of progres-
sively more trivial problems. The CompTreeNN
and CompTreeNTN both rapidly ascend to perfect
performance. In contrast, the four standard mod-
els continue to have largely undistinguished per-
formance for all but the most trivial problems. Fi-
nally, CBoW, while competitive with other neural

models initially, falls behind in a permanent way;
its inability to account for word order prevents it
from even memorizing the training data.

The results in Figure 5 are for models trained
to predict the semantic relations for every subex-
pression pair in the scope of a node in the tree
in Figure 3 (as discussed in Section 5), but we
also trained the models without intermediate pre-
dictions to quantify their impact.

All models fail on our difficult generalization
task when these intermediate values are withheld.
Without intermediate values this task is unfair by
our standards, so this to be expected. In the hard-
est generalization setting the CBoW model is the
only one of the four standard models to show sta-
tistically significant improvement when interme-
diate predictions are made. We hypothesize that
the model is learning relations between open-class
lexical items, which are more easily accessible
in its sentence representations. As the general-
ization task approaches a memorization task, the
four standard models benefit more and more from
intermediate predictions. In the easiest general-
ization setting, the four standard models are un-
able to achieve a perfect solution without inter-
mediate predictions, while the CompTreeNN and
CompTreeNTN models achieve perfection with
or without the intermediate values. Geiger et al.
(2018) show that this is due to standard models
being unable to learn the lexical relations between
open class lexical items when not directly trained
on them. Even with intermediate predictions, the
standard models are only able to learn the base
case of this recursive composition.

7 The Problem is Architecture

One might worry that these results represent a
failure of model capacity. However, the system-
atic errors remain even for much larger networks;
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Figure 5: Left: Model performance on our difficult but fair generalization task throughout training. Right: Mean
accuracy of 5 runs as we move from true generalization tasks (‘hardest’) to problems in which the training set
contains so much redundant encoding of the test set that the task is essentially one of memorization (‘easiest’).
Only the task-specific CompTreeNN and CompTreeNTN are able to do well on true generalization tasks. The
other neural models succeed only where memorization suffices, and the CBoW model never succeeds because it
does not encode word order.

the trends by epoch and final results are virtually
identical with 200-dimensional rather than 100-
dimensions representations.

The reason these standard neural models fail to
perform natural logic reasoning is their architec-
ture. The CBoW, TreeNN, and LSTM Encoder
models all separately bottleneck the premise and
hypothesis sentences into two sentence vector em-
beddings, so the only place interactions between
the two sentences can occur is in the two hid-
den layers before the softmax layer. However,
the essence of natural logic reasoning is recursive
composition up a tree structure where the premise
and hypothesis are composed jointly, so this bot-
tleneck proves extremely problematic. The At-
tention LSTM model has an architecture that can
align and combine lexical items from the premise
and hypothesis, but it cannot perform this process
recursively and also fails. The CompTreeNN and
CompTreeNTN have this recursive tree structure
encoded as hard alignments in their architecture,
resulting in higher performance. Perhaps in future
work, a general purpose model will be developed
that can learn to perform this recursive composi-
tion without a hard-coded aligned tree structure.

8 Conclusion and Future Work

It is vital that we stress-test our models of seman-
tics using methods that go beyond standard nat-
uralistic corpus evaluations. Recent experiments
with artificial and adversarial example generation
have yielded valuable insights here already, but
it is vital that we ensure that these evaluations
are fair in the sense that they provide our mod-

els with achievable, unambiguous learning targets.
We must carefully and precisely navigate the bor-
der between meaningful difficulty and impossibil-
ity. To this end, we developed a formal notion of
fairness for train/test splits.

This notion of fairness allowed us to rigorously
pose the question of whether specific NLI models
can learn to do robust natural logic reasoning. For
our standard models, the answer is no. For our
task-specific models, which align premise and hy-
pothesis, the answer is more nuanced; they do not
achieve perfect performance on our task, but they
do much better than standard models. This helps
us trace the problem to the information bottleneck
formed by learning separate premise and hypoth-
esis representations. This bottleneck prevents the
meaningful interactions between the premise and
hypothesis that are at the core of inferential rea-
soning with language. Our task-specific models
are cumbersome for real-world tasks, but they do
suggest that truly robust models of semantics will
require much more compositional interaction than
is typical in today’s standard architectures.
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