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Abstract

Variational autoencoders (VAEs) and Wasser-
stein autoencoders (WAEs) have achieved no-
ticeable progress in open-domain response
generation. Through introducing latent vari-
ables in continuous space, these models are
capable of capturing utterance-level seman-
tics, e.g., topic, syntactic properties, and thus
can generate informative and diversified re-
sponses. In this work, we improve the
WAE for response generation. In addition
to the utterance-level information, we also
model user-level information in latent con-
tinue space. Specifically, we embed user-level
and utterance-level information into two mul-
timodal distributions, and combine these two
multimodal distributions into a mixed distribu-
tion. This mixed distribution will be used as
the prior distribution of WAE in our proposed
model, named as PersonaWAE. Experimental
results on a large-scale real-world dataset con-
firm the superiority of our model for gener-
ating informative and personalized responses,
where both automatic and human evaluations
outperform state-of-the-art models.

1 Introduction

Over the past decade, a myriad of conversational
systems have been proposed in the field of artifi-
cial intelligence and achieved remarkable success
in various industry scenarios, such as e-commerce
assistant (Li et al., 2017) and chit-chat machine
XiaoIce (Shum et al., 2018). Based on the do-
mains involved in previous research, existing work
can be categorized into two groups, i.e., vertical-
domain (Glas et al., 2015) and open-domain (Zhao
et al., 2017), where the former group pursues to
complete a specific target with limited domain
knowledge while the latter one involves massive
topics in conversations. In this work, we focus on

∗Equal contribution. Ordering is decided by a coin flip.
†Corresponding author.

the latter one and intend to generate a natural and
meaningful response for a given conversation con-
text. Most recent works build upon the sequence
to sequence model (Bahdanau et al., 2014) and can
generate a fluent response. But they suffer from
the notorious “universal response” issue, i.e., gen-
erating safe and uninformative responses (e.g., I
don’t know) (Li et al., 2015).

To address the aforementioned shortcoming,
advanced conversational systems propose to cap-
ture and incorporate extra information from two
different levels, i.e., utterance-level and user-level.
As for utterance-level information modeling, pre-
vious works mainly construct models upon varia-
tional autoencoders (VAE) (Kingma and Welling,
2014). By doing so, responses with diverse and
informative words can be generated by introduc-
ing a latent variable for modeling utterance-level
information such as topic, and syntactic struc-
ture (Bowman et al., 2015). It is verified in var-
ious open-domain response generation situations
that conditional variational autoencoders (CVAE)
(Serban et al., 2017; Zhao et al., 2017) are effec-
tive for addressing the “universal response” issue.
In user-level information modeling, existing mod-
els either implicitly learn user information from
training data such as learning user embedding (Li
et al., 2015) or explicitly collect user profiles as
the accurate personalization (Zhang et al., 2017;
Yang et al., 2018; Zhang et al., 2018). Although
obtaining user profiles is more effective and ac-
curate than user embeddings, it is time-consuming
and economically costly, or even impossible under
the condition of protecting user privacy.

We propose the PersonaWAE model, a novel
conversational system which simultaneously cap-
tures user-level personalization and utterance-
level information as extra hints for generating bet-
ter responses. Our model is motivated by follow-
ing two points: 1) existing embedding based per-
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sona modeling methods cannot discover the com-
mon properties among users and train the embed-
ding for different user independently, which cause
(equal to learning) a very high-dimensional per-
sona embedding and thus have a low data utiliza-
tion efficiency or require a large amount of train-
ing data for each user. 2) benefited by the se-
mantic capturing ability of WAEs, plenitude per-
sona information can be gathered into the con-
tinuous space (Li et al., 2019). To this end, we
build our model upon the state-of-the-art conver-
sation model WAE (Gu et al., 2019) to model
utterance-level and the user-level information. In
the case, user embeddings are utilized as the con-
dition of the prior distribution of the latent vari-
able to formulate a WAE conditional prior. Mean-
while, to further model and fuse the utterance
and user-level information, we extend these sim-
ple prior distributions to the Gaussian Mixture
Distributions (GMDs, more details of the reasons
in Section 2.2). After obtaining two GMDs, we
combine them into a mixed distribution and re-
gard this mixed distribution as the prior distribu-
tion of PersonaWAE. To evaluate the effectiveness
of our proposed personalized conversational sys-
tem, we collect a large dataset with user identifi-
cations. Experimental results on both automatic
and human evaluation demonstrate that our pro-
posed model can outperform several strong meth-
ods, and generate personalized responses for dif-
ferent users.

In a nutshell, our contributions can be summa-
rized as follows:
• We proposed a novel personalized Wasser-

stein autoencoder (PersonaWAE) for open-domain
response generation, which incorporates both
utterance-level and user-level information;
• We proposed to mix two different types of

Gaussian mixture distribution as the prior distri-
bution of our model for scaling up the capability
of the latent variable;
• Experiments performed on a large dataset

demonstrate the effectiveness of our proposed
model and achieves the new state-of-the-art re-
sults.

2 Preliminaries

2.1 VAE and WAE

Conditional VAE (CVAE) is a popular framework
for dialogue generation (Zhao et al., 2017; Shen
et al., 2017, 2018). CVAE, as an extension of

VAE, supervises the generation process under an
extra condition c. To train a CVAE model, the
log-likelihood objective log pθ(x|c) is maximized
through pushing up its variational lower bound:

O(θ, φ, x, c) =−KL(qφ(z|x, c)||pθ(z|c))
+Eqφ(z|x,c)[log pθ(x|z, c)]

(1)

where qθ(z|x, c) and pθ(z|c) represent the ap-
proximated conditional posterior and the condi-
tional prior respectively, log pθ(x|z, c) represents
the probability of reconstructing x conditioned on
both z and c. Herein KL(·) represents the KL-
divergence term, which serves as the regulariza-
tion for encouraging the approximated posterior
qφ(z) to approach the prior pθ(z), i.e. a stan-
dard Gaussian distribution. E[·] is the term of re-
construction loss, reflecting how well the decoder
performs. The KL-divergence can be replaced by
Wasserstein distance which is implemented by Ar-
jovsky et al. (2017) and is proved to be superior to
KL-divergence by many experiments. The condi-
tional VAE based on Wasserstein distance is called
conditional WAE.

2.2 Gaussian Mixture Model

In VAE/WAE frameworks, a variable in latent
space is introduced for modeling information in
datasets. As demonstrated in Figure 1, each gray
point represents a data sample while colorized
points refer to noise data. If the latent variable
obeys a Gaussian distribution, noise samples (col-
orized points) will result in inferior responses. Al-
ternatively, a Gaussian mixture distribution can
model the datasets more accurately. Conventional
VAE and WAE models usually set the prior distri-
bution of the latent variable to a multivariate Gaus-
sian distribution, formulated as

z ∼ N{µ, σ2I} (2)

where µ and σ2 represent the mean and variance
ofN . In our model, we utilize a Gaussian mixture
distribution as the prior distribution of the latent
variable z, written by

z ∼ N{πk, µk, σ2kI}Kk=1 (3)

where µk and σ2k is the parameter for the k-th gaus-
sian distribution in this multimodal distribution.
πk is the weight.
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Figure 1: Distributions on latent space. The pink cir-
cle represents a Gaussian distribution while three small
blue circles refer to a Gaussian mixture distribution,
where gray points represent positive samples, and col-
orized points represent noise data.

2.3 Problem Formulation

We follow the conventional personalized conver-
sation generation research (Li et al., 2016) and for-
mulate the response generation task with the fol-
lowing necessary notations. A dataset with user
dialogue history content D = {(ci, ri,mi)}Ni=1 is
firstly given, where ci, ri, mi represent dialogue
context, response candidate, and user specific di-
alogue utterance respectively. Note that we treat
the user dialogue utterance for extracting person-
alization information in multi-turn response gen-
eration. Herein, the context is formulated by:
ci = (s1, s2, · · · , sj , · · · , sni) where sj represents
an utterance in the j-th turn of dialogue context
and there are ni utterances in the dialogue con-
text. mi denotes the user specific dialogue utter-
ance. ri = {ri,1, ri,2, · · · , ri,nr}, where nr is the
length of a target response ri. Then, our task is
defined as learning a mapping function f(·) from
the given dataset that can yield a personalized re-
sponse according to the given dialogue context and
the user dialogue history.

3 Proposed Model

As in Figure 2, our proposed personalized Wasser-
stein autoencoder (PersonaWAE) consists of user
personalization modeling and WAE, where details
are elaborated as follows.

3.1 User Personalization Modeling

Personalization Gaussian Mixture Distribution.
To model the user-level information in the con-
tinue space, we build the Personalization Gaussian
Mixture Distribution (Personalization GMD).

We train vector representations of users (Li
et al., 2016) from user dialog history M =

{mi}Ni=1 as the user personalizations to facilitate
personalized response generation. We denote the
trained user embeddings as U = {u1,u2, . . . ,ui}
where ui represents the vector representations of
i-th user (User i).

Based on the user embeddings as U , we uti-
lize learned user personalizations in the latent
space. Specifically, the conditional prior distribu-
tion of WAE part is a Gaussian mixture distribu-
tion (GMD) conditioned on the learned user em-
beddings, namely personalization GMD. We for-
mulate the conditional prior as:

p(zu|ui) =
K∑
k=1

vkN (zu;µk, σ
2
kI) (4)

where {πk, µk, σ2kI}Kk=1 represent the GMD (the
distribution will deprecate to a Gaussian distribu-
tion when K=1) and the parameters of k-th Gaus-
sian distribution are {µk, σ2k}. vk is a component
indicator with class probabilities π1, π2, . . . , πK ,
where πk is the mixture coefficient of the k-th
component of the GMD. We follow (Gu et al.,
2019) and compute these parameters as: ak

µk
log σ2k

 =Wk(ui) + bk

πk =
eak∑K
i=1 e

ak

(5)

To obtain vk, we use the Gumbel-Softmax
reparametrization to replace the exact sampling:

gi = − log(− log(bi))

vk =
e(ak+gk)/τ∑K
i=1 e

(ai+gi)/τ

(6)

where bi is a sample from U(0, 1), and τ is the
softmax temperature to control the sampling pro-
cess.

Fusion of Personalization in Decoder. We also
incorporate the user embeddings into the decoder.
Concretely, user personalization is used as the in-
put of each updating step to obtain user-specific in-
formation for generating personalized responses.
Meanwhile, ui is updated by back-propagating
loss signal during training. As user personaliza-
tions are high-level representations, we further in-
troduce a gating strategy to dynamically balance
the user personalization and the current conversa-
tion information.
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Figure 2: The detailed architecture of our proposed PersonaWAE model.

3.2 Personalized Wasserstein Autoencoder

Our proposed PersonaWAE consists of encoder,
prior and recognition networks, and decoder.

Encoder. The encoder encodes a given con-
text by a bidirectional RNN with GRU cells fol-
lowing (Chen et al., 2018). Through the encoder,
the context ci = (u1, u2, · · · , uj , · · · , uni) is rep-
resented as concatenated forward and backward1

vectors Vc = (v1, v2, · · · , vj , · · · , vni), where
vi = [−→v i,←−v i]. Similarly, the target response ri
is represented by the concatenation of states from
another bi-directional RNN with GRU cells, de-
noted as vr,i. The vectors sequence Vc is further
processed by an RNNs and yields a vector repre-
sentation vc,i. Note that vc,i refers to c in Equation
1 while vr,i represents x.

Recognition and Prior Networks. We use
a recognition network to learn the posterior
qθ(z|x, c), we hypothesize that the approximated
variational posterior follows an isotropic multi-
variate Gaussian distribution N (µ, σ2I), where I
represents the diagonal covariance. Thus model-
ing qθ(z|x, c) is converted to learn µ and log σ2:[

µ
log σ2

]
=Wo(

[
x
c

]
) + b (7)

which is presented as the recognition network in
Figure 2. Wo and b are trainable parameters.

To approach the prior distribution, we su-
perpose two conditional GMD, where the first

1 → and← refer to forward and backward, respectively.

one is personalization GMD as mentioned before
while another conditional GMD that called con-
text GMD is performed on context c. Resemble
to the personalization GMD, the parameters of the
context GMD pφ(zc|c) are defined as a′k, µ′k and
log σ′2k , which is learned by: a′k

µ′k
log σ

′2
k

 =Wrk(c) + b′k (8)

Fusion of two GMDs. In fusing personaliza-
tion and context GMD, we use the weighted addi-
tion strategy to superpose these two distributions,
where the resulted new distribution is the prior dis-
tribution of PersonaWAE (which is also a GMD).[

wc
wu

]
= softmax(Wf (

[
c
ui

]
))

zp = wc · zc + wu · zu
(9)

where Wf is a trainable parameter.
Decoder. The decoder is a one-layer GRU net-

work to output the sentence in the generation,
which is shown in the right hand of Figure 2. Tak-
ing the generation of response ri as an example,
the initial state of the decoder is calculated as:

si,0 =Wd(

[
zp
c

]
) + bd (10)

where Wd is a trainable matrix for dimension
transformation. To facilitate the combination of
user personalization ui and decoder hidden states,
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we incorporate a gate module (Tu et al., 2018) in
our model:

g = f(Ust−1 +Vdt +Wui)

ot = GRU(st−1,

[
dt

g · ui

]
)

(11)

where f is the sigmoid funtion and ot refers to the
decoder output in time step t. After processing
ot with the softmax operation, the response ri is
generated.

Training. To train our proposed model,
we launch the following objective to simultane-
ously minimize the Wasserstein distance between
pθ(z|c,ui) and qφ(z|x, c), and maximize the re-
constructing probability of x:

L(θ, φ; c, x,ui) =−Eqφ(z|x,c,ui) log p(x|z, c,ui)

+W (qφ(z|x, c)||pθ(z|c,ui))
(12)

4 Experiments

4.1 Dataset
To evaluate the effectiveness of our proposed per-
sonalized WAE model (PersonaWAE), we collect
a dataset from an open online chatting forum, i.e.,
Weibo 2, which contains massive multi-turn con-
versation sessions and user identification informa-
tion. Overall, there are 31,128,520 utterances in
the raw dataset with corresponded user identifica-
tions. To construct the personalized conversation
systems, we retrieve users with more than 14 utter-
ances from the raw Weibo corpus. We also filtrate
conversation sessions with less than 2 turns for
training multi-turn conversation systems. We use
a sliding window with a size of 3 to construct each
dialogue session and there are 3 utterances in each
dialogue session. By doing so, there are 336,342
conversation sessions in the cleaned corpus. We
remove emojis in utterances and utilize NLTK for
tokenization. Then, we randomly split the Weibo
corpus into 335,342/5,000/5,000 sessions as train-
ing/validation/testing sets. For each session, the
last utterance is the target response for generation
while other utterances are treated as context.

4.2 Baselines
In our experiments, we compare our proposed
method with the following highly related and
strong baselines.

2http://www.weibo.com/

Readability Is the response grammatically formed and smooth ?

Informativeness Does the response contains informative words ?

Personalization Does the response resembles with any user history?

Table 1: Criteria of human evaluation.

Seq2Seq, the vanilla schema of the sequence to
sequence model with attention mechanism (Bah-
danau et al., 2014), which is widely used in vari-
ous generation tasks.

Persona, a typical and recent neural person-
alized conversation system, which incorporates
user-level representations in the generation pro-
cess (Li et al., 2016).

Adaptation, the domain adaptation solution
for building personalized conversation systems
(Zhang et al., 2017). We adapt the model in our
scenario and we use the tf-idf to obtain the per-
sonal words as the user information.

CVAE, which is the conventional CVAE model
and trained by KL-divergence. We change our
model to use KL-divergence as the training loss.

RL-Persona, the personalized conversational
system (Yang et al., 2018), which takes the advan-
tages of deep reinforcement learning. We apply
the method into our scenario as same as Adapta-
tion.

DiaWAE-GMD, where the former is the state-
of-the-art model for open-domain conversation
generation (Gu et al., 2019). DiaWAE-GMD em-
ploys the Gaussian mixture prior to WAE.

4.3 Settings

The dimension of word embeddings is set to 200,
which is initialized with pre-trained word2vec
vectors 3. The vocabulary is comprised of the most
frequent 31,000 words. The sentence encoder and
the context encoder in our PersonaWAE model are
two bi-directional RNN with the GRU cells, re-
spectively. The decoder consists of a one-layer
RNN with GRUs. The hidden state sizes of both
GRU encoder and decoder are set to 256. Each
user is allocated a user-level vector representation
with dimension size 512. We set the mini-batch
size to 100. The SGD optimizer is used to train
the autoencoder module with the initial learning
rate 1.0, and the learning rate decay strategy is
employed. We use RMSprop optimizer (Hinton
et al., 2012) to update the parameters of the gener-
ator and the discriminator, where the initial learn-

3https://github.com/tmikolov/word2vec

http://www.weibo.com/
https://github.com/tmikolov/word2vec
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Models
Embedding Metrics BLEU Human Evaluation

Extrema Greedy Average Recall Precision F1 Read. Info. P-score

Seq2Seq 0.1640 0.4098 0.4911 0.1646 0.1646 0.1646 2.30 2.16 0.49
Persona 0.1631 0.3982 0.4871 0.1646 0.1646 0.1646 2.31 2.15 0.50

Adaptation 0.1722 0.4038 0.5113 0.1689 0.1689 0.1689 2.29 1.93 0.47
CVAE 0.2643 0.2911 0.5759 0.1931 0.1636 0.1771 2.02 2.33 0.45

RL-Persona 0.1694 0.4536 0.4906 0.1723 0.1723 0.1723 2.21 2.22 0.63
DiaWAE-GMD 0.4387 0.4752 0.7573 0.3409 0.1710 0.2277 2.31 2.35 0.50

PersonaWAE 0.4542 0.5914 0.7585 0.3365 0.1806 0.2350 2.33 2.37 0.66

ground-truth 2.73 2.66 0.86

Table 2: The results of both automatic evaluations and human evaluation. Read., Info., P-score refer to readability,
informativeness, personalization scores. The kappa value between human annotators is 0.41, which indicates a
moderate inter-rater.

# Distributions in GMD Embedding Metrics BLEU-F1
Extrema Greedy Average

1 0.4114 0.3110 0.7026 0.1547
2 0.4228 0.4494 0.7135 0.1543
3 0.4542 0.5914 0.7585 0.2350
4 0.4013 0.5764 0.7256 0.2150
5 0.4382 0.5680 0.7490 0.2480

Table 3: The results of different settings of k in per-
sonalization GMD, where k denotes number of distri-
butions. When k = 1, it is a Gaussian distribution.

ing rates are set to 5e-5 and 1e-5, respectively. The
gradient penalty is used for training discriminator
(Gulrajani et al., 2017). The value of τ in Gumbel
softmax is set to 0.1.

4.4 Evaluation Metrics

To evaluate the results of the generated responses,
we adopt the following metrics widely used in ex-
isting research.

Embedding Metrics. To capture the seman-
tic matching degrees between generated responses
and ground-truth, we perform evaluations on em-
bedding space. In consistent with previous study
(Gu et al., 2019), we compute the similarity be-
tween the bag-of-words (BOW) embeddings rep-
resentations of generated results and reference. In
particular, we calculate three metrics:1) Greedy
(BOW-Greedy), i.e., greedily matching words in
two utterances based on the cosine similarities,
and the total scores is then averaged across all
words (Rus and Lintean, 2012); 2) Average (BOW-
Average), cosine similarity between the averaged
word embeddings in the two utterances (Mitchell
and Lapata, 2008); 3) Extrema (BOW-Extrema),

Models Embedding Metrics BLEU-F1
Extrema Greedy Average

PersonaWAE 0.4542 0.5914 0.7585 0.2350

w/o prior 0.4360 0.4848 0.7479 0.2256
w/o fusion 0.4293 0.4813 0.7588 0.2244

Table 4: The results of Ablation Experiments. w/o de-
notes without. Fusion represents fusion of personaliza-
tion in decoder.

cosine similarity between the largest extreme val-
ues among the word embeddings in the two utter-
ances (Forgues et al., 2014). We report the max-
imum BOW embedding scores of the 10 sampled
responses for each testing context.

Overlap-based Metric. We utilize BLEU
score (Papineni et al., 2002) to measure n-grams
overlaps between ground-truth and generated re-
sponse. Specifically, we follow the conventional
setting in previous work (Gu et al., 2019) to com-
pute BLEU scores using smoothing techniques
(smoothing 7) 4. For each testing context, we sam-
ple 10 responses from the models and compute
their BLEU scores, i.e., n-gram precision (BLEU-
Precision), n-gram recall (BLEU-Recall), and n-
gram F1 (BLEU-F1).

Human Evaluation. We also employ human
evaluation to assess the responses generated by our
model and the baselines. Three well-educated an-
notators are hired to evaluate the quality of gener-
ated responses, where the evaluation is conducted
in a double-blind fashion. Totally, 200 randomly

4http://www.nltk.org/_modules/nltk/
translate/bleu_score.html

http://www.nltk.org/_modules/nltk/translate/bleu_score.html
http://www.nltk.org/_modules/nltk/translate/bleu_score.html
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-这孩子，太稚嫩了，真想踹一脚
(This child is so immature that I really want to kick him.)
-wow，你大粗腿，能抬多高啊
(Wow, how high can you get with those big legs.)

ground truth 你要不要试试？见证一下我能办得到！
(Try it ? Prove I can do it.)

RL-Persona 哈哈，那就好了
(Haha, it’s all right.)

DiaWAE-GMD 啊，完了，我就不敢说
(Game over, I can’t talk it.)

PersonaWAE 我我我拿拿拿小小小拳拳拳拳拳拳捶捶捶你你你
(I’ll punch you with my fist.)

-你什么时候回香港?
(When are you going back to HongKong?)
-签证好了就回去(when visa is ready.)

ground truth 要半个月嗬
(About half a month.)

RL-Persona 我也不知道，我也不知道
(I don’t know, I don’t know.)

DiaWAE-GMD 是因为我没在你宿舍里
(Because I’m not in your dormitory.)

PersonaWAE 哈哈哈哈哈哈，，，回回回来来来约约约，，，约约约个个个时时时间间间
(Ha, play togther when you are back.)

Table 5: Responses generated by baselines and our
model.

sampled responses generated by each model are
rated by each annotator with three different as-
pects, i.e., readability, informativeness, and per-
sonalization. Details of the criteria are illustrated
in Table 1. Note that it is very difficult to judge
whether a generated response resembles with the
style of the corresponding user history utterances,
and thus we rate the personalization with {0,1},
representing bad or normal. Other criteria are
scored from 1 to 3, i.e., bad, normal, and good.

5 Results and Analysis

In this section, we perform automatic evaluations
and human evaluation to measure the quality of the
generated responses quantitatively. Meanwhile,
we also conduct a qualitative study to intuitively
analyze the generated results. Table 2 presents the
results of automatic and human evaluation.

5.1 The Effect of WAE
WAE can effectively improve the quality of re-
sponses but fails to capture personalization. As
we mentioned before, we intend to improve the
response quality by using WAE. Unsurprisingly,
Seq2Seq gets the worst performance. Compar-
ing DiaWAE-GMD with CVAE, we can observe
that DiaWAE-GMD significantly improves BLEU
scores and BOW scores upon CVAE, which is

-求种草水乳，性价比高点的。
(Please recommend cost-effective
make-up water and lotion to me.)
-我水乳用的老慢啦哈哈，感觉两年用一套
(I use make-up water and lotion so slow that one can be
used for 2 years.)

User1 [UNK]，谢谢，我的小U
([UNK], thank you, my xiaoU (name))

User2 哈哈，么么哒。
(Haha, thank you and I love you.)

User3 小姐姐我买了(Ok, I buy it)

User4 是，哈哈(Yes, Haha)

-这孩子，太稚嫩了，真想踹一脚
(This child is so immature that I really
want to kick him.)
-wow，你大粗腿，能抬多高啊
(Wow, how high can you get with those big legs.)

User1 我被风吹走了(I am so thin that
i’m almost blown away by the wind.)

User2 我今天，小仙女(Today, I am a fairy !)

User3 哈哈，好(Haha, OK.)

User4 哈哈，我瘦了(Haha, I am thin !.)

-哈哈演不下去了
(Haha! I can’t play anymore.)
-早已看穿一切
(I have seen everything before.)

User1 我看了一遍，我觉得我很帅
(I watch it again, I think I am handsome.)

User2 哈哈，好哒好，等我
(Haha, get it, wait for me.)

User3 哈哈，服(Haha, come on.)

User4 哈哈，太可怕(Haha, it’s terrible.)

Table 6: Responses generated by our model for four
users. We fix the context and test the effects of different
user personalizations.

shown in Table 2. Such results indicate that
the Wasserstein distance and the adversarial train-
ing can enhance model learning and address KL-
vanishing issue in VAEs, as a result of which
achieves better results of generated responses,
which is also confirmed in the previous research
(Gu et al., 2019). Besides, human evaluation re-
sults in Table 4 further illustrate that DiaWAE-
GMD fails to model personalization of different
users insomuch as DiaWAE-GMD lacks user-level
information learning.

The number of distributions in conditional
Gaussian mixture distribution significantly alter
model performance. Table 3 presents the ablation
results of the influence of k value in personaliza-
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tion Gaussian mixture distribution. It is observed
that when k ≤ 3 , model performance improves
with the increasing of k, which suggests that more
distributions in GMD are helpful for modeling
user personalization. However, for k > 3, model
performance slightly drops with the increasing of
k, The potential reason is GMD with three dis-
tributions is effective enough for modeling per-
sonalization, and sophisticated GMD might suffer
scarce datasets for training.

5.2 The Influence of Personalization
Modeling

User embeddings substantially improve the qual-
ity of generated response and introduce person-
alizations for different users. Through conduct-
ing the comparison between PersonaWAE and
DiaWAE-GMD. We can learn that incorporating
user personalization in decoding step substantially
enhance the personalization score of human eval-
uations, which means user embeddings and the
combination in decoder has a positive influence on
response quality.

Incorporating personalization in the condi-
tional GMD prior is more effective than combing
personalization in decoder. As shown in Table 2,
Persona model only achieves comparable results
with Seq2Seq in terms of BLEU scores and BOW
scores. For PersonaWAE and DiaWAE-GMD, in-
corporating personalizations in both decoder and
the latent space yields a performance improve-
ment. For the BLEU-Recall, which PersonaWAE
does not outperform than DiaWAE-GMD, a possi-
ble explanation for this might be that PersonaWAE
model the personalization information and gener-
ation may be more limited.

5.3 Discussion

Overall, PersonaWAE outperforms all other base-
lines on both automatic and human evaluations.
Especially for personalization modeling, Person-
aWAE achieves a noticeable achievement over the
strong baselines DiaWAE-GMD and RL-Persona.
These results support that our proposed Person-
aWAE is effective in generating personalized re-
sponse. We also observe that fusing personalized
GMD and context GMD as the conditional prior is
also useful, which is proven by the results shown
in Table 4.

5.4 Case Study

Table 5 illustrates the generated response of dif-
ferent models for a given context. We can observe
that our proposed model can generate responses
with readability and personalization information.
Table 6 shows a few example responses generated
by altering the user personalization information.
With different user representations, the generated
responses change, which supports that person-
alization representation introduced in our model
helps learn user-level information. Although it
is difficult to evaluate the personalization of gen-
erated response and there exists a gap between
generated responses and human-comprised ones,
quality improvement of responses is achieved.
Moreover, we observe that our proposed model
might generate a too long and repeated sentence in
extreme cases. The potential reason might be the
relative short dialog history for each user. Besides,
explicitly extracting knowledge and user person-
alization from conversation history is also promis-
ing. These results point out the direction of future
work.

6 Related Work

Constructing an automatic conversation system is
an attractive and prevalent task within the com-
munity of artificial intelligence. Previous stud-
ies mainly focus on vertical domains by applying
rule- and template-based models (Pieraccini et al.,
2009). Later on, with the explosive growth of
data, the application of open-domain conversation
model is promising. Conventional methods in ver-
tical domains have obstacles to scale to open do-
main. Given this, various data-driven approaches
have been proposed for modeling open-domain
conversation, including retrieval-based methods
(Yan et al., 2016; Tao et al., 2019), statistical ma-
chine translation model (Ritter et al., 2011), and
neural networks (Serban et al., 2015; Hu et al.,
2019).

Recently, building a personalized conversation
system has been attached more attention, e.g., im-
plicitly learning user personalizations from dia-
log history (Li et al., 2015), explicitly collecting
and modeling user profiles as personalizations for
generating personalized responses (Zhang et al.,
2017, 2018). To improve wording diversity, CVAE
models (Serban et al., 2017; Zhao et al., 2017;
Shen et al., 2018) are well-investigated for open-
domain response generation. As the extension of
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CVAE, Wasserstein autoencoder (Gu et al., 2019)
is also used for open-domain response generation
to solve the issues of posterior collapse and van-
ishing latent variables. We build our model upon
both the advantages of WAE and personalization
modeling for personalized response generation.

7 Conclusion

Open domain response generation is a challeng-
ing task, which involves automatically comprising
a response with informative words and personal-
ization. Although prompting progress has been
made in wording informativeness, there still ex-
ists a noticeable gap between generated response
and those created by humans, especially in person-
alization modeling. To fill this gap, we propose
a personalized Wasserstein autoencoder (Person-
aWAE) for response generation, where the WAE
module improves informativeness by using a con-
tinuous latent variable with GMD and user vector
representations learned from dialog history is used
for introducing personalization information. Ex-
perimental results on a large dataset indicate that
our proposed model can generate better responses,
and outperforms existing models under both auto-
matic and human evaluations.
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