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Abstract

We propose a semantic parser for parsing com-
positional utterances into Task Oriented Parse
(TOP), a tree representation that has intents
and slots as labels of nesting tree nodes. Our
parser is span-based: it scores labels of the
tree nodes covering each token span indepen-
dently, but then decodes a valid tree globally.
In contrast to previous sequence decoding ap-
proaches and other span-based parsers, we (1)
improve the training speed by removing the
need to run the decoder at training time; and
(2) introduce edge scores, which model rela-
tions between parent and child labels, to mit-
igate the independence assumption between
node labels and improve accuracy. Our best
parser outperforms previous methods on the
TOP dataset of mixed-domain task-oriented
utterances in both accuracy and training speed.

1 Introduction

Most commercial conversational AI systems parse
task-oriented utterances using intent classification
and slot-filling models (He and Young, 2003; Ray-
mond and Riccardi, 2007; Mesnil et al., 2015),
where the intent is the task of the utterance
(e.g., IN:GET DIRECTION) and the slots are the
parameters needed to complete the task (e.g.,
SL:DESTINATION). This limited representation
typically allows only a single intent per utterance
and at most one slot label per token. Dialog sys-
tems using such a flat representation would strug-
gle to handle compositional tasks that involve in-
voking multiple backend services (e.g., “direction
to John’s party”: find John’s address, and then find
the direction to that address).

To support compositional utterances, the hierar-
chical Task Oriented Parsing (TOP) representation
has recently been introduced (Gupta et al., 2018).
As illustrated in Figure 1, the TOP representation

∗work done while at Facebook Assistant.

IN:GET DIRECTION

SL:DESTINATION
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party4
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John2

directions0 to1

T = {(0, 5) : (IN:GET DIRECTION),

(2, 5) : (SL:DESTINATION, IN:FIND EVENT),

(2, 3) : (SL:ORGANIZER),

(4, 5) : (SL:CATEGORY),

(0, 1) : ∅, (0, 2) : ∅, (0, 3) : ∅, . . . }

Figure 1: An example TOP tree and its mapping repre-
sentation T . (IN: = intent; SL: = slot)

is a tree where intents and slots are nested alter-
natively to model composition. The values inside
intent and slot subtrees can then be used by down-
stream dialog modules to invoke appropriate ser-
vices in a hierarchical fashion.

We propose a span-based semantic parser for
parsing utterances into the TOP representation. In
its most basic form, the parser embeds each to-
ken span (e.g., x2:5 = “John ’s party” in Fig-
ure 1) as a vector, and then uses it to predict the
labels of the tree nodes covering the span (e.g.,
SL:DESTINATION and IN:FIND EVENT). While
the label prediction is done independently for each
span, a CKY decoding algorithm is used to decode
a valid tree with the maximum tree score.

Our main contributions are twofold. First, we
reinterpret the ad-hoc tree score in previous span-
based parsing work (Stern et al., 2017; Gaddy
et al., 2018; Kitaev and Klein, 2018) as a joint dis-
tribution over the labels. Under this new frame-
work, the loss function factors nicely, which al-
lows us to train the model in a highly parallelized
fashion instead of having to run the computation-
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ally expensive decoder during training. Second,
we introduce edge scores to model the relation-
ship between parent and child nodes in the tree.
This mitigates the independence assumption and
allows the decisions at child nodes to influence the
parent node.

We evaluate our models on the TOP dataset
(Gupta et al., 2018) of compositional utterances on
events and navigation domains. Most utterances
have nested intents, with some utterances contain-
ing intents from different domains. We demon-
strate that our model is fast to train and outper-
forms previous models on the dataset.1

2 Related work

Neural tree generation. Previous work on syn-
tactic and semantic parsing employs different
strategies for generating trees. Approaches such
as transition-based parsers (Dyer et al., 2016; Liu
and Zhang, 2017) and top-down tree generation
(Vinyals et al., 2015; Choe and Charniak, 2016;
Dong and Lapata, 2016; Krishnamurthy et al.,
2017; Yin and Neubig, 2018) frame tree genera-
tion as predicting a sequence of actions for gen-
erating the tree. The decoding processing gener-
ally consists of local decisions, and beam search
is used to retain uncertainty. In contrast, global
decoding methods (Durrett and Klein, 2015; Lee
et al., 2016) can incorporate non-local features and
decode a tree with the maximum global score.

Span-based models. Span-based models use
the embeddings of token spans to perform pre-
diction. By capturing the properties of the whole
phrase instead of individual words, span embed-
dings can be suitable for tasks where phrases are
the basic unit. Indeed, span-based models have re-
cently shown great promise by achieving state-of-
the-art results for segmentation and tagging (Kong
et al., 2016), coreference resolution (Lee et al.,
2017) and semantic role labeling (He et al., 2018).

For syntactic parsing, span embeddings have
been used to score actions in shift-reduce pars-
ing (Cross and Huang, 2016), or to score the ex-
istence and labels of tree nodes in bottom-up and
top-down parsing (Stern et al., 2017; Kitaev and
Klein, 2018). The analysis by Gaddy et al. (2018)
shows that the span embeddings can learn to cap-
ture various information, such as label correlation

1 The code is available at https://github.com/
ppasupat/factored-span-parsing.

and structural agreement, which was traditionally
modeled by grammars or lexical features.

3 Setup

Given an utterance x = (x0, . . . , xn−1) with n
tokens, the task is to predict a TOP parse tree,
as illustrated in Figure 1. Each leaf node cor-
responds to a token xi, while each non-terminal
node covers some span (i, j) with tokens xi:j =
(xi, xi+1, . . . , xj−1). The label l of each non-
terminal node is either an intent (prefixed with
IN:) or a slot (prefixed with SL:). Two type con-
straints for TOP trees include: (1) intents can only
have slots as children and vice versa, and (2) the
tree root covering span (0, n) must be an intent.

For our span-based parser, it is helpful to view
the tree as a mapping T from each span (i, j) to a
chain c = (l1, . . . , lk) which lists the k ≥ 0 labels
in the unary chain covering the span (i, j). For in-
stance, the span (2, 5) in Figure 1 has T [2, 5] =
(SL:DESTINATION, IN:FIND EVENT). If no non-
terminal node covers the span, we denote the
empty chain as c = ∅.

Following previous span-based parser work
(Cross and Huang, 2016; Stern et al., 2017), we
only consider unary chains that appear in the train-
ing data to be valid chains. (In our experiments,
the training data has 57 distinct labels and 135 dis-
tinct chains. Only a single chain in the test data is
not covered in training data.)

4 Model

Our parser is based on a joint distribution over the
chain at each span. Let the probability of span
(i, j) having chain c be a softmax over the pos-
sible chains:

p(T [i, j] = c) =
exp [fn(xi:j , c)]∑
c′ exp [fn(xi:j , c′)]

. (1)

(The conditioning on x is omitted.) Here, the
node score fn(xi:j , c) is a real-valued function
with fn(xi:j ,∅) fixed as 0. To compute the node
scores for a span xi:j , we embed the span using
an LSTM-based span embedder2 from Lee et al.
(2017), and then apply a feedforward network to
produce a real-valued score for each chain c 6= ∅.

We now make a simplifying assumption that
the values of T [i, j] are independent. The log-

2Refer to Appendix A for modeling details.

https://github.com/ppasupat/factored-span-parsing
https://github.com/ppasupat/factored-span-parsing
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likelihood of the entire mapping T becomes

log p(T ) =
∑
i<j

log p(T [i, j])

=
∑
i<j

[
fn(xi:j , T [i, j])
− log

∑
c′ exp [fn(xi:j , c

′)]

]
.

(2)

The log-sum-exp term log
∑

c′ exp fn(xi:j , c
′)

does not depend on T . During inference, maxi-
mizing the log-likelihood log p(T ) is thus equiva-
lent to maximizing the tree score:

s(T ) :=
∑
i<j

fn(xi:j , T [i, j]). (3)

At test time, we use CKY chart parsing to decode
a valid TOP tree T with the maximum score s(T ).

Training. The tree score s(T ) turns out to be the
same scoring function used in previous span-based
constituency parsing models (Stern et al., 2017;
Gaddy et al., 2018; Kitaev and Klein, 2018). To
train the model, these previous works use margin
loss:

max

{
0,−s(T ∗) + max

T
[∆(T, T ∗) + s(T )]

}
(4)

where T ∗ is the gold tree, T is the predicted
tree and ∆ is a distance function. Computing
the maxT term requires running a cost-augmented
CKY decoder, which is computationally expensive
and difficult to parallelize, especially when we add
edge scores as described in the next section.

Instead, we propose to directly maximize the
log-likelihood in Equation 2 of the gold trees
in the training data. Concretely, given a gold
tree T ∗, our loss function is the negative log-
likelihood − log p(T ∗), which decomposes into a
cross-entropy loss for each span (i, j) according to
Equation 2. We train our model by directly min-
imizing these cross-entropy loss terms; in other
words, we treat the model as a multiclass classi-
fication model where the input is the span xi:j and
the classes are the possible chains for the span.

Our training method is faster than using mar-
gin loss since it does not require running the CPU-
bound CKY decoder during training. Moreover,
the cross-entropy loss terms can be computed in
parallel for all spans of multiple examples at once,
which leads to further speed-up.

Class weight for empty chains. In practice, the
number of spans (i, j) with gold chains T ∗[i, j] =
∅ (i.e., no subtree covering the span) is large com-
pared to the total number of spans. To avoid
the class imbalance problem, we scale the cross-
entropy loss terms for spans with T ∗[i, j] = ∅ by
a hyperparameter α < 1.

5 Edge scores

The model so far scores each span independently,
which can be sub-optimal. For example, the pre-
diction of the top intent only depends on the em-
bedding of x0:n, which is equivalent to standard
intent classification or the first decision of a top-
down tree generation. Similarly, ontology con-
straints (which intents can take which slots) are
also not captured by the model.

To allows child nodes to influence the decision
of the parent at inference time, we introduce edge
scores. For a span (i, j) with T [i, j] = c =
(l1, . . . , lk), consider the parent node of the top-
most non-terminal l1, and define π[i, j] to be its
label. We model the conditional distribution of
π[i, j] as a softmax over all possible labels:

p(π[i, j] = l | T [i, j] = c)

=
exp [fe(xi:j , c, l)]∑
l′ exp [fe(xi:j , c, l′)]

(5)

where fe(xi:j , c, l) is the edge score. Similar to
node scores, we compute fe(xi:j , c, l) by apply-
ing a feed-forward network on the concatenation
of the embeddings of xi:j and c. For convenience
of notation, we let π[i, j] = ∅ when the parent
does not exist (i.e., when T [i, j] = ∅ or (i, j) =
(0, n)). In those situations, we let fe(xi:j , c, l) be
0 for l = ∅ and −∞ otherwise.

We define the joint log-likelihood of T and π:

log p(T, π)

=
∑
i<j

[
log p(T [i, j]) + log p(π[i, j] | T [i, j])

]

=
∑
i<j


fn(xi:j , T [i, j])
− log

∑
c′ exp [fn(xi:j , c

′)]
+fe(xi:j , T [i, j], π[i, j])
− log

∑
l′ exp [fe(xi:j , T [i, j], l′)]

 .
(6)

Unlike in the original model, the last log-sum-
exp term in Equation 6 does depend on the tree T ,
and thus has to be included in the tree score. Our
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new tree score is

s(T ) :=
∑
i<j

[
fn(xi:j , T [i, j])
+ log p(π[i, j] | T [i, j])

]
(7)

where p(π[i, j] | T [i, j]) is the softmax over edge
scores as defined in Equation 5. Note that we can-
not replace node scores fn(xi:j , T [i, j]) with their
log-softmax this way since we want dummy nodes
to contribute a score of 0 to the tree score.

To train the model, we again directly minimize
the negative log-likelihood of the gold tree T ∗.
The loss function factors into a cross-entropy loss
term for each span (i, j) and for each edge in T ∗.

Discussion. The joint modeling of T [i, j] and
π[i, j] is closely related to the parent annotation
technique in syntactic parsing (Johnson, 1998;
Klein and Manning, 2003; Petrov et al., 2006),
where certain non-terminal labels are split into
multiple labels based on their parents in the gram-
mar rule (e.g., VP with parent S becomes VP^S).
In our framework, we can view the label and
edge scores (Equation 7) as a score over parent-
annotated labels (T [i, j], π[i, j]):

s(T ) =
∑
i<j

fa(xi:j , T [i, j], π[i, j]) (8)

where fa(xi:j ,∅,∅) = 0. From our preliminary
experiments, we found that modeling fa as a com-
bination of label and edge scores, as in Equation 7,
is empirically better than directly applying a soft-
max over possible pairs (T [i, j], π[i, j]).

One analysis in Gaddy et al. (2018) shows that
the span embedding of xi:j is powerful enough to
identify the parent label π[i, j] with high accuracy.
However, in TOP semantic trees, parent and child
nodes can have span boundaries that are far apart
(e.g., the top intent covering span (0, 15) might
have a child slot covering span (7, 9)). As an alter-
native to increasing the power of the span embed-
der to handle long-range relations, which could
lead to overfitting, adding edge scores is a simpler
way to model relations between labels.

6 Experiments

We evaluate our models on the TOP dataset (Gupta
et al., 2018) of hierarchical intent-slot annota-
tions for utterances in navigation and event do-
mains.3 We use the dataset version with the noisy

3http://fb.me/semanticparsingdialog

IN:UNSUPPORTED * intents excluded, which con-
tains 28410 training, 4032 development, and 8241
test examples. The main evaluation metric is exact
match accuracy: the fraction of predicted parses
that exactly match the annotated parses. We also
report the labeled bracket F1 score for the parse
tree constituents (Black et al., 1991).

Training details. We highlight crucial modeling
decisions of our models and defer other details to
Appendix B.

• For a fair comparison, we use the same to-
ken and sequence embedders as Gupta et al.
(2018): 200-dimensional GloVe embeddings
and 2-layer 164-dimensional biLSTMs. We
expect contextual embeddings (Peters et al.,
2018; Devlin et al., 2018) and a transformer-
based sequence embedder (Kitaev and Klein,
2018) to further improve the results, as ob-
served in Einolghozati et al. (2018).

• The class weight α for empty chains is tuned
on the development data: α = 0.4 for the
basic model and α = 0.2 for the model with
edge scores. We will later demonstrate how
different choices of α affect the results.

Baselines. We compare our method to existing
approaches proposed for this task in Gupta et al.
(2018): a shift-reduce parser based on Recur-
rent Neural Network Grammars (RNNG) (Dyer
et al., 2016), and the best sequence-to-sequence
model that produces linearization of the trees
based on CNN utterance embeddings (Gehring
et al., 2017).4 We also consider the span-based
parsers by Stern et al. (2017) with the additional
improvements from Gaddy et al. (2018).5 The
parsers were designed for constituency parsing,
are trained with cost-augmented margin loss, and
use either a bottom-up CKY decoder (Stern-chart)
or a top-down greedy decoder (Stern-greedy).

Accuracy. Table 1 shows the exact match accu-
racy and bracket scores on the test data. The span-
based model without edge scores is comparable
to the baseline RNNG model. With edge scores,
the span-based model outperforms the baselines in
both exact match accuracy and labeled F1 scores.

4https://github.com/facebookresearch/pytext
5https://github.com/mitchellstern/

minimal-span-parser

http://fb. me/semanticparsingdialog
https://github.com/facebookresearch/pytext
https://github.com/mitchellstern/minimal-span-parser
https://github.com/mitchellstern/minimal-span-parser
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Method Acc F1 Time
seq2seq 78.24 90.78 8m
RNNG 80.63 92.61 1h 16m
Stern-chart 80.66 93.03 25m
Stern-greedy 80.79 92.83 22m
ours (no fe) 80.80 93.35 5m
ours (+ fe) 81.80 93.63 9m

Table 1: The test exact match accuracy, labeled bracket
F1, and training time per epoch of different methods.

Error type no fe + fe
wrong top intent 106 99
wrong label except top intent 381 367
wrong non-terminal boundary 133 133
missing a non-terminal 153 154
spurious non-terminal 198 185
joining two gold non-terminals 20 26
splitting a gold non-terminal 27 36
other errors 6 4

Table 2: The error breakdown on the development data
of our span-based models. Note that an example can
have multiple errors.

Training speed. Our span-based models can be
trained in a highly parallelized fashion without
having to run the computationally expensive de-
coder. Table 1 shows the average wall-clock time
used to train the model for one epoch over the
training data.

Error analysis. We compare the errors made by
the span-based parsers on the development set. Ta-
ble 2 provides a breakdown of the error counts of
the models on development data.

Recall trade-off. As described in Section 4, the
hyperparameter α controls the weight of the loss
terms for the class c = ∅ (i.e., not building a
subtree for the span). As such, we can use α
to trade off two types of errors: missing non-
terminals (over-predicting c = ∅) and spurious
non-terminals (under-predicting c = ∅). As
shown in Figure 2, higher α encourages the model
to predict c = ∅ more frequently, leading to
more missing non-terminals (intents and slots) and
fewer spurious ones. We can also tune α based
on the downstream tasks. For instance, getting a
higher slot recall using a small α is arguably better
for dialog systems since other downstream mod-
ules (e.g., entity linker) can detect and discard spu-
rious slots.
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Figure 2: Trade-off between missing and spurious non-
terminals with different α (weight for class c = ∅).

When α is low, one common type of errors is
when the models incorrectly split a non-terminal.
This usually happens when the gold slot consists
of two sub-phrases that can be interpreted as slots
on their own (e.g., a SL:CATEGORY EVENT slot
“holiday concerts” is split into a SL:DATE TIME

slot “holiday” and a SL:CATEGORY EVENT slot
“concerts”). As the tree score is the sum of span
scores, the parser is biased toward creating two
non-terminal nodes instead of one. Luckily, in the
context of task-oriented dialogs, this type of er-
rors tends to have small effects on the semantic
interpretation, and sometimes even provides more
useful information for downstream modules.

7 Conclusion

We presented the first span-based parser for pars-
ing utterances into the hierarchical intent-slot rep-
resentation. The log-likelihood objective allows us
to train the model without having to decode a tree
in a highly parallelized fashion, while edge scores
can explicitly capture the parent-child relationship
even when their boundaries are far apart.

Apart from standard accuracy improvement
techniques such as better token embeddings and
ensembling, possible future directions include a
more fine-grained control of the recall trade-off,
modeling the tokens outside the non-terminals in-
stead of ignoring them, incorporating the parent’s
embedding in edge scores, and a more efficient or
approximate decoder similar to the greedy decoder
from Stern et al. (2017).
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