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Abstract

Pretrained contextual representation models

(Peters et al., 2018; Devlin et al., 2019) have

pushed forward the state-of-the-art on many

NLP tasks. A new release of BERT (Devlin,

2018) includes a model simultaneously pre-

trained on 104 languages with impressive per-

formance for zero-shot cross-lingual transfer

on a natural language inference task. This pa-

per explores the broader cross-lingual poten-

tial of mBERT (multilingual) as a zero-shot

language transfer model on 5 NLP tasks cov-

ering a total of 39 languages from various lan-

guage families: NLI, document classification,

NER, POS tagging, and dependency parsing.

We compare mBERT with the best-published

methods for zero-shot cross-lingual transfer

and find mBERT competitive on each task.

Additionally, we investigate the most effec-

tive strategy for utilizing mBERT in this man-

ner, determine to what extent mBERT general-

izes away from language-specific features, and

measure factors that influence cross-lingual

transfer.

1 Introduction

Pretrained language representations with self-

supervised objectives have become standard in a

variety of NLP tasks (Peters et al., 2018; Howard

and Ruder, 2018; Radford et al., 2018; Devlin

et al., 2019), including sentence-level classifica-

tion (Wang et al., 2018), sequence tagging (e.g.

NER) (Tjong Kim Sang and De Meulder, 2003)

and SQuAD question answering (Rajpurkar et al.,

2016). Self-supervised objectives include lan-

guage modeling, the cloze task (Taylor, 1953) and

next sentence classification. These objectives con-

tinue key ideas in word embedding objectives like

CBOW and skip-gram (Mikolov et al., 2013a).

Code is available at https://github.com/

shijie-wu/crosslingual-nlp

At the same time, cross-lingual embedding mod-

els have reduced the amount of cross-lingual su-

pervision required to produce reasonable models;

Conneau et al. (2017); Artetxe et al. (2018) use

identical strings between languages as a pseudo

bilingual dictionary to learn a mapping between

monolingual-trained embeddings. Can jointly train-

ing contextual embedding models over multiple

languages without explicit mappings produce an

effective cross-lingual representation? Surpris-

ingly, the answer is (partially) yes. BERT, a re-

cently introduced pretrained model (Devlin et al.,

2019), offers a multilingual model (mBERT) pre-

trained on concatenated Wikipedia data for 104

languages without any cross-lingual alignment (De-

vlin, 2018). mBERT does surprisingly well com-

pared to cross-lingual word embeddings on zero-

shot cross-lingual transfer in XNLI (Conneau et al.,

2018), a natural language inference dataset. Zero-

shot cross-lingual transfer, also known as single-

source transfer, refers trains and selects a model in

a source language, often a high resource language,

then transfers directly to a target language.

While XNLI results are promising, the ques-

tion remains: does mBERT learn a cross-lingual

space that supports zero-shot transfer? We eval-

uate mBERT as a zero-shot cross-lingual transfer

model on five different NLP tasks: natural lan-

guage inference, document classification, named

entity recognition, part-of-speech tagging, and de-

pendency parsing. We show that it achieves com-

petitive or even state-of-the-art performance with

the recommended fine-tune all parameters scheme

(Devlin et al., 2019). Additionally, we explore dif-

ferent fine-tuning and feature extraction schemes

and demonstrate that with parameter freezing, we

further outperform the suggested fine-tune all ap-

proach. Furthermore, we explore the extent to

which mBERT generalizes away from a specific

language by measuring accuracy on language ID

https://github.com/shijie-wu/crosslingual-nlp
https://github.com/shijie-wu/crosslingual-nlp
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using each layer of mBERT. Finally, we show how

subword tokenization influences transfer by mea-

suring subword overlap between languages.

2 Background

(Zero-shot) Cross-lingual Transfer Cross-

lingual transfer learning is a type of transductive

transfer learning with different source and target

domain (Pan and Yang, 2010). A cross-lingual

representation space is assumed to perform the

cross-lingual transfer. Before the widespread use

of cross-lingual word embeddings, task-specific

models assumed coarse-grain representation like

part-of-speech tags, in support of a delexicalized

parser (Zeman and Resnik, 2008). More recently

cross-lingual word embeddings have been used in

conjunction with task-specific neural architectures

for tasks like named entity recognition (Xie et al.,

2018), part-of-speech tagging (Kim et al., 2017)

and dependency parsing (Ahmad et al., 2019).

Cross-lingual Word Embeddings. The quality

of the cross-lingual space is essential for zero-shot

cross-lingual transfer. Ruder et al. (2017) sur-

veys methods for learning cross-lingual word em-

beddings by either joint training or post-training

mappings of monolingual embeddings. Conneau

et al. (2017) and Artetxe et al. (2018) first show

two monolingual embeddings can be aligned by

learning an orthogonal mapping with only identical

strings as an initial heuristic bilingual dictionary.

Contextual Word Embeddings ELMo (Peters

et al., 2018), a deep LSTM (Hochreiter and Schmid-

huber, 1997) pretrained with a language modeling

objective, learns contextual word embeddings. This

contextualized representation outperforms stand-

alone word embeddings, e.g. Word2Vec (Mikolov

et al., 2013b) and Glove (Pennington et al., 2014),

with the same task-specific architecture in various

downstream tasks. Instead of taking the representa-

tion from a pretrained model, GPT (Radford et al.,

2018) and Howard and Ruder (2018) also fine-tune

all the parameters of the pretrained model for a spe-

cific task. Also, GPT uses a transformer encoder

(Vaswani et al., 2017) instead of an LSTM and

jointly fine-tunes with the language modeling ob-

jective. Howard and Ruder (2018) propose another

fine-tuning strategy by using a different learning

rate for each layer with learning rate warmup and

gradual unfreezing.

Concurrent work by Lample and Conneau (2019)

incorporates bitext into BERT by training on pairs

of parallel sentences. Schuster et al. (2019) aligns

pretrained ELMo of different languages by learning

an orthogonal mapping and shows strong zero-shot

and few-shot cross-lingual transfer performance

on dependency parsing with 5 Indo-European lan-

guages. Similar to multilingual BERT, Mulcaire

et al. (2019) trains a single ELMo on distantly re-

lated languages and shows mixed results as to the

benefit of pretaining.

Parallel to our work, Pires et al. (2019) shows

mBERT has good zero-shot cross-lingual transfer

performance on NER and POS tagging. They show

how subword overlap and word ordering effect

mBERT transfer performance. Additionally, they

show mBERT can find translation pairs and works

on code-switched POS tagging. In comparison, our

work looks at a larger set of NLP tasks including

dependency parsing and ground the mBERT per-

formance against previous state-of-the-art on zero-

shot cross-lingual transfer. We also probe mBERT

in different ways and show a more complete picture

of the cross-lingual effectiveness of mBERT.

3 Multilingual BERT

BERT (Devlin et al., 2019) is a deep contextual

representation based on a series of transformers

trained by a self-supervised objective. One of the

main differences between BERT and related work

like ELMo and GPT is that BERT is trained by

the Cloze task (Taylor, 1953), also referred to as

masked language modeling, instead of right-to-left

or left-to-right language modeling. This allows the

model to freely encode information from both di-

rections in each layer. Additionally, BERT also op-

timizes a next sentence classification objective. At

training time, 50% of the paired sentences are con-

secutive sentences while the rest of the sentences

are paired randomly. Instead of operating on words,

BERT uses a subword vocabulary with WordPiece

(Wu et al., 2016), a data-driven approach to break

up a word into subwords.

Fine-tuning BERT BERT shows strong perfor-

mance by fine-tuning the transformer encoder fol-

lowed by a softmax classification layer on various

sentence classification tasks. A sequence of shared

softmax classifications produces sequence tagging

models for tasks like NER. Fine-tuning usually

takes 3 to 4 epochs with a relatively small learning

rate, for example, 3e-5.
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Multilingual BERT mBERT (Devlin, 2018) fol-

lows the same model architecture and training pro-

cedure as BERT, except with data from Wikipedia

in 104 languages. Training makes no use of explicit

cross-lingual signal, e.g. pairs of words, sentences

or documents linked across languages. In mBERT,

the WordPiece modeling strategy allows the model

to share embeddings across languages. For exam-

ple, “DNA” has a similar meaning even in distantly

related languages like English and Chinese 1. To

account for varying sizes of Wikipedia training

data in different languages, training uses a heuristic

to subsample or oversample words when running

WordPiece as well as sampling a training batch,

random words for cloze and random sentences for

next sentence classification.

Transformer For completeness, we describe the

Transformer used by BERT. Let x, y be a sequence

of subwords from a sentence pair. A special token

[CLS] is prepended to x and [SEP] is appended

to both x and y. The embedding is obtained by

ĥ0i = E(xi) + E(i) + E(✶x)

ĥ0j+|x| = E(yj) + E(j + |x|) + E(✶y)

h0· = Dropout(LN(ĥ0· ))

where E is the embedding function and LN is layer

normalization (Ba et al., 2016). M transformer

blocks are followed by the embeddings. In each

transformer block,

hi+1
· = Skip(FF, Skip(MHSA, hi·))

Skip(f, h) = LN(h+ Dropout(f(h)))

FF(h) = GELU(hW⊤
1 + b1)W

⊤
2 + b2

where GELU is an element-wise activation func-

tion (Hendrycks and Gimpel, 2016). In practice,

hi ∈ R
(|x|+|y|)×dh , W1 ∈ R

4dh×dh , b1 ∈ R
4dh ,

W2 ∈ R
dh×4dh , and b2 ∈ R

dh . MHSA is the

multi-heads self-attention function. We show how

one new position ĥi is computed.

[· · · , ĥi, · · · ] = MHSA([h1, · · · , h|x|+|y|])

= WoConcat(h1i , · · · , hNi ) + bo

1“DNA” indeed appears in the vocabulary of mBERT as a
stand-alone lexicon.

In each attention, referred to as attention head,

h
j
i =

|x|+|y|∑

k=1

Dropout(α
(i,j)
k )Wj

V hk

α
(i,j)
k =

exp
(Wj

Q
hi)

⊤W
j
K
hk√

dh/N

∑|x|+|y|
k′=1 exp

(Wj
Q
hi)⊤W

j
K
hk′√

dh/N

where N is the number of attention heads, h
j
i ∈

R
dh/N , Wo ∈ R

dh×dh , bo ∈ R
dh , and

W
j
Q,W

j
K ,W

j
V ∈ R

dh/N×dh .

4 Tasks

Does mBERT learn a cross-lingual representation,

or does it produce a representation for each lan-

guage in its own embedding space? We consider

five tasks in the zero-shot transfer setting. We as-

sume labeled training data for each task in English,

and transfer the trained model to a target language.

We select a range of different tasks: document clas-

sification, natural language inference, named en-

tity recognition, part-of-speech tagging, and depen-

dency parsing. We cover zero-shot transfer from

English to 38 languages in the 5 different tasks as

shown in Tab. 1. In this section, we describe the

tasks as well as task-specific layers.

4.1 Document Classification

We use MLDoc (Schwenk and Li, 2018), a bal-

anced subset of the Reuters corpus covering 8 lan-

guages for document classification. The 4-way

topic classification task decides between CCAT

(Corporate/Industrial), ECAT (Economics), GCAT

(Government/Social), and MCAT (Markets). We

only use the first two sentences2 of a document for

classification due to memory constraint. The sen-

tence pairs are provided to the mBERT encoder.

The task-specific classification layer is a linear

function mapping h120 ∈ R
d
h into R

4, and a soft-

max is used to get class distribution. We evaluate

by classification accuracy.

4.2 Natural Language Inference

We use XNLI (Conneau et al., 2018) which cover

15 languages for natural language inference. The

3-way classification includes entailment, neutral,

and contradiction given a pair of sentences. We

2We only use the first sentence if the document only con-
tains one sentence. Documents are segmented into sentences
with NLTK (Perkins, 2014).
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ar bg ca cs da de el en es et fa fi fr he hi hr hu id it ja ko la lv nl no pl pt ro ru sk sl sv sw th tr uk ur vi zh

MLDoc X X X X X X X X

NLI X X X X X X X X X X X X X X X

NER X X X X X

POS X X X X X X X X X X X X X X X

Parsing X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Table 1: The 39 languages used in the 5 tasks.

feed a pair of sentences directly into mBERT and

the task-specific classification layer is the same as

§4.1. We evaluate by classification accuracy.

4.3 Named Entity Recognition

We use the CoNLL 2002 and 2003 NER shared

tasks (Tjong Kim Sang, 2002; Tjong Kim Sang and

De Meulder, 2003) (4 languages) and a Chinese

NER dataset (Levow, 2006). The labeling scheme

is BIO with 4 types of named entities. We add a

linear classification layer with softmax to obtain

word-level predictions. Since mBERT operates at

the subword-level while the labeling is word-level,

if a word is broken into multiple subwords, we

mask the prediction of non-first subwords. NER is

evaluated by F1 of predicted entity (F1). Note we

use a simple post-processing heuristic to obtain a

valid span.

4.4 Part-of-Speech Tagging

We use a subset of Universal Dependencies (UD)

Treebanks (v1.4) (Nivre et al., 2016), which cover

15 languages, following the setup of Kim et al.

(2017). The task-specific labeling layer is the same

as §4.3. POS tagging is evaluated by the accuracy

of predicted POS tags (ACC).

4.5 Dependency parsing

Following the setup of Ahmad et al. (2019), we

use a subset of Universal Dependencies (UD) Tree-

banks (v2.2) (Nivre et al., 2018), which includes

31 languages. Dependency parsing is evaluated by

unlabelled attachment score (UAS) and labeled at-

tachment score (LAS) 3. We only predict the coarse-

grain dependency label following Ahmad et al. We

use the model of Dozat and Manning (2016), a

graph-based parser as a task-specific layer. Their

LSTM encoder is replaced by mBERT. Similar to

§4.3, we only take the representation of the first

subword of each word. We use masking to prevent

the parser from operating on non-first subwords.

3Punctuations (PUNCT) and symbols (SYM) are excluded.

5 Experiments

We use the base cased multilingual BERT, which

has N = 12 attention heads and M = 12 trans-

former blocks. The dropout probability is 0.1 and

dh is 768. The model has 179M parameters with

about 120k vocabulary.

Training For each task, no preprocessing is per-

formed except tokenization of words into subwords

with WordPiece. We use Adam (Kingma and Ba,

2014) for fine-tuning with β1 of 0.9, β2 of 0.999

and L2 weight decay of 0.01. We warm up the

learning rate over the first 10% of batches and lin-

early decay the learning rate.

Maximum Subwords Sequence Length At

training time, we limit the length of subwords se-

quence to 128 to fit in a single GPU for all tasks.

For NER and POS tagging, we additionally use the

sliding window approach. After the first window,

we keep the last 64 subwords from the previous

window as context. In other words, for a non-first

window, only (up to) 64 new subwords are added

for prediction. At evaluation time, we follow the

same approach as training time except for parsing.

We threshold the sentence length to 140 words, in-

cluding words and punctuation, following Ahmad

et al. (2019). In practice, the maximum subwords

sequence length is the number of subwords of the

first 140 words or 512, whichever is smaller.

Hyperparameter Search and Model Selection

We select the best hyperparameters by searching

a combination of batch size, learning rate and the

number of fine-tuning epochs with the following

range: learning rate {2×10−5, 3×10−5, 5×10−5};

batch size {16, 32}; number of epochs: {3, 4}.

Note the best hyperparameters and model are se-

lected by development performance in English.

5.1 Question #1: Is mBERT Multilingual?

MLDoc We include two strong baselines.

Schwenk and Li (2018) use MultiCCA, multilin-

gual word embeddings trained with a bilingual

dictionary (Ammar et al., 2016), and convolu-

tion neural networks. Concurrent to our work,
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en de zh es fr it ja ru Average

In language supervised learning

Schwenk and Li (2018) 92.2 93.7 87.3 94.5 92.1 85.6 85.4 85.7 89.5

mBERT 94.2 93.3 89.3 95.7 93.4 88.0 88.4 87.5 91.2

Zero-shot cross-lingual transfer

Schwenk and Li (2018) 92.2 81.2 74.7 72.5 72.4 69.4 67.6 60.8 73.9

Artetxe and Schwenk (2018) ♠ † 89.9 84.8 71.9 77.3 78.0 69.4 60.3 67.8 74.9

mBERT 94.2 80.2 76.9 72.6 72.6 68.9 56.5 73.7 74.5

Table 2: MLDoc experiments. ♠ denotes the model is pretrained with bitext, and † denotes concurrent work. Bold

and underline denote best and second best.

Artetxe and Schwenk (2018) use bitext between

English/Spanish and the rest of languages to pre-

train a multilingual sentence representation with

a sequence-to-sequence model where the decoder

only has access to a max-pooling of the encoder

hidden states.

mBERT outperforms (Tab. 2) multilingual word

embeddings and performs comparably with a mul-

tilingual sentence representation, even though

mBERT does not have access to bitext. Interest-

ingly, mBERT outperforms Artetxe and Schwenk

(2018) in distantly related languages like Chinese

and Russian and under-performs in closely related

Indo-European languages.

XNLI We include three strong baselines, Artetxe

and Schwenk (2018) and Lample and Conneau

(2019) are concurrent to our work. Lample and

Conneau (2019) with MLM is similar to mBERT;

the main difference is that it only trains with the 15

languages of XNLI, has 249M parameters (around

40% more than mBERT), and MLM+TLM also

uses bitext as training data 4. Conneau et al. (2018)

use supervised multilingual word embeddings with

an LSTM encoder and max-pooling. After an En-

glish encoder and classifier are trained, the target

encoder is trained to mimic the English encoder

with ranking loss and bitext.

In Tab. 3, mBERT outperforms one model with

bitext training but (as expected) falls short of mod-

els with more cross-lingual training information.

Interestingly, mBERT and MLM are mostly the

same except for the training languages, yet we ob-

serve that mBERT under-performs MLM by a large

margin. We hypothesize that limiting pretraining

to only those languages needed for the downstream

task is beneficial. The gap between Artetxe and

Schwenk (2018) and mBERT in XNLI is larger

than MLDoc, likely because XNLI is harder.

4They also use language embeddings as input and exclude
the next sentence classification objective

NER We use Xie et al. (2018) as a zero-shot

cross-lingual transfer baseline, which is state-of-

the-art on CoNLL 2002 and 2003. It uses unsuper-

vised bilingual word embeddings (Conneau et al.,

2017) with a hybrid of a character-level/word-level

LSTM, self-attention, and a CRF. Pseudo training

data is built by word-to-word translation with an in-

duced dictionary from bilingual word embeddings.

mBERT outperforms a strong baseline by an

average of 6.9 points absolute F1 and an 11.8

point absolute improvement in German with a sim-

ple one layer 0th-order CRF as a prediction func-

tion (Tab. 4). A large gap remains when transfer-

ring to distantly related languages (e.g. Chinese)

compared to a supervised baseline. Further effort

should focus on transferring between distantly re-

lated languages. In §5.4 we show that sharing sub-

words across languages helps transfer.

POS We use Kim et al. (2017) as a reference.

They utilized a small amount of supervision in

the target language as well as English supervision

so the results are not directly comparable. Tab. 5

shows a large (average) gap between mBERT and

Kim et al. Interestingly, mBERT still outperforms

Kim et al. (2017) with 320 sentences in German

(de), Polish (pl), Slovak (sk) and Swedish (sv).

Dependency Parsing We use the best perform-

ing model on average in Ahmad et al. (2019) as

a zero-shot transfer baseline, i.e. transformer en-

coder with graph-based parser (Dozat and Manning,

2016), and dictionary supervised cross-lingual em-

beddings (Smith et al., 2017). Dependency parsers,

including Ahmad et al., assume access to gold POS

tags: a cross-lingual representation. We consider

two versions of mBERT: with and without gold

POS tags. When tags are available, a tag em-

bedding is concatenated with the final output of

mBERT.

Tab. 6 shows that mBERT outperforms the base-
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en fr es de el bg ru tr ar vi th zh hi sw ur Average

Pseudo supervision with machine translated training data from English to target language

Lample and Conneau (2019) (MLM+TLM) ♠ † 85.0 80.2 80.8 80.3 78.1 79.3 78.1 74.7 76.5 76.6 75.5 78.6 72.3 70.9 63.2 76.7

mBERT 82.1 76.9 78.5 74.8 72.1 75.4 74.3 70.6 70.8 67.8 63.2 76.2 65.3 65.3 60.6 71.6

Zero-shot cross-lingual transfer

Conneau et al. (2018) (X-LSTM) ♠ ♦ 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4 65.6

Artetxe and Schwenk (2018) ♠ † 73.9 71.9 72.9 72.6 73.1 74.2 71.5 69.7 71.4 72.0 69.2 71.4 65.5 62.2 61.0 70.2

Lample and Conneau (2019) (MLM+TLM) ♠ ♦ † 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1

Lample and Conneau (2019) (MLM) ♦ † 83.2 76.5 76.3 74.2 73.1 74.0 73.1 67.8 68.5 71.2 69.2 71.9 65.7 64.6 63.4 71.5

mBERT 82.1 73.8 74.3 71.1 66.4 68.9 69.0 61.6 64.9 69.5 55.8 69.3 60.0 50.4 58.0 66.3

Table 3: XNLI experiments. ♠ denotes the model is pretrained with cross-lingual signal including bitext or bilin-

gual dictionary, † denotes concurrent work, and ♦ denotes model selection with target language dev set.

en nl es de zh Average (-en,-zh)

In language supervised learning

Xie et al. (2018) - 86.40 86.26 78.16 - 83.61

mBERT 91.97 90.94 87.38 82.82 93.17 87.05

Zero-shot cross-lingual transfer

Xie et al. (2018) - 71.25 72.37 57.76 - 67.13

mBERT 91.97 77.57 74.96 69.56 51.90 74.03

Table 4: NER tagging experiments.

line on average by 7.3 point UAS and 0.4 point

LAS absolute improvement even without gold POS

tags. Note in practice, gold POS tags are not always

available, especially for low resource languages. In-

terestingly, the LAS of mBERT tends to weaker

than the baseline in languages with less word order

distance, in other words, more closely related to

English. With the help of gold POS tags, we further

observe 1.6 points UAS and 4.7 point LAS absolute

improvement on average. It appears that adding

gold POS tags, which provide clearer cross-lingual

representations, benefit mBERT.

Summary Across all five tasks, mBERT demon-

strate strong (sometimes state-of-the-art) zero-

shot cross-lingual performance without any cross-

lingual signal. It outperforms cross-lingual em-

beddings in four tasks. With a small amount of

target language supervision and cross-lingual sig-

nal, mBERT may improve further; we leave this

as future work. In short, mBERT is a surprisingly

effective cross-lingual model for many NLP tasks.

5.2 Question #2: Does mBERT vary

layer-wise?

The goal of a deep neural network is to abstract

to higher-order representations as you progress up

the hierarchy (Yosinski et al., 2014). Peters et al.

(2018) empirically show that for ELMo in English

the lower layer is better at syntax while the up-

per layer is better at semantics. However, it is

unclear how different layers affect the quality of

cross-lingual representation. For mBERT, we hy-

pothesize a similar generalization across the 13 lay-

ers, as well as an abstraction away from a specific

language with higher layers. Does the zero-shot

transfer performance vary with different layers?

We consider two schemes. First, we follow

the feature-based approach of ELMo by taking a

learned weighted combination of all 13 layers of

mBERT with a two-layer bidirectional LSTM with

dh hidden size (Feat). Note the LSTM is trained

from scratch and mBERT is fixed. For sentence and

document classification, an additional max-pooling

is used to extract a fixed-dimension vector. We train

the feature-based approach with Adam and learn-

ing rate 1e-3. The batch size is 32. The learning

rate is halved whenever the development evalua-

tion does not improve. The training is stopped early

when learning rate drop below 1e-5. Second, when

fine-tuning mBERT, we fix the bottom n layers (n

included) of mBERT, where layer 0 is the input

embedding. We consider n ∈ {0, 3, 6, 9}.

Freezing the bottom layers of mBERT, in gen-

eral, improves the performance of mBERT in all

five tasks (Fig. 1). For sentence-level tasks like doc-

ument classification and natural language inference,

we observe the largest improvement with n = 6.

For word-level tasks like NER, POS tagging, and

parsing, we observe the largest improvement with

n = 3. More improvement in under-performing

languages is observed.

In each task, the feature-based approach with

LSTM under-performs fine-tuning approach. We

hypothesize that initialization from pretraining with

lots of languages provides a very good starting

point that is hard to beat. Additionally, the LSTM

could also be part of the problem. In Ahmad et al.

(2019) for dependency parsing, an LSTM encoder

was worse than a transformer when transferring
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lang bg da de en es fa hu it nl pl pt ro sk sl sv Average (-en)

In language supervised learning

mBERT 99.0 97.9 95.2 97.1 97.1 97.8 96.9 98.7 92.1 98.5 98.3 97.8 97.0 98.9 98.4 97.4

Low resource cross-lingual transfer

Kim et al. (2017) (1280) 95.7 94.3 90.7 - 93.4 94.8 94.5 95.9 85.8 92.1 95.5 94.2 90.0 94.1 94.6 93.3

Kim et al. (2017) (320) 92.4 90.8 89.7 - 90.9 91.8 90.7 94.0 82.2 85.5 94.2 91.4 83.2 90.6 90.7 89.9

Zero-shot cross-lingual transfer

mBERT 87.4 88.3 89.8 97.1 85.2 72.8 83.2 84.7 75.9 86.9 82.1 84.7 83.6 84.2 91.3 84.3

Table 5: POS tagging. Kim et al. (2017) use small amounts of training data in the target language.

Dist mBERT(S) Baseline(Z) mBERT(Z) mBERT(Z+POS)

en 0.00 91.5/81.3 90.4/88.4 91.5/81.3 91.8/82.2

no 0.06 93.6/85.9 80.8/72.8 80.6/68.9 82.7/72.1

sv 0.07 91.2/83.1 81.0/73.2 82.5/71.2 84.3/73.7

fr 0.09 91.7/85.4 77.9/72.8 82.7/72.7 83.8/76.2

pt 0.09 93.2/87.2 76.6/67.8 77.1/64.0 78.3/66.9

da 0.10 89.5/81.9 76.6/67.9 77.4/64.7 79.3/68.1

es 0.12 92.3/86.5 74.5/66.4 78.1/64.9 79.0/68.9

it 0.12 94.8/88.7 80.8/75.8 84.6/74.4 86.0/77.8

ca 0.13 94.3/89.5 73.8/65.1 78.1/64.6 79.0/67.9

hr 0.13 92.4/83.8 61.9/52.9 80.7/65.8 80.4/68.2

pl 0.13 94.7/79.9 74.6/62.2 82.8/59.4 85.7/65.4

sl 0.13 88.0/77.8 68.2/56.5 72.6/51.4 75.9/59.2

uk 0.13 90.6/83.4 60.1/52.3 76.7/60.0 76.5/65.5

bg 0.14 95.2/85.5 79.4/68.2 83.3/62.3 84.4/68.1

cs 0.14 94.2/86.6 63.1/53.8 76.6/58.7 77.4/63.6

de 0.14 86.1/76.5 71.3/61.6 80.4/66.3 83.5/71.2

he 0.14 91.9/83.6 55.3/48.0 67.5/48.4 67.0/54.3

nl 0.14 94.0/85.0 68.6/60.3 78.0/64.8 79.9/67.1

ru 0.14 94.7/88.0 60.6/51.6 73.6/58.5 73.2/61.5

ro 0.15 92.2/83.2 65.1/54.1 77.0/58.5 76.9/62.6

id 0.17 86.3/75.4 49.2/43.5 62.6/45.6 59.8/48.6

sk 0.17 93.8/83.3 66.7/58.2 82.7/63.9 82.9/67.8

lv 0.18 87.3/75.3 70.8/49.3 66.0/41.4 70.4/48.5

et 0.20 88.8/79.7 65.7/44.9 66.9/44.3 70.8/50.7

fi 0.20 91.3/81.8 66.3/48.7 68.4/47.5 71.4/52.5

zh* 0.23 88.3/81.2 42.5/25.1 53.8/26.8 53.4/29.0

ar 0.26 87.6/80.6 38.1/28.0 43.9/28.3 44.7/32.9

la 0.28 85.2/73.1 48.0/35.2 47.9/26.1 50.9/32.2

ko 0.33 86.0/74.8 34.5/16.4 52.7/27.5 52.3/29.4

hi 0.40 94.8/86.7 35.5/26.5 49.8/33.2 58.9/44.0

ja* 0.49 94.2/87.4 28.2/20.9 36.6/15.7 41.3/30.9

AVER 0.17 91.3/82.6 64.1/53.8 71.4/54.2 73.0/58.9

Table 6: Dependency parsing results by language

(UAS/LAS). * denotes delexicalized parsing in the

baseline. S and Z denotes supervised learning and zero-

shot transfer. Bold and underline denotes best and sec-

ond best. We order the languages by word order dis-

tance to English.

to languages with high word ordering distance to

English.

5.3 Question #3: Does mBERT retain

language specific information?

mBERT may learn a cross-lingual representation

by abstracting away from language-specific infor-

mation, thus losing the ability to distinguish be-

tween languages. We test this by considering lan-

guage identification: does mBERT retain language-

specific information? We use WiLI-2018 (Thoma,

2018), which includes over 200 languages from

Wikipedia. We keep only those languages included

in mBERT, leaving 99 languages 5. We take vari-

ous layers of bag-of-words mBERT representation

of the first two sentences of the test paragraph and

add a linear classifier with softmax. We fix mBERT

and train only the classifier the same as the feature-

based approach in §5.2.

All tested layers achieved around 96% accuracy

(Fig. 2), with no clear difference between layers.

This suggests each layer contains language-specific

information; surprising given the zero-shot cross-

lingual abilities. As mBERT generalizes its repre-

sentations and creates cross-lingual representations,

it maintains language-specific details. This may be

encouraged during pretraining since mBERT needs

to retain enough language-specific information to

perform the cloze task.

5.4 Question #4: Does mBERT benefit by

sharing subwords across languages?

As discussed in §3, mBERT shares subwords in

closely related languages or perhaps in distantly

related languages. At training time, the representa-

tion of a shared subword is explicitly trained to con-

tain enough information for the cloze task in all lan-

guages in which it appears. During fine-tuning for

zero-shot cross-lingual transfer, if a subword in the

target language test set also appears in the source

language training data, the supervision could be

leaked to the target language explicitly. However,

all subwords interact in a non-interpretable way in-

side a deep network, and subword representations

could overfit to the source language and potentially

hurt transfer performance. In these experiments,

we investigate how sharing subwords across lan-

guages effects cross-lingual transfer.

To quantify how many subwords are shared

5Hungarian, Western-Punjabi, Norwegian-Bokmal, and
Piedmontese are not covered by WiLI.
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en de zh ru es fr it ja AVER

Feat

Lay 0

Lay 3

Lay 6

Lay 9

86.1 64.6 50.5 51.2 68.1 64.0 56.5 59.7 62.6

93.5 84.9 69.3 73.8 79.8 80.4 71.8 49.2 75.3

93.4 83.8 73.6 59.9 76.6 76.9 65.6 70.6 75.1

94.4 85.4 74.4 64.6 78.8 81.0 70.9 70.0 77.4

93.6 85.3 67.5 68.2 80.4 84.6 72.6 65.0 77.2
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(a) Document classification (ACC)

en es fr de vi zh ru bg el ar tr hi ur th sw AVER

Feat

Lay 0

Lay 3

Lay 6

Lay 9

78.2 71.0 70.6 66.4 67.6 66.2 65.5 65.4 63.7 61.7 58.3 57.1 55.1 52.2 47.7 63.1

81.8 74.2 73.6 71.1 70.1 70.0 69.2 68.0 66.9 65.4 60.9 60.5 58.1 55.6 48.9 66.3

81.9 74.6 74.0 71.2 70.6 69.3 68.3 68.2 66.5 66.0 60.6 60.1 57.3 53.5 49.4 66.1

82.0 74.9 74.6 72.0 71.9 70.4 69.8 69.8 67.9 66.1 62.0 61.2 58.6 55.7 49.9 67.1

79.4 72.9 71.6 69.0 69.7 68.0 66.9 67.8 65.8 64.0 62.7 59.7 58.8 54.2 49.2 65.3

-2.4
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(b) Natural language inference (ACC)

en nl es de zh AVER

Feat

Lay 0

Lay 3

Lay 6

Lay 9

91.6 75.8 73.9 66.7 46.1 70.8

91.7 80.0 73.4 72.2 54.4 74.3

91.9 79.5 74.5 71.1 54.8 74.3

91.7 78.1 75.9 70.4 50.8 73.4

90.7 74.1 71.6 59.7 40.3 67.3
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-0.6
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2.9

(c) NER (F1)

en sv de da bg pl es it ro sl sk hu pt nl fa AVER

Feat

Lay 0

Lay 3

Lay 6

Lay 9

96.7 90.4 86.4 87.8 85.8 82.2 83.9 82.1 81.7 82.2 82.4 82.4 81.4 75.2 68.7 83.3

97.0 91.3 89.2 88.4 86.9 85.1 84.4 84.4 83.7 83.7 83.6 83.0 81.6 75.2 71.3 84.6

96.9 91.5 89.9 88.4 87.2 87.1 85.5 85.2 84.9 84.1 83.1 82.8 82.7 75.8 72.8 85.2

96.6 91.3 89.4 88.1 87.6 86.9 85.2 85.1 84.7 84.7 84.4 82.9 82.3 76.0 71.4 85.1

96.1 89.7 86.1 86.7 86.2 83.4 83.0 82.4 83.1 82.2 81.5 81.9 80.9 75.5 67.8 83.1
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(d) POS tagging (ACC)

en it fr sv no de hr es nl da ca pt sk bg uk pl cs ro ru sl he fi id et lv hi ar ko zh la ja AVER

Feat

Lay 0

Lay 3

Lay 6

Lay 9

77.5 71.9 69.4 67.6 66.4 63.6 63.1 62.3 62.9 62.7 61.3 62.6 59.7 60.0 58.0 58.7 55.6 55.8 56.9 49.6 46.0 45.5 42.8 41.5 41.1 25.8 33.1 25.1 25.5 29.4 13.6 52.1

81.3 75.4 73.3 71.5 69.2 67.0 66.3 65.8 65.6 64.9 65.6 65.4 64.3 62.7 60.9 60.0 59.4 59.4 59.1 51.9 47.5 47.9 46.7 44.7 41.4 33.8 29.2 28.6 27.2 26.4 16.1 54.8

81.3 76.3 73.8 72.3 69.9 67.3 66.9 66.3 65.9 65.7 66.1 65.7 64.6 64.0 61.0 62.0 60.0 60.4 59.6 54.2 47.8 49.6 47.8 46.8 43.7 33.0 28.9 28.3 27.7 30.5 15.7 55.6

80.3 75.2 72.4 71.2 69.1 66.0 66.0 64.4 65.1 64.8 63.8 64.6 64.1 63.7 59.8 62.2 59.9 59.9 58.6 53.9 46.9 48.2 44.4 45.5 44.0 31.5 29.5 25.8 26.3 30.8 15.0 54.6

76.6 67.7 65.3 66.6 65.5 60.3 56.1 57.9 61.1 60.9 56.8 59.6 56.4 58.9 49.7 55.8 51.4 52.4 50.8 48.1 41.2 42.6 36.9 39.1 39.3 25.8 25.4 21.5 22.1 26.1 12.2 48.7

-4.7
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-0.9

0.9

2.8

4.7

(e) Dependency parsing (LAS)

Figure 1: Performance of different fine-tuning approaches compared with fine-tuning all mBERT parameters.

Color denotes absolute difference and number in each entry is the evaluation in the corresponding setting. Lan-

guages are sorted by mBERT zero-shot transfer performance. Three downward triangles indicate performance

drop more than the legends lower limit.
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Figure 2: Language identification accuracy for differ-

ent layer of mBERT. layer 0 is the embedding layer and

the layer i > 0 is output of the ith transformer block.

across languages in any task, we assume V en
train is

the set of all subwords in the English training set,

V ℓ
test is the set of all subwords in language ℓ test

set, and cℓw is the count of subword w in test set of

language ℓ. We then calculate the percentage of ob-

served subwords at type-level pℓtype and token-level

pℓtoken for each target language ℓ.

pℓtype =
|V ℓ

obs|
|V ℓ

test|
× 100

pℓtoken =

∑
w∈V ℓ

obs
cℓw∑

w∈V ℓ
test

cℓw
× 100

where V ℓ
obs = V en

train ∩ V ℓ
test.

In Fig. 3, we show the relation between cross-

lingual zero-shot transfer performance of mBERT

and pℓtype or pℓtoken for all five tasks with Pearson

correlation. In four out of five tasks (not XNLI) we

observed a strong positive correlation (p < 0.05)

with a correlation coefficient larger than 0.5. In

Indo-European languages, we observed pℓtoken is

usually around 50% to 75% while pℓtype is usually

less than 50%. This indicates that subwords shared

across languages are usually high frequency6. We

6With the data-dependent WordPiece algorithm, subwords
that appear in multiple languages with high frequency are
more likely to be selected.
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Figure 3: Relation between cross-lingual zero-shot transfer performance with mBERT and percentage of observed

subwords at both type-level and token-level. Pearson correlation coefficient and p-value are shown in red.

hypothesize that this could be used as a simple

indicator for selecting source language in cross-

lingual transfer with mBERT. We leave this for

future work.

6 Discussion

We show mBERT does well in a cross-lingual zero-

shot transfer setting on five different tasks covering

a large number of languages. It outperforms cross-

lingual embeddings, which typically have more

cross-lingual supervision. By fixing the bottom lay-

ers of mBERT during fine-tuning, we observe fur-

ther performance gains. Language-specific infor-

mation is preserved in all layers. Sharing subwords

helps cross-lingual transfer; a strong correlation is

observed between the percentage of overlapping

subwords and transfer performance.

mBERT effectively learns a good multilingual

representation with strong cross-lingual zero-shot

transfer performance in various tasks. We recom-

mend building future multi-lingual NLP models

on top of mBERT or other models pretrained sim-

ilarly. Even without explicit cross-lingual super-

vision, these models do very well. As we show

with XNLI in §5.1, while bitext is hard to obtain

in low resource settings, a variant of mBERT pre-

trained with bitext (Lample and Conneau, 2019)

shows even stronger performance. Future work

could investigate how to use weak supervision to

produce a better cross-lingual mBERT, or adapt an

already trained model for cross-lingual use. With

POS tagging in §5.1, we show mBERT, in general,

under-performs models with a small amount of su-

pervision while Devlin et al. (2019) show that in

English NLP tasks, fine-tuning BERT only needs

a small amount of data. Future work could investi-

gate when cross-lingual transfer is helpful in NLP

tasks of low resource languages. With such strong

cross-lingual NLP performance, it would be inter-

esting to prob mBERT from a linguistic perspective

in the future.
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Ahrenberg, Lene Antonsen, Maria Jesus Aranz-
abe, Gashaw Arutie, Masayuki Asahara, Luma
Ateyah, Mohammed Attia, Aitziber Atutxa, Lies-
beth Augustinus, Elena Badmaeva, Miguel Balles-
teros, Esha Banerjee, Sebastian Bank, Verginica
Barbu Mititelu, John Bauer, Sandra Bellato, Kepa
Bengoetxea, Riyaz Ahmad Bhat, Erica Biagetti, Eck-
hard Bick, Rogier Blokland, Victoria Bobicev, Carl
Börstell, Cristina Bosco, Gosse Bouma, Sam Bow-
man, Adriane Boyd, Aljoscha Burchardt, Marie Can-
dito, Bernard Caron, Gauthier Caron, Gülşen Ce-
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Grūzı̄tis, Bruno Guillaume, Jan Hajič, Linh Hà Mỹ,
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