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Abstract

This paper describes a new dataset and exper-
iments to determine whether authors of tweets
possess the objects they tweet about. We work
with 5,000 tweets and show that both humans
and neural networks benefit from images in
addition to text. We also introduce a sim-
ple yet effective strategy to incorporate visual
information into any neural network beyond
weights from pretrained networks. Specifi-
cally, we consider the tags identified in an im-
age as an additional textual input, and leverage
pretrained word embeddings as usually done
with regular text. Experimental results show
this novel strategy is beneficial.

1 Introduction

Social media are platforms for sharing informa-
tion online. Social media posts and online be-
havior in general (e.g., Facebook likes, following
other users in Twitter) have been shown to predict
human traits (Burke et al., 2010; Schwartz et al.,
2013). Many social media posts include an image
alongside text, and the percentage keeps growing
as doing so boosts user engagement (Patel, 2016).

Pictures and text in social media usually com-
plement each other. Thus, even if the information
of interest can be understood from either commu-
nication modality, considering both is beneficial.
Consider the tweet in Figure 1. The text indi-
cates that Arnold (the author of the tweet) goes
on bike rides when he travels. The image shows
him riding a bike, indicating that he was riding
a bike when he tweeted thus he was in posses-
sion of a bike. On the other hand, if the picture
were a screenshot of his Twitter posting statistics,
Arnold most likely would not be in possession of
a bike when tweeting, but rather sharing a log of
his previous trips with his followers. In this paper,
we extract possession relations from social media

Figure 1: Sample tweet with text and an image. We can
infer that Arnold possessed a bike when he tweeted.

posts containing both text and images. Posses-
sion is an asymmetric semantic relation between
two entities, where one entity (the possessee) be-
longs to the other entity (the possessor) (Stassen,
2009). Following the literature, we consider not
only ownership, but also control possessions. In
control possessions, the possessor has temporary
control of the possessee but not necessarily own-
ership (Tham, 2004), e.g., Bill borrowed the ozone
generator from John.

While we do not explore any, extracting pos-
sessions has many potential applications. For ex-
ample, possessions could help to reveal hobbies
and to find people with similar interests. Posses-
sions could also improve recommender systems.
For example, people without cars are unlikely to
be interested in oil changes and auto mechan-
ics. Similarly, people who recently purchased a
home may be interested in moving and remodel-
ing services. Extracting possessions could also
be useful to identify skills. For example, peo-
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ple who possess a bike are likely to be able to
ride bikes, and those who have control posses-
sion of an 18-wheeler are typically able to drive
large trucks. The main contributions of this pa-
per are: (a) a corpus of 5,000 tweets (text and im-
ages) annotated with possession relations includ-
ing type (alienable or control), temporal anchors
with respect to the tweet timestamp, and interest
in something,1 (b) detailed corpus analysis show-
ing, among others, that humans understand more
possession relations when they have access to both
the text and images, (c) experimental results show-
ing that the task can be automated and features
extracted from the images improve results. Re-
garding visual features, we show that incorporat-
ing weights from pretrained networks—a common
practice in previous work—is beneficial, but we
obtain more substantial improvements incorporat-
ing the objects and events identified in an image
as an additional textual input and leveraging word
embeddings.

2 Previous Work

Possession relations have primarily been stud-
ied in efforts targeting large relation repositories
between arguments connected with some lexico-
syntactic pattern. Tratz and Hovy (2013) work
with 17 semantic relations realized by possessive
constructions, Badulescu and Moldovan (2009)
with 36 relations realized by genitives, and Nakov
and Hearst (2013) and Tratz and Hovy (2010)
target noun compounds. Blodgett and Schneider
(2018) annotate 50 supersenses (including roles
and relations between entities) for possessives.
These efforts extract possessions from text, and
target possessors and possessees connected by
specific patterns. Unlike them, we extract posses-
sions using both text and images. In addition to
possession existence, we also extract types, tem-
poral anchors, and interest in the possessee.

Two recent efforts target possession relation ex-
traction from text without strict syntactic con-
straints. In our previous work, we extract intra-
sentential possessions from OntoNotes (Chin-
nappa and Blanco, 2018). In the work described
here, we use the list of synsets from our previ-
ous work to select possessees (Section 3). Banea
and Mihalcea (2018) work with blogs and anno-
tate possession existence at the time of utterance.
Unlike these previous works, we (a) leverage both

1Available at dhivyachinnappa.com

text and images, (b) work with informal tweets
(instead of standard English), (c) temporally an-
chor possessions before, during and after the tweet
timestamp, and (d) also extract whether somebody
has an interest in a concrete object regardless of
possession existence.
Using multiple modalities (e.g., text and images)
to better solve some task is not new. Among many
others, Specia et al. (2016) propose multimodal
machine translation and Moon et al. (2018) show
that named entity recognition benefits from taking
into account both text and images. Our innovation
is twofold. First, we show that humans understand
more possession information when they have ac-
cess to the image accompanying a text, as opposed
to only reporting improvements on (automatically)
solving some task. Second, our neural image
component includes two subcomponents. The
first one—weights from InceptionNet—is com-
mon in previous work, but the second one is novel.
Specifically, the second component considers the
objects and events identified in an image as an ad-
ditional textual input. This allows us to leverage
pretrained word embeddings and recurrent neural
networks, a strategy that we prove beneficial.

3 A Corpus of Possession Relations

We start with a collection of English tweets con-
sisting of text and images (Hu et al., 2018). First,
we discard tweets that do not contain I, me, my, or
mine in order to maximize the amount of tweets
published by individuals and avoid tweets by or-
ganizations as well as advertisements. Second,
we select as potential possessors the authors of
tweets, and as potential possesses the nouns sub-
sumed by the WordNet synsets (Miller, 1995) pro-
posed in previous work (Section 2) except the fol-
lowing nouns: fan, filter, launch, mini, release
and safe. We eliminate them because they almost
never yield possession relations in social media.
For example, fan almost always refers to a per-
son (e.g., This Bucks fan put on a show) instead
of to an “apparatus with rotating blades,” and filter
almost always refers to a photo effect (e.g., Bare
face plus a snap filter) instead of to a “porous de-
vice for removing impurities.” Finally, we ran-
domly select 5,000 possessor-possessee pairs.

3.1 Annotation Tasks And Guidelines

In addition to possession existence (i.e., whether
the potential possessor possesses the potential pos-

dhivyachinnappa.com
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Only Text Text and Image
% κ % κ

alienable, control, never, unk 87.1 0.83 86.5 0.82
before yes, before no 90.0 0.80 91.6 0.81
during yes, during no 89.5 0.78 98.1 0.78
after yes, after no 90.5 0.80 97.2 0.79
interest yes, interest no 82.5 0.76 90.3 0.78

Table 1: Inter-annotator agreements (observed and Cohen’s κ) having access to (a) the text and (b) the text and
image. κ values between 0.60 and 0.80 are considered substantial, and above 0.80 nearly perfect.

sessee), we also annotate possession type (alien-
able or control), temporal anchors with respect to
the tweet timestamp (before, during and after), and
whether the potential possessor has an interest in
the potential possessee regardless of possession
existence and possession type.
Possession Existence. The first annotation task is
to determine whether the potential possessor (x)
possesses the potential possessee (y). Annotators
choose between the following labels:

• yes if a possession exists (i.e., x possesses y)
at some point of time;

• never if a possession does not exist (i.e., x
does not possess y) at any point of time; or

• unk (unknown) if it is sound to ask whether x
possesses y, but there is not enough informa-
tion to choose yes or never.

Possession Type. If a possession relation exists
(existence: yes), annotators also indicate the type:

• alienable: if x can be separated from y and
x is the owner of y, regardless of spatial prox-
imity or other variables; or

• control: if x can be separated from y and
x has control over y, regardless of ownership,
spatial proximity or other variables.

Note that according to these definitions, control
possessions, unlike alienable possessions, do not
require ownership. For example, people driving
a rental car have control possession of the car
but not alienable possession. Control possession
and alienable possession are mutually exclusive
labels. We study possession types (alienable
and control) to understand the strength of the
possession relation between the possessor and the
possessee. We do not consider inalienable posses-
sions because they are uncommon in social media.
Temporal Anchors. If a possession relation exists
(existence: yes), annotators also indicate when it
is true with respect to the tweet timestamp:

• before yes or no: whether x possesses y the

day before tweeting or earlier;
• during yes or no: whether x possesses y the

day he tweeted; and
• after yes or no: whether x possesses y the

day after tweeting or later.
Interest in the Possessee. Finally, annotators
also indicate whether x has an interest in y
(interest yes or interest no), regardless of the
labels for possession existence and type. Interest
does not entail past, current or future possession
existence. It indicates that x shows curiosity or ex-
citement about y. Let us consider John Doe and a
tweet about eating more vegetables (with a fork)
because of a doctor’s recommendation. In this
context, John would have possession of the fork
but no interest in it.

3.2 Annotation Set-Up and Quality
Annotations were done in-house by two graduate
students. We developed a simple interface that
showed one tweet at a time, and annotators were
instructed to use world knowledge and common
sense. In order to minimize biases, the interface
did not show the twitter handle, profile picture or
any other user information. In addition, we sam-
pled 200 tweets and only in 7% of them the image
possibly provided information about the tweet au-
thor (e.g., gender, age, race, ethnicity).

In a first round of annotations, annotators had
access only to the text in the tweet. In a second
round, they had access to both the text and the im-
age. Our rationale is that we are interested in com-
paring human judgments depending on whether
the image is available or not (Section 4.1).
Inter-Annotator Agreement. Table 1 shows
inter-annotator agreements (observed and Cohen’s
κ) when annotators have access to (a) only the text
and (b) the text and image. Agreements are very
similar regardless of whether the image is avail-
able, and as we shall see (Section 4.1), doing so
results in more possession information. Cohen’s
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Possession
existence
and type

yes, alienable 38.4%
yes, control 7.5%
never 38.6%
unk 15.5%

Interest interest yes 40.2%
interest no 59.8%

Table 2: Label distributions. We divide the percentage
of yes into alienable and control.

Alienable
(38%)

Control
(8%)

Never
(39%)

Unknown
(15%)

0%

20%

40%

60%

80%

100%
interest yes
interest no

Figure 2: Distribution of interest in the possessee labels
depending on possession existence and type. People
often have an interest in objects they do not possess and
when possessions cannot be determined (never, unk).

κ for possession existence and type (first row) is
0.82 with text and images, it ranges from 0.78 to
0.81 for temporal anchors (rows 2–4), and it is
0.78 for interest in the possessee (row 5). κ values
between 0.60 and 0.80 are substantial, and above
0.80 nearly perfect (Artstein and Poesio, 2008).

4 Corpus Analysis

We start describing the final corpus, which was an-
notated with both text and images. Then, we com-
pare the corpus obtained when annotators have ac-
cess to (a) only the text and (b) the text and image.
Label Distributions. Table 2 shows the label dis-
tributions for the three annotation tasks: posses-
sion existence, possession type (yes: alienable

or control) and interest in the possessee.
Overall, the percentage of unknown label (unk)

is low (15.5%), indicating that possession exis-
tence can almost always be determined. More im-
portantly, the procedure described in Section 3 al-
lows us to reveal useful knowledge in 84.5% of all
generated possessor-possessee pairs (alienable,
control and never). Most possessions are alien-
able (83.6%, 38.4% of all possessor-possesee
pairs) and the percentage of control possession
is low. The never label is somewhat common
(38.6), indicating that people often tweet about ob-
jects that they have never possessed.

alienable control

before
yes 79.5% 45.8%
never 20.5% 54.2%

during
yes 95.9% 76.3%
no 4.1% 23.7%

after
yes 90.5% 29.5%
no 9.5% 70.5%

Table 3: Distribution of temporal anchor labels depend-
ing on the possession type (alienable or control).

Container
(31%)

Device
(27%)

Vehicle
(21%)

Covering
(14%)

Others
(7%)

0%

20%

40%

60%

80%

100%

Alienable
Control

Never                     
Unknown                  

Interest yes
Interest no

Figure 3: Label distribution (left column: possession
existence and type, right column: interest) depending
on the WordNet synset of the possessee.

Regarding interest, the possessor has an inter-
est in the possessee in 40.2% of the 5,000 gener-
ated pairs. Figure 2 provides insights regarding
possession existence and interest for the generated
pairs. First, the possessor has an interest in the
possessee in (a) 35% of pairs for which posses-
sion could not be determined (unk) and (b) 15% of
pairs for which no possession exists (never). Sec-
ond, regardless of possession type, the percentage
of interest yes remains at approximately 60%.

The distributions of temporal anchor labels (be-
fore, during and after) per possession type (Ta-
ble 3) show that possession type substantially in-
fluences when the possession is true with respect
to the tweet timestamp. Regarding alienable pos-
sessions, people tweet more about what they own
or will own in the future than what they owned
in the past (95.9% and 90.5% vs. 79.5%). Con-
trol possessions show mostly uniform distribution
with anchor before, and are unlikely to be true the
day after tweeting (29.5%).

Finally, Figure 3 presents the distribution of
possession existence, possession type and interest
in the possessee depending on the WordNet synset
of the possessee. Regarding possession existence
and possession type labels (left columns), we ob-
serve similar distributions across synsets, although
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a) b) c)

Possessee: bike Possessee: jacket Possessee: bag
Ex., Type Temporal Interest Ex., Type Temporal Interest Ex., Type Temporal Interest
alienable B yes control D no alienable B, D, A yes
d) e) f)

Possessee: sunglasses Possessee: boot Possessee: pants
Ex., Type Temporal Interest Ex., Type Temporal Interest Ex., Type Temporal Interest

never n/a no unk n/a yes never n/a no

Table 4: Annotation examples when annotators have access to the text and image. We indicate possession existence
and type (alienable, control, never, unk), temporal anchors (B: before, D: during, A: after) and interest.

devices (e.g., watch, guitar, cell phone) yield more
possessions (alienable and control labels)
and most of the possessions are alienable. In
other words, people tend to tweet about devices
they own, and rarely about devices they only have
control over. Regarding interest in the possessee
(right columns), people are slightly more likely to
have an interest if the possessee is a device.

Annotation Examples. We present annotation ex-
amples in Table 4. Note that unlike in these ex-
amples, the annotation interface did not show the
Twitter handle and profile picture in an effort to
minimize potential biases (Section 3.2).

In Example (a), annotators understood that the
author of the tweet was a competitive biker (bike
stunt, racing flag), and world knowledge tells us
that competitive bikers own their bikes. Thus, the
author had an alienable possession with the bike.
The text clearly indicates that the possession was

true in the past (2 years ago), and hints that the
author has an interest in bikes (miss being on X).

Example (b) is a straightforward example of
control possession: the author does not own the
jacket. While weekends last for two days, it is
unknown when the author tweeted, so annotators
chose only during temporal anchor. Additionally,
neither the text or image indicate that the author
has any interest in the jacket.

Example (c) illustrates an alienable possession
in which the author possesses the possessee (i.e.,
the bag) before, during and after tweeting. While
there is no specific cue indicating that the author
will own the bag for an extended period of time,
common sense indicates so. Additionally, the text
(my cutest bag ever) indicates that the author is
excited and has an interest in the bag.

Example (d) illustrates never label. In this
case, the author is talking about the baby’s sun-
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Only Text
alienable control never unk

Text and Image

alienable 80.5% 7.8% 10.0% 38.7%
control 9.4% 82.8% 3.0% 12.2%
never 8.3% 6.3% 83.3% 23.4%
unk 1.8% 3.1% 4.7% 25.7%
Total 100.0% 100.0% 100.0% 100.0%

Table 5: Changes in labels depending on whether annotators have access to the image. Note that 74.3% of instances
annotated unk with only text become alienable (38.7%), control (12.2%) or never (23.4%).

(a) (b) (c)

Possessee: denim Possessee: candle Possessee: hat
Ex., Type Temporal Interest Ex., Type Temporal Interest Ex., Type Temporal Interest

T unk n/a no unk n/a no alienable B, D, A no
T+I alienable B, D, A yes alienable B, D, A no never n/a no

Table 6: Examples of tweets which are annotated different depending on whether annotators have access to only
the text (first row of labels, T) or the text and image (second row of labels, T+I). Note that the image allows to
annotate more possessions (Examples (a) and (b)) as well as fix mistakes (Example (c)).

glasses. Additionally, there is no indication of the
author having an interest about the sunglasses.

Examples (e, f) illustrate unk and never la-
bels. The author of tweet (d) is sharing his favorite
boots, and there is not enough information to de-
termine whether she owns any. The author is, how-
ever, interested in boots, as she went through the
task of choosing her favorite boot picks. Finally,
in Example (f), pants cannot be a possessee as it is
part of the name of a movie character.

4.1 Text vs. Text and Image

Annotators chose different labels depending on
whether they had access to (a) only the text or
(b) the text and image. Table 5 summarizes
the changes in annotations. Most labels remain
the same (alienable: 80.5%, control: 82.8%,
never: 83.3%), however, most instances labeled
unk when annotators have access only to text
(74.3%) become alienable (38.7%), control

(12.2%), or never (23.4%) when they also have
access to the image (last column).

Table 6 shows examples of changes in annota-
tion. Given only the text in Tweet (a), it appears
that the author dislikes denim. Looking at the im-
age, however, it becomes clear that the author is
being sarcastic and not only owns denim clothes
but actually has a strong interest in denim. The
text in Tweet (b) is basically two quotes, and look-
ing only at the text one cannot determine whether
the author owns any candles. Taking into account
the picture, however, one can conclude that the au-
thor does own a candle (the picture illustrates the
advice from the quote) although she does not have
an interest in it. The last example, Tweet (c), il-
lustrates how images also help discarding posses-
sions that appear obvious from the text. The hat is
not an actual object (it is a drawing on top of the
picture) thus no alienable possession exists.

5 Experiments and Results

We experiment primarily with neural networks.
Regarding libraries, we use Keras (Chollet et al.,
2015) with TensorFlow as a backend (Abadi et al.,
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Figure 4: Neural network architecture to predict possession existence, type, temporal anchors and interest. We
include a text component (above dotted line) and two image components (below dotted line). Note that the top 5
tags from the Vision API become a textual input, and we use pretrained word embeddings and an LSTM for them.

2015). Each possessor-possessee pair (and corre-
sponding tweet) becomes an instance, and we cre-
ate stratified training (80%) and test (20%) sets.
We train the neural network for up to 200 epochs
using the Adam optimizer (Kingma and Ba, 2014),
categorical cross entropy, and batch size 32. We
stop the training process before 200 epochs if no
improvement occurs in the validation set (15%
of the training set) for 10 epochs. More specif-
ically, we train six classifiers. The first classi-
fier predicts possession existence (yes, never or
unk). The second classifier predicts possession
types, i.e., classifies pairs between which a pos-
session exists (yes) into alienable or control.
The third, fourth and fifth classifiers predict tem-
poral anchors, i.e., classify pairs between which
a possession holds—either alienable or control—
into before yes or before no, during yes

or during no, and after yes or after no.
Finally, the sixth classifier predicts interest in the
possessee (interest yes or interest no).2

5.1 Neural Network Architecture

Figure 4 shows the neural network architecture,
which includes components for the text and image
(above and below dotted line respectively).
Text Component. The text component is an
LSTM (Hochreiter and Schmidhuber, 1997). Each
token is represented with the concatenation of
three embeddings. The first two are Glove word
embeddings pretrained with Common Crawl and
Twitter (Pennington et al., 2014). The third em-
bedding only takes two possible values (dark grey:
possessee, white: non-possessee) and it is used to
indicate the potential possessee. Only the addi-

2Code available at dhivyachinnappa.com

tional embeddings are tuned along with other net-
work parameters. Intuitively, the additional em-
bedding allows the LSTM to focus on the context
surrounding the potential possessee.
Image Component. The image component lever-
ages two pretrained neural networks: Inception-
Net (Szegedy et al., 2015) and Cloud Vision API.3

Generally speaking, InceptionNet is pretrained to
identify objects, and the Vision API outputs tags
describing images including not only objects but
also events (e.g., cycling, recreation, travel from
the image in the tweet in Figure 4). Regarding In-
ceptionNet, we follow previous work (Section 2)
and include the weights of the average pooling
layer (second to last layer). This incorporates fea-
tures (real numbers) capturing characteristics of
the image to the output Softmax layer, where the
features are useful for object prediction.

More interestingly, we also incorporate the
top 5 tags identified in the image by the Cloud Vi-
sion API. The main novelty of our architecture is
the strategy to incorporate them. Rather than us-
ing one-hot encodings or training special-purpose
embeddings, we consider the top 5 tags as an addi-
tional textual input and leverage pretrained GloVe
word embeddings and an LSTM. Word embed-
dings allow us to bring meaning to the tags. In-
tuitively, this is more beneficial than incorporat-
ing weights from InceptionNet because the em-
beddings are a distributed representation of word
meaning, and they are useful to, among others, de-
termining word similarity and solving analogies
(Pennington et al., 2014). The LSTM is useful
because tags may be more than one token (e.g.,
whipped cream, electronic device) thus the top 5

3https://cloud.google.com/vision/

dhivyachinnappa.com
https://cloud.google.com/vision/
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Maj. baseline NN only text NN text + IN NN text + Itags NN text + img
P R F1 P R F1 P R F1 P R F1 P R F1

yes .46 1.0 .63 .70 .69 .69 .70 .72 .71 .70 .78 .74 .73 .78 .76
never .00 .00 .00 .57 .55 .56 .57 .57 .57 .62 .56 .59 .64 .63 .63
unk .00 .00 .00 .57 .55 .56 .51 .47 .49 .64 .54 .59 .64 .53 .58
Macro Avg. .15 .33 .21 .61 .60 .60 .59 .59 .59 .65 .63 .64 .67 .65 .66
alienable .84 1.0 .91 .84 .94 .89 .84 .95 .89 .84 .96 .90 .83 .92 .88
control .00 .00 .00 .19 .07 .10 .21 .07 .10 .29 .09 .14 .75 .82 .77
Macro Avg. .52 .50 .46 .52 .51 .50 .53 .51 .50 .57 .53 .52 .79 .87 .83
interest yes .59 1.0 .74 .54 .39 .45 .52 .48 .50 .52 .43 .47 .52 .43 .47
interest no .00 .00 .00 .64 .77 .70 .65 .68 .67 .64 .72 .68 .64 .72 .68
Macro Avg. .30 .50 .37 .61 .58 .58 .59 .58 .59 .58 .58 .58 .58 .58 .58

Table 7: Results for predicting possession existence, possession type and interest in possessee. We report results
with the full network (last column, NN text + img) as well as with selected components: only text, text + weights
from InceptionNet (IN), and text + LSTM encoding of top-5 tags detected in the image (text + Itags).

Before During After
P R F1 P R F1 P R F1

NN, only text
yes 0.74 0.96 0.83 0.92 0.98 0.95 0.82 0.88 0.85
no 0.35 0.07 0.11 0.00 0.00 0.00 0.29 0.21 0.24
Macro Avg. 0.55 0.52 0.47 0.46 0.49 0.48 0.56 0.55 0.55

NN, text + img
yes 0.70 0.78 0.74 0.88 0.97 0.92 0.84 0.89 0.87
no 0.48 0.38 0.43 0.25 0.08 0.12 0.53 0.41 0.46
Macro Avg. 0.59 0.58 0.59 0.57 0.53 0.52 0.69 0.65 0.67

Table 8: Results for predicting temporal anchors with the neural network (only text, and text and image).

tags are a sequence of at least five tokens—not
necessarily five tokens. To the best of our knowl-
edge, this strategy to incorporate information ex-
tracted from an image is novel. While simple, we
show that it is effective at determining possession
existence despite our dataset is relatively small.

5.2 Experimental Results
Tables 7 and 8 present the experimental results
(Precision, Recall and F1-score). We present re-
sults per label and the macro average.
Baselines. We use the majority baseline and lo-
gistic regression using bag-of-words features (not
shown, F1-scores are 0.48 (existence), 0.56 (types)
and 0.58 (interest)). The full LSTM (NN text +
img) outperforms the baselines predicting posses-
sion existence and types (existence F1: 0.66 vs.
0.21–0.64; types F1: 0.83 vs. 0.46–0.52)), but
all models except the majority baseline perform
roughly the same predicting interest in the pos-
sessee (F1: 0.58–0.59).

5.2.1 Neural Network
Table 7 presents the results obtained with four ver-
sions of the neural network: using (a) only the
text component, (b) the text component and the
weights from InceptionNet (text + IN), (c) the text

component and the tags from the Vision API as an
additional textual input (text + Itags), and (d) the
full network (text + img). We also obtained results
with only the image components, but do not report
the results because they were much worse.
Possession Existence. All variations of the neu-
ral network outperform the baselines (logistic re-
gression obtains 0.48 F1, not shown). Weights
from InceptionNet do not bring any improvement
by themselves, but the tags from the Vision API
used as an additional textual input do (F1: 0.64
vs. 0.60). More importantly, combining both of
them yields 10% improvement (F1: 0.66 vs. 0.60).
Further examination revealed that this is due to
leveraging pretrained word embeddings with the
tags from the Vision API—using one-hot encod-
ings does not bring improvements (not shown).
Possession Type and Interest in the Possessee.
Regarding possession type, we observe a similar
trend than with possession existence. This time,
however, the differences in results are larger (F1:
0.50 vs. 0.83) and the network with both image
components (NN text + img) is the only model
predicting control reliably (0.77 vs. 0.10–0.14).

Regarding interest in the possessee, all models
but the majority baseline (including logistic re-
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gression) obtain similar F1s (0.58–0.59). While
there is certainly room for improvement, the cur-
rent results lead to the conclusion that a few key-
words are sufficient to obtain 0.58 F1: neither im-
ages nor word embeddings bring improvements.
Temporal Anchors. Table 8 presents results ob-
tained with the neural network when predicting
temporal anchors. The image components are ben-
eficial with all anchors, especially before (F1:
0.47 vs. 0.59, +25%) and after (0.55 vs. 0.67,
+22%), and to a lesser degree during (0.48 vs.
0.52; 8%). F1 scores are higher for yes label than
no label across all temporal anchors.

6 Conclusions

We have presented a corpus of 5,000 tweets and
experimental results to extract possession rela-
tions. Specifically, we work with text and images
in order to reveal the possesees of the author of a
tweet. Beyond possession existence, we also con-
sider possession type, temporal anchors with re-
spect to the tweet timestamp, and whether the au-
thor has an interest in the potential possessor re-
gardless of possession existence.

The corpus analysis shows that humans under-
stand more possessions when they have access to
both the text and images. Authors of tweets often
have an interest in potential possessees when there
is no possession relation or there is not enough in-
formation to determine whether a possession ex-
ists (never and unk labels). Finally, experimen-
tal results show that incorporating pretrained net-
works for object identification and image under-
standing complement neural components that con-
sider text. Crucially, we show that considering the
top 5 tags identified in images (objects and events)
as an additional textual input and leveraging word
embeddings and recurrent neural networks yields
better results than incorporating only weights from
intermediate layers, as previous work does.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
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