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Abstract

LSTMs are powerful tools for modeling con-
textual information, as evidenced by their suc-
cess at the task of language modeling. How-
ever, modeling contexts in very high dimen-
sional space can lead to poor generalizability.
We introduce the Pyramidal Recurrent Unit
(PRU), which enables learning representations
in high dimensional space with more gener-
alization power and fewer parameters. PRUs
replace the linear transformation in LSTMs
with more sophisticated interactions including
pyramidal and grouped linear transformations.
This architecture gives strong results on word-
level language modeling while reducing the
number of parameters significantly. In partic-
ular, PRU improves the perplexity of a recent
state-of-the-art language model Merity et al.
(2018) by up to 1.3 points while learning 15-
20% fewer parameters. For similar number of
model parameters, PRU outperforms all previ-
ous RNN models that exploit different gating
mechanisms and transformations. We provide
a detailed examination of the PRU and its be-
havior on the language modeling tasks. Our
code is open-source and available at https:
//sacmehta.github.io/PRU/.

1 Introduction

Long short term memory (LSTM) units (Hochre-
iter and Schmidhuber, 1997) are popular for many
sequence modeling tasks and are used extensively
in language modeling. A key to their success
is their articulated gating structure, which al-
lows for more control over the information passed
along the recurrence. However, despite the so-
phistication of the gating mechanisms employed
in LSTMs and similar recurrent units, the input
and context vectors are treated with simple linear
transformations prior to gating. Non-linear trans-
formations such as convolutions (Kim et al., 2016)
have been used, but these have not achieved the

Figure 1: Comparison of training (solid lines) and
validation (dashed lines) perplexities on the Penn
Treebank with standard dropout for pyramidal re-
current units (PRU) and LSTM. PRUs learn latent
representations in very high-dimensional space
with good generalizability and fewer parameters.
See Section 3 for more details about PRUs. Best
viewed in color.

performance of well regularized LSTMs for lan-
guage modeling (Melis et al., 2018).

A natural way to improve the expressiveness
of linear transformations is to increase the num-
ber of dimensions of the input and context vec-
tors, but this comes with a significant increase in
the number of parameters which may limit gen-
eralizability. An example is shown in Figure 1,
where LSTMs performance decreases with the in-
crease in dimensions of the input and context vec-
tors. Moreover, the semantics of the input and con-
text vectors are different, suggesting that each may
benefit from specialized treatment.

Guided by these insights, we introduce a new
recurrent unit, the Pyramidal Recurrent Unit
(PRU), which is based on the LSTM gating struc-
ture. Figure 2 provides an overview of the PRU. At

https://sacmehta.github.io/PRU/
https://sacmehta.github.io/PRU/
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Figure 2: Block diagram visualizing the transformations in pyramidal recurrent unit (left) and the LSTM
(bottom right) along with the LSTM gating architecture (top right). Blue, red, green (or orange), and
purple signify the current input xt, output of the previous cell ht−1, the output of transformations,
and the fused output, respectively. The color intensity is used to represent sub-sampling and grouping
operations.

the heart of the PRU is the pyramidal transforma-
tion (PT), which uses subsampling to effect multi-
ple views of the input vector. The subsampled rep-
resentations are combined in a pyramidal fusion
structure, resulting in richer interactions between
the individual dimensions of the input vector than
is possible with a linear transformation. Context
vectors, which have already undergone this trans-
formation in the previous cell, are modified with
a grouped linear transformation (GLT) which al-
lows the network to learn latent representations in
high dimensional space with fewer parameters and
better generalizability (see Figure 1).

We show that PRUs can better model contextual
information and demonstrate performance gains
on the task of language modeling. The PRU im-
proves the perplexity of the current state-of-the-art
language model (Merity et al., 2018) by up to 1.3
points, reaching perplexities of 56.56 and 64.53 on
the Penn Treebank and WikiText2 datasets while
learning 15-20% fewer parameters. Replacing an
LSTM with a PRU results in improvements in per-
plexity across a variety of experimental settings.
We provide detailed ablations which motivate the
design of the PRU architecture, as well as detailed
analysis of the effect of the PRU on other compo-
nents of the language model.

2 Related work

Multiple methods, including a variety of gating
structures and transformations, have been pro-

posed to improve the performance of recurrent
neural networks (RNNs). We first describe these
approaches and then provide an overview of recent
work in language modeling.

Gating-based mechanisms: The performance
of RNNs have been greatly improved by gat-
ing mechanisms such as LSTMs (Hochreiter and
Schmidhuber, 1997), GRUs (Chung et al., 2014),
peep-hole connections (Gers and Schmidhuber,
2000), SRUs (Lei et al., 2018), and RANs (Lee
et al., 2017). In this paper, we extend the gating
architecture of LSTMs (Hochreiter and Schmid-
huber, 1997), a widely used recurrent unit across
different domains.

Transformations: Apart from the widely used
linear transformation for modeling the tempo-
ral data, another transformation that has gained
popularity is convolution (LeCun et al., 1995).
Convolution-based methods have gained attention
in computer vision tasks (Krizhevsky et al., 2012)
as well as some of the natural language process-
ing tasks including machine translation (Gehring
et al., 2017). Convolution-based methods for lan-
guage modeling, such as CharCNN (Kim et al.,
2016), have not yet achieved the performance of
well regularized LSTMs (Melis et al., 2018). We
inherit ideas from convolution-based approaches,
such as sub-sampling, to learn richer representa-
tions (Krizhevsky et al., 2012; Han et al., 2017).
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Regularization: Methods such as dropout (Sri-
vastava et al., 2014), variational dropout (Kingma
et al., 2015), and weight dropout (Merity et al.,
2018) have been proposed to regularize RNNs.
These methods can be easily applied to PRUs.

Other efficient RNN networks: Recently, there
has been an effort to improve the efficiency of
RNNs. These approaches include quantization
(Xu et al., 2018), skimming (Seo et al., 2018;
Yu et al., 2017), skipping (Campos et al., 2018),
and query reduction (Seo et al., 2017). These
approaches extend standard RNNs and therefore,
these approaches are complementary to our work.

Language modeling: Language modeling is a
fundamental task for NLP and has garnered sig-
nificant attention in recent years (see Table 1 for
comparison with state-of-the-art methods). Merity
et al. (2018) introduce regularization techniques
such as weight dropping which, coupled with a
non-monotonically triggered ASGD optimization,
achieves strong performance improvements. Yang
et al. (2018) extend Merity et al. (2018) with the
mixture of softmaxes (MoS) technique, which in-
creases the rank of the matrix used to compute
next-token probabilities. Further, Merity et al.
(2017) and Krause et al. (2018) propose methods
to improve inference by adapting models to recent
sequence history. Our work is complementary to
these recent softmax layer and inference proce-
dure improvements.

We extend state-of-the-art language model in
Merity et al. (2018) by replacing the LSTM with
the PRU. We show by experiments that the PRU
improves the performance of Merity et al. (2018)
while learning fewer parameters.

3 Pyramidal Recurrent Units

We introduce Pyramidal Recurrent Units (PRUs),
a new RNN architecture which improves modeling
of context by allowing for higher dimensional vec-
tor representations while learning fewer parame-
ters. Figure 2 provides an overview of PRU. We
first elaborate on the details of the pyramidal trans-
formation and the grouped linear transformation.
We then describe our recurrent unit, PRU.

3.1 Pyramidal transformation for input
The basic transformation in many recurrent units
is a linear transformation FL defined as:

y = FL(x) = W · x, (1)

where W ∈ RN×M are learned weights that lin-
early map x ∈ RN to y ∈ RM . To simplify nota-
tion, we omit the biases.

Motivated by successful applications of sub-
sampling in computer vision (e.g., (Burt and Adel-
son, 1987; Lowe, 1999; Krizhevsky et al., 2012;
Mehta et al., 2018)), we subsample input vec-
tor x into K pyramidal levels to achieve repre-
sentation of the input vector at multiple scales.
This sub-sampling operation produces K vectors,
represented as xk ∈ R

N

2k−1 , where 2k−1 is the
sampling rate and k = {1, · · · ,K}. We learn

scale-specific transformations Wk ∈ R
N

2k−1×
M
K

for each k = {1, · · ·K}. The transformed sub-
samples are concatenated to produce the pyrami-
dal analog to y, here denoted as ȳ ∈ RM :

ȳ = FP (x) =
[
W1 · x1, · · · ,WK · xK

]
, (2)

where [·, ·] indicates concatenation. We note that
pyramidal transformation with K = 1 is the same
as the linear transformation.

To improve gradient flow inside the recurrent
unit, we combine the input and output using an
element-wise sum (when dimension matches) to
produce residual analog of pyramidal transforma-
tion, as shown in Figure 2 (He et al., 2016).

Sub-sampling: We sub-sample the input vector
x into K pyramidal levels using the kernel-based
approach (LeCun et al., 1995; Krizhevsky et al.,
2012). Let us assume that we have a kernel κ with
2e + 1 elements. Then, the input vector x can be
sub-sampled as:

xk =

N/s∑
i=1

e∑
j=−e

xk−1[si]κ[j], (3)

where s represents the stride and k = {2, · · · ,K}.

Reduction in parameters: The number of pa-
rameters learned by the linear transformation and
the pyramidal transformation with K pyramidal
levels to map x ∈ RN to ȳ ∈ RM are NM

and NM
K

K∑
k=1

2(1−k) respectively. Thus, pyramidal

transformation reduces the parameters of a linear
transformation by a factor of K(

∑K
k=1 2

(1−k))−1.
For example, the pyramidal transformation (with
K = 4 and N = M = 600) learns 53% fewer
parameters than the linear transformation.
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3.2 Grouped linear transformation for
context

Many RNN architectures apply linear transforma-
tions to both the input and context vector. How-
ever, this may not be ideal due to the differing se-
mantics of each vector. In many NLP applications
including language modeling, the input vector is
a dense word embedding which is shared across
all contexts for a given word in a dataset. In con-
trast, the context vector is highly contextualized
by the current sequence. The differences between
the input and context vector motivate their sepa-
rate treatment in the PRU architecture.

The weights learned using the linear transfor-
mation (Eq. 1) are reused over multiple time steps,
which makes them prone to over-fitting (Gal and
Ghahramani, 2016). To combat over-fitting, var-
ious methods, such as variational dropout (Gal
and Ghahramani, 2016) and weight dropout (Mer-
ity et al., 2018), have been proposed to regularize
these recurrent connections. To further improve
generalization abilities while simultaneously en-
abling the recurrent unit to learn representations at
very high dimensional space, we propose to use
grouped linear transformation (GLT) instead of
standard linear transformation for recurrent con-
nections (Kuchaiev and Ginsburg, 2017). While
pyramidal and linear transformations can be ap-
plied to transform context vectors, our experimen-
tal results in Section 4.4 suggests that GLTs are
more effective.

The linear transformation FL : RN → RM

maps h ∈ RN linearly to z ∈ RM . Grouped
linear transformations break the linear interac-
tions by factoring the linear transformation into
two steps. First, a GLT splits the input vector
h ∈ RN into g smaller groups such that h =

{h1, · · · ,hg}, ∀ hi ∈ R
N
g . Second, a linear trans-

formation FL : R
N
g → R

M
g is applied to map hi

linearly to zi ∈ R
M
g , for each i = {1, · · · , g}.

The g resultant output vectors zi are concatenated
to produce the final output vector z̄ ∈ RM .

z̄ = FG(h) =
[
W1 · h1, · · · ,Wg · hg

]
(4)

GLTs learn representations at low dimensional-
ity. Therefore, a GLT requires g fewer parame-
ters than the linear transformation. We note that
GLTs are subset of linear transformations. In a lin-
ear transformation, each neuron receives an input
from each element in the input vector while in a

GLT, each neuron receives an input from a subset
of the input vector. Therefore, GLT is the same as
a linear transformation when g = 1.

3.3 Pyramidal Recurrent Unit
We extend the basic gating architecture of LSTM
with the pyramidal and grouped linear transfor-
mations outlined above to produce the Pyramidal
Recurrent Unit (PRU), whose improved sequence
modeling capacity is evidenced in Section 4.

At time t, the PRU combines the input vector xt

and the previous context vector (or previous hid-
den state vector) ht−1 using the following trans-
formation function as:

Ĝv(xt,ht−1) = F̂P (xt) + FG(ht−1), (5)

where v ∈ {f, i, c, o} indexes the various gates in
the LSTM model, and F̂P (·) and FG(·) represents
the pyramidal and grouped linear transformations
defined in Eqns. 2 and 4, respectively.

We will now incorporate Ĝv(·, ·) into LSTM
gating architecture to produce PRU. At time t,
a PRU cell takes xt ∈ RN , ht−1 ∈ RM , and
ct−1 ∈ RM as inputs to produce forget ft, input it,
output ot, and content ĉt gate signals. The inputs
are combined with these gate signals to produce
context vector ht ∈ RM and cell state ct ∈ RM .
Mathematically, the PRU with the LSTM gating
architecture can be defined as:

ft = σ
(
Ĝf (xt,ht−1)

)
it = σ

(
Ĝi(xt,ht−1)

)
ĉt = tanh

(
Ĝc(xt,ht−1)

)
ot = σ

(
Ĝo(xt,ht−1)

)
ct = ft ⊗ ct−1 + it ⊗ ĉt

ht = ot ⊗ tanh(ct)

(6)

where ⊗ represents the element-wise multiplica-
tion operation, and σ and tanh are the sigmoid and
hyperbolic tangent activation functions. We note
that LSTM is a special case of PRU when g=K=1.

4 Experiments

To showcase the effectiveness of the PRU, we
evaluate the performance on two standard datasets
for word-level language modeling and compare
with state-of-the-art methods. Additionally, we
provide a detailed examination of the PRU and its
behavior on the language modeling tasks.
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4.1 Set-up

Dataset: Following recent works, we compare
on two widely used datasets, the Penn Tree-
bank (PTB) (Marcus et al., 1993) as prepared
by Mikolov et al. (2010) and WikiText2 (WT-2)
(Merity et al., 2017). For both datasets, we follow
the same training, validation, and test splits as in
Merity et al. (2018).

Language Model: We extend the language
model, AWD-LSTM (Merity et al., 2018), by re-
placing LSTM layers with PRU. Our model uses
3-layers of PRU with an embedding size of 400.
The number of parameters learned by state-of-the-
art methods vary from 18M to 66M with major-
ity of the methods learning about 22M to 24M
parameters on the PTB dataset. For a fair com-
parison with state-of-the-art methods, we fix the
model size to 19M and vary the value of g and
hidden layer sizes so that total number of learned
parameters is similar across different configura-
tions. We use 1000, 1200, and 1400 as hidden
layer sizes for values of g=1,2, and 4, respectively.
We use the same settings for the WT-2 dataset. We
set the number of pyramidal levels K to two in
our experiments and use average pooling for sub-
sampling. These values are selected based on our
ablation experiments on the validation set (Section
4.4). We measure the performance of our models
in terms of word-level perplexity. We follow the
same training strategy as in Merity et al. (2018).

To understand the effect of regularization meth-
ods on the performance of PRUs, we perform ex-
periments under two different settings: (1) Stan-
dard dropout: We use a standard dropout (Srivas-
tava et al., 2014) with probability of 0.5 after em-
bedding layer, the output between LSTM layers,
and the output of final LSTM layer. (2) Advanced
dropout: We use the same dropout techniques with
the same dropout values as in Merity et al. (2018).
We call this model as AWD-PRU.

4.2 Results

Table 1 compares the performance of the PRU
with state-of-the-art methods. We can see that the
PRU achieves the best performance with fewer pa-
rameters.

Standard dropout: PRUs achieve either the
same or better performance than LSTMs. In par-
ticular, the performance of PRUs improves with
the increasing value of g. At g = 4, PRUs out-

perform LSTMs by about 4 points on the PTB
dataset and by about 3 points on the WT-2 dataset.
This is explained in part by the regularization ef-
fect of the grouped linear transformation (Figure
1). With grouped linear and pyramidal transfor-
mations, PRUs learn rich representations at very
high dimensional space while learning fewer pa-
rameters. On the other hand, LSTMs overfit to
the training data at such high dimensions and learn
1.4× to 1.8× more parameters than PRUs.

Advanced dropouts: With the advanced
dropouts, the performance of PRUs improves by
about 4 points on the PTB dataset and 7 points
on the WT-2 dataset. This further improves with
finetuning on the PTB (about 2 points) and WT-2
(about 1 point) datasets.

Comparison with state-of-the-art: For similar
number of parameters, the PRU with standard
dropout outperforms most of the state-of-the-art
methods by large margin on the PTB dataset (e.g.
RAN (Lee et al., 2017) by 16 points with 4M less
parameters, QRNN (Bradbury et al., 2017) by 16
points with 1M more parameters, and NAS (Zoph
and Le, 2017) by 1.58 points with 6M less param-
eters). With advanced dropouts, the PRU delivers
the best performance. On both datasets, the PRU
improves the perplexity by about 1 point while
learning 15-20% fewer parameters.

Inference: PRU is a drop-in replacement for
LSTM, therefore, it can improve language mod-
els with modern inference techniques such as dy-
namic evaluation (Krause et al., 2018). When we
evaluate PRU-based language models (only with
standard dropout) with dynamic evaluation on the
PTB test set, the perplexity of PRU (g = 4, k =
2,M = 1400) improves from 62.42 to 55.23 while
the perplexity of an LSTM (M = 1000) with simi-
lar settings improves from 66.29 to 58.79; suggest-
ing that modern inference techniques are equally
applicable to PRU-based language models.

4.3 Analysis

It is shown above that the PRU can learn represen-
tations at higher dimensionality with more gener-
alization power, resulting in performance gains for
language modeling. A closer analysis of the im-
pact of the PRU in a language modeling system
reveals several factors that help explain how the
PRU achieves these gains.
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WT-2 PTB

Model Params Val Test Params Val Test

Variational LSTM (Gal and Ghahramani, 2016) – – – 20 M – 78.6
CharCNN (Kim et al., 2016) – – – 19 M – 78.9
Pointer Sentinel-LSTM (Merity et al., 2017) – – – 19 M 72.4 70.9
RHN (Zilly et al., 2016) – – – 23 M 67.9 65.4
NAS Cell (Zoph and Le, 2017) – – – 25 M – 64.0
Variational LSTM - (Inan et al., 2017) 28 M 91.5 87 24 M 75.7 73.2
SRU - 6 layers (Lei et al., 2018) – – – 24 M 63.4 60.3
QRNN (Bradbury et al., 2017) – – – 18 M 82.1 78.3
RAN (Lee et al., 2017) – – – 22 M – 78.5
4-layer skip-connection LSTM (Melis et al., 2018) – – – 24 M 60.9 58.3
AWD-LSTM - (Merity et al., 2018) 33 M 69.1 66 24 M 60.7 58.8
AWD-LSTM - (Merity et al., 2018)-finetuned 33 M 68.6 65.8 24 M 60 57.3

Variational LSTM (Gal and Ghahramani, 2016) – – – 66 M – 73.4
NAS Cell (Zoph and Le, 2017) – – – 54 M – 62.4
Quantized LSTM - Full precision (Xu et al., 2018) – – 100.1 – – 89.8
Quantized LSTM - 2 bit (Xu et al., 2018) – – 106.1 – – 95.8

With standard dropout

LSTM (M = 1000) 29 M 78.93 75.08 20 M 68.57 66.29
LSTM (M = 1200) 35 M 77.93 74.48 26 M 69.17 67.16
LSTM (M = 1400) 42 M 77.55 74.44 33 M 70.88 68.55
Ours -PRU (g = 1, K = 2, M = 1000) 28 M 79.15 76.59 19 M 69.8 67.78
Ours -PRU (g = 2, K = 2, M = 1200) 28 M 76.62 73.79 19 M 67.17 64.92
Ours -PRU (g = 4, K = 2, M = 1400) 28 M 75.46 72.77 19 M 64.76 62.42

With advanced dropouts

Ours - AWD-PRU (g = 1, K = 2, M = 1000) 28 M 71.84 68.6 19 M 61.72 59.54
Ours - AWD-PRU (g = 2, K = 2, M = 1200) 28 M 68.57 65.7 19 M 60.81 58.65
Ours - AWD-PRU (g = 4, K = 2, M = 1400) 28 M 68.17 65.3 19 M 60.62 58.33
Ours - AWD-PRU (g = 4, K = 2, M = 1400)-finetuned 28 M 67.19 64.53 19 M 58.46 56.56

Table 1: Comparison of single model word-level perplexity of our model with state-of-the-art on vali-
dation and test sets of Penn Treebank and Wikitext-2 dataset. For evaluation, we select the model with
minimum validation loss. Lower perplexity value represents better performance.

Confidence: As exemplified in Table 2a, the
PRU tends toward more confident decisions, plac-
ing more of the probability mass on the top next-
word prediction than the LSTM. To quantify this
effect, we calculate the entropy of the next-token
distribution for both the PRU and the LSTM using
3687 contexts from the PTB validation set. Fig-
ure 3 shows a histogram of the entropies of the dis-
tribution, where bins of size 0.23 are used to effect
categories. We see that the PRU more often pro-
duces lower entropy distributions corresponding to
higher confidences for next-token choices. This is
evidenced by the mass of the red PRU curve lying
in the lower entropy ranges compared to the blue
LSTM’s curve. The PRU can produce confident
decisions in part because more information is en-
coded in the higher dimensional context vectors.

Variance in word embeddings: The PRU has
the ability to model individual words at differ-
ent resolutions through the pyramidal transform;
which provides multiple paths for the gradient to
the embedding layer (similar to multi-task learn-
ing) and improves the flow of information. When
considering the embeddings by part of speech, we
find that the pyramid level 1 embeddings exhibit
higher variance than the LSTM across all POS cat-
egories (Figure 4), and that pyramid level 2 em-
beddings show extremely low variance1. We hy-
pothesize that the LSTM must encode both coarse
group similarities and individual word differences
into the same vector space, reducing the space be-
tween individual words of the same category. The
PRU can rely on the subsampled embeddings to

1POS categories are computed using NLTK toolkit.
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Figure 3: Histogram of the entropies of next-token
distributions predicted by the PRU (mean 3.80)
and the LSTM (mean 3.93) on the PTB validation
set. Lower entropy values indicate higher confi-
dence decisions, which is desirable if decisions are
often correct.

Figure 4: Variance of learned word embeddings for
different categories of words on the PTB valida-
tion set. We compute the variance of a group of
embeddings as the average squared euclidean dis-
tance to their mean. Higher variance may allow for
better intra-category distinctions. The PRU with
pyramid levels 1 and 2 is shown.

account for coarse-grained group similarities, al-
lowing for finer individual word distinctions in the
embedding layer. This hypothesis is strengthened
by the entropy results described above: a model
which can make finer distinctions between indi-
vidual words can more confidently assign proba-
bility mass. A model that cannot make these dis-
tinctions, such as the LSTM, must spread its prob-
ability mass across a larger class of similar words.

Gradient-based analysis: Saliency analysis us-
ing gradients help identify relevant words in a
test sequence that contribute to the prediction
(Gevrey et al., 2003; Li et al., 2016; Arras et al.,
2017). These approaches compute the relevance
as the squared norm of the gradients obtained
through back-propagation. Table 2a visualizes the
heatmaps for different sequences. PRUs, in gen-
eral, give more relevance to contextual words than

LSTMs, such as southeast (sample 1), cost (sam-
ple 2), face (sample 4), and introduced (sample
5), which help in making more confident deci-
sions. Furthermore, when gradients during back-
propagation are visualized (Selvaraju et al., 2017)
(Table 2b), we find that PRUs have better gradient
coverage than LSTMs, suggesting PRUs use more
features than LSTMs that contributes to the deci-
sion. This also suggests that PRUs update more
parameters at each iteration which results in faster
training. Language model in (Merity et al., 2018)
takes 500 and 750 epochs to converge with PRU
and LSTM as a recurrent unit, respectively.

4.4 Ablation studies
In this section, we provide a systematic analysis
of our design choices. Our training methodology
is the same as described in Section 4.1 with the
standard dropouts. For a thorough understanding
of our design choices, we use a language model
with a single layer of PRU and fix the size of em-
bedding and hidden layers to 600. The word-level
perplexities are reported on the validation sets of
the PTB and the WT-2 datasets.

Pyramidal levels K and groups g: The two
hyper-parameters that control the trade-off be-
tween performance and number of parameters in
PRUs are the number of pyramidal levels K and
groups g. Figure 5 provides a trade-off between
perplexity and recurrent unit (RU) parameters2.

Variable K and fixed g: When we increase the
number of pyramidal levels K at a fixed value of
g, the performance of the PRU drops by about 1 to
4 points while reducing the total number of recur-
rent unit parameters by up to 15%. We note that
the PRU withK = 4 at g = 1 delivers similar per-
formance as the LSTM while learning about 15%
fewer recurrent unit parameters.

Fixed K and variable g: When we vary the
value of g at fixed number of pyramidal levels K,
the total number of recurrent unit parameters de-
creases significantly with a minimal impact on the
perplexity. For example, PRUs with K = 2 and
g = 4 learns 77% fewer recurrent unit parameters
while its perplexity (lower is better) increases by
about 12% in comparison to LSTMs. Moreover,
the decrease in number of parameters at higher
value of g enables PRUs to learn the representa-
tions in high dimensional space with better gener-
alizability (Table 1).

2# total params = # embedding params + # RU params
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Gradient-based sensitivity analysis heatmaps LSTM top-5 PRU top-5

Reference: the tremor was centered near <unk> southeast of san francisco

Reference: the massages last N minutes and typically cost about $ N.

Reference: he visits the same department every two or three weeks.

Reference: but pipeline companies estimate they still face $ N billion in liabilities from <unk> disputes including $ N billion.

Reference: chicken chains also are feeling more pressure from mcdonald’s corp. which introduced its <unk> <unk> this year.

(a) Gradient-based saliency analysis. Salience score is proportional to cell coverage in red.

L
ST

M
PR

U

l

(b) Gradients during back-propagation for a test sequence (x-axis: dimensions of word vector, y-axis: test sequence)

Table 2: Qualitative comparison between the LSTM and the PRU: (a) Gradient-based saliency analysis
along with top-5 predicted words. (b) Gradients during back-propagation. For computing the gradients
for a given test sequence, the top-1 predicted word was used as the true predicted word. Best viewed in
color.

(a) PTB (b) WT-2

Figure 5: Impact of number of groups g and pyramidal levels K on the perplexity. Reduction in recur-
rent unit (RU) parameters is computed with respect to LSTM. Lower perplexity value represents better
performance.
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Transformations: Table 3 shows the impact of
different transformations of the input vector xt and
the context vector ht−1. We make following ob-
servations: (1) Using the pyramidal transforma-
tion for the input vectors improves the perplex-
ity by about 1 point on both the PTB and WT-
2 datasets while reducing the number of recur-
rent unit parameters by about 14% (see R1 and
R4). We note that the performance of the PRU
drops by up to 1 point when residual connections
are not used (R4 and R6). (2) Using the grouped
linear transformation for context vectors reduces
the total number of recurrent unit parameters by
about 75% while the performance drops by about
11% (see R3 and R4). When we use the pyrami-
dal transformation instead of the linear transfor-
mation, the performance drops by up to 2% while
there is no significant drop in the number of pa-
rameters (R4 and R5).

Subsampling: We set sub-sampling kernel κ
(Eq. 3) with stride s = 2 and size of 3 (e = 1)
in four different ways: (1) Skip: We skip every
other element in the input vector. (2) Convolution:
We initialize the elements of κ randomly from nor-
mal distribution and learn them during training the
model. We limit the output values between -1 and
1 using tanh activation function to make training
stable. (3) Avg. pool: We initialize the elements
of κ to 1

3 . (4) Max pool: We select the maximum
value in the kernel window κ.

Table 4 compares the performance of the PRU
with different sampling methods. Average pooling
performs the best while skipping give comparable

PTB WT-2
Transformations PPL # Params PPL # Params
Context Input (total/RU) (total/RU)

R1 LT LT 74.80 8.8/2.9 89.30 22.8/2.9
R2 GLT GLT 84.38 6.5/0.5 104.13 20.46/0.5
R3 GLT PT 82.67 6.6/0.64 99.57 20.6/0.64
R4 LT PT 74.18 8.5/2.5 88.31 22.5/2.5
R5 PT PT 75.80 8.1/2.1 90.56 22.1/2.1

R6 LT PT† 75.61 8.5/2.5 89.27 22.5/2.5

Table 3: Impact of different transformations used
for processing input and context vectors (LT - lin-
ear transformation, PT - pyramidal transformation,
and GLT - grouped linear transformation). Here,
† represents that PT was used without residual
connection, PPL represents word-level perplexity
(lower is better), and the number of parameters are
in million. We used K=g=4 in our experiments.

Dataset Skip Max pool Avg. Pool Convolution

PTB 75.12 87.6 73.86 81.56
WT-2 89.24 107.63 88.88 93.16

Table 4: Impact of different sub-sampling methods
on the word-level perplexity (lower is better). We
used g=1 and K=4 in our experiments.

performance. Both of these methods enable the
network to learn richer word representations while
representing the input vector in different forms,
thus delivering higher performance. Surprisingly,
a convolution-based sub-sampling method does
not perform as well as the averaging method. The
tanh function used after convolution limits the
range of output values which are further limited
by the LSTM gating structure, thereby impeding
in the flow of information inside the cell. Max
pooling forces the network to learn representations
from high magnitude elements, thus distinguish-
ing features between elements vanishes, resulting
in poor performance.

5 Conclusion

We introduce the Pyramidal Recurrent Unit, which
better model contextual information by admitting
higher dimensional representations with good gen-
eralizability. When applied to the task of language
modeling, PRUs improve perplexity across several
settings, including recent state-of-the-art systems.
Our analysis shows that the PRU improves the
flow of gradient and expand the word embedding
subspace, resulting in more confident decisions.
Here we have shown improvements for language
modeling. In future, we plan to study the perfor-
mance of PRUs on different tasks, including ma-
chine translation and question answering. In ad-
dition, we will study the performance of the PRU
on language modeling with more recent inference
techniques, such as dynamic evaluation and mix-
ture of softmax.
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