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Abstract

As the incidence of Alzheimer’s Disease (AD)
increases, early detection becomes crucial.
Unfortunately, datasets for AD assessment are
often sparse and incomplete. In this work, we
leverage the multiview nature of a small AD
dataset, DementiaBank, to learn an embedding
that captures different modes of cognitive im-
pairment. We apply generalized canonical cor-
relation analysis (GCCA) to our dataset and
demonstrate the added benefit of using mul-
tiview embeddings in two downstream tasks:
identifying AD and predicting clinical scores.
By including multiview embeddings, we ob-
tain an F1 score of 0.82 in the classification
task and a mean absolute error of 3.42 in the
regression task. Furthermore, we show that
multiview embeddings can be obtained from
other datasets as well.

1 Introduction

Alzheimer’s disease (AD) is a neurodegenera-
tive progressive disease whose symptoms include
memory loss, disorientation, and behavioral issues
(Ballard et al., 2011). In 2017, 5.7 million Amer-
icans were living with AD, and the disease ac-
counted for $11.4 billion in healthcare costs in the
United States (Alzheimer’s Association, 2018).
AD is diagnosed through clinician-administered
questionnaires, such as the Mini-Mental State Ex-
amination (MMSE), which assigns a score be-
tween 0 and 30 based on responses to questions
testing memory, recall, and orientation (Folstein
et al., 1975). For context, a MMSE score of 23
and below is associated with cognitive decline.

AD affects language and some of its symptoms
include difficulties in word-finding and changes
in the voice. Detecting these subtle changes can
help identify AD at an early stage. Indeed, many
studies have applied a combination of natural lan-
guage processing and machine learning techniques

to detect AD. On the DementiaBank (DB) dataset,
which includes audio files and corresponding tran-
scripts of participants completing a picture de-
scription task, Wankerl et al. (2017) employed
an n-gram based approach to classify between
participants with and without AD. On the same
dataset, Fraser et al. (2015) extracted an exten-
sive list of lexicosyntactic features from the tran-
scripts and identified participants with AD with
an accuracy of 81%. More recently, Hernández-
Domı́nguez et al. (2018) looked at the information
content units of the pictures and compared them to
healthy population-specific references to achieve
an F-score of 0.81.

Predicting clinical scores is a harder task and
is more common in image processing, where re-
searchers make use of brain scans. For exam-
ple, Huang et al. (2016) used MRI scans from
805 subjects and relied on the longitudinal aspect
of their dataset to predict MMSE scores. Spe-
cific to the DB dataset, Yancheva et al. (2015)
extracted linguistic features and used a bivariate
dynamic Bayes net to represent the longitudinal
nature of the data, and obtained a mean absolute
error (MAE) of 3.83. Focusing on subjects with
larger samples of data yielded a MAE of 2.91.

In instances where multiple views of the same
data are available, it makes sense to learn a vec-
tor representation (an embedding) that encapsu-
lates the different sources of information. Benton
et al. (2016) used different representations of their
data (e.g., bag-of-words, word vectors) to learn
multiview embeddings for Twitter users, and ob-
tained promising results when evaluating their em-
beddings in downstream prediction tasks.

In this work, we leverage the multiview nature
of DB to learn an embedding for each user. We
evaluate the utility of the multiview embedding
in two downstream tasks: classification of AD vs
non-AD participants, and clinical score prediction.
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2 Methods

2.1 Dataset

We use the DementiaBank (DB) corpus (Becker
et al., 1994), which consists of adults aged 44 and
older, assigned to either the ‘Dementia’ (N =
167) or ‘Healthy’ (N = 97) group based on a bat-
tery of neuropsychological tests and on their med-
ical histories. In DB, participants performed the
“Cookie Theft” picture description task from the
Boston Diagnostic Aphasia Examination (Good-
glass and Kaplan, 1983), in which they verbally
describe the contents of a picture. Additionally,
participants in the ‘Dementia’ group completed
the category fluency (i.e., naming words belong-
ing to a given category), letter fluency (i.e., nam-
ing words that start with a given letter), sentence
construction, and story recall tasks. The picture
description and both fluency tasks were profes-
sionally transcribed and annotated with instances
of filled pauses. Previous experiments in the liter-
ature on DB have been limited to the picture de-
scription task, most likely because the other tasks
are not available for all participants.

2.2 Linguistic features

From transcripts of the picture description, cat-
egory fluency and letter fluency tasks, we ex-
tract 565 linguistic features1. We compute lexi-
cal features (e.g., the mean number of syllables
per word, the vocabulary richness as measured
by the type-token-ratio2), semantic features (e.g.,
the mean specificity of words as measured by
their depth in WordNet3), and syntactic features
(e.g., the proportion of various parts-of-speech
tags, such as nouns and adjectives). We also au-
tomatically extract various subjective measures,
such as the mean imageability (i.e., a word’s abil-
ity to evoke a mental image) and the mean age-of-
acquisition of words using norms derived from the
Bristol (Stadthagen-Gonzalez and Davis, 2006)
and Gilhoolie-Logie (Gilhooly and Logie, 1980)
norms. Finally, we train an LDA model of 100
topics (Blei et al., 2003) using a Wikipedia snap-

1The code to extract these is being made available at
https://github.com/SPOClab-ca/COVFEFE.

2The type-token ratio is obtained by dividing the number
of types (i.e., the total number of different words) by the num-
ber of tokens (i.e., the total number of words).

3WordNet (Miller, 1995) is a lexical database which
groups English words into collections of synonyms. The
database is ordered from most generic (e.g., “plant”) to most
specific (e.g., “rose”).

shot, and compute the topic probabilities for each
transcript.

2.3 Learning a multiview embedding
We apply generalized canonical correlation anal-
ysis (GCCA) to our dataset to obtain a multiview
embedding. We use GCCA as described by Ben-
ton et al. 2016 to learn linear transformations Uj

which project different views of our data into the
embedding G. In our experiments, we consider
the following views of DB: linguistic features of
the picture description, category fluency and letter
fluency tasks, and demographic information.

Given X ∈ Rd×N , X ′ ∈ Rd′×N ′ , where N
is the total number of data points, N ′ is the to-
tal number of data points for which all views J
are available, and d and d′ are the dimensions of
X and X ′; let Xj and X ′j denote views j of X
and X ′. Here, j ∈ {PD,CAT,LET,DEM},
which correspond to the picture description, cate-
gory fluency, and letter fluency linguistic features,
and demographic information, respectively.

1. We use GCCA to learn Uj from X ′PD,
X ′CAT , X ′LET , X ′DEM , such that:

minimize
Uj ,G′

∑
j∈J
||G′ − UT

j X
′
j ||2F

Uj ∈ Rdj×k, G′ ∈ Rk×N ′ .

2. We compute G = UT
PDXPD. Since UPD ∈

RdPD×k and XPD ∈ RdPD×N , then G ∈
Rk×N .

3. We concatenate G to a subset of the pic-
ture description linguistic features, X∗PD,
to obtain C = (X∗PD, G), where C ∈
R(k+d∗PD)×N .

4. We use the augmented set of features C for
two downstream tasks: AD classification and
clinical score prediction.

3 Results

We run all experiments with 10-fold cross valida-
tion and test various settings of k, the dimension
of the multiview embedding.

3.1 GCCA and classification
We select the top n linguistic features, ordered
through a one-way ANOVA and concatenate them
with multiview embeddings of size k. The n + k
features are then given as input to a random forest

https://github.com/SPOClab-ca/COVFEFE
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Figure 1: Classification of ‘Dementia’ vs ‘Healthy’
participants in DB. We report the F1 score as we in-
crease the number of significant features used in our
random forest classifier. The dark black line denotes
the baseline (i.e., no GCCA) with the shaded grey re-
gion corresponding to the standard deviations, and the
colored dotted lines denote experiments with multiview
embeddings of size k.

classifier with 100 decision trees, and we report
the F1 scores in Figure 1. Our best classification
result (F1 = 0.823 ± 0.032) is achieved with a
multiview embedding of size k = 35 using the
best n = 75 linguistic features. Adding GCCA
embeddings improves classification results: an
ANOVA test reveals a significant difference be-
tween F1 results with and without GCCA (F =
15.85, p = 0.00018), and a post-hoc Tukey’s
honest significant difference test reveals that F1
scores are significantly higher in experiments us-
ing GCCA embeddings (p = 0.00018).

Next, we look at multiview embeddings gener-
ated from different combinations of DB views, and
report our F1 scores in Table 1 for embeddings of
size k = 35 and using the top n = 75 features.
Adding multiview embeddings always improves
classification, and we obtain our best results by
learning an embedding from the picture descrip-
tion and category fluency views.

3.2 GCCA and regression

To predict MMSE scores, we select the top n best
features, ordered through a continuous one-way

Views F1
None (baseline) 0.782 (0.042)
X ′PD, X

′
CAT , X

′
LET , X

′
DEM 0.811 (0.045)

X ′PD, X
′
CAT , X

′
LET 0.817 (0.037)

X ′PD, X
′
LET , X

′
DEM 0.815 (0.043)

X ′PD, X
′
CAT , X

′
DEM 0.818 (0.042)

X ′PD, X
′
CAT 0.824 (0.052)

X ′PD, X
′
LET 0.805 (0.055)

X ′PD, X
′
DEM 0.816 (0.057)

Table 1: Classification results with GCCA applied on
different views of DB. We report the different views
used to learn our multiview embedding and the result-
ing F1 scores (with standard deviation in parenthesis)
on 10-fold cross-validation experiments. X ′ denotes
the data points for which all views are present (i.e., the
data used to learn multiview embeddings), and the sub-
scripts PD, CAT , LET , DEM are used to represent
the following views: picture description text features,
category fluency text features, letter fluency text fea-
tures, and demographic information.

ANOVA, and concatenate them with our multi-
view embedding of size k. The n+ k features are
then given as input to a linear regression model
and we report the mean absolute error (MAE). 10-
fold cross-validation results are given in Figure 2.
Our lowest MAE of 3.412 ± 0.300 was obtained
using a GCCA embedding of size k = 5 and re-
taining the top n = 75 linguistics features. Adding
multiview embeddings yields the best results, but
an ANOVA test reveals no significant difference
(F = 0.41, p = 0.53).

3.3 Learning a multiview embedding from
another dataset

We then perform the same experiments as de-
scribed in sections 3.1 and 3.2, but we learn
our UPD linear projection matrix with a differ-
ent dataset. We use Talk2Me4, an online lan-
guage assessment from the University of Toronto,
in which participants use the web to complete a
variety of language tasks, including the picture de-
scription task, the vocabulary task, the Winograd
task (Levesque et al., 2011), and the word flu-
ency task (including both category and letter flu-
ency). For all tasks in Talk2Me, we transcribe the
audio recordings using the Kaldi open-source au-
tomatic speech recognition engine (Povey et al.,
2011), and extract the same set of text features as
in Section 2.2. Next, we apply GCCA to learn a

4https://www.cs.toronto.edu/talk2me

https://www.cs.toronto.edu/talk2me
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Figure 2: Clinical score prediction. We report the mean
absolute error (lower is better) in predicting MMSE
score as we increase the number of significant features
used in our linear regression model. The black line
denotes the baseline (i.e., no GCCA) with the shaded
grey region corresponding to the standard deviations,
and the colored dotted lines denote experiments with
multiview embeddings of size k.

multiview embedding from the following views:
picture description, story recall, vocabulary, flu-
ency, and image naming tasks, and demographics.

As in previous experiments, we concatenate the
multiview embedding with the DB picture de-
scription linguistic features, and use these to clas-
sify AD participants and to predict MMSE scores.
In the regression task, the GCCA features from
Talk2Me greatly hinder performance. The best
result we obtain with Talk2Me multiview embed-
dings is an MAE of 3.929±1.37. In classification,
we observe improvements, as shown in Figure 3,
and obtain an F1 of 0.793 ± 0.052. However, an
ANOVA test reveals no significant difference with
multiview embeddings (F = 0.45, p = 0.50).

4 Discussion

In our experiments, we use GCCA to learn a mul-
tiview embedding and augment our existing set of
features. The multiview embedding consists of a
vector representation which encapsulates informa-
tion from various sources of information (i.e., the
picture description task, the category and letter flu-
ency tasks, and demographic data). We hypothe-
size that the additional information contained in
this embedding would be useful in downstream

Figure 3: Classification task using multiview embed-
dings learned from the Talk2Me dataset. We report
the F1 scores as we increase the number of significant
features. The black line denotes the baseline (i.e., no
GCCA) with the shaded grey region corresponding to
the standard deviations, and the dotted colored lines de-
note experiments with multiview embeddings of size k
obtained through GCCA on Talk2Me views.

tasks such as classification and regression. In-
deed, the multiview embedding obtained from DB
improves AD detection and clinical score predic-
tion. Similarly, we also observe an improvement
in classification when using a multiview embed-
ding learned from a normative dataset.

Our results are better in the classification task
than in the regression task, since the MMSE score
is mainly used as a screening tool (i.e., determin-
ing if a person has AD or not) and has restricted
sensitivity, especially for identifying milder stages
of AD (Trzepacz et al., 2015).

5 Conclusion

We have shown that we can make use of the multi-
view aspect of a small dataset such as DB to learn
a multiview embedding. This embedding can sub-
sequently be used to improve models for classifi-
cation and regression. In our experiments, multi-
view embeddings allowed the use of both the cat-
egory and letter fluency data in DB, even though
they were only available for the ‘Dementia’ partic-
ipants. Benefits are also possible using secondary
datasets to learn multiview embeddings.
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Extracting acoustic features – such as pause ra-
tio, pitch, and Mel-frequency cepstral coefficients
(MFCCs) – and treating them as an additional
view is part of our future work. Furthermore, we
will look into other secondary datasets as well as
different approaches of obtaining multiview em-
beddings. While GCCA allows for an arbitrary
number of views, it is limited in that it only learns
linear projections to the embedding space. A pos-
sible alternative is deep generalized canonical cor-
relation analysis (DGCCA), which makes use of
neural networks to learn non-linear mappings to
the embedding space (Benton et al., 2017).
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