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Abstract
The paper introduces end-to-end neural net-
work models that tokenize Sanskrit by jointly
splitting compounds and resolving phonetic
merges (Sandhi). Tokenization of Sanskrit de-
pends on local phonetic and distant seman-
tic features that are incorporated using convo-
lutional and recurrent elements. Contrary to
most previous systems, our models do not re-
quire feature engineering or extern linguistic
resources, but operate solely on parallel ver-
sions of raw and segmented text. The models
discussed in this paper clearly improve over
previous approaches to Sanskrit word segmen-
tation. As they are language agnostic, we will
demonstrate that they also outperform the state
of the art for the related task of German com-
pound splitting.

1 Introduction

Sanskrit is an Indo-Aryan language that served as
lingua franca for the religious, scientific and liter-
ary communities of ancient India. Text production
in Sanskrit started in the 2. millenium BCE and
has continued until today.1 A 19th century cata-
loguing project recorded more than 40,000 San-
skrit texts known at that time (Aufrecht, 1891–
1903), which covers only a small part of the extant
Sanskrit literature. Apart from the oldest Vedic
texts, Sanskrit has little diachronic variation on the
morphological level, because it was regularized by
the grammarian Pān. ini in the 3rd c. BCE.

NLP of Sanskrit is challenging due to com-
pounding (see Ex. 1) and the phonetic processes
called Sandhi (‘connection’; see Ex. 2–5). Com-
pounding is widely used in other languages, and
NLP has developed methods for analyzing com-
pounds (Macherey et al., 2011; Ma et al., 2016). In

1Text production was oral until the first centuries BCE
(Falk, 1993). The texts were transmitted by memorization in
this period, making them less (!) prone to transmission errors
than in written form.

Sanskrit, however, syntactic co- and subordination
tend to be diachronically replaced by compound-
ing (Lowe 2015; see also Sec. 3), so that many
sentences in later literature consist only of a few
long compounds that are loosely connected by a
semantically light verb or an (optional) copula, as
shown in this example:

(1) āśrayabhūtakhādikathanena
foundation-become-air-etc.-mentioning
“(Something is described) by mentioning air
etc. that have become [its] foundations.”

The term Sandhi denotes a set of phonetic pro-
cesses by which the contact phonemes of neigh-
boring word tokens are changed and merged, and
which create unseparated strings spanning multi-
ple tokens (Whitney, 1879). Sandhi occurs be-
tween adjacent vowels (vocalic Sandhi; Ex. 2),
between consonants and vowels (Ex. 4) and be-
tween adjacent consonants (Ex. 5):

(2) rājā+uvāca ‘the king said’ ā+u=o−→ rājovāca

(3) *rāja+uvāca ‘O king, he said’ a+u=o−→ rājovāca

(4) prāc+eva ‘before indeed’
c+e=ge−→ prāgeva

(5) tad+hi ‘because this ...’ d+h=ddh−→ taddhi

In addition, Sandhi occurs between independent
inflected words (Ex. 2–5) as well as between
members of compounds.2 Because different com-
binations of unsandhied phonemes can result in
the same surface phoneme, Sandhi resolution is
non-deterministic and depends on the semantic
context of the sentence (see Ex. 3 for a morpho-
logically and lexically valid, but semantically dis-
preferred reading of the string rājovāca).

2The compound in Ex. 1 is split as āśraya-bhūta-kha-ādi-
kathanena, and kha +ādi = khādi is a Sandhi phenomenon.
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Scriptorial and editorial conventions further
complicate the analysis of compounds and Sandhi.
While most Indian manuscripts don’t insert spaces
between strings, modern editors use spaces a
gusto. Moreover, the (correct) application of
Sandhi is not followed by all authors and editors
to the same extent, so that the unsandhied tokens
tat hi asti (‘as this is . . . ’) can occur as taddhyasti,
taddhy asti, tad dhy asti, tad dhyasti or even tat hi
asti (unchanged).

Our models aim at transforming a given sen-
tence into a sequence of unsandhied tokens. We
refer to this task as Sanskrit word splitting (SWS),
and subsume Sandhi and compounding phenom-
ena under the common term splits. We address
SWS by using a combination of convolutional and
recurrent elements. The recurrent elements inte-
grate sentence level information that leads to qual-
ified decisions about the semantic meaningfulness
of possible compound and Sandhi splits (see Ex. 2
and 3), while the convolutional elements are meant
to replace n-gram extraction, which is frequently
used in word segmentation architectures. As our
models operate on the character level, SWS can
be formulated in a sequence labeling framework.

Consequently, this paper has three main contri-
butions:

1. We introduce novel character-based models
for SWS that beat state of the art models by
large margins.

2. We compare against sequence-to-sequence
models and demonstrate that our models
work on par with them, but need significantly
less time for training and inference.

3. We publish a new dataset for Sanskrit word
splitting that consists of more than 560,000
sentences with manually validated splits. The
dataset and the code are released at https:
//github.com/OliverHellwig/
sanskrit/papers/2018emnlp.

In the rest of this paper, we use the following ter-
minology. A token is an unsandhied word that is
not itself a compound. A string is a sequence of
characters that is delimited by a space or a dan. d. a.
Each string contains at least one token, at least one
compound (that itself consists of at least two to-
kens) or a Sandhied mixture of both. A sentence
is a piece of Sanskrit text that is terminated by the

punctuation mark called dan. d. a “stick” (|) and con-
sists of at least one string. Any sentence can con-
sist of multiple independent clauses, which are not
demarcated by punctuation in Sanskrit, or consist
of a part of a larger clause only.

The paper proceeds as follows: Section 2 gives
an overview of related work in NLP. Section 3 in-
troduces our SWS dataset. Section 4 describes the
sequence labeling models developed for this pa-
per and three baseline systems, whose evalution is
presented in Sec. 5. Section 6 summarizes the pa-
per.

2 Related Research

Most NLP systems for SWS combine Pān. inis
phonetic and morphological rules with a lexi-
cal resource, either by using formal (Huet, 2005;
Goyal et al., 2009; Kulkarni and Shukla, 2009) or
statistical methods, including Dirichlet processes
(Natarajan and Charniak, 2011), finite state meth-
ods (Mittal, 2010), graph queries (Krishna et al.,
2016) and hybrid systems (Hellwig, 2015a).

A number of recent papers approaches SWS
with deep learning models. Hellwig (2015b) splits
isolated strings by applying a one-layer bidirec-
tional LSTM to two parallel character based rep-
resentations of a string. The restriction to isolated
strings is problematic, because SWS relies on the
grammatical and semantic context of the full sen-
tence in many cases. Restricting a model to iso-
lated strings ignores these linguistic clues.

Reddy et al. (2018) formulate SWS as a trans-
lation task on the sentence level. They transform
surface and unsandhied sentences using the sen-
tencepiece model and “translate” the surface into
the unsandhied sentence using a seq2seq model
with attention. Gantayat et al. (2018) use an
encoder-decoder architecture with a global atten-
tion mechanism and apply their model to iso-
lated strings from a small dataset (Bhardwaj et al.,
2018). So far, no direct comparison of deep learn-
ing models for SWS has been done, because the
authors used different, partly unpublished datasets
and reported performance on different linguistic
levels (sentence, string) and with different evalu-
ation methods. We will therefore try to make a
fair and comprehensive comparison with the state
of the art in Sec. 5.

SWS is closely related to word segmenta-
tion for other Asian languages such as Thai
(Haruechaiyasak et al., 2008), Chinese or Japanese

https://github.com/OliverHellwig/sanskrit/papers/2018emnlp
https://github.com/OliverHellwig/sanskrit/papers/2018emnlp
https://github.com/OliverHellwig/sanskrit/papers/2018emnlp
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(Kanji), with most research being done for Chi-
nese and Japanese. Contrary to Sanskrit, Chinese
and Japanese don’t exhibit Sandhi phenomena and
their logographic scripts condense information,
making it possible to use “word-level” CRFs on
the output, for example. Chen et al. (2015) in-
terpret Chinese word segmentation (CWS) as a
sequence labeling task and evaluate a range of
(stacked) bidirectional recurrent architectures that
are combined with a final sentence level likelihood
layer (Collobert et al., 2011) maximizing the tran-
sition score of the BMES encoded target sequence.
Their best model uses a single layer bidirectional
LSTM with bigrams of pre-trained character em-
beddings as inputs. Cai and Zhao (2016) deal
with CWS by first forming word hypotheses from
characters using a gated unit and then process-
ing the word hypotheses with an LSTM-based lan-
guage model. They minimize the combined word
and sentence level scores using a structured mar-
gin loss and achieve better performance than Chen
et al. (2015) on standard CWS datasets. Kitagawa
and Komachi (2017) adapt the model proposed
by Chen et al. (2015) for Japanese word splitting,
but use characters, character n-grams and lexicon-
based word boundary features as inputs. The au-
thors report state of the art performance, but ob-
serve a clear drop in the F score of their model,
when texts contain a high proportion of Hiragana
characters and thus come closer to syllabic or al-
phabetic scripts.

3 Data

Several datasets for SWS have been published in
the last years. While the dataset of Bhardwaj et al.
(2018) may be too small and unvaried for train-
ing deep learning models, Krishna et al. (2017) re-
analyze 560,000 sentences from the Digital Cor-
pus of Sanskrit (DCS)3 using the Sanskrit Her-
itage Reader (Goyal and Huet, 2016). Re-analysis
is necessary, because the DCS stores the morpho-
lexical analysis of strings, but does not record
split points and Sandhi rules applied. Due to dif-
ferent linguistic choices (Pān. inian vs. corpus-
oriented) and to different ideas about the (non-
)compositional meanings of compounds their final
dataset contains only 115,000 sentences (see the
discussion in Krishna et al. 2017 and the analysis
in Sec. 3.1). As the size of the dataset is crucial for

3http://kjc-sv013.kjc.uni-heidelberg.
de/dcs/

Surface r ā j o v ā c a
Unsandhied r ā j ā-u v ā c a

Table 1: Data extracted from the string rājovāca,
which is split into the two tokens rājā (“king”) and
uvāca (“(he, she) said”; see Ex. 2).

most deep learning methods, we decided to release
a new dataset along with this paper. Each sentence
contained in the DCS is re-analyzed using the San-
skritTagger software (Hellwig, 2009). Our dataset
contains the surface forms of sentences in the DCS
and the split points and Sandhi rules that the tag-
ger proposes for their morpho-lexical gold analy-
ses stored in the DCS. We didn’t differentiate be-
tween compound and inter-word splits, as this dis-
tinction introduces morphological categories into
the dataset. Table 1 shows an example of the an-
notation format.

Table 2 shows the statistics of our dataset, split
by text genres (first column). The dataset contains
2,978,509 strings and 4,171,682 tokens in 561,596
sentences. Most sentences come from the Epic
and scientific (medicine, alchemy, astronomy) do-
main. While Epic texts are mostly written in easy,
plain Sanskrit, the scientific works use many un-
common terms (likely to reoccur in the lexico-
graphic domain) and long compounds. Sentence
length is higher in the prose subcorpora (Buddhist,
Vedic prose, ritualistic texts).

The fourth column shows that split phenomena
are frequent in Sanskrit, occurring for more than
8% of all characters. Columns 5 and 6 report the
proportions of complicated splits in relation to all
splits. While 15% of all splits are resolved into
a vocalic Sandhi, compound breaks are the dom-
inant split type, which is also responsible for the
majority of errors and ambiguities (see Sections
3.1 and 5.2). The last column also reflects the di-
achronic development from earlier texts with lim-
ited compounding (Vedic, ritualistic and Dharma
texts) towards classical Sanskrit, which shows a
strong preference for compounding. We use a
fixed split of 90% of the sentences for training, a
development set of 5% for parameter optimization
and 5% for testing.

http://kjc-sv013.kjc.uni-heidelberg.de/dcs/
http://kjc-sv013.kjc.uni-heidelberg.de/dcs/
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Genre #sen ¯|S| s̄pl
S

v̄oc
spl

c̄p
spl

Epos 322811 42 0.081 0.144 0.355
Science 105597 50 0.096 0.148 0.478
Literature 36989 50 0.085 0.173 0.382
Religious 24055 48 0.091 0.174 0.413
Dharma 18506 42 0.08 0.162 0.276
Buddhist 13739 78 0.083 0.143 0.442
Lexicogragphy 13015 44 0.077 0.146 0.376
Vedic prose 11425 58 0.081 0.181 0.097
Philosopy 7277 50 0.088 0.185 0.379
Vedic poetry 4355 46 0.071 0.106 0.079
Ritual 3222 71 0.069 0.183 0.215
Grammar 605 32 0.054 0.194 0.344
Overall 561596 46 0.084 0.150 0.375

Table 2: Statistics of the full dataset; ¯|S|: average
sentence length in characters; columns 4-6 give
the average proportion of splits/string s̄pl

S , of vo-
calic Sandhis/split v̄oc

spl and of compound splits/split
c̄p
spl

3.1 Quality of the training data
The dataset released by Krishna et al. (2017) and
the one released with this paper both build on the
DCS as gold standard. As this corpus was curated
by a single user and the project never released
a proper annotation guideline, one may suspect
that it contains a certain level of inconsistencies
and errors that influence the quality of the models
and impose an upper limit for the model accuracy.
In order to estimate the size of these effects, the
authors of this paper independently corrected the
analyses of 50 sentences randomly drawn from the
training set (250 words, 2,354 characters includ-
ing spaces). The corrections made by the authors
differed at 23 character positions, corresponding
to 20 strings in 15 sentences. 16 of these dif-
ferences concerned compound splits, where the
authors disagreed about the (non-)compositional
meaning of compounds. A good example for such
a disagreement is the string rājayoga, which was
split as rāja-yoga “king-Yoga” = “Yoga of a king”
by one author (compositional reading), but left un-
changed as the name of a school of Yoga by the
other one (non-compositional reading). After ad-
judicating these disagreements, there remain 5 of
250 strings with annotation errors in the training
data, which corresponds to an error level of 2% of
all strings and 0.2% of all characters for this sam-
ple.

We further explored the effect of composition-
ality by independently splitting 56 sentences of the

Buddhist treatise Trim. śikāvijñaptibhās.ya, which
is not part of the DCS. As the text uses highly tech-
nical terminology, the degree of disagreement can
be expected to be higher than for plain narrative
texts. We adjudicated our Sandhi annotations, but
kept conflicts in compound splitting unresolved.
94.5% of all strings (394 of 417) and 69.7% of
all sentences obtained the same compound analy-
sis by both authors. Again, the majority of differ-
ences (11 of 23) showed up when a compound can
have a non-compositional meaning that is closely
connected with its compositional reading. Evalua-
tion will show that these cases are responsible for
a large parts of the model errors.

4 Models

4.1 Input Features
The character based models are trained with em-
beddings of the indidual surface characters, which
are initialized with uniform random values from
[−1,+1] and updated during training. Follow-
ing Kitagawa and Komachi (2017), the input can
be enriched with multinomial split probabilities
that are built from the training data. When
the training data contain a split rule for surface
character ti at position i, we extract left (gLi,n)
and right (gRi,n) character n-grams with lengths
n ∈ [2, 7]4 that end/start at position i, so
that gLi,n = {ti−n+1, ti−n+2, . . . ti} and gRi,n =
{ti, ti+1, . . . ti+n−1}. Counts #(.) for individual
n-grams are accumulated over the whole training
set. At training and test time, a vector vp ∈
R2·(7−2+1)=12 is assigned to each character posi-
tion. Its element corresponding to the left n-gram
of length 2, for example, is calculated as

vp(L, 2) =
#(gLi,2)

max #(gL∗,2)
(6)

We evaluate the influence of split probabilities in
the ablation study (Sec. 5.2).

4.2 Extern Models for Comparison
We compare our models against the following
baselines:

Bidirectional RNN We re-implement the model
described in Hellwig (2015b), but apply it to full
sentences instead of isolated strings. Character
embeddings are fed into a bidirectional recurrent

4Longer n-grams did not produce improvements on the
dev set.
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layer with LSTM units. The output of the re-
current layer is additionally regularized by us-
ing dropout (Srivastava et al., 2014), and classi-
fication is performed using softmax with cross-
entropy loss. We decode the output of the softmax
in a greedy fashion without considering interac-
tions between adjacent output classes.

seq2seq We retrain the model described in
Reddy et al. (2018) with our data after pre-
processing them with the unsupervised text to-
kenizer sentencepiece (Schuster and Nakajima,
2012).5

Transformer As an alternative to recurrency
based seq2seq, we apply the model described in
Vaswani et al. (2017) to the input pre-processed
with sentencepiece. This model relies entirely on
an attention mechanism to draw global dependen-
cies between input and output. To our best knowl-
edge, this is the first time that this model has been
used for SWS. We use the publicy available imple-
mentation tensor2tensor.6.

4.3 Models Combining RNN and CNN
Convolutional Element Combinations of recur-
rent and convolutional (LeCun et al., 1998) ele-
ments are effective for tasks where complex local
features are extracted by the convolutional element
and then considered in larger contexts by the re-
current element (and vice versa; see Bjerva et al.
2016 or Ma and Hovy 2016). We use convolu-
tional features ci as proposed by Kim (2014). Let
w denote the width of the input matrix X of the
convolution (= number of time steps), h its height,
n the width of the convolutional filter fn ∈ Rn×h,
σ(.) a non-linearity (Rectified Linear Units (Nair
and Hinton, 2010) in this paper) and b a bias. A
convolutional feature at character position i and
for filter j is defined as:

cnij = σ(fnj ·X[i:i+n−1,∗] + b) (7)

The feature map cni for m different filters is
formed by concatenating the convolutional fea-
tures (cni = [cni1, c

n
i2, . . . c

n
im]) and the output c of

the convolutional element is formed by concate-
nating the feature maps (ci = c1i ⊕ c3i ⊕ . . .). We
use use odd filter widths only to avoid problems

5Code for the model: https://github.com/
cvikasreddy/skt; for the tokenizer: https://
github.com/google/sentencepiece

6https://github.com/tensorflow/
tensor2tensor

with patch alignment. We tested convolution with
small quadratic filters as used in image convolu-
tion as well as other methods for combining the
learned filter such as averaging, addition or max-
pooling of the stacked filters, but did not observe
improved performance on the dev set.

Model 1: Convolution → Recurrency (crNN)
As an alternative to n-gram extraction (Chen et al.,
2015; Kitagawa and Komachi, 2017), a convolu-
tional element is applied to the character embed-
dings (see Fig. 1a). Its outputs (Eq. 7) are fed
into a bidirectional recurrent layer (Schuster and
Paliwal, 1997). As in the baseline RNN (Sec.
4.2), dropout is inserted after the recurrent layer,
and classification is performed using softmax with
cross-entropy loss and greedy decoding.

Model 2: Recurrency → Convolution (rcNN)
The order of convolutional and recurrent elements
is switched (see Fig. 1b), so that the convolutional
operation replaces additive n-gram formation be-
fore the classification layer. The remaining archi-
tecture is identical to that of crNN

Model 3: rcNN with Shortcuts (rcNNshort)
This model extends rcNN by adding shortcut con-
nections (Bishop, 2000) that concatenate the char-
acter embeddings and the RNN outputs with the
concatenated feature maps c (see Fig. 1c). When
ei denotes the embedding of character i and ri the
output of the recurrent layer at position i, the input
to the classification layer is defined as ei⊕ri⊕ci.
Shortcuts are evaluated because we hypothesized
that the access to unconvolved information about
the input sequence and the output of the recur-
rent layer would facilitate the exact prediction of
split locations. For a better control of informa-
tion flow, we also experimented with residual (He
et al., 2016) and highway (Srivastava et al., 2015)
instead of shortcut layers, but could not observe
improvements on the dev set, most probably be-
cause our models are not deep enough for these
layer types to show effects.

5 Evaluation

5.1 Evaluation Settings
We use the following settings found on the dev set
for the character based models: embedding size:
128; 200 hidden recurrent units; 100 convolutional
feature maps with filter widths of 3,5 and 7. We
use regularized (Zaremba et al., 2014) instead of

https://github.com/cvikasreddy/skt
https://github.com/cvikasreddy/skt
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
https://github.com/tensorflow/tensor2tensor
https://github.com/tensorflow/tensor2tensor
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j o v ...

concat.

conv.

bidir. RNN

j ā-u v

softmax

(a) crNN

j o v ...

j ā-u v

(b) rcNN

j o v ...

sh
or

tc
ut

j ā-u v

(c) rcNNshort

Figure 1: Character based models, unfolded for the sequence labeling task j+o+v→ j+a-u+v.

vanilla LSTM units. All models are trained with
the Adam optimizer (Kingma and Ba, 2015), an
initial learning rate of 0.005 and batch size of 100.
Gradients with a magnitude higher than 5.0 are
cut. The models used for model selection (Sec.
5.2) are trained for 5, the other character-based
models for 10 iterations. We train the Transformer
in its default configuration as described in Vaswani
et al. (2017) with a vocabulary size 5k7 and report
performance on the test set based on evaluations
on the dev set. The model of Reddy et al. (2018)
is trained for 80 epochs with our training data and
the same parameters as described in the original
paper. All calculations are run on a Maxwell Ti-
tan X GPU. We compare the models using sen-
tence accuracy (#sens. with errors

#all sens. ) and string based
P(recision), R(ecall) and F score (Ma et al., 2016),
where P and R are equivalent to the measures used
in the CWS bakeoffs (Sproat and Emerson, 2003).

5.2 Model Selection
The upper half of Tab. 3 compares the evalua-
tion metrics for the three character based models
introduced in this paper trained with and with-
out split probabilities (Sec. 4.1). We test dif-
ferences in string accuracy using the McNemar
test.8 In general, all models that use recurrency
before convolution (rcNN*) have string accuracy
rates that are significantly higher at the 0.001 level
than for models that use convolution before recur-
rency (crNN).

7Larger vocabulary sizes did not improve on the dev set,
but performance gains by further decreasing the vocabulary
size appear to be possible.

8Testing the sentence accuracy produced highly corre-
lated test statistics. Results are therefore not discussed.

Table 3 shows that the differences in the per-
formance of crNN and rcNN* are almost as large
as between the RNN baseline and the best model
from this paper (lower half of Tab. 3), although
crNN and rcNN* differ only by the switched or-
der of recurrent and convolutional elements. We
found this result surprising, because applying con-
volution to the character embeddings appeared
like a good parametrized alternative to n-gram ex-
traction, which is often the first step in architec-
tures for Chinese and Japanese word segmenta-
tion.

To further investigate this phenomenon, we
evaluated 60 randomly chosen strings from the test
set in which either crNNsplit or (XOR) rcNNsplit

short

made an error. 45 of the errors relate to compound
splitting, partly combined with vocalic Sandhi, ei-
ther by missing a split (rcNNsplit

short: 11, crNNsplit:
15) or by oversegmenting compounds (rcNNsplit

short:
13, crNNsplit: 6). Most notably, rcNNsplit

short tends
to insert more splits than crNNsplit. This behav-
ior can be observed for missing splits and espe-
cially for oversegmentations. A more detailed in-
spection shows that 11 of 13 oversegmentations
actually induce a compositional reading of a com-
pound. saralāṅga “name of a pine resin”, for ex-
ample, is oversegmented into sarala-aṅga “pine-
limb”, which is the etymological derivation of this
compound. In contrast, crNN creates oversegmen-
tations such as śr. ṅgavanti-ah. , where śr. ṅgavanti
“having horns” (nom. pl. neutre) is a valid form,
while ah. is not an independent word form in San-
skrit. Interestingly, rcNNsplit

short mis-segments the
same string into śr. ṅga-vantyah. in another sen-
tence of the test set. Though differing from the
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Sen. String
Model sp? A P R A

Model selection
crNN 75.7 90.8 90.8 94.2
crNN X 75.4 90.6 90.9 94.2
rcNN 81.9 93.2 93.6 95.8
rcNN X 82.2 93.3 93.8 95.9
rcNNshort 81.7 93.1 93.5 95.8
rcNNshort X 82.6 93.6 93.8 96

Comparison with other models
Hellwig (2015b) 77.7 91.8 91.8 94.8
Reddy et al. (2018) 72.3 90.2 88.4 93.3
Transformer 5K 84.9 94.9 94.5 96.5
rcNNsplit

short X 85.2 94.6 94.8 96.7

Table 3: Upper half: Results for model selection
(Sec. 5.2); lower half: Comparison with baseline
models (Sec. 4.2 and 5.3)

gold analysis, this segmentation gives the correct
derivational analysis of the adjective (noun śr. ṅga
“horn” + inflected form of the adjectivizing pos-
sessive affix -vat). The results of rcNNsplit

short thus re-
flect the inherent inconsistencies of the dataset on
the level of compound splitting (see Sec. 3.1), and
their erroneous splits are frequently semantically
meaningful while glossing over minute semantic
distinctions. Errors of crNN, in contrast, tend to
be real mis-segmentations, indicating that its abil-
ity to reflect the semantic level is underdeveloped.

Split probabilities (Sec. 4.1) have a small, but
positive effect on string accuracy of the rcNN*
models. When the same model with and without
split probabilities is compared using the McNemar
test, split probabilities significantly increase string
accuracy at the 0.1 level for rcNN and at the 0.001
level for rcNNshort, while they don’t result in sig-
nificantly better performance for crNN.

5.3 Comparison with Baseline Models
The lower half of Tab. 3 compares the best model
introduced in this paper (rcNNsplit

short) with baselines
proposed for SWS in previous research. rcNNsplit

short

outperforms the character based RNN described
in Hellwig (2015b) by a wide margin. While
Tab. 3 shows differences of almost 8% in sen-
tence and 3% in string accuracy, Tab. 4 presents
the improvements for the single surface character

Hellwig (2015b) rcNNsplit
short (this paper)

Rule P R F P R F
ā 98.09 97.82 97.95 99.24 99.1 99.17
ā- 84.6 87.72 86.13 89.81 93.27 91.5
a-a 89.08 92.67 90.84 94.36 96.34 95.34
a-ā 88.26 86.48 87.36 91.5 95.6 93.51
ā-a 83.59 75 79.06 92.29 84.76 88.36
ā-ā 72.45 58.97 65.02 90.76 72.24 80.45
āh. 73.13 77.66 75.33 91.48 89.44 90.45

Table 4: P, R and F for rules that produce the sur-
face phoneme ā. Data in the left half are from
the original publication. As all metrics are consis-
tently better for this paper, we refrain from high-
lighting the best results in the right half of the ta-
ble.

ā, which can correspond to a compound split (ā-)
or to various vocalic Sandhis (a-a etc.). For this
complicated character, rcNNsplit

short achieves consis-
tent improvements of up to 15% on all metrics.
We found it especially relevant to observe that
rcNNsplit

short made large progress for rare rule types
such as ā-ā or ā-a, indicating its increased ability
for semantic generalization.

The seq2seq model (Reddy et al., 2018) per-
forms on a similar level of accuracy as the one
proposed in Hellwig (2015b). Similar to crNN
(Sec. 5.2) it tends to miss splits and to insert faulty
ones (e.g., dānādānaratih. , should: dāna-ādāna-
ratih. “pleasure in giving and taking”, is: dānāt-
ānaratih. “from giving . . . UNK”).

Gantayat et al. (2018) evaluate their model us-
ing location and split9 prediction accuracy. The
authors report 95.0 location and 79.5 split accu-
racy, but don’t specify how they calculated these
values. For this reason and because they evalu-
ate on isolated strings only, we cannot compare
directly against their work, but would like to re-
port the following measures for rcNNsplit

short:

• P, R and F for location prediction10:
97.64/98.19/97.91

• Micro-averaged P, R and F for individual rule
types such as vocalic Sandhi or compound

9This seems to mean prediction of the correct Sandhi rule;
see Gantayat et al. (2018, 4.2).

10P = TP
TP+FP

, R = TP
TP+FN

, TP: number of characters
for which gold and model both record a split (though not nec-
essarily of the same type), FP: number of characters at which
the model over-segmentates, FN: number of character where
the model fails to detect a valid split.
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Model S/A P R A
Trim. śikāvijñaptibhās.ya

rcNNsplit
short 73.9 78.7 68.6 87.1

Transformer (5K) 72.6 77.5 66.9 86.8
Nyāyamañjarı̄

rcNNsplit
short 60.2 66.4 63.3 84.8

Transformer (5K) 62.1 68.6 63.5 85.2

Table 5: Results for evaluation on the Trim. śikā-
vijñaptibhās.ya and the Nyāyamañjarı̄; S/A: sen-
tence accuracy

split: 95.12/95.12/95.12

The Transformer performs almost on par with
rcNNsplit

short, and the differences in string accuracy
are not statistically significant, although rcNNsplit

short

takes less time for training (2 h vs. 55 h) and in-
ference (less than 1 min vs. 30 min when analyz-
ing the test set). To better understand if the sys-
tems make orthogonal errors and could therefore
be used in a mixture of experts, we performed a
domain-specific evaluation with 73 sentences from
the Buddhist treatise Trim. śikāvijñaptibhās. ya and
104 sentences from the philosophical text Nyāya-
mañjarı̄. We preserved the non-standard orthog-
raphy of both texts in order to simulate the ap-
plication of the models to real-world data. This
includes the presence of typos, unsolved textual
problems and erratic (non)-application of Sandhi.

Both models show a significant drop in overall
performance when applied to these data (see Tab.
5). This is not surprising, because the input con-
ventions of these files do not match the conven-
tions of the training-data. Most errors arise again
from disagreement about the (non-)compositional
reading of technical compounds such as sarva-
jña-tva “all-knowing-ness” (see Sec. 3.1). It has to
be noted that both models agree well in their cor-
rect decisions and in the type of errors they pro-
duce on these data. This indicates that the dis-
crepancy in the orthographical conventions is in-
deed responsible for a large part of the drop in
performance. Given the fact that both texts exhibit
a lot of special vocabulary that is not present or
used in a very different way in the training set,
both models perform surprisingly well. Typical
errors common to both models are for example
svalpam instead of su-alpam “very small”. Both

Model P R A
Ma et al. (2016) 0.955 0.941 0.943
rcNNshort, no sp 0.958 0.958 0.955

Table 6: Results for splitting German compounds;
evaluation metrics according to Koehn and Knight
(2003)

models have difficulties to seperate Sandhi in pas-
sages that do not adhere to the common practice
for typesetting of Indian texts in Latin translit-
eration. ayam. parin. āmah. , for example, was not
separated into the usual form ayam. parin. āmah. .
There are certain cases of disagreement between
both models that are noteworthy. While Trans-
former has changed the misspelled word abhu-
pagamyate to the correct form abhyupagamyate in
one case (overlooked by rcNNsplit

short), rcNNsplit
short cor-

rectly identified the verbal form upacaryante iti,
where Transformer inserted the semantically dis-
preferred, but grammatically possible present par-
ticiple upacaryantah. iti. Overall, none of the mod-
els shows a generally better or worse performance
in these cases of disagreement.

5.4 Application to German Compounds
In order to test if the character based models gen-
eralize well to other languages with limited train-
ing resources, we applied rcNNshort with split prob-
abilities and the same settings as for SWS to the
task of splitting German compounds. The cur-
rent state of the art is set with a CRF operating
on n-grams of characters (Ma et al., 2016). Ta-
ble 6 shows that our model achieves an improve-
ment of about 1% for recall and accuracy when
trained with the training set of Ma et al. (2016)
only. We sampled 20 examples for the three er-
ror classes “wrong split”, “wrong faulty split” and
“wrong non-split” (Ma et al., 2016, 78). While our
model failed to detect splits for all 20 examples of
the type “wrong non-split”, the type “wrong split”
contained 10 cases, where the split(s) proposed by
the model make(s) good sense for us, but are not
recorded in the test set (e.g. “Viermaster” ‘four-
master’, “Viermaster” in test; already remarked by
Ma et al. 2016). We observed a similar level of
inconsistencies for the “wrong faulty split” type
(8 instances), where, for example, our model an-
alyzed “Bundes-tags-vize-präsident” ‘vice presi-
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dent of the Federal Parliament’, while the test set
had “Bundes-tags-vizepräsident”.

6 Conclusion

While the models discussed in this paper have
produced clear performance gains when compared
with previous research on SWS, we expect that fu-
ture research will improve over our results, but
it will be difficult to approach error-free per-
formance. The reservation is due to the errors
in the training data and especially the question
of (non-)compositional readings of compounds,
which seems to produce related levels of confu-
sion for human annotators and ML models. While
following this track of research, we would like to
expand its scope to joint learning of splits, lexical
and morphological annotations. Here, we expect
that especially lexical and morphological analy-
sis will benefit from a joint model. We hypothe-
size that CTC (Graves, 2012) trained as a co-task
or segmental NNs (Lu et al., 2016) with a mod-
ified objective (including split probabilities) may
be suitable for this task.
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