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Abstract

Semantic parsing from denotations faces two
key challenges in model training: (1) given
only the denotations (e.g., answers), search
for good candidate semantic parses, and (2)
choose the best model update algorithm. We
propose effective and general solutions to each
of them. Using policy shaping, we bias the
search procedure towards semantic parses that
are more compatible to the text, which pro-
vide better supervision signals for training. In
addition, we propose an update equation that
generalizes three different families of learning
algorithms, which enables fast model explo-
ration. When experimented on a recently pro-
posed sequential question answering dataset,
our framework leads to a new state-of-the-
art model that outperforms previous work by
5.0% absolute on exact match accuracy.

1 Introduction

Semantic parsing from denotations (SpFD) is the
problem of mapping text to executable formal rep-
resentations (or program) in a situated environ-
ment and executing them to generate denotations
(or answer), in the absence of access to correct
representations. Several problems have been han-
dled within this framework, including question an-
swering (Berant et al., 2013; Iyyer et al., 2017) and
instructions for robots (Artzi and Zettlemoyer,
2013; Misra et al., 2015).

Consider the example in Figure 1. Given the
question and a table environment, a semantic
parser maps the question to an executable pro-
gram, in this case a SQL query, and then exe-
cutes the query on the environment to generate the
answer England. In the SpFD setting, the train-
ing data does not contain the correct programs.
Thus, the existing learning approaches for SpFD
perform two steps for every training example, a
search step that explores the space of programs

Question: what nation scored the most points

Index Name Nation Points Games Pts/game
1 Karen Andrew England 44 5 8.8
2 Daniella Waterman England 40 5 8
3 Christelle Le Duff France 33 5 6.6
4 Charlotte Barras England 30 5 6
5 Naomi Thomas Wales 25 5 5

Select Nation Where Points is Maximum

Program:

Answer:

Environment:

England

Figure 1: An example of semantic parsing from deno-
tations. Given the table environment, map the question
to an executable program that evaluates to the answer.

and finds suitable candidates, and an update step
that uses these programs to update the model. Fig-
ure 2 shows the two step training procedure for the
above example.

In this paper, we address two key challenges
in model training for SpFD by proposing a novel
learning framework, improving both the search

and update steps. The first challenge, the exis-
tence of spurious programs, lies in the search step.
More specifically, while the success of the search
step relies on its ability to find programs that are
semantically correct, we can only verify if the pro-
gram can generate correct answers, given that no
gold programs are presented. The search step is
complicated by spurious programs, which happen
to evaluate to the correct answer but do not rep-
resent accurately the meaning of the natural lan-
guage question. For example, for the environ-
ment in Figure 1, the program Select Nation
Where Name = Karen Andrew is spurious.
Selecting spurious programs as positive examples
can greatly affect the performance of semantic
parsers as these programs generally do not gen-
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Question: what nation scored the most points

Index Name Nation Points Games Pts/game
1 Karen Andrew England 44 5 8.8
2 Daniella Waterman England 40 5 8
3 Christelle Le Duff France 33 5 6.6
4 Charlotte Barras England 30 5 6
5 Naomi Thomas Wales 25 5 5

Select Nation Where Pts/game is Maximum

Select Nation Where Index is Minimum

Select Nation Where Points = 44

Select Nation Where Points is Maximum

Select Nation Where Name = Karen Andrew

Programs:
Program:

Answer: England

Search Update

Step Step

Marginal Likelihood 

Policy Gradient

Off-Policy Gradient

Margin Methods

Figure 2: An example of semantic parsing from denotation. Given the question and the table environment, there
are several programs which are spurious.

eralize to unseen questions and environments.
The second challenge, choosing a learning al-

gorithm, lies in the update step. Because of the
unique indirect supervision setting of SpFD, the
quality of the learned semantic parser is dictated
by the choice of how to update the model pa-
rameters, often determined empirically. As a re-
sult, several families of learning methods, includ-
ing maximum marginal likelihood, reinforcement
learning and margin based methods have been
used. How to effectively explore different model
choices could be crucial in practice.

Our contributions in this work are twofold. To
address the first challenge, we propose a policy
shaping (Griffith et al., 2013) method that incorpo-
rates simple, lightweight domain knowledge, such
as a small set of lexical pairs of tokens in the ques-
tion and program, in the form of a critique policy

(§ 3). This helps bias the search towards the cor-
rect program, an important step to improve super-
vision signals, which benefits learning regardless
of the choice of algorithm. To address the second
challenge, we prove that the parameter update step
in several algorithms are similar and can be viewed
as special cases of a generalized update equation
(§ 4). The equation contains two variable terms
that govern the update behavior. Changing these
two terms effectively defines an infinite class of
learning algorithms where different values lead to
significantly different results. We study this effect
and propose a novel learning framework that im-
proves over existing methods.

We evaluate our methods using the sequential
question answering (SQA) dataset (Iyyer et al.,
2017), and show that our proposed improvements
to the search and update steps consistently en-
hance existing approaches. The proposed algo-
rithm achieves new state-of-the-art and outper-
forms existing parsers by 5.0%.

2 Background

We give a formal problem definition of the seman-
tic parsing task, followed by the general learning
framework for solving it.

2.1 The Semantic Parsing Task
The problem discussed in this paper can be for-
mally defined as follows. Let X be the set of
all possible questions, Y programs (e.g., SQL-like
queries), T tables (i.e., the structured data in this
work) and Z answers. We further assume access
to an executor � : Y ⇥ T ! Z , that given a pro-
gram y 2 Y and a table t 2 T , generates an an-
swer �(y, t) 2 Z . We assume that the executor
and all tables are deterministic and the executor
can be called as many times as possible. To facili-
tate discussion in the following sections, we define
an environment function et : Y ! Z , by applying
the executor to the program as et(y) = �(y, t).

Given a question x and an environment et, our
aim is to generate a program y⇤ 2 Y and then exe-
cute it to produce the answer et(y⇤). Assume that
for any y 2 Y , the score of y being a correct pro-
gram for x is score✓(y, x, t), parameterized by ✓.
The inference task is thus:

y⇤ = arg max
y2Y

score✓(y, x, t) (1)

As the size of Y is exponential to the length of
the program, a generic search procedure is typi-
cally employed for Eq. (1), as efficient dynamic
algorithms typically do not exist. These search
procedures generally maintain a beam of program
states sorted according to some scoring function,
where each program state represents an incom-
plete program. The search then generates a new
program state from an existing state by perform-
ing an action. Each action adds a set of tokens
(e.g., Nation) and keyword (e.g., Select) to a
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program state. For example, in order to generate
the program in Figure 1, the DynSP parser (Iyyer
et al., 2017) will take the first action as adding the
SQL expression Select Nation. Notice that
score✓ can be used in either probabilistic or non-
probabilistic models. For probabilistic models, we
assume that it is a Boltzmann policy, meaning that
p✓(y | x, t) / exp{score✓(y, x, t)}.

2.2 Learning

Learning a semantic parser is equivalent to learn-
ing the parameters ✓ in the scoring function, which
is a structured learning problem, due to the large,
structured output space Y . Structured learning al-
gorithms generally consist of two major compo-
nents: search and update. When the gold pro-
grams are available during training, the search pro-
cedure finds a set of high-scoring incorrect pro-
grams. These programs are used by the update
step to derive loss for updating parameters. For ex-
ample, these programs are used for approximating
the partition-function in maximum-likelihood ob-
jective (Liang et al., 2011) and finding set of pro-
grams causing margin violation in margin based
methods (Daumé III and Marcu, 2005). Depend-
ing on the exact algorithm being used, these two
components are not necessarily separated into iso-
lated steps. For instance, parameters can be up-
dated in the middle of search (e.g., Huang et al.,
2012).

For learning semantic parsers from denotations,
where we assume only answers are available in a
training set {(xi, ti, zi)}Ni=1 of N examples, the
basic construction of the learning algorithms re-
mains the same. However, the problems that
search needs to handle in SpFD is more challeng-
ing. In addition to finding a set of high-scoring in-
correct programs, the search procedure also needs
to guess the correct program(s) evaluating to the
gold answer zi. This problem is further com-
plicated by the presence of spurious programs,
which generate the correct answer but are seman-
tically incompatible with the question. For ex-
ample, although all programs in Figure 2 evalu-
ate to the same answer, only one of them is cor-
rect. The issue of the spurious programs also af-
fects the design of model update. For instance,
maximum marginal likelihood methods treat all
the programs that evaluate to the gold answer
equally, while maximum margin reward networks
use model score to break tie and pick one of the

programs as the correct reference.

3 Addressing Spurious Programs:
Policy Shaping

Given a training example (x, t, z), the aim of
the search step is to find a set K(x, t, z) of pro-
grams consisting of correct programs that eval-
uate to z and high-scoring incorrect programs.
The search step should avoid picking up spurious
programs for learning since such programs typ-
ically do not generalize. For example, in Fig-
ure 2, the spurious program Select Nation
Where Index is Min will evaluate to an in-
correct answer if the indices of the first two rows
are swapped1. This problem is challenging since
among the programs that evaluate to the correct
answer, most of them are spurious.

The search step can be viewed as following an
exploration policy b✓(y|x, t, z) to explore the set
of programs Y . This exploration is often per-
formed by beam search and at each step, we ei-
ther sample from b✓ or take the top scoring pro-
grams. The set K(x, t, z) is then used by the up-
date step for parameter update. Most search strate-
gies use an exploration policy which is based on
the score function, for example b✓(y|x, t, z) /
exp{score✓(y, t)}. However, this approach can
suffer from a divergence phenomenon whereby
the score of spurious programs picked up by the
search in the first epoch increases, making it more
likely for the search to pick them up in the fu-
ture. Such divergence issues are common with
latent-variable learning and often require careful
initialization to overcome (Rose, 1998). Unfortu-
nately such initialization schemes are not appli-
cable for deep neural networks which form the
model of most successful semantic parsers to-
day (Jia and Liang, 2016; Misra and Artzi, 2016;
Iyyer et al., 2017). Prior work, such as ✏-greedy
exploration (Guu et al., 2017), has reduced the
severity of this problem by introducing random
noise in the search procedure to avoid saturat-
ing the search on high-scoring spurious programs.
However, random noise need not bias the search
towards the correct program(s). In this paper, we
introduce a simple policy-shaping method to guide
the search. This approach allows incorporating
prior knowledge in the exploration policy and can
bias the search away from spurious programs.

1This transformation preserves the answer of the question.
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Algorithm 1 Learning a semantic parser from denotation us-
ing generalized updates.

Input: Training set {(xi, ti, zi}Ni=1 (see Section 2), learning
rate µ and stopping epoch T (̃see Section 4).

Definitions: score✓(y, x, t) is a semantic parsing model
parameterized by ✓. ps(y | x, t) is the policy used for
exploration and search(✓, x, t, z, ps) generates candi-
date programs for updating parameters (see Section 3).
� is the generalized update (see Section 4).

Output: Model parameters ✓.
1: » Iterate over the training data.
2: for t = 1 to T , i = 1 to N do
3: » Find candidate programs using the shaped policy.
4: K = search(✓, xi, ti, zi, ps)
5: » Compute generalized gradient updates
6: ✓ = ✓ + µ�(K)

7: return ✓

Policy Shaping Policy shaping is a method to
introduce prior knowledge into a policy (Griffith
et al., 2013). Formally, let the current behavior
policy be b✓(y|x, t, z) and a predefined critique
policy, the prior knowledge, be pc(y|x, t). Pol-
icy shaping defines a new shaped behavior policy

pb(y|x, t) given by:

pb(y|x, t) =
b✓(y|x, t, z)pc(y|x, t)P

y02Y b✓(y0|x, t, z)pc(y0|x, t)
. (2)

Using the shaped policy for exploration biases
the search towards the critique policy’s preference.
We next describe a simple critique policy that we
use in this paper.

Lexical Policy Shaping We qualitatively ob-
served that correct programs often contains tokens
which are also present in the question. For exam-
ple, the correct program in Figure 2 contains the
token Points, which is also present in the question.
We therefore, define a simple surface form simi-
larity feature match(x, y) that computes the ratio
of number of non-keyword tokens in the program
y that are also present in the question x.

However, surface-form similarity is often not
enough. For example, both the first and fourth pro-
gram in Figure 2 contain the token Points but only
the fourth program is correct. Therefore, we also
use a simple co-occurrence feature that triggers on
frequently co-occurring pairs of tokens in the pro-
gram and instruction. For example, the token most

is highly likely to co-occur with a correct program
containing the keyword Max. This happens for the
example in Figure 2. Similarly the token not may
co-occur with the keyword NotEqual. We assume
access to a lexicon ⇤ = {(wj , !j)}kj=1 containing

k lexical pairs of tokens and keywords. Each lex-
ical pair (w, !) maps the token w in a text to a
keyword ! in a program. For a given program y
and question x, we define a co-occurrence score
as co_occur(y, x) =

P
(w,!)2⇤ {w 2 x ^ ! 2

y}}. We define critique score critique(y, x) as
the sum of the match and co_occur scores. The
critique policy is given by:

pc(y|x, t) / exp (⌘ ⇤ critique(y, x)) , (3)

where ⌘ is a single scalar hyper-parameter denot-
ing the confidence in the critique policy.

4 Addressing Update Strategy Selection:
Generalized Update Equation

Given the set of programs generated by the search
step, one can use many objectives to update the
parameters. For example, previous work have
utilized maximum marginal likelihood (Krishna-
murthy et al., 2017; Guu et al., 2017), reinforce-
ment learning (Zhong et al., 2017; Guu et al.,
2017) and margin based methods (Iyyer et al.,
2017). It could be difficult to choose the suitable
algorithm from these options.

In this section, we propose a principle and gen-
eral update equation such that previous update al-
gorithms can be considered as special cases to this
equation. Having a general update is important
for the following reasons. First, it allows us to
understand existing algorithms better by examin-
ing their basic properties. Second, the generalized
update equation also makes it easy to implement
and experiment with various different algorithms.
Moreover, it provides a framework that enables the
development of new variations or extensions of ex-
isting learning methods.

In the following, we describe how the com-
monly used algorithms are in fact very similar –
their update rules can all be viewed as special
cases of the proposed generalized update equation.
Algorithm 1 shows the meta-learning framework.
For every training example, we first find a set of
candidates using an exploration policy (line 4).
We use the program candidates to update the pa-
rameters (line 6).

4.1 Commonly Used Learning Algorithms

We briefly describe three algorithms: maximum

marginalized likelihood, policy gradient and max-

imum margin reward.
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Maximum Marginalized Likelihood The max-
imum marginalized likelihood method maximizes
the log-likelihood of the training data by marginal-
izing over the set of programs.

JMML = log p(zi|xi, ti)

= log
X

y2Y
p(zi|y, ti)p(y|xi, ti) (4)

Because an answer is deterministically com-
puted given a program and a table, we define
p(z | y, t) as 1 or 0 depending upon whether the y
evaluates to z given t, or not. Let Gen(z, t) ✓ Y
be the set of compatible programs that evaluate to
z given the table t. The objective can then be ex-
pressed as:

JMML = log
X

y2Gen(zi,ti)

p(y|xi, ti) (5)

In practice, the summation over Gen(.) is approx-
imated by only using the compatible programs in
the set K generated by the search step.

Policy Gradient Methods Most reinforcement
learning approaches for semantic parsing assume
access to a reward function R : Y ⇥X ⇥Z ! R,
giving a scalar reward R(y, z) for a given pro-
gram y and the correct answer z.2 We can fur-
ther assume without loss of generality that the re-
ward is always in [0, 1]. Reinforcement learning
approaches maximize the expected reward JRL:

JRL =
X

y2Y
p(y|xi, ti)R(y, zi) (6)

JRL is hard to approximate using numerical in-
tegration since the reward for all programs may
not be known a priori. Policy gradient methods
solve this by approximating the derivative using a
sample from the policy. When the search space is
large, the policy may fail to sample a correct pro-
gram, which can greatly slow down the learning.
Therefore, off-policy methods are sometimes in-
troduced to bias the sampling towards high-reward
yielding programs. In those methods, an addi-
tional exploration policy u(y|xi, ti, zi) is used to
improve sampling. Importance weights are used
to make the gradient unbiased (see Appendix for
derivation).

2This is essentially a contextual bandit setting. Guu et al.
(2017) also used this setting. A general reinforcement learn-
ing setting requires taking a sequence of actions and receiv-
ing a reward for each action. For example, a program can be
viewed as a sequence of parsing actions, where each action
can get a reward. We do not consider the general setting here.

Maximum Margin Reward For every training
example (xi, ti, zi), the maximum margin reward
method finds the highest scoring program yi that
evaluates to zi, as the reference program, from the
set K of programs generated by the search. With a
margin function � : Y⇥Y⇥Z ! R and reference
program y, the set of programs V that violate the
margin constraint can thus be defined as:

V = {y0 | y0 2 Y and score✓(y, x, t)

 score✓(y0, x, t) + �(y, y0, z)}, (7)

where �(y, y0, z) = R(y, z) � R(y0, z). Similarly,
the program that most violates the constraint can
be written as:

ȳ = arg max
y02Y

{score✓(y0, x, t) + �(y, y0, z)

�score✓(y, x, t)} (8)

The most-violation margin objective (negative
margin loss) is thus defined as:

JMMR = �max{0, score✓(ȳ, xi, ti)

�score✓(yi, xi, ti) + �(yi, ȳ, zi)}

Unlike the previous two learning algorithms, mar-
gin methods only update the score of the reference
program and the program that violates the margin.

4.2 Generalized Update Equation
Although the algorithms described in §4.1 seem
very different on the surface, the gradients of their
loss functions can in fact be described in the same
generalized form, given in Eq. (9)3. In addition
to the gradient of the model scoring function, this
equation has two variable terms, w(·), q(·). We
call the first term w(y, x, t, z) intensity, which is a
positive scalar value and the second term q(y|x, t)
the competing distribution, which is a probability
distribution over programs. Varying them makes
the equation equivalent to the update rule of the
algorithms we discussed, as shown in Table 1.
We also consider meritocratic update policy which
uses a hyperparameter � to sharpen or smooth the
intensity of maximum marginal likelihood (Guu
et al., 2017).

Intuitively, w(y, x, t, z) defines the positive part
of the update equation, which defines how aggres-
sively the update favors program y. Likewise,
q(y|x, t) defines the negative part of the learning

3See Appendix for the detailed derivation.
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Generalized Update Equation:

�(K) =
X

y2K
w(y, x, t, z)

0

@r✓score✓(y, x, t) �
X

y02Y
q(y0|x, t)r✓score✓(y

0, x, t)

1

A (9)

Learning Algorithm Intensity Competing Distribution
w(y, x, t, z) q(y|x, t)

Maximum Margin Likelihood p(z|y)p(y|x)P
y0 p(z|y0)p(y0|x)

p(y|x)

Meritocratic(�) (p(z|y)p(y|x))�P
y0 (p(z|y0)p(y0|x))�

p(y|x)

REINFORCE {y = ŷ}R(y, z) p(y|x)

Off-Policy Policy Gradient {y = ŷ}R(y, z) p(y|x)
u(y|x,z) p(y|x)

Maximum Margin Reward (MMR) {y = y⇤} {y = ȳ}
Maximum Margin Avg. Violation Reward (MAVER) {y = y⇤} 1/|V| {y 2 V}

Table 1: Parameter updates for various learning algorithms are special cases of Eq. (9), with different choices of
intensity w and competing distribution q. We do not show dependence upon table t for brevity. For off-policy
policy gradient, u is the exploration policy. For margin methods, y⇤ is the reference program (see §4.1), V is the
set of programs that violate the margin constraint (cf. Eq. (7)) and ȳ is the most violating program (cf. Eq. (8)). For
REINFORCE, ŷ is sampled from K using p(.) whereas for Off-Policy Policy Gradient, ŷ is sampled using u(.).

algorithm, namely how aggressively the update
penalizes the members of the program set.

The generalized update equation provides a tool
for better understanding individual algorithm, and
helps shed some light on when a particular method
may perform better.

Intensity versus Search Quality In SpFD, the
effectiveness of the algorithms for SpFD is closely
related to the quality of the search results given
that the gold program is not available. Intuitively,
if the search quality is good, the update algorithm
could be aggressive on updating the model param-
eters. When the search quality is poor, the algo-
rithm should be conservative.

The intensity w(·) is closely related to the ag-
gressiveness of the algorithm. For example, the
maximum marginal likelihood is less aggressive
given that it produces a non-zero intensity over
all programs in the program set K that evaluate to
the correct answer. The intensity for a particular
correct program y is proportional to its probabil-
ity p(y|x, t). Further, meritocratic update becomes
more aggressive as � becomes larger.

In contrast, REINFORCE and maximum mar-
gin reward both have a non-zero intensity only
on a single program in K. This value is 1.0 for
maximum margin reward, while for reinforcement
learning, this value is the reward. Maximum mar-
gin reward therefore updates most aggressively in
favor of its selection while maximum marginal

likelihood tends to hedge its bet. Therefore, the
maximum margin methods should benefit the most
when the search quality improves.

Stability The general equation also allows us to
investigate the stability of a model update algo-
rithm. In general, the variance of update direction
can be high, hence less stable, if the model update
algorithm has peaky competing distribution, or it
puts all of its intensity on a single program. For
example, REINFORCE only samples one program
and puts non-zero intensity only on that program,
so it could be unstable depending on the sampling
results.

The competing distribution affects the stability
of the algorithm. For example, maximum margin
reward penalizes only the most violating program
and is benign to other incorrect programs. There-
fore, the MMR algorithm could be unstable during
training.

New Model Update Algorithm The general
equation provides a framework that enables the de-
velopment of new variations or extensions of ex-
isting learning methods. For example, in order to
improve the stability of the MMR algorithm, we
propose a simple variant of maximum margin re-
ward, which penalizes all violating programs in-
stead of only the most violating one. We call this
approach maximum margin average violation re-

ward (MAVER), which is included in Table 1 as
well. Given that MAVER effectively considers
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more negative examples during each update, we
expect that it is more stable compared to the MMR
algorithm.

5 Experiments

We describe the setup in §5.1 and results in §5.2.

5.1 Setup
Dataset We use the sequential question answer-
ing (SQA) dataset (Iyyer et al., 2017) for our ex-
periments. SQA contains 6,066 sequences and
each sequence contains up to 3 questions, with
17,553 questions in total. The data is partitioned
into training (83%) and test (17%) splits. We use
4/5 of the original train split as our training set and
the remaining 1/5 as the dev set. We evaluate us-
ing exact match on answer. Previous state-of-the-
art result on the SQA dataset is 44.7% accuracy,
using maximum margin reward learning.

Semantic Parser Our semantic parser is based
on DynSP (Iyyer et al., 2017), which contains a
set of SQL actions, such as adding a clause (e.g.,
Select Column) or adding an operator (e.g.,
Max). Each action has an associated neural net-
work module that generates the score for the ac-
tion based on the instruction, the table and the list
of past actions. The score of the entire program is
given by the sum of scores of all actions.

We modified DynSP to improve its represen-
tational capacity. We refer to the new parser as
DynSP++. Most notably, we included new fea-
tures and introduced two additional parser actions.
See Appendix 8.2 for more details. While these
improvements help us achieve state-of-the-art re-
sults, the majority of the gain comes from the
learning contributions described in this paper.

Hyperparameters For each experiment, we
train the model for 30 epochs. We find the op-
timal stopping epoch by evaluating the model on
the dev set. We then train on train+dev set till
the stopping epoch and evaluate the model on the
held-out test set. Model parameters are trained us-
ing stochastic gradient descent with learning rate
of 0.1. We set the hyperparameter ⌘ for policy
shaping to 5. All hyperparameters were tuned on
the dev set. We use 40 lexical pairs for defining
the co-occur score. We used common English
superlatives (e.g., highest, most) and comparators
(e.g., more, larger) and did not fit the lexical pairs
based on the dataset.

Given the model parameter ✓, we use a base
exploration policy defined in (Iyyer et al., 2017).
This exploration policy is given by b✓(y |
x, t, z) / exp(� · R(y, z) + score✓(y, ✓, z)).
R(y, z) is the reward function of the incomplete
program y, given the answer z. We use a reward
function R(y, z) given by the Jaccard similarity of
the gold answer z and the answer generated by the
program y. The value of � is set to infinity, which
essentially is equivalent to sorting the programs
based on the reward and using the current model
score for tie breaking. Further, we prune all syn-
tactically invalid programs. For more details, we
refer the reader to (Iyyer et al., 2017).

5.2 Results
Table 2 contains the dev and test results when us-
ing our algorithm on the SQA dataset. We ob-
serve that margin based methods perform better
than maximum likelihood methods and policy gra-
dient in our experiment. Policy shaping in general
improves the performance across different algo-
rithms. Our best test results outperform previous
SOTA by 5.0%.

Policy Gradient vs Off-Policy Gradient RE-
INFORCE, a simple policy gradient method,
achieved extremely poor performance. This likely
due to the problem of exploration and having to
sample from a large space of programs. This is
further corroborated from observing the much su-
perior performance of off-policy policy gradient
methods. Thus, the sampling policy is an impor-
tant factor to consider for policy gradient methods.

The Effect of Policy Shaping We observe that
the improvement due to policy shaping is 6.0%
on the SQA dataset for MAVER and only 1.3%
for maximum marginal likelihood. We also ob-
serve that as � increases, the improvement due to
policy shaping for meritocratic update increases.
This supports our hypothesis that aggressive up-
dates of margin based methods is beneficial when
the search method is more accurate as compared
to maximum marginal likelihood which hedges its
bet between all programs that evaluate to the right
answer.

Stability of MMR In Section 4, the general up-
date equation helps us point out that MMR could
be unstable due to the peaky competing distribu-
tion. MAVER was proposed to increase the stabil-
ity of the algorithm. To measure stability, we cal-
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Algorithm Dev Test
w.o. Shaping w. Shaping w.o. Shaping w. Shaping

Maximum Margin Likelihood 33.2 32.5 31.0 32.3
Meritocratic (� = 0) 27.1 28.1 31.3 30.1

Meritocratic (� = 0.5) 28.3 28.7 31.7 32.0
Meritocratic (� = 1) 39.3 41.6 41.6 45.2

REINFORCE 10.2 11.8 2.4 4.0
Off-Policy Policy Gradient 36.6 38.6 42.6 44.1

MMR 38.4 40.7 43.2 46.9
MAVER 39.6 44.1 43.7 49.7

Table 2: Experimental results on different model update algorithms, with and without policy shaping.

w q Dev
MMR MML 41.9
Off-Policy Policy Gradient MMR 37.0
MMR MMR 40.7

Table 3: The dev set results on the new variations of the
update algorithms.

culate the mean absolute difference of the devel-
opment set accuracy between successive epochs
during training, as it indicates how much an al-
gorithm’s performance fluctuates during training.
With this metric, we found mean difference for
MAVER is 0.57% where the mean difference for
MMR is 0.9%. This indicates that MAVER is in
fact more stable than MMR.

Other variations We also analyze other possi-
ble novel learning algorithms that are made pos-
sible due to generalized update equations. Ta-
ble 3 reports development results using these algo-
rithms. By mixing different intensity scalars and
competing distribution from different algorithms,
we can create new variations of the model update
algorithm. In Table 3, we show that by mixing the
MMR’s intensity and MML’s competing distribu-
tion, we can create an algorithm that outperform
MMR on the development set.

Policy Shaping helps against Spurious Pro-
grams In order to better understand if policy
shaping helps bias the search away from spurious
programs, we analyze 100 training examples. We
look at the highest scoring program in the beam at
the end of training using MAVER. Without policy
shaping, we found that 53 programs were spuri-
ous while using policy shaping this number came
down to 23. We list few examples of spurious pro-
gram errors corrected by policy shaping in Table 4.

Policy Shaping vs Model Shaping Critique
policy contains useful information that can bias
the search away from spurious programs. There-
fore, one can also consider making the critique
policy as part of the model. We call this model
shaping. We define our model to be the shaped
policy and train and test using the new model. Us-
ing MAVER updates, we found that the dev ac-
curacy dropped to 37.1%. We conjecture that the
strong prior in the critique policy can hinder gen-
eralization in model shaping.

6 Related Work

Semantic Parsing from Denotation Mapping
natural language text to formal meaning repre-
sentation was first studied by Montague (1970).
Early work on learning semantic parsers rely on
labeled formal representations as the supervision
signals (Zettlemoyer and Collins, 2005, 2007;
Zelle and Mooney, 1993). However, because get-
ting access to gold formal representation gener-
ally requires expensive annotations by an expert,
distant supervision approaches, where semantic
parsers are learned from denotation only, have be-
come the main learning paradigm (e.g., Clarke
et al., 2010; Liang et al., 2011; Artzi and Zettle-
moyer, 2013; Berant et al., 2013; Iyyer et al., 2017;
Krishnamurthy et al., 2017). Guu et al. (2017)
studied the problem of spurious programs and con-
sidered adding noise to diversify the search proce-
dure and introduced meritocratic updates.

Reinforcement Learning Algorithms Rein-
forcement learning algorithms have been applied
to various NLP problems including dialogue (Li
et al., 2016), text-based games (Narasimhan et al.,
2015), information extraction (Narasimhan et al.,
2016), coreference resolution (Clark and Man-
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Question without policy shaping with policy shaping
“of these teams, which had more SELECT Club SELECT Club

than 21 losses?" WHERE Losses = ROW 15 WHERE Losses > 21
“of the remaining, which SELECT Nation WHERE FollowUp WHERE

earned the most bronze medals?" Rank = ROW 1 Bronze is Max
“of those competitors from germany, SELECT Name WHERE FollowUp WHERE

which was not paul sievert?" Time (hand) = ROW 3 Name != ROW 5

Table 4: Training examples and the highest ranked program in the beam search, scored according to the shaped
policy, after training with MAVER. Using policy shaping, we can recover from failures due to spurious programs
in the search step for these examples.

ning, 2016), semantic parsing (Guu et al., 2017)
and instruction following (Misra et al., 2017). Guu
et al. (2017) show that policy gradient methods
underperform maximum marginal likelihood ap-
proaches. Our result on the SQA dataset sup-
ports their observation. However, we show that
using off-policy sampling, policy gradient meth-
ods can provide superior performance to maxi-
mum marginal likelihood methods.

Margin-based Learning Margin-based meth-
ods have been considered in the context of SVM
learning. In the NLP literature, margin based
learning has been applied to parsing (Taskar
et al., 2004; McDonald et al., 2005), text clas-
sification (Taskar et al., 2003), machine transla-
tion (Watanabe et al., 2007) and semantic pars-
ing (Iyyer et al., 2017). Kummerfeld et al. (2015)
found that max-margin based methods generally
outperform likelihood maximization on a range of
tasks. Previous work have studied connections be-
tween margin based method and likelihood maxi-
mization for supervised learning setting. We show
them as special cases of our unified update equa-
tion for distant supervision learning. Similar to
this work, Lee et al. (2016) also found that in the
context of supervised learning, margin-based al-
gorithms which update all violated examples per-
form better than the one that only updates the most
violated example.

Latent Variable Modeling Learning semantic
parsers from denotation can be viewed as a latent
variable modeling problem, where the program is
the latent variable. Probabilistic latent variable
models have been studied using EM-algorithm and
its variant (Dempster et al., 1977). The graphical
model literature has studied latent variable learn-
ing on margin-based methods (Yu and Joachims,
2009) and probabilistic models (Quattoni et al.,
2007). Samdani et al. (2012) studied various vari-

ants of EM algorithm and showed that all of them
are special cases of a unified framework. Our gen-
eralized update framework is similar in spirit.

7 Conclusion

In this paper, we propose a general update equa-
tion from semantic parsing from denotation and
propose a policy shaping method for addressing
the spurious program challenge. For the future,
we plan to apply the proposed learning framework
to more semantic parsing tasks and consider new
methods for policy shaping.
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