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Abstract

The problem of entity-typing has been stud-
ied predominantly in supervised learning fash-
ion, mostly with task-specific annotations
(for coarse types) and sometimes with dis-
tant supervision (for fine types). While such
approaches have strong performance within
datasets, they often lack the flexibility to trans-
fer across text genres and to generalize to new
type taxonomies. In this work we propose a
zero-shot entity typing approach that requires
no annotated data and can flexibly identify
newly defined types.

Given a type taxonomy defined as Boolean
functions of FREEBASE “types”, we ground
a given mention to a set of type-compatible
Wikipedia entries and then infer the target
mention’s types using an inference algorithm
that makes use of the types of these entries.
We evaluate our system on a broad range of
datasets, including standard fine-grained and
coarse-grained entity typing datasets, and also
a dataset in the biological domain. Our system
is shown to be competitive with state-of-the-
art supervised NER systems and outperforms
them on out-of-domain datasets. We also show
that our system significantly outperforms other
zero-shot fine typing systems.

1 Introduction

Entity type classification is the task of connect-
ing an entity mention to a given set of seman-
tic types. The commonly used type sets range in
size and level of granularity, from a small num-
ber of coarse-grained types (Tjong Kim Sang and
De Meulder, 2003) to over a hundred fine-grained
types (Ling and Weld, 2012). It is understood that
semantic typing is a key component in many natu-
ral language understanding tasks, including Ques-
tion Answering (Toral et al., 2005; Li and Roth,
2005) and Textual Entailment (Dagan et al., 2010,
2013). Consequently, the ability to type mentions

semantically across domains and text genres, and
to use a flexible type hierarchy, is essential for
solving many important challenges.

Nevertheless, most commonly used ap-
proaches and systems for semantic typing
(e.g., CORENLP (Manning et al., 2014), COG-
CoMPNLP (Khashabi et al., 2018), NLTK (Loper
and Bird, 2002), SPACY) are trained in a super-
vised fashion and rely on high quality, task-
specific annotation. Scaling such systems to other
domains and to a larger set of entity types faces
fundamental restrictions.

Coarse typing systems, which are mostly fully
supervised, are known to fit a single dataset very
well. However, their performance drops signifi-
cantly on different text genres and even new data
sets. Moreover, adding a new coarse type re-
quires manual annotation and retraining. For fine-
typing systems, people have adopted a distant-
supervision approach. Nevertheless, the number
of types used is small: the distantly-supervised
FIGER dataset covers only 113 types, a small
fraction of most-conservative estimates of the
number of types in the English language (the
FREEBASE (Bollacker et al., 2008) and WORD-
NET (Miller, 1995) hierarchies consist of more
than 1k and 1.5k unique types, respectively).
More importantly, adapting these systems, once
trained, to new type taxonomies cannot be done
flexibly.

As was argued in Roth (2017), there is a need to
develop new training paradigms that support scal-
able semantic processing; specifically, there is a
need to scale semantic typing to flexible type tax-
onomies and to multiple domains.

In this work, we introduce ZOE, a zero-shot
entity typing system, with open type definitions.
Given a mention in a sentence and a taxonomy of
entity types with their definitions, ZOE identifies
a set of types that are appropriate for the mention
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Figure 1: ZOE maps a given mention to its type-compatible entities in Wikipedia and infers a collection of
types using this set of entities. While the mention “Oarnniwsf,” a football player in the U. of Washington,
does not exist in Wikipedia, we ground it to other entities with approximately the same types (§3).

in this context. ZOE does not require any training,
and it makes use of existing data resources (e.g.,
Wikipedia) and tools developed without any task-
specific annotation. The key idea is to ground each
mention to a set of type-compatible Wikipedia en-
tities. The benefit of using a set of Wikipedia titles
as an intermediate representation for a mention is
that there is much human-curated information in
Wikipedia — categories associated with each page,
FREEBASE types, and DBpedia types. These were
put there independently of the task at hand and can
be harnessed for many tasks: in particular, for de-
termining the semantic types of a given mention
in its context. In this grounding step, the guid-
ing principle is that type-compatible entities often
appear in similar contexts. We rely on contextual
signals and, when available, surface forms, to rank
Wikipedia titles and choose those that are more
compatible with a given mention.

Importantly, our algorithm does not require a
given mention to be in Wikipedia; in fact, in many
cases (such as nominal mentions) the mentions are
not available in Wikipedia. We hypothesize that
any entity possible in English corresponds to some
type-compatible entities in Wikipedia. We can
then rely mostly on the context to reveal a set of
compatible titles, those that are likely to share se-
mantic types with the target mention. The fact that
our system is not required to ground to the exact
concept is a key difference between our ground-
ing and “standard” Wikification approaches (Mi-
halcea and Csomai, 2007; Ratinov et al., 2011).
As a consequence, while entity linking approaches
rely heavily on priors associated with the surface
forms and do not consider those that do not link to
Wikipedia titles, our system mostly relies on con-
text, regardless of whether the grounding actually
exists or not.

Figure 1 shows a high-level visualization of our
system. Given a mention, our system grounds it
into type-compatible entries in Wikipedia. The

target mention “Oarnniwsf,” is not in Wikipedia,
yet it is grounded to entities with approximately
correct types. In addition, while some of the
grounded Wikipedia entries are inaccurate in
terms of entity types, the resulting aggregated de-
cision is correct.

ZOE is an open type system, since it is not re-
stricted to a closed set of types. In our experi-
ments, we build on FREEBASE types as primitive
types and use them to define types across seven
different datasets. Note, however, that our ap-
proach is not fundamentally restricted to FREE-
BASE types; in particular, we allow types to be
defined as Boolean formulae over these primitives
(considering a type to be a set of entities). Further-
more, we support other primitives, e.g., DBPedia
or Wikipedia entries. Consequently, our system
can be used across type taxonomies; there is no
need to restrict to previously observed types or re-
train with annotations of new types. If one wants
to use types that are outside our current vocabu-
lary, one only needs to define the target type tax-
onomy in terms of the primitives used in this work.

In summary, our contributions are as follows:

* We propose a zero-shot open entity typing
framework! that does not require training on
entity-typing-specific supervised data.

* The proposed system outperforms existing
zero-shot entity typing systems.

e OQur system is competitive with fully-
supervised systems in their respective do-
mains across a broad range of coarse- and
fine-grained typing datasets, and it outper-
forms these systems in out-of-domain set-
tings.

2 Related Work

Named Entity Recognition (NER), for which the
goal is to discover mention-boundaries in addi-
tion to typing, often using a small set of mutu-

"https://github.com/CogComp/zoe
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ally exclusive types, has a considerable amount of
work (Grishman and Sundheim, 1996; Mikheev
et al., 1999; Tjong Kim Sang and De Meulder,
2003; Florian et al., 2003; Ratinov and Roth,
2009).

There have been many proposals to scale the
systems to support a bigger type space (Fleis-
chman and Hovy, 2002; Sekine et al., 2002).
This direction was followed by the introduction
of datasets with large label-sets, either manually
annotated like BBN (Weischedel and Brunstein,
2005) or distantly supervised like FIGER (Ling
and Weld, 2012). With larger datasets avail-
able, supervised-learning systems were proposed
to learn from the data (Yosef et al., 2012; Ab-
hishek et al., 2017; Shimaoka et al., 2017; Xu and
Barbosa, 2018; Choi et al., 2018). Such systems
have achieved remarkable success, mostly when
restricted to their observed domain and labels.

There is a handful of works aiming to pave
the road towards zero-shot typing by address-
ing ways to extract cheap signals, often to help
the supervised algorithms: e.g., by generating
gazetteers (Nadeau et al., 2006), or using the an-
chor texts in Wikipedia (Nothman et al., 2008,
2009). Ren et al. (2016) project labels in high-
dimensional space and use label correlations to
suppress noise and better model their relations. In
our work, we choose not to use the supervised-
learning paradigm and instead merely rely on a
general entity linking corpus and the signals in
Wikipedia. Prior work has already shown the im-
portance of Wikipedia information for NER. Tsai
et al. (2016a) use a cross-lingual WIKIFIER to fa-
cilitate cross-lingual NER. However, they do not
explicitly address the case where the target entity
does not exist in Wikipedia.

The zero-shot paradigm for entity typing has
only recently been studied. Yogatama et al. (2015)
proposed an embedding representation for user-
defined features and labels, which facilitates in-
formation sharing among labels and reduces the
dependence on the labels observed in the train-
ing set. The work of Yuan and Downey (2018)
can also be seen in the same spirit, i.e., systems
that rely on a form of representation of the labels.
In a broader sense, such works—including ours—
are part of a more general line of work on zero-
shot learning (Chang et al., 2008; Palatucci et al.,
2009; Norouzi et al., 2013; Romera-Paredes and
Torr, 2015; Song and Roth, 2014). Our work can

Use labeled
-shot?
Approach Zero-shot? data?
ATTENTIVE
(Shimaoka et al., 2017) No Yes
AAA
(Abhishek et al., 2017) No Yes
NFETC-HIER(R)
(Xu and Barbosa, 2018) No Yes
AFET N Yes
(Ren et al., 2016) o (partial)
PROTOLE Yes Yes
(Maet al., 2016) Prototype Embedding (partial)
OTYPER Yes Yes
uan and Downey, ord Embeddin partial
(Y d D y, 2018) ‘Word Embedding (partial)
Yes
(Huang et al., 2016) Concept-embedding No
Clustering
Yes
ZOE (ours) Type-Compatible No
Concepts

Table 1: Comparison of recent work on entity typ-
ing. Our system does not require any labeled
data for entity typing; therefore it works on new
datasets without retraining.

be thought of as the continuation of the same re-
search direction.

A critical step in the design of zero-shot sys-
tems is the characterization of the output space.
For supervised systems, the output representations
are trivial, as they are just indices. For zero-shot
systems, the output space is often represented in
a high-dimensional space that encodes the seman-
tics of the labels. In OTYPER (Yuan and Downey,
2018), each type embedding is computed by av-
eraging the word embeddings of the words com-
prising the type. The same idea is also used in
PROTOLE (Ma et al., 2016), except that averag-
ing is done only for a few prototypical instances
of each type. In our work, we choose to define
types using information in Wikipedia. This flex-
ibility allows our system to perform well across
several datasets without retraining. On a concep-
tual level, the work of Lin et al. (2012) and Huang
et al. (2016) are close to our approach. The gov-
erning idea in these works is to cluster mentions,
followed by propagating type information from
representative mentions.

Table 1 compares our proposed system with
several recently proposed models.

3 Zero-Shot Open Entity Typing

Types are conceptual containers that bind entities
together to form a coherent group. Among the en-
tities of the same type, type-compatibility creates
a network of loosely connected entities:
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Definition 1 (Weak Type Compatibility) Two
entities are type-compatible if they share at least
one type with respect to a type taxonomy and the
contexts in which they appear.

In our approach, given a mention in a sentence,
we aim to discover type-compatible entities in
Wikipedia and then infer the mention’s types us-
ing all the type-compatible entities together. The
advantage of using Wikipedia entries is that the
rich information associated with them allows us to
infer the types more easily. Note that this prob-
lem is different from the standard entity linking or
Wikification problem in which the goal is to find
the corresponding entity in Wikipedia. Wikipedia
does not contain all entities in the world, but an
entity is likely to have at least one type-compatible
entity in Wikipedia.

In order to find the type-compatible entities, we
use the context of mentions as a proxy. Defining it
formally:

Definition 2 (Context Consistency) A mention
m (in a context sentence s) is context-consistent
with another well-defined mention m/, if m can
be replaced by m' in the context s, and the new
sentence still makes logical sense.

Hypothesis 1 Context consistency is a strong
proxy for type compatibility.

Based on this hypothesis, given a mention m
in a sentence s, we find other context-compatible
mentions in a Wikified corpus. Since the men-
tions in the Wikified corpus are linked to the cor-
responding Wikipedia entries, we can infer m’s
types by aggregating information associated with
these Wikipedia entries.

Figure 2 shows the high-level architecture of
our proposed system. The inputs to the system are
a mention m in a sentence s, and a type definition
T. The output of the system is a set of types
{trarger} € T in the target taxonomy that best
represents the given mention. The type definitions
characterize the target entity-type space. In our
experiments, we choose to use FREEBASE types
to define the types across 7 datasets; that is, 7' is
a mapping from the set of FREEBASE types to
the set of target types: T : {tr} — {{Target}
This definition comprises many atomic defi-
nitions; for example, we can define the type
location as the disjunction of FREEBASE
types like FB.location and FB.geography:

Online
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Figure 2: A high-level view of our approach. The
inputs to the system are a mention m in a context

s, and type definitions 7. The output is set of
types {t} in the type definition. The figure also
highlights the input resources , as well as offline
and online processes .

T (Type Definitions) 1

:= FB.business &&

! (FB.education || FB.government)

- Target.location := FB.location || FB.geography ||
FB.casino || FB.court

- Target.company

The type definitions of a dataset reflect the un-
derstanding of a domain expert and the assump-
tions made in dataset design. Such definitions
are often much cheaper to define, than to anno-
tate full-fledged supervised datasets. It is impor-
tant to emphasize that, to use our system on differ-
ent datasets, one does not need to retrain it; there
is one single system used across different datasets,
working with different type definitions.

For notational simplicity, we define a few con-
ventions for the rest of the paper. The notation
t € T, simply means ¢ is a member of the image of
the map T’ (i.e., t is a member of the target types).
For a fixed concept ¢, the notation 7'(¢) is the ap-
plication of 7'(.) on the FREEBASE types attached
to the concept ¢. For a collection of concepts C,
T(C) is defined as | J . T'(c). We use Teoarse(-)
to refer to the subset of coarse types of 7'(.), while
Thine(.) defines the fine type subset.

Components in Figure 2 are described in the fol-
lowing sections.
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Figure 3: Extraction of topically relevant concepts.

Word -concept map is pre-computed using WIK—

ILINKS and used to retrieve the most relevant concepts for a given mention (see §3.1).

3.1 Initial Concept Candidate Generation

Given a mention, the goal of this step is to quickly
generate a set of Wikipedia entries based on other
words in the sentence. Since there are millions
of entries in Wikipedia, it is extremely ineffi-
cient to go through all entries for each mention.
We adopt ideas from explicit semantic analysis
(ESA) (Gabrilovich and Markovitch, 2007), an
approach to representing words with a vector of
Wikipedia concepts, and to providing fast retrieval
of the relevant Wikipedia concepts via inverted in-

dexing.
In our construction we use the WIK-
ILINKS (Singh et al.,, 2012) corpus, which

contains a total of 40 million mentions over 3
million concepts. Each mention in WIKILINKS
is associated with a Wikipedia concept. To char-
acterize it formally, in the WIKILINKS corpus,
for each concept c, there are example sentences

sent(c) = {s;}.

Offline computation: The first step is to con-
struct an ESA representation for each word in the
WIKILINKS corpus. We create a mapping from
each word in the corpus to the relevant concepts
associated with it. The result is a map S from to-
kens to concepts: S : w — {c,score(c|w)} (see
Figure 3), where score(c|w) denotes the associa-
tion of the word w with concept ¢, calculated as
the sum of the TF-IDF values of the word w in the
sentences describing c:

Z th—ldf w, S)

sesent(c) wes

score(c|w)

That is, we treat each sentence as a document and
compute TF-IDF scores for the words in it.

Online computation: For a given mention m
and its sentence context s, we use our offline word-
concept map S to find the concepts associated with
each word, and aggregate them to create a single
list of weighted concepts; i.e., > .. S(w). The
resulting concepts are sorted by the corresponding
weights, and the top {ggs4 candidates form a set

Cgsa which is passed to the next step.

3.2 Context-Consistent Re-Ranking

After quick retrieval of the initial concept candi-
dates, we re-rank concepts in Cgsa based on con-
text consistency between the input mention and
concept mentions in WIKILINKS.

For this step, assume we have a representation
that encodes the sentential information anchored
on the mention. We denote this mention-aware
context representation as SentRep(s|m). We de-
fine a measure of consistency between a concept ¢
and a mention m in a sentence s:

Consistency(c, s,m) =
cosine(SentRep(s|m), ConceptRep(c)), (1)

where ConceptRep(c) is representation of a con-
cept:

ConceptRep(c) £
avg, (SentRep(s|c)’s € WIKILINKS, ¢ € s)) ,

which is the average vector of the representation
of all the sentences in WIKILINKS that describe
the given concept.

We use pre-trained ELMO (Peters et al,
2018), a state-of-the-art contextual and mention-
aware word representation. In order to gener-
ate SentRep(s|m), we run ELMO on sentence s,
where the tokens of the mention m are concate-
nated with “_”, and retrieve its ELMO vector as
SentRep(s|m).

According to the consistency measure, we se-
lect the top ¢g1.Mo concepts for each mention. We
call this set of concepts Cgrmo.

3.3 Surface-Based Concept Generation

While context often is a key signal for typing, one
should not ignore the information included in the
surface form of the mentions. If the corresponding
concept or entity exists in Wikipedia, many men-
tions can be accurately grounded with only trivial
prior probability Pr(concept|surface). The prior
distribution is pre-computed by calculating the fre-
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quency of the times a certain surface string refers
to different concepts within Wikipedia.

In the test time, for a given mention, we use the
pre-computed probability distribution to obtain the
most likely concept, ¢y = arg max. Pr(c|m),
for the given mention m.

3.4 Type Inference

Our inference algorithm starts with selection of
concepts, followed by inference of coarse and fine
types. Our approach is outlined in Algorithm 1
and explained below.

Concept inference. To integrate surface-based
and context-based concepts, we follow a simple
rule: if the prior probability of the surface-based
concept (cgyf) has confidence below a threshold
A, we ignore it; otherwise we include it among the
concepts selected from context (Cgrmo), and only
choose coarse and fine types from cgyf.

To map the selected concepts to the target entity
types, we retrieve the FREEBASE-types of each
concept and then apply the type definition 7" (de-
fined just before §3.1). In Algorithm 1, the set of
target types of a concept c is denoted as 7'(c). This
is followed by an aggregation step for selection of
a coarse type teoarse € Tcoarse(-), and ends with the
selection of a set of fine types {tfine} C Thine(.)-

Coarse type inference. Our type inference al-
gorithm works in a relatively simple confidence
analysis procedure. To this end, we define
Count(t; C') to be the number of occurrences of
type t in the collection of concepts C:

Count(t; C) := [{c: c€ Candt € T(c)}|.

In theory, for a sensible type ¢, the count of
context-consistent concepts that have this type
should be higher than that of the initial concept
candidates. In other words, Cgiﬁtéff&?ﬁ%i;fo
1. We select the first concept (in the Cgrvo rank-
ing) which has some coarse type that matches this
criterion. If there is no such concept, we use the
coarse types of the highest scoring concept. To se-
lect one of the coarse types of the selected concept,
we let each concept of Cgrmo vote based on its
consistency score. We name this voting-based pro-
cedure SelectCoarse(c), which selects one coarse
type from a given concept:

SelectCoarse(c) =

argmax Z Z Consistency(¢é, s,m),

t B -
¢€CELMo t€Tcoarse (€)

Algorithm 1: Type inference algorithm

Input mention m in sentence s, retrieved concepts
CEesa, CeLMo, Csurf, @and type definition T’
Output Inferred types tcoarse aNd {tfine }-

. /. 7\ . Count(¢;C)/|C|
Deflne, T(t,t ,C,C ) = W,

r(tC.C7) =r(t,;C,C"),
r(t,t';C,) =r(t,t';C,C).
Tsurf < {t‘t S Tcoarse(csurf),r(t§ CELMo, CESA) > 1}

if Pr(cuylm) > X and 7,y # () then
teoarse < SelectCoarse(csur)

é < {Csurf} U C(ELMO

ty € Tfinle(csurf)s
{tine} + <ty | compatible W/ tcoarse and,
T(tf, teoarse; C) > 1s
else
~ c € CeLmo, 3t € Tcoarse(c)
Cemo ’
ELMo {C 7(t; CeLMo, CEsa) > 1

if éELMQ =0 then
| ¢+« argmax
else
| ¢+« argmax

cecpLy, CONSistency(c, s, m)

celeLy, CONSIStency(c, s, m)
end
teoarse < SelectCoarse(¢)
ty € Tiine(CeLMO),
{tine} < 4 ty | compatible W/ tcoarse and,
7(t s, teoarse; CELMo) > 7e

end

where consistency is defined in Equation (1).

Fine type inference. With the selected coarse
type, we take only the fine types that are compati-
ble with the selected coarse type (e.g., the fine type
/people/athlete and the coarse type /people
are compatible).

Among the compatible fine types, we further fil-
ter the ones that have better support from the con-

text. Therefore, we select the fine types ¢y such

Count(tf;CELMO) . .
that Count(£:Chra) > n, where t. is the previously

selected coarse type which is compatible with ;.
Intuitively, the fraction filters out the fine-grained
candidate types that don’t have enough support
compared to the selected coarse type.

4 [Experiments

Empirically, we study the behavior of our system
compared to published results. All the results are
reproduced except the ones indicated by *, which
are directly cited from their corresponding papers.

Datasets. In our experiments, we use a wide

range of typing datasets:

» For coarse entity typing, we use MUC (Gr-
ishman and Sundheim, 1996), CoNLL (Tjong
Kim Sang and De Meulder, 2003), and
OntoNotes (Hovy et al., 2006).
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FIGER BBN OntoNotesfine
Approach Trained on Acc. Flma Flyni Acc. Flpma Flmi  Ace. Flpma  Flp
AFET* (Ren et al., 2016) FIGER 533 693 66.4 - - - - -
© NFETC-HIER(R)*(Xu and Barbosa, 2018) FIGER 689 819 79.0 - - - - -
[_% AFET#* (Ren et al., 2016) BBN - - - 683 744 747 - - -
2 AAA* (Abhishek et al., 2017) BBN - - - 733 79.1 79.2 - - -
60 AFET#* (Ren et al., 2016) OntoNotesgine - - - - - - 55.1 71.1 64.7
NFETC-HIER(R)* (Xu and Barbosa, 2018)  OntoNotesie - - - - - - 60.2 76.4 70.2
OTYPER FIGER 472  69.1 67.2 27 503 495 316 345 32.1
2 (Yuan and Downey, 2018) BBN 53 11.5 11.5 29 544  48.8 2.5 5.1 54
& ¥, OntoNotesfine 0.4 15.6 16.8 23.6 51.1 479 31.8  39.1 36
B o e e L o T o T T
g ELMONN X 21,5 577 538 493 684 662 0.5 212 21.8
© WIKIFIERT YPER X 172 333 462 458 523 66.1 478 65.6 58.2
ZOE (ours) X 588 748 713 618 746 749 50.7 669 60.8

Table 2: Evaluation of fine-grained entity-typing: we compare our system with state-of-the-art systems (§4.1) For each
column, the best zero-shot and overall results are bold-faced and underlined, respectively. Numbers are F'1 in percentage. For
supervised systems, we report their in-domain performances, since they do not transfer to other datasets with different labels.
For OTYPER, cells with gray color indicate in-domain evaluation, which is the setting in which it has the best performance.

Our system outperforms all the other zero-shot baselines, and achieves competitive results compared to the best supervised

systems.
OntoNotes CoNLL MUC
System Trainedon PER LOC ORG PER LOC ORG PER LOC ORG
COoGCOMPNLP OntoNotes 984 91.9 97.7 837 70.1 683 825 769 86.7
CoGCoMPNLP CoNLL 944 59.1 87.8 956 929 90.5 908 90.8 909
Z0E (ours) X 884 700 856 90.1 80.1 739 87.8 909 91.2

Table 3: Evaluation of coarse entity-typing (§4.2): we compare two supervised entity-typers with our system. For the su-
pervised systems, cells with gray color indicate in-domain evaluation. For each column, the best, out-of-domain and overall

results are bold-faced and underlined, respectively. Numbers are F'1 in percentage. In most of the out-of-domain settings our

system outperforms the supervised system.

* For fine typing, we focus on FIGER (Ling and
Weld, 2012), BBN (Weischedel and Brunstein,
2005), and OntoNotesgne (Gillick et al., 2014).

¢ In addition to the news NER, we use the BB3
dataset (Deléger et al., 2016), with contain men-
tions of bacteria or other notions, extracted from
sentences of scientific papers.

ZOE’s parameters. We use different type defi-
nitions for each dataset. In order to design type
definitions for each dataset, we follow in the foot-
steps of Abhishek et al. (2017) and randomly sam-
ple 10% of the test set. For the experiments, we
exclude the sampled set. For completeness, we
have included the type definitions of the major ex-
periments in Appendix D.

The parameters are set universally across dif-
ferent experiments. For parameters that deter-
mine the number of extracted concepts, we use
lesa = 300 and fgpmo = 20, which are based
on the upper-bound analysis in Appendix A. For
other parameters, we set A = 0.5, n; = 0.8 and

= 0.3, based on the FIGER dev set. We em-
phasize that these parameters are universal across
our evaluations.

Evaluation metrics. Given a collection of men-
tions M, denote the set of gold types and predicted
types of a mention m € M as T,(m) and Tp,(m)
respectively. We define the following metrics for

our evaluations:

* Strict Accuracy (Acc.): {mlTy (T&:Tp(mm.

e Macro F1 (F'1,,,): Macro Precision is defined as

T e AL With this, the defini-

tions of Macro recall and F1 follow.
* Micro F1 (F'ly): The precision is defined as
ZmEIW ‘Tp(m)ng(m)‘
Zm€]% [Tp(m)]|
F1 follow the same pattern.

, and the Micro recall and

In the experiment in §4.3, to evaluate systems
on unseen types we used modified versions of met-
rics. Let G(t) be the number of mentions with
gold type ¢, P(t) be the number of mentions pre-
dicted to have type ¢, C(t) be the number of men-
tions correctly predicted to have type ¢:

e The precision corresponding to F12P° is defined

cit) G
as ), P S, G
tern.

* The precision corresponding to Flty-pe is defined

as 2=t ¢,
ST PO

@ ; recall follows the same pat-

recall follows the same pattern.
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Approach F13y  F1Y

ELMONN 63.1 53.8

WIKIFIERT YPER 53.0 43.9
OTYPER (Yuan and Downey, 2018) 50.6 23.4
Z.0E (ours) 71.7 71.1

Table 4: Comparing systems where no labels
(types) are seen a priori (§4.3).

Baselines. To add to the best published results
on each dataset, we create two simple and effec-
tive baselines. The first baseline, ELMONN, se-
lects the nearest neighbor types to a given men-
tion, where mentions and types are represented by
ELMo vectors. To create a representation for each
type t, we average the representation of the WIK-
ILINKS sentences that contain mentions of type ¢
(as explained in §3.2). Our other baseline, WIK-
IFIERTYPER, uses Wikifier (Tsai et al., 2016b) to
map the mention to a Wikipedia concept, followed
by mapping to FREEBASE types, and finally pro-
jecting them to the target types, via type defini-
tion function 7'(.). Additionally, to compare with
published zero-shot systems, we compare our sys-
tem to OTYPER, a recently published open-typing
system. Unfortunately, to the best of our knowl-
edge, the systems proposed by Ma et al.; Huang
et al. (2016; 2016) are not available online for em-
pirical comparison.

4.1 Fine-Grained Entity Typing

We evaluate our system for fine-grained named-
entity typing. Table 2 shows the evaluation
result for three datasets, FIGER, BBN, and
OntoNotesgn.. We report our system’s perfor-
mance, our zero-shot baselines, and two super-
vised systems (AFET, plus the-state-of-the-art),
for each dataset. There is no easy way to trans-
fer the supervised systems across datasets, hence
no out-of-domain numbers for such systems. For
each dataset, we train OTYPER and evaluate on the
test sets of all the three datasets. In order to run
OTYPER on different datasets, we disabled orig-
inal dataset-specific entity and type features. As
a result, among the open typing systems, our sys-
tem has significantly better results. In addition,
our system has competitive scores compared to the
supervised systems.

4.2 Coarse Entity Typing

In Table 3 we study entity typing for the coarse
types on three datasets. We focus on three types

System Bacteria not-Bacteria  Overall
WIKIFIERT YPER 54.8 86.2 70.5
ELMONN 67.6 81.2 74.4
Z.0E (ours) 68.1 84.2 76.2

Table 5: Results of the system classifying mentions
to “bacteria” or something else (§4.4). Numbers
are F'1 in percentage.

that are shared among the datasets: PER, LOC,
ORG. In coarse-entity typing, the best available
systems are heavily supervised. In this evaluation,
we use gold mention spans; i.e., we force the de-
coding algorithm of the supervised systems to se-
lect the best of the three classes for each gold men-
tion. As expected, the supervised systems have
strong in-domain performance. However, they
suffer a significant drop when evaluated in a dif-
ferent domain. Our system, while not trained on
any supervised data, achieves better or comparable
performance compared to other supervised base-
lines in the out-of-domain evaluations.

4.3 Typing of Unseen Types within Domain

We compare the quality of open typing, in which
the target type(s) have not been seen before. We
compare our system to OTYPER, which relies on
supervised data to create representations for each
type; however, it is not restricted to the observed
types. We follow a similar setting to Yuan and
Downey (2018) and split the FIGER test in folds
(one fold per type) and do cross-validations. For
each fold, mentions of only one type are used
for evaluation, and the rest are used for training
OTYPER. To be able to evaluate on unseen types
(only for this experiment), we use modified met-
rics F135° and F1YP that measure per type qual-
ity of the system (§4). In this experiment, we focus
on a within-domain setting, and show the results
of transfer across genres in the next experiments.
The results are summarized in Table 4. We ob-
serve a significant margin between ZOE and other
systems, including OTYPER.

4.4 Biology Entity Typing

We go beyond the scope of popular entity-typing
tasks, and evaluate the quality of our system on a
dataset that contains sentences from scientific pa-
pers (Deléger et al., 2016), which makes it differ-
ent from other entity-typing datasets. The men-
tions refer to either “bacteria’, or some miscella-
neous class (two class typing). As indicated in Ta-
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FIGER BBN OntoNotesfine
Approach Acc. Flya Flni Ace. Flya Fln  Acc Fln, Flu
ZOE (ours) 58.8 748 713 618 746 749 507 669 60.8
"nosurface-based concepts  -8.8  -7.5 92 -129 7.0 86 -1.8 -12  -0.1
no context-based concepts  -39.3 -42.1 -254 -364 -31.0 -139 -100 -123 -74

Table 6: Ablation study of different ways in which concepts are generated in our system (§4.5). The first row shows perfor-
mance of our system on each dataset, followed by the change in the performance upon dropping a component. While both
signals are crucial, contextual information is playing more important role than the mention-surface signal.

ble 5, our system’s overall scores are higher than
our baselines.

4.5 Ablation Study

We carry out ablation studies that quantify the con-
tribution of surface information (§3.3) and context
information (§3.2). As Table 6 shows, both fac-
tors are crucial and complementary for the sys-
tem. However, the contextual information seems
to have a bigger role overall.

We complement our qualitative analysis with
the quantitative share of each component. In
69.3%, 54.6%, and 69.7% of mentions, our system
uses the context information (and ignores the sur-
face), in FIGER, BBN, and OntoNotesgy, datasets,
respectively, underscoring the importance of con-
textual information.

4.6 Error Analysis

We provide insights into specific reasons for the
mistakes made by the system. For our analysis,
we use the erroneous decisions in the FIGER dev
set. Two independent annotators label the cause(s)
of the mistakes, resulting in 83% agreement be-
tween the annotators. The disagreements are later
reconciled by an adjudication step.

1. Incompatible concept, due to context informa-
tion: Ambiguous contexts, or short ones, of-
ten contribute to the inaccurate mapping to con-
cepts. In our manual annotations, 23.3% of er-
rors are caused, at least partly, by this issue.

2. Incompatible concept, due to surface informa-
tion: Although the prior probability is high, the
surface-based concept could be wrong. About
26% of the errors are partly due to the surface
signal errors.

3. Incorrect type, due to type inference: Even
when the system is able to find several type-
compatible concepts, it can fail due to inference
errors. This could happen if the types attached
to the type-compatible concepts are not the ma-
jority among other types attached to other con-

cepts. This is the major reason behind 56.6%
of errors.

4. Incorrect type, due to type definition: Some er-
rors are caused by the inaccurate definition of
the type mapping function 7. About 23% of
the mistakes are partly caused by this issue.

Note that each mistake could be caused by mul-

tiple factors; in other words, the above categories

are not mutually disjoint events. A slightly more

detailed analysis is included in Appendix C.

5 Conclusion

Moving beyond a fully supervised paradigm and
scaling entity-typing systems to support bigger
type sets is a crucial challenge for NLP. In this
work, we have presented ZOE, a zero-shot open
entity typing framework. The significance of this
work is threefold. First, the proposed system does
not require task-specific labeled data. Our sys-
tem relies on type definitions, which are much
cheaper to obtain than annotating thousands of ex-
amples. Second, our system outperforms exist-
ing state-of-the-art zero-shot systems by a signifi-
cant margin. Third, we show that without reliance
on task-specific supervision, one can achieve rela-
tively robust transfer across datasets.
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