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Abstract

We propose a method to detect hidden data
in English text. We target a system pre-
viously thought secure, which hides mes-
sages in tweets. The method brings ideas
from image steganalysis into the linguis-
tic domain, including the training of a
feature-rich model for detection. To iden-
tify Twitter users guilty of steganography,
we aggregate evidence; a first, in any do-
main. We test our system on a set of 1M
steganographic tweets, and show it to be
effective.

1 Introduction

Consider this: two isolated prisoners, communi-
cating by letters scrutinised by the prison warden.
They cannot write openly about escape plots, and
the warden destroys any written in code. They
must hide the true message within the letter, us-
ing steganography: the art of hiding information.

In cover modification1steganography, a cover
object is tweaked so that it carries a hidden mes-
sage: this is called embedding, the tweaked ver-
sion is the stego object, and the message is the pay-
load (Fridrich, 2009). The message should not be
detectable to any observer (the standard terminol-
ogy for this is the warden, taken from the prisoner
metaphor) who knows the system is deployed, but
does not know the original cover.

We are concerned here with linguistic steganog-
raphy, in which the cover is a piece of text, and
the message is embedded using textual transfor-
mations intended to preserve the meaning of the
original: synonym substitutions, syntactical trans-
formations, etc. Note that we are not concerned

1There are other steganographic paradigms, not in scope.
Translation based methods hide information in the automatic
translation of the cover (e.g. Meng et al. (2011)). Cover gen-
eration methods automatically produce text containing the
payload (e.g. Chapman et al. (2001)).

with the subset of linguistic steganography that
hides in file formatting (e.g. white space, as in
Por et al. (2008)), which has no security against an
informed warden (in the case of hiding informa-
tion by adding extraneous white space, the warden
simply has to look for consistent irregular use of
spaces to spot an active steganographer).

The field suffers from a number of issues: com-
pared to images, text covers have low capac-
ity (Chang and Clark, 2010); certain methods
are weak against human attackers (Grosvald and
Orgun, 2011) (most paraphrase systems cannot
guarantee perfectly fluent stego objects); finally,
authors are generally concerned with the perfor-
mance of the transformation (whether they pro-
duce grammatically/semantically correct transfor-
mations), rather than whether the generated stego
objects are detectable or not (e.g. Chang and Clark
(2010)).

However, there is a new challenger in the field.
We proposed a new linguistic stegosystem (Wilson
et al., 2014) and verified its security against hu-
man judges, who were unable to distinguish gen-
uine covers from manipulated stego objects.

This paper aims to attack CoverTweet statisti-
cally. We are in the shoes of the warden, attempt-
ing to classify stego objects from innocent2cover
objects. We propose techniques new to linguis-
tic steganalysis, including a large set of features
that detect unusual and inconsistent use of lan-
guage and the aggregation of evidence from mul-
tiple sentences. This last development, known in
the steganographic literature as pooled steganaly-
sis (Ker, 2007), represents a first in both linguistic
and image steganalysis.

2It is usual to call steganographers and their output
‘guilty’ (with non-steganographers and unchanged cover ob-
jects being ‘innocent’). This has the possibility of seeming
politically charged, so we will use the term ‘active’ instead:
be aware that this is not the usual terminology.
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2 Linguistic Stegosystems

T-Lex (Winstein, 1998) is the oldest available
cover-modification based linguistic stegosystem.
It uses a dictionary containing a small number
of disjoint synonym sets extracted from Word-
Net (Miller, 1995). Each set is unambiguously or-
dered (e.g. alphabetically), then values are embed-
ded by changing cover words for their synonyms.
Due to the the small dictionary, the capacity of
covers is only ∼ 0.1 bits per sentence.

CoverTweet is a modern evolution of T-Lex.
It hides information in tweets by applying para-
phrase rules taken from the Paraphrase Database
(PPDB) (Ganitkevitch et al., 2013), a set of 169M
rules. The system applies suitable rules to a given
cover, generating a set of possible stego objects.
These are ranked by a distortion measure (derived
from the probabilities of applied rules and from
sentence probabilities given by a language model),
and assigned a keyed hash. A human operator fil-
ters the options for fluency, and chooses the best
stego object with the desired hash.

CoverTweet uses a subset of the PPDB, re-
stricted to lexical and phrasal substitutions. Even
with the reduced set of rules, 4 bits can be embed-
ded per tweet, and it was proven secure against
human judges (Wilson et al., 2014).

Twitter is a realistic setting for steganography.
There is precedent for information hiding and
mass monitoring on micro-blogging sites, such as
the use of code words and government censorship
on the Chinese website Sina Weibo (Chen et al.,
2013). For this reason, we are attacking this set-
ting.

There are many other linguistic stegosystems,
using an array of different hiding methods (e.g.
adjective deletion, word order, anaphora reso-
lution: (Chang and Clark, 2012a), (Chang and
Clark, 2012b), (Vybornova and Macq, 2007)).
Approximately 1 bit of payload per cover sentence
is usual, making CoverTweet the exception. Un-
fortunately for steganalysis literature, the vast ma-
jority of these require data that is unavailable (and
too expensive to reproduce); beyond CoverTweet,
the only system that can be evaluated is T-Lex.

3 Related Work

To our knowledge, there have been only five prior
attempts at linguistic steganalysis on cover mod-
ification based systems; of these, four attack T-
Lex, the other attacks an equivalent proprietary

system. Taskiran et al. (2006) was the first, us-
ing n-gram language models to extract features
from stego text, before training a support vector
machine (SVM) on the features. We will adopt
some of these features for our attack.

Subsequent work (Xin-guang et al. (2006); Yu
et al. (2009); Chen et al. (2011); Xiang et al.
(2014)) has used smaller models: they have all de-
signed a single feature to exploit a weakness, and
used this (or the mean and variance of it) to train a
classifier for attack. Analysis of results, especially
the effect of embedding rate on detection, has been
lacking or non-existent. This focus on individual
features echoes the early work on image steganal-
ysis, which has since shifted towards feature-rich
models. We will be utilising the latter here, in ad-
dition to the pooled steganalysis paradigm.

4 Proposed features

Below we describe four classes of proposed fea-
tures for individual tweets. Each class will be eval-
uated individually, and in combination.

Basic features Including: word count (includ-
ing tokenised punctuation); the mean and variance
of the number of characters in each word; the total
stop word count3; and the counts for each individ-
ual stop word. (131 features)

n-gram features Using a 5-gram model, for n
from 1 to 5, the mean, variance and total log like-
lihood of the n-grams in the tweet. (15 features)

Word length Equivalent to the n-gram features,
using a 10-gram model of word length. We expect
the PPDB to replace common words with uncom-
mon longer words, or multiple shorter words. (30
features)

PPDB features Kerckhoffs’ principle (Fridrich,
2009), which states that a stegosystem must be se-
cure even when the attacker (us) knows how the
system works, introduces an interesting opportu-
nity for linguistic steganalysis. As all linguistic
stegosystems rely on automatic paraphrasing, and
generally require a source of data, it is conserva-
tive to assume that the attacker has access to this
data source. As the attacker, we can derive fea-
tures from this data.

Applying this, we extracted features using the
same subset of the PPDB that CoverTweet uses.
To our knowledge, this is the first work to ex-
plicitly apply Kerckhoffs’ principle to linguistic

3We use the Natural Language Toolkit (Bird, 2006) for
the list of 127 stop words.
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steganalysis. This set includes: a repeat of the
n-gram features, but only taking into account
n-grams that contain at least one word in4 the
PPDB; the mean and variance of character count
for words in the PPDB; for phrase lengths j from
1 to 5, the proportion of j-grams in the tweet that
are in the PPDB; likelihood of the most proba-
ble paraphrased sentence, extracted by generating
sentences in the same way as CoverTweet. Finally,
a substitution score: each word or phrase in the
PPDB is replaced by its most likely substitute, ac-
cording to the language model. The max, min,
mean and variance of the log likelihoods for the
resulting sentences are used. (27 features)

4.1 Pooling the features

Individual linguistic stego objects carry a tiny pay-
load, making detection an incredibly difficult task.
In some cases, the stego tweet will be identical to
the cover, making the task impossible. Although
we do not hope to reliably identify stego tweets
individually, the warden can still try to catch the
active steganographers: through pooled steganal-
ysis (Ker, 2007). Here, the warden considers all
the evidence for each user, and aims to identify
those actively using steganography. We combine
features from batches of tweets, by the same user:
taking the max, min, mean and variance of each
feature. If performing steganography causes small
consistent changes to a feature, this will be appar-
ent in the mean. If it causes inconsistent changes,
it may be apparent in the variance. If it occasion-
ally produces an extreme result, the max and min
will capture this. (812 features)

5 Method and Results

Here we take the role of an automatic censor, at-
tempting to identify users on Twitter who are send-
ing secret messages. We imagine a scenario where
CoverTweet is openly available, and so can as-
sume this is the system utilised by the active users.

5.1 Data and Embedding

From the Harvard TweetMap (Mostak, 2013),
we gathered 72M English language tweets, from
1.2M users. Each tweet was canonicalised as fol-
lows: tokenised; made lowercase; usernames re-
placed by a uniform token; URLs replaced by a

4Where we say a word or phrase is ‘in’ the PPDB, we
mean it features in one or more paraphrase rules that could
have been applied to the original tweet.

uniform token. We randomly selected 1000 users
with 1000-2000 tweets to train and test a classifier.
On the remaining tweets, we trained a 10-gram
word length model, and a 5-gram language model,
using SRILM (Stolcke, 2002) with Kneyser-Ney
smoothing. For vocabulary, the language model
was given every word in the PPDB, and every
word in the set of tweets, including the removed
tweets. We do not expect this to provide an unre-
alistic advantage to the censor: any word not in the
PPDB cannot hide information.

We randomly took 10 users from the set of
1000, and produced 100 stego tweets for each, for
three payload sizes: 1, 2 and 4 bits. The stego
tweets were generated using CoverTweet, with a
human operator selecting the most fluent option
containing a desired (randomly generated) pay-
load. If there were no fluent options, the tweet was
skipped. If the tweet already contained the desired
payload (if the hash value of the tweet already
matched the message), it was left unchanged. We
refer to this data as Manual CoverTweet (M-CT).

Due to the expensive nature of generating data
with a human judge, and to assess the value of
the human in-the-loop, we also automatically gen-
erated 1M stego tweets, by embedding data in
1000 tweets for each of the 1000 users. The same
three payload sizes were used. Here, the tweet
with the highest probability (provided by the lan-
guage model and the PPDB) was selected. Again,
the tweet was left unchanged if the tweet already
contained the desired payload. Tweets were only
skipped if there were no options with the correct
payload. We refer to this as Automatic Cover-
Tweet (A-CT). Finally, we embedded 1 bit in the
same tweets using T-Lex, rejecting any that con-
tained no words in the T-Lex dictionary; the result
was approximately 100 tweets on average per user.

We split the users in half, training a linear
ensemble classifier (Kodovskỳ et al., 2012) (de-
signed to work with large feature sets for steganal-
ysis) on feature instances from one half, testing it
on the other. We only classified tweets by users for
whom the classifier had no prior knowledge. All
error rates are averaged over 10 different random
user splits. For the M-CT data, where we have a
much smaller set of data, we performed 10-fold
cross validation, leaving one user out for testing
each fold.

In each experiment we matched training and
testing data: the training data was produced by the
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Figure 1: ROCs for each embedding method, for
individual tweets or batches containing 1 bit.

Batch size AUC
A-CT 1 0.551
M-CT 1 0.509
T-Lex 1 0.667
A-CT 100 0.9631

Table 1: AUC values for the ROCs shown in Fig-
ure 1

same method as the testing data. For M-CT we
tried an alternative scheme, by training on A-CT
data, but testing on M-CT; this did not work reli-
ably, and the accuracy of the resulting model went
down as pooled batch size increased. The explo-
ration of this phenomenon is left for later work.

5.2 A note on unchangeable covers

Some tweets cannot hide the payload, either when
there are no paraphrase options for that hash, or
when the human (for M-CT) vetoes all the op-
tions. This is the non-shared selection channel
problem in steganography. Methods such as syn-
drome trellis codes (Filler et al., 2011) allow the
unchangeable cover elements to be sent without
compromising the message. These have not been
applied to linguistic steganography, but we simu-
late their use: we remove the unchangeable tweets
from the cover and stego sets, essentially giving
the steganographer and detector the ability to ig-
nore such tweets.
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Figure 2: The effect of batch size on error rate.
Batches of 100 are the maximum for M-CT and
T-Lex, but we go up to 1000 with A-CT.

5.3 Results

As expected, the performance of the classifiers
trained on individual tweets is poor (see Figure 1).
In particular, the models trained on A-CT and M-
CT data have very low accuracy on data with 1 bit
payload, performing only slightly better than ran-
dom guessing. T-Lex tweets prove slightly easier
to detect. This does not mean that the systems are
secure however. Though we cannot identify in-
dividual stego tweets, when we pool evidence we
find we are able to train a model that can identify
active users with high accuracy, for all data sets.

Figure 2 shows the change in error rate as the
batch size (the number of tweets we pool) is in-
creased. We can clearly see that increasing batch
size improves accuracy. We also see that in-
creasing payload size makes active users easier to
spot. This is unsurprising: CoverTweet is forced
to choose from fewer options when payload in-
creases.

The experiment showed us that M-CT is the
most secure stegosystem, though not immune to
the effects of pooling. When combining features
from 100 tweets, the classifier had an error rate
of 0.21 on 4 bit M-CT data; data generated in the
same way, with the same payload, was previously
shown to be secure against human judges. With
large batches, detection of A-CT is almost perfect.

To establish which class of features had the
biggest effect on detection, we trained models on
each combination of features described in Sec-
tion 4. A subset of these combinations are shown
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b n p w b+n n+p p+w b+n+p p+n+c all
A-CT (2 bits) 0.345 0.311 0.217 0.376 0.266 0.204 0.203 0.180 0.191 0.169
T-Lex (1 bit) 0.448 0.226 0.273 0.317 0.226 0.202 0.218 0.198 0.168 0.168

Table 2: Error rates for models trained on different combinations of feature class, for a batch of 10. The
feature sets are as follows: basic (b), n-gram (n), PPDB (p) and word length (w).

in Table 2, for A-CT and T-Lex.We can see that for
A-CT, the PPDB features easily outperform oth-
ers, with an error rate of 0.217 when used alone;
the warden’s knowledge of the system is power-
ful. The second best is the n-gram set, though it
performs better on T-Lex than on A-CT. This is
most likely due to CoverTweet’s use of the lan-
guage model in the embedding stage: the system
is attempting to minimise the distortion that these
features are looking for. T-Lex has no such distor-
tion measure, leaving it open to this sort of attack.

Basic and PPDB feature sets fare worse on T-
Lex. The basic features are aimed at changes in
word count and stop word usage: neither of these
are affected by T-Lex substitutions. The PPDB
features are at a disadvantage with T-Lex, as they
are designed for CoverTweet. If T-Lex’s data
source were used instead of CoverTweet’s, the per-
formance would likely improve significantly.

The combination of PPDB and n-gram features
on T-Lex gives us some interesting insight: despite
the mismatch of substitution source, we still see
an improvement over the n-gram features used on
their own. This suggests that the warden does not
need the exact data source as the steganographer
for these features to be useful.

6 Conclusion

It was believed that linguistic steganography was
weak against humans, but CoverTweet disproved
it. We have shown that individual stego objects are
seemingly also strong against statistical attacks.
However, by pooling multiple pieces of evidence
against a user, the warden can drastically improve
detection rate. With each steganographic tweet
sent, the user creeps closer to being caught. This
is the first steganalytic classifier, in any domain,
that successfully exploits pooled evidence. The
design of steganographic systems must now take
this type of attacker into account. It would inter-
esting to determine whether human judges are ca-
pable of pooling large amounts of scant evidence:
we conjecture not.

Results suggest that detection is improved by

utilising rich-feature models; we only scratched
the surface with regards to this. There are many
avenues to explore, such as using multiple lan-
guage models from which to extract features (this
is the analogue of filter banks used in contempo-
rary image steganalysis (Fridrich and Kodovskỳ,
2012)).

The security of a system should first be mea-
sured against a powerful (informed) attacker. We
played this role by using features extracted using
exact knowledge of the CoverTweet system (the
PPDB features); this class of features was partic-
ularly effective against CoverTweet. The system
should now be evaluated against a weaker attacker.
We have seen that detection is still reliable when
the warden knows the wrong system (T-Lex), but
further experiments are required to determine ex-
actly how detection rate is affected by mismatches
in paraphrase sources, or language model.
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