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Abstract

Efficient computation of n-gram posterior
probabilities from lattices has applications
in lattice-based minimum Bayes-risk de-
coding in statistical machine translation
and the estimation of expected document
frequencies from spoken corpora. In this
paper, we present an algorithm for com-
puting the posterior probabilities of all n-
grams in a lattice and constructing a mini-
mal deterministic weighted finite-state au-
tomaton associating each n-gram with its
posterior for efficient storage and retrieval.
Our algorithm builds upon the best known
algorithm in literature for computing n-
gram posteriors from lattices and lever-
ages the following observations to signifi-
cantly improve the time and space require-
ments: i) the n-grams for which the poste-
riors will be computed typically comprises
all n-grams in the lattice up to a certain
length, ii) posterior is equivalent to ex-
pected count for an n-gram that do not re-
peat on any path, iii) there are efficient al-
gorithms for computing n-gram expected
counts from lattices. We present exper-
imental results comparing our algorithm
with the best known algorithm in literature
as well as a baseline algorithm based on
weighted finite-state automata operations.

1 Introduction

Many complex speech and natural language
processing (NLP) pipelines such as Automatic
Speech Recognition (ASR) and Statistical Ma-
chine Translation (SMT) systems store alternative
hypotheses produced at various stages of process-
ing as weighted acyclic automata, also known as
lattices. Each lattice stores a large number of
hypotheses along with the raw system scores as-
signed to them. While single-best hypothesis is

typically what is desired at the end of the pro-
cessing, it is often beneficial to consider a large
number of weighted hypotheses at earlier stages of
the pipeline to hedge against errors introduced by
various subcomponents. Standard ASR and SMT
techniques like discriminative training, rescoring
with complex models and Minimum Bayes-Risk
(MBR) decoding rely on lattices to represent in-
termediate system hypotheses that will be fur-
ther processed to improve models or system out-
put. For instance, lattice based MBR decoding has
been shown to give moderate yet consistent gains
in performance over conventional MAP decoding
in a number of speech and NLP applications in-
cluding ASR (Goel and Byrne, 2000) and SMT
(Tromble et al., 2008; Blackwood et al., 2010; de
Gispert et al., 2013).

Most lattice-based techniques employed by
speech and NLP systems make use of posterior
quantities computed from probabilistic lattices. In
this paper, we are interested in two such posterior
quantities: i) n-gram expected count, the expected
number of occurrences of a particular n-gram in
a lattice, and ii) n-gram posterior probability, the
total probability of accepting paths that include a
particular n-gram. Expected counts have applica-
tions in the estimation of language model statis-
tics from probabilistic input such as ASR lattices
(Allauzen et al., 2003) and the estimation term
frequencies from spoken corpora while posterior
probabilities come up in MBR decoding of SMT
lattices (Tromble et al., 2008), relevance ranking
of spoken utterances and the estimation of docu-
ment frequencies from spoken corpora (Karakos
et al., 2011; Can and Narayanan, 2013).

The expected count c(x|A) of n-gram x given
lattice A is defined as

c(x|A) =
∑
y∈Σ∗

#y(x)p(y|A) (1)

where #y(x) is the number of occurrences of n-
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gram x in hypothesis y and p(y|A) is the posterior
probability of hypothesis y given lattice A. Simi-
larly, the posterior probability p(x|A) of n-gram x
given lattice A is defined as

p(x|A) =
∑
y∈Σ∗

1y(x)p(y|A) (2)

where 1y(x) is an indicator function taking the
value 1 when hypothesis y includes n-gram x and
0 otherwise. While it is straightforward to com-
pute these posterior quantities from weighted n-
best lists by examining each hypothesis separately
and keeping a separate accumulator for each ob-
served n-gram type, it is infeasible to do the same
with lattices due to the sheer number of hypothe-
ses stored. There are efficient algorithms in lit-
erature (Allauzen et al., 2003; Allauzen et al.,
2004) for computing n-gram expected counts from
weighted automata that rely on weighted finite
state transducer operations to reduce the compu-
tation to a sum over n-gram occurrences elimi-
nating the need for an explicit sum over accept-
ing paths. The rather innocent looking difference
between Equations 1 and 2, #y(x) vs. 1y(x),
makes it hard to develop similar algorithms for
computing n-gram posteriors from weighted au-
tomata since the summation of probabilities has to
be carried out over paths rather than n-gram oc-
currences (Blackwood et al., 2010; de Gispert et
al., 2013).

The problem of computing n-gram posteriors
from lattices has been addressed by a number of
recent works (Tromble et al., 2008; Allauzen et
al., 2010; Blackwood et al., 2010; de Gispert et
al., 2013) in the context of lattice-based MBR for
SMT. In these works, it has been reported that the
time required for lattice MBR decoding is domi-
nated by the time required for computing n-gram
posteriors. Our interest in computing n-gram pos-
teriors from lattices stems from its potential appli-
cations in spoken content retrieval (Chelba et al.,
2008; Karakos et al., 2011; Can and Narayanan,
2013). Computation of document frequency statis-
tics from spoken corpora relies on estimating n-
gram posteriors from ASR lattices. In this con-
text, a spoken document is simply a collection of
ASR lattices. The n-grams of interest can be word,
syllable, morph or phoneme sequences. Unlike in
the case of lattice-based MBR for SMT where the
n-grams of interest are relatively short – typically
up to 4-grams –, the n-grams we are interested in

are in many instances relatively long sequences of
subword units.

In this paper, we present an efficient algorithm
for computing the posterior probabilities of all n-
grams in a lattice and constructing a minimal de-
terministic weighted finite-state automaton asso-
ciating each n-gram with its posterior for efficient
storage and retrieval. Our n-gram posterior com-
putation algorithm builds upon the custom forward
procedure described in (de Gispert et al., 2013)
and introduces a number of refinements to signifi-
cantly improve the time and space requirements:

• The custom forward procedure described in
(de Gispert et al., 2013) computes unigram
posteriors from an input lattice. Higher or-
der n-gram posteriors are computed by first
transducing the input lattice to an n-gram lat-
tice using an order mapping transducer and
then running the custom forward procedure
on this higher order lattice. We reformulate
the custom forward procedure as a dynamic
programming algorithm that computes pos-
teriors for successively longer n-grams and
reuses the forward scores computed for the
previous order. This reformulation subsumes
the transduction of input lattices to n-gram
lattices and obviates the need for construct-
ing and applying order mapping transducers.

• Comparing Eq. 1 with Eq. 2, we can observe
that posterior probability and expected count
are equivalent for an n-gram that do not re-
peat on any path of the input lattice. The
key idea behind our algorithm is to limit the
costly posterior computation to only those n-
grams that can potentially repeat on some
path of the input lattice. We keep track of
repeating n-grams of order n and use a sim-
ple impossibility argument to significantly re-
duce the number of n-grams of order n + 1
for which posterior computation will be per-
formed. The posteriors for the remaining
n-grams are replaced with expected counts.
This filtering of n-grams introduces a slight
bookkeeping overhead but in return dramat-
ically reduces the runtime and memory re-
quirements for long n-grams.

• We store the posteriors for n-grams that can
potentially repeat on some path of the input
lattice in a weighted prefix tree that we con-
struct on the fly. Once that is done, we com-
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Table 1: Common semirings.

SEMIRING SET ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1
Probability R+ ∪ {+∞} + × 0 1
Log R ∪ {−∞,+∞} ⊕log + +∞ 0
Tropical R ∪ {−∞,+∞} min + +∞ 0

a⊕log b = − log(e−a + e−b)

pute the expected counts for all n-grams in
the input lattice and represent them as a min-
imal deterministic weighted finite-state au-
tomaton, known as a factor automaton (Al-
lauzen et al., 2004; Mohri et al., 2007), us-
ing the approach described in (Allauzen et al.,
2004). Finally we use general weighted au-
tomata algorithms to merge the weighted fac-
tor automaton representing expected counts
with the weighted prefix tree representing
posteriors to obtain a weighted factor au-
tomaton representing posteriors that can be
used for efficient storage and retrieval.

2 Preliminaries

This section introduces the definitions and nota-
tion related to weighted finite state automata and
transducers (Mohri, 2009).

2.1 Semirings

Definition 1 A semiring is a 5-tuple
(K,⊕,⊗, 0, 1) where (K,⊕, 0) is a commutative
monoid, (K,⊗, 1) is a monoid, ⊗ distributes over
⊕ and 0 is an annihilator for ⊗.

Table 1 lists common semirings. In speech and
language processing, two semirings are of particu-
lar importance. The log semiring is isomorphic to
the probability semiring via the negative-log mor-
phism and can be used to combine probabilities in
the log domain. The tropical semiring, provides
the algebraic structure necessary for shortest-path
algorithms and can be derived from the log semir-
ing using the Viterbi approximation.

2.2 Weighted Finite-State Automata

Definition 2 A weighted finite-state automaton
(WFSA) A over a semiring (K,⊕,⊗, 0, 1) is a 7-
tuple A = (Σ, Q, I, F,E, λ, ρ) where: Σ is the
finite input alphabet; Q is a finite set of states;
I, F ⊆ Q are respectively the set of initial and

final states; E ⊆ Q × (Σ ∪ {ε}) × K × Q is a
finite set of arcs; λ : I → K, ρ : F → K are
respectively the initial and final weight functions.

Given an arc e ∈ E, we denote by i[e] its in-
put label, w[e] its weight, s[e] its source or origin
state and t[e] its target or destination state. A path
π = e1 · · · ek is an element ofE∗ with consecutive
arcs satisfying t[ei−1] = s[ei], i = 2, . . . , k. We
extend t and s to paths by setting t[π] = s[ek] and
s[π] = t[e1]. The labeling and the weight func-
tions can also be extended to paths by defining
i[π] = i[e1] . . . i[ek] and w[π] = w[e1] ⊗ . . . ⊗
w[ek]. We denote by Π(q, q′) the set of paths from
q to q′ and by Π(q, x, q′) the set of paths from q to
q′ with input string x ∈ Σ∗. These definitions can
also be extended to subsets S, S′ ⊆ Q, e.g.

Π(S, x, S′) =
⋃

q∈S,q′∈S′
Π(q, x, q′).

An accepting path in an automaton A is a path in
Π(I, F ). A string x is accepted byA if there exists
an accepting path π labeled with x. A is determin-
istic if it has at most one initial state and at any
state no two outgoing transitions share the same
input label. The weight associated by an automa-
ton A to a string x ∈ Σ∗ is given by

JAK(x) =
⊕

π∈Π(I,x,F )

λ(s[π])⊗ w[π]⊗ ρ(t[π])

and JAK(x) , 0 when Π(I, x, F ) = ∅.
A weighted automatonA defined over the prob-

ability semiring (R+,+,×, 0, 1) is said to be
probabilistic if for any state q ∈ Q, the sum of
the weights of all cycles at q, ⊕π∈Π(q,q)w[π], is
well-defined and in R+ and

∑
x∈Σ∗JAK(x) = 1.

2.3 N-gram Mapping Transducer

We denote by Φn the n-gram mapping transducer
(Blackwood et al., 2010; de Gispert et al., 2013)
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of order n. This transducer maps label sequences
to n-gram sequences of order n. Φn is similar in
form to the weighted finite-state transducer rep-
resentation of a backoff n-gram language model
(Allauzen et al., 2003). We denote by An the n-
gram lattice of order n obtained by composing lat-
tice A with Φn, projecting the resulting transducer
onto its output labels, i.e. n-grams, to obtain an
automaton, removing ε-transitions, determinizing
and minimizing (Mohri, 2009). An is a compact
lattice of n-gram sequences of order n consistent
with the labels and scores of lattice A. An typi-
cally has more states than A due to the association
of distinct n-gram histories with states.

2.4 Factor Automata

Definition 3 Given two strings x, y ∈ Σ∗, x is
a factor (substring) of y if y = uxv for some
u, v ∈ Σ∗. More generally, x is a factor of a
language L ⊆ Σ∗ if x is a factor of some string
y ∈ L. The factor automaton S(y) of a string
y is the minimal deterministic finite-state automa-
ton recognizing exactly the set of factors of y. The
factor automaton S(A) of an automaton A is the
minimal deterministic finite-state automaton rec-
ognizing exactly the set of factors of A, that is the
set of factors of the strings accepted by A.

Factor automaton (Mohri et al., 2007) is an ef-
ficient and compact data structure for representing
a full index of a set of strings, i.e. an automaton. It
can be used to determine if a string x is a factor in
time linear in its length O(|x|). By associating a
weight with each factor, we can generalize the fac-
tor automaton structure to weighted automata and
use it for efficient storage and retrieval of n-gram
posteriors and expected counts.

3 Computation of N-gram Posteriors

In this section we present an efficient algorithm
based on the n-gram posterior computation algo-
rithm described in (de Gispert et al., 2013) for
computing the posterior probabilities of all n-
grams in a lattice and constructing a weighted fac-
tor automaton for efficient storage and retrieval of
these posteriors. We assume that the input lattice
is an ε-free acyclic probabilistic automaton. If that
is not the case, we can use general weighted au-
tomata ε-removal and weight-pushing algorithms
(Mohri, 2009) to preprocess the input automaton.

Algorithm 1 reproduces the original algo-
rithm of (de Gispert et al., 2013) in our no-

tation. Each iteration of the outermost loop
starting at line 1 computes posterior probabili-
ties of all unigrams in the n-gram lattice An =
(Σn, Qn, In, Fn, En, λn, ρn), or equivalently all
n-grams of order n in the lattice A. The inner
loop starting at line 6 is essentially a custom for-
ward procedure computing not only the standard
forward probabilities α[q], the marginal probabil-
ity of paths that lead to state q,

α[q] =
⊕

π ∈Π(I,q)

λ(s[π])⊗ w[π] (3)

=
⊕
e∈E
t[e] = q

α[s[e]]⊗ w[e] (4)

but also the label specific forward probabilities
α̃[q][x], the marginal probability of paths that lead
to state q and include label x.

α̃[q][x] =
⊕

π ∈Π(I,q)

∃u,v ∈Σ∗: i[π] =uxv

λ(s[π])⊗ w[π] (5)

=
⊕
e∈E
t[e] = q

i[e] =x

α[s[e]]⊗ w[e]

⊕
⊕
e∈E
t[e] = q

i[e] 6=x

α̃[s[e]][x]⊗ w[e] (6)

Just like in the case of the standard forward al-
gorithm, visiting states in topological order en-
sures that forward probabilities associated with a
state has already been computed when that state is
visited. At each state s, the algorithm examines
each arc e = (s, x, w, q) and updates the forward
probabilities for state q in accordance with the re-
cursions in Equations 4 and 6 by propagating the
forward probabilities computed for s (lines 8-12).
The conditional on line 11 ensures that the label
specific forward probability α̃[s][y] is propagated
to state q only if label y is different from label x,
the label on the current arc. In other words, if a
label y repeats on some path π leading to state
q, then π contributes to α̃[q][y] only once. This
is exactly what is required by the indicator func-
tion in Equation 2 when computing unigram pos-
teriors. Whenever a final state is processed, the
posterior probability accumulator for each label
observed on paths reaching that state is updated
by multiplying the label specific forward probabil-
ity and the final weight associated with that state
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Algorithm 1 Compute N-gram Posteriors

1 for n← 1, . . . , N do
2 An←Min(Det(RmEps(ProjOut(A ◦ Φn))))
3 α[q]← λn(q), ∀ state q ∈ Qn
4 α̃[q][x]← 0, ∀ state q ∈ Qn, ∀ label x ∈ Σn

5 p(x|A)← 0, ∀ label x ∈ Σn

6 for each state s ∈ Qn do . In topological order
7 for each arc (s, x, w, q) ∈ En do
8 α[q]← α[q]⊕ α[s]⊗ w
9 α̃[q][x]← α̃[q][x]⊕ α[s]⊗ w

10 for each label y ∈ α̃[s] do
11 if y 66= x then
12 α̃[q][y]← α̃[q][y]⊕ α̃[s][y]⊗ w
13 if s ∈ Fn then
14 for each label x ∈ α̃[s] do
15 p(x|A)← p(x|A)⊕ α̃[s][x]⊗ ρn(s)
16 P ←Min(ConstructPrefixTree(p))

and adding the resulting value to the accumulator
(lines 13-15). It should be noted that this algo-
rithm is a form of marginalization (de Gispert et
al., 2013), rather than a counting procedure, due
to the conditional on line 11. If that conditional
were to be removed, this algorithm would com-
pute n-gram expected counts instead of posterior
probabilities.

The key idea behind our algorithm is to re-
strict the computation of posteriors to only those
n-grams that may potentially repeat on some path
of the input lattice and exploit the equivalence of
expected counts and posterior probabilities for the
remaining n-grams. It is possible to extend Algo-
rithm 1 to implement this restriction by keeping
track of repeating n-grams of order n and replac-
ing the output labels of appropriate arcs in Φn+1

with ε labels. Alternatively we can reformulate
Algorithm 1 as in Algorithm 2. In this formulation
we compute n-gram posteriors directly on the in-
put lattice A without constructing the n-gram lat-
tice An. We explicitly associate states in the orig-
inal lattice with distinct n-gram histories which is
implicitly done in Algorithm 1 by constructing the
n-gram lattice An. This explicit association lets
us reuse forward probabilities computed at order
n while computing the forward probabilities at or-
der n + 1. Further, we can directly restrict the
n-grams for which posterior computation will be
performed.

In Algorithm 2, ά[n][q][h] represents the his-

tory specific forward probability of state q, the
marginal probability of paths that lead to state q
and include length n string h as a suffix.

ά[n][q][h] =
⊕

π ∈Π(I,q)

∃ z ∈Σ∗: i[π] = zh

λ(s[π])⊗ w[π] (7)

=
⊕
e∈E
t[e] = q

g ∈ ά[n−1][s[e]]

gi[e] =h

ά[n− 1][s[e]][g]⊗ w[e]

(8)

ά[n][q][h] is the analogue of α[q] in Algorithm 1.
It splits the forward probability of state q (Equa-
tion 3), among length n suffixes (or histories)
of paths that lead to state q. We can interpret
ά[n][q][h] as the forward probability of state (q, h)
in the n-gram lattice An+1. Here (q, h) ∈ Qn+1

denotes the unique state corresponding to state q
in the original lattice A and state h in the mapping
transducer Φn+1. α̂[q][h][x] represents the history
and n-gram specific forward probability of state q,
the marginal probability of paths that lead to state
q, include length n − 1 string h as a suffix and
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Algorithm 2 Compute N-gram Posteriors (Reformulation)

1 R[0]← {ε}
2 ά[0][q][ε]← α[q], ∀ state q ∈ Q
3 for n← 1, . . . , N do
4 R[n]← ∅
5 ά[n][q][x]← 0, ∀ state q ∈ Q, ∀ ngram x ∈ Σn

6 α̂[q][h][x]← 0, ∀ state q ∈ Q, ∀ history h ∈ Σn−1, ∀ ngram x ∈ Σn

7 p(x|A)← 0, ∀ ngram x ∈ Σn

8 for each state s ∈ Q do . In topological order
9 for each history g ∈ ά[n− 1][s] where g ∈ R[n− 1] do

10 for each arc (s, i, w, q) ∈ E do
11 x← gi . Concatenate history and label
12 h← x[1 : n] . Drop first label
13 if h ∈ R[n− 1] then
14 ά[n][q][x]← ά[n][q][x]⊕ ά[n− 1][s][g]⊗ w
15 α̂[q][h][x]← α̂[q][h][x]⊕ ά[n− 1][s][g]⊗ w
16 for each ngram y ∈ α̂[s][g] do
17 if y 66= x then
18 α̂[q][h][y]← α̂[q][h][y]⊕ α̂[s][g][y]⊗ w
19 else
20 R[n]← R[n] ∪ {y}
21 if s ∈ F then
22 for each history g ∈ α̂[s] do
23 for each ngram x ∈ α̂[s][g] do
24 p(x|A)← p(x|A)⊕ α̂[s][g][x]⊗ ρ(s)
25 P ′← ConstructPrefixTree(p)
26 C ← ComputeExpectedCounts(A,N)
27 P ←Min(Det(RmEps((C − RmWeight(P ′))⊕ P ′)))

include n-gram x as a substring.

α̂[q][h][x] =
⊕

π ∈Π(I,q)

∃ z ∈Σ∗: i[π] = zh

∃u,v ∈Σ∗: i[π] =uxv

λ(s[π])⊗ w[π]

(9)

=
⊕
e∈E
t[e] = q

g ∈ ά[|h|][s[e]]
gi[e] =x

ά[|h|][s[e]][g]⊗ w[e]

⊕
⊕
e∈E
t[e] = q

g ∈ α̂[s[e]]

gi[e] 6=x

α̂[s[e]][g][x]⊗ w[e]

(10)

α̂[q][h][x] is the analogue of α̃[q][x] in Algorithm
1. R[n] represents the set of n-grams of order n

that repeat on some path of A. We start by defin-
ing R[0] , {ε}, i.e. the only repeating n-gram
of order 0 is the empty string ε, and computing
ά[0][q][ε] ≡ α[q] using the standard forward algo-
rithm. Each iteration of the outermost loop start-
ing at line 3 computes posterior probabilities of all
n-grams of order n directly on the lattice A. At
iteration n, we visit the states in topological order
and examine each length n−1 history g associated
with s, the state we are in. For each history g, we
go over the set of arcs leaving state s, construct the
current n-gram x by concatenating g with the cur-
rent arc label i (line 11), construct the length n−1
history h of the target state q (line 12), and update
the forward probabilities for the target state his-
tory pair (q, h) in accordance with the recursions
in Equations 8 and 10 by propagating the forward
probabilities computed for the state history pair
(s, g) (lines 14-18). Whenever a final state is pro-
cessed, the posterior probability accumulator for
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each n-gram of order n observed on paths reach-
ing that state is updated by multiplying the n-gram
specific forward probability and the final weight
associated with that state and adding the resulting
value to the accumulator (lines 21-24).

We track repeating n-grams of order n to re-
strict the costly posterior computation operation to
only those n-grams of order n+ 1 that can poten-
tially repeat on some path of the input lattice. The
conditional on line 17 checks if any of the n-grams
observed on paths reaching state history pair (s, g)
is the same as the current n-gram x, and if so adds
it to the set of repeating n-grams. At each iteration
n, we check if the current length n − 1 history g
of the state we are in is in R[n − 1], the set of re-
peating n-grams of order n−1 (line 9). If it is not,
then no n-gram x = gi can repeat on some path of
A since that would require g to repeat as well. If g
is inR[n−1], then for each arc e = (s, i, w, q) we
check if the length n− 1 history h = g[1 : n− 1]i
of the next state q is in R[n − 1] (line 13). If it
is not, then the n-gram x = g[0]h can not repeat
either.

We keep the posteriors p(x|A) for n-grams that
can potentially repeat on some path of the input
lattice in a deterministic WFSA P ′ that we con-
struct on the fly. P ′ is a prefix tree where each
path π corresponds to an n-gram posterior, i.e.
i[π] = x =⇒ w[π] = ρ(t[π]) = p(x|A).
Once the computation of posteriors for possibly
repeating n-grams is finished, we use the algo-
rithm described in (Allauzen et al., 2004) to con-
struct a weighted factor automaton C mapping all
n-grams observed in A to their expected counts,
i.e. ∀π in C, i[π] = x =⇒ w[π] = c(x|A).
We use P ′ and C to construct another weighted
factor automaton P mapping all n-grams observed
in A to their posterior probabilities, i.e. ∀π in P ,
i[π] = x =⇒ w[π] = p(x|A). First we remove
the n-grams accepted by P ′ from C using the dif-
ference operation (Mohri, 2009),

C ′ = C − RmWeight(P ′)

then take the union of the remaining automaton C ′

and P ′, and finally optimize the result by remov-
ing ε-transitions, determinizing and minimizing

P = Min(Det(RmEps(C ′ ⊕ P ′))).
4 Experiments and Discussion

In this section we provide experiments comparing
the performance of Algorithm 2 with Algorithm 1

Figure 1: Runtime comparison

Figure 2: Memory use comparison

as well as a baseline algorithm based on the ap-
proach of (Tromble et al., 2008). All algorithms
were implemented in C++ using the OpenFst Li-
brary (Allauzen et al., 2007). Algorithm 1 imple-
mentation is a thin wrapper around the reference
implementation. All experiments were conducted
on the 88K ASR lattices (total size: #states + #arcs
= 33M, disk size: 481MB) generated from the
training subset of the IARPA Babel Turkish lan-
guage pack, which includes 80 hours of conversa-
tional telephone speech. Lattices were generated
with a speaker dependent DNN ASR system that
was trained on the same data set using IBM’s At-
tila toolkit (Soltau et al., 2010). All lattices were
pruned to a logarithmic beam width of 5.

Figure 1 gives a scatter plot of the posterior
probability computation time vs. the number of
lattice n-grams (up to 5-grams) where each point
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Table 2: Runtime Comparison

Max n-gram length 1 2 3 4 5 6 10 all

log10(#n-grams) 3.0 3.8 4.2 4.5 4.8 5.1 6.3 11.2

Baseline (sec) 5 15 32 69 147 311 5413 -
Algorithm 1 (sec) 0.5 0.6 0.9 1.6 3.9 16 997 -
Algorithm 2 (sec) 0.7 0.8 0.9 1.1 1.2 1.3 1.7 1.0
Expected Count (sec) 0.3 0.4 0.5 0.6 0.7 0.8 1.0 0.5

represents one of the 88K lattices in our data set.
Similarly, Figure 2 gives a scatter plot of the max-
imum memory used by the program (maximum
resident set size) during the computation of pos-
teriors vs. the number of lattice n-grams (up to
5-grams). Algorithm 2 requires significantly less
resources, particularly in the case of larger lattices
with a large number of unique n-grams.

To better understand the runtime characteris-
tics of Algorithms 1 and 2, we conducted a small
experiment where we randomly selected 100 lat-
tices (total size: #states + #arcs = 81K, disk size:
1.2MB) from our data set and analyzed the re-
lation between the runtime and the maximum n-
gram length N . Table 2 gives a runtime compari-
son between the baseline posterior computation al-
gorithm described in (Tromble et al., 2008), Algo-
rithm 1, Algorithm 2 and the expected count com-
putation algorithm of (Allauzen et al., 2004). The
baseline method computes posteriors separately
for each n-gram by intersecting the lattice with an
automaton accepting only the paths including that
n-gram and computing the total weight of the re-
sulting automaton in log semiring. Runtime com-
plexities of the baseline method and Algorithm
1 are exponential in N due to the explicit enu-
meration of n-grams and we can clearly see this
trend in the 3rd and 4th rows of Table 2. Algo-
rithm 2 (5th row) takes advantage of the WFSA
based expected count computation algorithm (6th
row) to do most of the work for long n-grams,
hence does not suffer from the same exponential
growth. Notice the drops in the runtimes of Algo-
rithm 2 and the WFSA based expected count com-
putation algorithm when all n-grams are included
into the computation regardless of their length.
These drops are due to the expected count compu-
tation algorithm that processes all n-grams simul-
taneously using WFSA operations. Limiting the
maximum n-gram length requires pruning long n-
grams, which in general can increase the sizes of

intermediate WFSAs used in computation and re-
sult in longer runtimes as well as larger outputs.

When there is no limit on the maximum n-gram
length, the output of Algorithm 2 is a weighted
factor automaton mapping each factor to its pos-
terior. Table 3 compares the construction and
storage requirements for posterior factor automata
with similar factor automata structures. We use
the approach described in (Allauzen et al., 2004)
for constructing both the unweighted and the ex-
pected count factor automata. We construct the
unweighted factor automata by first removing the
weights on the input lattices and then applying the
determinization operation on the tropical semir-
ing so that path weights are not added together.
The storage requirements of the posterior factor
automata produced by Algorithm 2 is similar to
those of the expected count factor automata. Un-
weighted factor automata, on the other hand, are
significantly more compact than their weighted
counterparts even though they accept the same set
of strings. This difference in size is due to ac-
commodating path weights which in general can
significantly impact the effectiveness of automata
determinization and minimization.

5 Related Work

Efficient computation of n-gram expected counts
from weighted automata was first addressed in
(Allauzen et al., 2003) in the context of estimating
n-gram language model statistics from ASR lat-
tices. Expected counts for all n-grams of interest
observed in the input automaton are computed by
composing the input with a simple counting trans-
ducer, projecting on the output side, and remov-
ing ε-transitions. The weight associated by the re-
sulting WFSA to each n-gram it accepts is simply
the expected count of that n-gram in the input au-
tomaton. Construction of such an automaton for
all substrings (factors) of the input automaton was
later explored in (Allauzen et al., 2004) in the con-
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Table 3: Factor Automata Comparison

FA Type Unweighted Expected Count Posterior

#states + #arcs (M) 16 20 21
On disk size (MB) 219 545 546

Runtime (min) 5.5 11 22

text of building an index for spoken utterance re-
trieval (SUR) (Saraclar and Sproat, 2004). This is
the approach used for constructing the weighted
factor automaton C in Algorithm 2. While ex-
pected count works well in practice for ranking
spoken utterances containing a query term, poste-
rior probability is in theory a better metric for this
task. The weighted factor automaton P produced
by Algorithm 2 can be used to construct an SUR
index weighted with posterior probabilities.

The problem of computing n-gram posteriors
from lattices was first addressed in (Tromble et
al., 2008) in the context of lattice-based MBR for
SMT. This is the baseline approach used in our
experiments and it consists of building a separate
FSA for each n-gram of interest and intersecting
this automaton with the input lattice to discard
those paths that do not include that n-gram and
summing up the weights of remaining paths. The
fundamental shortcoming of this approach is that it
requires separate intersection and shortest distance
computations for each n-gram. This shortcoming
was first tackled in (Allauzen et al., 2010) by in-
troducing a counting transducer for simultaneous
computation of posteriors for all n-grams of order
n in a lattice. This transducer works well for un-
igrams since there is a relatively small number of
unique unigrams in a lattice. However, it is less
efficient for n-grams of higher orders. This inef-
ficiency was later addressed in (Blackwood et al.,
2010) by employing n-gram mapping transducers
to transduce the input lattices to n-gram lattices of
order n and computing unigram posteriors on the
higher order lattices. Algorithm 1 was described
in (de Gispert et al., 2013) as a fast alternative to
counting transducers. It is a lattice specialization
of a more general algorithm for computing n-gram
posteriors from a hypergraph in a single inside
pass (DeNero et al., 2010). While this algorithm
works really well for relatively short n-grams, its
time and space requirements scale exponentially
with the maximum n-gram length. Algorithm 2
builds upon this algorithm by exploiting the equiv-

alence of expected counts and posteriors for non-
repeating n-grams and eliminating the costly pos-
terior computation operation for most n-grams in
the input lattice.

6 Conclusion

We have described an efficient algorithm for com-
puting n-gram posteriors from an input lattice and
constructing an efficient and compact data struc-
ture for storing and retrieving them. The runtime
and memory requirements of the proposed algo-
rithm grow linearly with the length of the n-grams
as opposed to the exponential growth observed
with the original algorithm we are building upon.
This is achieved by limiting the posterior compu-
tation to only those n-grams that may repeat on
some path of the input lattice and using the rela-
tively cheaper expected count computation algo-
rithm for the rest. This filtering of n-grams in-
troduces a slight bookkeeping overhead over the
baseline algorithm but in return dramatically re-
duces the runtime and memory requirements for
long n-grams.
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