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Abstract

We study how to extend a large knowledge
base (Freebase) by reading relational informa-
tion from a large Web text corpus. Previous
studies on extracting relational knowledge
from text show the potential of syntactic
patterns for extraction, but they do not exploit
background knowledge of other relations
in the knowledge base. We describe a
distributed, Web-scale implementation of a
path-constrained random walk model that
learns syntactic-semantic inference rules for
binary relations from a graph representation
of the parsed text and the knowledge base.
Experiments show significant accuracy im-
provements in binary relation prediction over
methods that consider only text, or only the
existing knowledge base.

1 Introduction

Manually-created knowledge bases (KBs) often lack
basic information about some entities and their
relationships, either because the information was
missing in the initial sources used to create the
KB, or because human curators were not confident
about the status of some putative fact, and so they
excluded it from the KB. For instance, as we will
see in more detail later, many person entries in
Freebase (Bollacker et al., 2008) lack nationality
information. To fill those KB gaps, we might use
general rules, ideally automatically learned, such as
“if person was born in town and town is in country

∗This research was carried out during an internship at
Google Research

then the person is a national of the country.” Of
course, rules like this may be defeasible, in this case
for example because of naturalization or political
changes. Nevertheless, many such imperfect rules
can be learned and combined to yield useful KB
completions, as demonstrated in particular with the
Path-Ranking Algorithm (PRA) (Lao and Cohen,
2010; Lao et al., 2011), which learns such rules on
heterogenous graphs for link prediction tasks.

Alternatively, we may attempt to fill KB gaps by
applying relation extraction rules to free text. For
instance, Snow et al. (2005) and Suchanek et al.
(2006) showed the value of syntactic patterns in
extracting specific relations. In those approaches,
KB tuples of the relation to be extracted serve as
positive training examples to the extraction rule
induction algorithm. However, the KB contains
much more knowledge about other relations that
could potentially be helpful in improving relation
extraction accuracy and coverage, but that is not
used in such purely text-based approaches.

In this work, we use PRA to learn weighted
rules (represented as graph path patterns) that
combine both semantic (KB) and syntactic infor-
mation encoded respectively as edges in a graph-
structured KB, and as syntactic dependency edges
in dependency-parsed Web text. Our approach can
easily incorporate existing knowledge in extraction
tasks, and its distributed implementation scales to
the whole of the Freebase KB and 60 million parsed
documents. To the best of our knowledge, this is the
first successful attempt to apply relational learning
methods to heterogeneous data with this scale.
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1.1 Terminology and Notation

In this study, we use a simplified KB consisting of a
set C of concepts and a set R of labels. Each label r
denotes some binary relation partially represented in
the KB. The concrete KB is a directed, edge-labeled
graph G = (C, T ) where T ⊆ C × R × C is the
set of labeled edges (also known as triples) (c, r, c′).
Each triple represents an instance r(c, c′) of the
relation r ∈ R. The KB may be incomplete, that
is, r(c, c′) holds in the real world but (c, r, c′) 6∈ T .
Our method will attempt to learn rules to infer such
missing relation instances by combining the KB
with parsed text.

We denote by r−1 the inverse relation of r:
r(c, c′) ⇔ r−1(c′, c). For instance Parent−1 is
equivalent to Children. It is convenient to take G
as containing triple (c′, r−1, c) whenever it contains
triple (c, r, c′).

A path type in G is a sequence π = 〈r1, . . . , rm〉.
An instance of the path type is a sequence of nodes
c0, . . . , cm such that ri(ci−1, ci). For instance, “the
persons who were born in the same town as the
query person”, and “the nationalities of persons who
were born in the same town as the query person” can
be reached respectively through paths matching the
following types

π1 :
〈
BornIn,BornIn−1

〉
π2 :

〈
BornIn,BornIn−1,Nationality

〉
1.2 Learning Syntactic-Semantic Rules with

Path-Constrained Random Walks

Given a query concept s ∈ C and a relation
r ∈ R, PRA begins by enumerating a large set of
bounded-length path types. These path types are
treated as ranking “experts,” each generating some
random instance of the path type starting from s, and
ranking end nodes t by their weights in the resulting
distribution. Finally, PRA combines the weights
contributed by different “experts” by using logistic
regression to predict the probability that the relation
r(s, t) holds.

In this study, we test the hypothesis that PRA can
be used to find useful “syntactic-semantic patterns”
– that is, patterns that exploit both semantic
and syntactic relationships, thereby using semantic
knowledge as background in interpreting syntactic
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Figure 1: Knowledge base and parsed text as a labeled
graph. For clarity, some word nodes are omitted.

relationships. As shown in Figure 1, we extend the
KB graph G with nodes and edges from text that
has been syntactically analyzed with a dependency
parser1 and where pronouns and other anaphoric
referring expressions have been clustered with their
antecedents. The text nodes are word/phrase
instances, and the edges are syntactic dependencies
labeled by the corresponding dependency type.
Mentions of entities in the text are linked to KB
concepts by mention edges created by an entity
resolution process.

Given for instance the query
Profession(CharlotteBronte, ?), PRA produces
a ranked list of answers that may have the relation
Profession with the query node CharlotteBronte.
The features used to score answers are the
random walk probabilities of reaching a certain
profession node from the query node by paths
with particular path types. PRA can learn path
types that combine background knowledge in
the database with syntactic patterns in the text
corpus. We now exemplify some path types
involving relations described in Table 3. Type〈
M, conj,M−1,Profession

〉
is active (matches

paths) for professions of persons who are mentioned
in conjunction with the query person as in
“collaboration between McDougall and Simon

1Stanford dependencies (de Marneffe and Manning, 2008).
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Philips”. For a somewhat subtler example, type〈
M,TW,CW−1,Profession−1,Profession

〉
is active

for persons who are mentioned by their titles as in
“President Barack Obama”. The type subsequence〈
Profession−1,Profession

〉
ensures that only

profession concepts are activated. The features
generated from these path types combine syntactic
dependency relations (conj) and textual information
relations (TW and CW) with semantic relations in
the KB (Profession).

Experiments on three Freebase relations (profes-
sion, nationality and parents) show that exploiting
existing background knowledge as path features
can significantly improve the quality of extraction
compared with using either Freebase or the text
corpus alone.

1.3 Related Work

Information extraction from varied unstructured and
structured sources involves both complex relational
structure and uncertainty at all levels of the extrac-
tion process. Statistical Relational Learning (SRL)
seeks to combine statistical and relational learning
methods to address such tasks. However, most SRL
approaches (Friedman et al., 1999; Richardson and
Domingos, 2006) suffer the complexity of inference
and learning when applied to large scale problems.
Recently, Lao and Cohen (2010) introduced Path
Ranking algorithm, which is applicable to larger
scale problems such as literature recommendation
(Lao and Cohen, 2010) and inference on a large
knowledge base (Lao et al., 2011).

Much of the previous work on automatic relation
extraction was based on certain lexico-syntactic
patterns. Hearst (1992) first noticed that patterns
such as “NP and other NP” and “NP such as NP”
often imply hyponym relations (NP here refers to
a noun phrase). However, such approaches to
relation extraction are limited by the availability of
domain knowledge. Later systems for extracting
arbitrary relations from text mostly use shallow
surface text patterns (Etzioni et al., 2004; Agichtein
and Gravano, 2000; Ravichandran and Hovy, 2002).
The idea of using sequences of dependency edges
as features for relation extraction was explored by
Snow et al. (2005) and Suchanek et al. (2006). They
define features to be shortest paths on dependency
trees which connect pairs of NP candidates.

This study is most closely related to work of
Mintz et al. (2009), who also study the problem of
extending Freebase with extraction from parsed text.
As in our work, they use a logistic regression model
with path features. However, their approach does not
exploit existing knowledge in the KB. Furthermore,
their path patterns are used as binary-values features.
We show experimentally that fractional-valued
features generated by random walks provide much
higher accuracy than binary-valued ones.

Culotta et al. (2006)’s work is similar to our
approach in the sense of relation extraction by
discovering relational patterns. However while
they focus on identifying relation mentions in text
(microreading),this work attempts to infer new
tuples by gathering path evidence over the whole
corpus (macroreading). In addition, their work
involves a few thousand examples, while we aim for
Web-scale extraction.

Do and Roth (2010) use a KB (YAGO) to
aid the generation of features from free text.
However their method is designed specifically for
extracting hierarchical taxonomic structures, while
our algorithm can be used to discover relations for
general general graph-based KBs.

In this paper we extend the PRA algorithm along
two dimensions: combining syntactic and semantic
cues in text with existing knowledge in the KB;
and a distributed implementation of the learning and
inference algorithms that works at Web scale.

2 Path Ranking Algorithm

We briefly review the Path Ranking algorithm
(PRA), described in more detail by Lao and Cohen
(2010). Each path type π = 〈r1, r2, ..., r`〉 specifies
a real-valued feature. For a given query-answer node
pair (s, t), the value of the feature π is P (s→ t;π),
the probability of reaching t from s by a random
walk that instantiates the type. More specifically,
suppose that the random walk has just reached vi by
traversing edges labeled r1, . . . , ri with s=v0. Then
vi+1 is drawn at random from all nodes reachable
from vi by edges labeled ri+1. A path type π is
active for pair (s, t) if P (s→ t;π) > 0.

Let B = {⊥, π1, ..., πn} be the set of all path
types of length no greater than ` that occur in
the graph together with the dummy type ⊥, which
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represents the bias feature. For convenience, we set
P (s → t;⊥) = 1 for any nodes s, t. The score for
whether query node s is related to another node t by
relation r is given by

score(s, t) =
∑
π∈B

P (s→ t;π)θπ ,

where θπ is the weight of feature π. The model
parameters to be learned are the vector θ =
〈θπ〉π∈B . The procedures used to discover B and
estimate θ are described in the following. Finally,
note that we train a separate PRA model for each
relation r.

Path Discovery: Given a graph and a target
relation r, the total number of path types is an
exponential function of the maximum path length
` and considering all possible paths would be
computationally very expensive. As a result, B is
constructed using only path types that satisfy the
following two constraints:

1. the path type is active for more than K training
query nodes, and

2. the probability of reaching any correct target
node t is larger than a threshold α on average
for the training query nodes s.

We will discuss how K, α and the training queries
are chosen in Section 5. In addition to making the
training more efficient, these constraints are also
helpful in removing low quality path types.

Training Examples: For each relation r of inter-
est, we start with a set of node pairs Sr = {(si, ti)}.
From Sr, we create the training setDr = {(xi, yi)},
where xi = 〈P (si → ti;π)〉π∈B is the vector
of path feature values for the pair (si, ti), and yi
indicates whether r(si, ti) holds.

Following previous work (Lao and Cohen, 2010;
Mintz et al., 2009), node pairs that are in r in
the KB are legitimate positive training examples2.
One can generate negative training examples by
considering all possible pairs of concepts whose
type is compatible with r (as given by the schema)
and are not present in the KB. However this

2In our experiments we subsample the positive examples.
See section 3.2 for more details.

procedure leads to a very large number of negative
examples (e.g., for the parents relation, any pair of
person concepts which are related by this relation
would be valid negative examples) which not only
makes training very expensive but also introduces
an incorrect bias in the training set. Following
Lao and Cohen (2010) we use a simple biased
sampling procedure to generate negative examples:
first, the path types discovered in the previous (path
discovery) step are used to construct an initial PRA
model (all feature weights are set to 1.0); then, for
each query node si, this model is used to retrieve
candidate answer nodes, which are then sorted in
descending order by their scores; finally, nodes at
the k(k + 1)/2-th positions are selected as negative
samples, where k = 0, 1, 2, ....

Logistic Regression Training: Given a training
set D, we estimate parameters θ by maximizing the
following objective

F(θ) =
1

|D|
∑

(x,y)∈D

f(x, y; θ)− λ1‖θ‖1 − λ2‖θ‖22

where λ1 and λ2 control the strength of the L1-
regularization which helps with structure selection
and L2

2-regularization which prevents overfitting.
The log-likelihood f(x, y; θ) of example (x, y) is
given by

f(x, y,θ) = y ln p(x,θ) + (1− y) ln(1− p(x,θ))

p(x,θ) =
exp(θTx)

1 + exp(θTx)
.

Inference: After a model is trained for a relation
r in the knowledge base, it can be used to produce
new instances of r. We first generate unlabeled
queries s which belong to the domain of r. Queries
which appear in the training set are excluded. For
each unlabeled query node s, we apply the trained
PRA model to generate a list of candidate t nodes
together with their scores. We then sort all the
predictions (s, t) by their scores in descending order,
and evaluate the top ones.

3 Extending PRA

As described in the previous section, the PRA model
is trained on positive and negative queries generated
from the KB. As Freebase contains millions of
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concepts and edges, training on all the generated
queries is computationally challenging. Further,
we extend the Freebase graph with parse paths of
mentions of concepts in Freebase in millions of Web
pages. Yet another issue is that the training queries
generated using Freebase are inherently biased
towards the distribution of concepts in Freebase
and may not reflect the distribution of mentions of
these concepts in text data. As one of the goals of
our approach is to learn relation instances that are
missing in Freebase, training on such a set biased
towards the distribution of concepts in Freebase may
not lead to good performance. In this section we
explain how we modified the PRA algorithm to
address those issues.

3.1 Scaling Up

Most relations in Freebase have a large set of
existing triples. For example, for the profession
relation, there are around 2 million persons in
Freebase, and about 0.3 million of them have known
professions. This results in more than 0.3 million
training queries (persons), each with one or more
positive answers (professions), and many negative
answers, which make training computationally
challenging. Generating all the paths for millions
of queries over a graph with millions of concepts
and edges further complicates the computational
issues. Incorporating the parse path features from
the text only exacerbates the matter. Finally once we
have trained a PRA model for a given relation, say
profession, we would like to infer the professions for
all the 1.7 million persons whose professions are not
known to Freebase (and possibly predict changes to
the profession information of the 0.3 million people
whose professions were given).

We use distributed computing to deal with the
large number of training and prediction queries
over a large graph. A key observation is that the
different stages of the PRA algorithm are based
on independent computations involving individual
queries. Therefore, we can use the MapReduce
framework to distribute the computation (Dean and
Ghemawat, 2008). For path discovery, we modify
Lao et al.’s path finding (2011) approach to decouple
the queries: instead of using one depth-first search
that involves all the queries, we first find all paths
up to certain length for each query node in the

map stage, and then collect statistics for each path
from all the query nodes in the reduce stage. We
used a 500-machine, 8GB/machine cluster for these
computations.

Another challenge associated with applying PRA
to a graph constructed using a large amounts of
text is that we cannot load the entire graph on a
single machine. To circumvent this problem, we first
index all parsed sentences by the concepts that they
mention. Therefore, to perform a random walk for a
query concept s, we only load the sentences which
mention s.

3.2 Sampling Training Data
Using the r-edges in the KB as positive examples
distorts the training set. For example, for the
profession relation, there are 0.3 million persons
for whom Freebase has profession information, and
amongst these 0.24 million are either politicians
or actors. This may not reflect the distribution
of professions of persons mentioned in Web data.
Using all of these as training queries will most
certainly bias the trained model towards these
professions as PRA is trained discriminatively. In
other words, training directly with this data would
lead to a model that is more likely to predict
professions that are popular in Freebase. To avoid
this distortion, we use stratified sampling. For each
relation r and concept t ∈ C, we count the number
of r edges pointing to t

Nr,t = |{(s, r, t) ∈ T}| .

Given a training query (s, r, t) we sample it
according to

Pr,t = min

(
1,

√
m+Nr,t

Nr,t

)
We fix m = 100 in our experiments. If we take the
profession relation as an example, the above implies
that for popular professions, we only sample about√
Nr,t out of the Nr,t possible queries that end in t,

whereas for the less popular professions we would
accept all the training queries.

3.3 Text Graph Construction
As we are processing Web text data (see following
section for more detail), the number of mentions
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of a concept follows a somewhat heavy-tailed
distribution: there are a small number of very
popular concepts (head) and a large number of not
so popular concepts (tail). For instance the concept
BarackObama is mentioned about 8.9 million times
in our text corpus. To prevent the text graph from
being dominated by the head concepts, for each
sentence that mentions concept c ∈ C, we accept
it as part of the text graph with probability:

Pc = min

(
1,

√
k + Sc
Sc

)
where Sc is the number of sentences in which c is
mentioned in the whole corpus. In our experiments
we use k = 105. This means that if Sc � k, then we
only sample about

√
Sc of the sentences that contain

a mention of the concept, while if Sc � k, then all
mentions of that concept will likely be included.

4 Datasets

We use Freebase as our knowledge base. Freebase
data is harvested from many sources, including
Wikipedia, AMG, and IMDB.3 As of this writing,
it contains more than 21 million concepts and 70
million labeled edges. For a large majority of con-
cepts that appear both in Freebase and Wikipedia,
Freebase maintains a link to the Wikipedia page of
that concept.

We also collect a large Web corpus and identify
60 million pages that mention concepts relevant
to this study. The free text on those pages
are POS-tagged and dependency parsed with an
accuracy comparable to that of the current Stanford
dependency parser (Klein and Manning, 2003). The
parser produces a dependency tree for each sentence
with each edge labeled with a standard dependency
tag (see Figure 1).

In each of the parsed documents, we use POS tags
and dependency edges to identify potential referring
noun phrases (NPs). We then use a within-document
coreference resolver comparable to that of Haghighi
and Klein (2009) to group referring NPs into
co-referring clusters. For each cluster that contains a
proper-name mention, we find the Freebase concept
or concepts, if any, with a name or alias that matches

3www.wikipedia.org, www.allmusic.com, www.
imdb.com.

Table 1: Size of training and test sets for each relation.
Task Training Set Test Set

Profession 22,829 15,219
Nationality 14,431 9,620

Parents 21,232 14,155

the mention. If a cluster has multiple possible
matching Freebase concepts, we choose a single
sense based on the following simple model. For
each Freebase concept c ∈ C, we computeN(c,m),
the number of times the concept c is referred by
mention m by using both the alias information
in Freebase and the anchors of the corresponding
Wikipedia page for that concept. Based on N(c,m)
we can calculate the empirical probability p(c|m) =
N(c,m)/

∑
c′ N(c′,m). If u is a cluster with

mention set M(u) in the document, and C(m) the
set of concepts in KB with name or alias m, we
assign u to concept c∗ = argmax

c∈C(m),m∈M(u)
p(c|m),

provided that there exists at least one c ∈ C(m) and
m ∈ M(u) such that p(c|m) > 0. Note that M(c)
only contains the proper-name mentions in cluster c.

5 Results

We use three relations profession, nationality and
parents for our experiments. For each relation, we
select its current set of triples in Freebase, and apply
the stratified sampling (Section 3.2) to each of the
three triple sets. The resulting triple sets are then
randomly split into training (60% of the triples) and
test (the remaining triples). However, the parents
relation yields 350k triples after stratified sampling,
so to reduce experimental effort we further randomly
sub-sample 10% of that as input to the train-test
split. Table 1 shows the sizes of the training and
test sets for each relation.

To encourage PRA to find paths involving the
text corpus, we do not count relation M (which
connects concepts to their mentions) or M−1 when
calculating path lengths. We use L1/L

2
2-regularized

logistic regression to learn feature weights. The
PRA hyperparameters (α and K as defined in
Section 2) and regularizer hyperparameters are
tuned by threefold cross validation (CV) on the
training set. We average the models across all
the folds and choose the model that gives the best
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Table 2: Mean Reciprocal Rank (MRR) for different approaches under closed-world assumption. Here KB, Text and
KB+Text columns represent results obtained by training a PRA model with only the KB, only text, and both KB and
text. KB+Text[b] is the binarized PRA approach trained on both KB and text. The best performing system (results
shown in bold font) is significant at 0.0001 level over its nearest competitor according to a difference of proportions
significance test.

Task KB Text KB+Text KB+Text[b]
Profession 0.532 0.516 0.583 0.453
Nationality 0.734 0.729 0.812 0.693
Parents 0.329 0.332 0.392 0.319

performance on the training set for each relation.
We report results of two evaluations. First, we

evaluate the performance of the PRA algorithm
when trained on a subset of existing Freebase facts
and tested on the rest. Second, we had human
annotators verify facts proposed by PRA that are not
in Freebase.

5.1 Evaluation with Existing Knowledge
Previous work in relation extraction from parsed
text (Mintz et al., 2009) has mostly used binary
features to indicate whether a pattern is present in
the sentences where two concepts are mentioned.
To investigate the benefit of having fractional valued
features generated by random walks (as in PRA), we
also evaluate a binarized PRA approach, for which
we use the same syntactic-semantic pattern features
as PRA does, but binarize the feature values from
PRA: if the original fractional feature value was
zero, the feature value is set to zero (equivalent to
not having the feature in that example), otherwise it
is set to 1.

Table 2 shows a comparison of the results
obtained using the PRA algorithm trained using
only Freebase (KB), using only the text corpus
graph (Text), trained with both Freebase and the
text corpus (KB+Text) and the binarized PRA
algorithm using both Freebase and the text corpus
(KB+Text[b]). We report Mean Reciprocal Rank
(MRR) where, given a set of queries Q,

MRR =
1

|Q|
∑
q∈Q

1

rank of q’s first correct answer
.

Comparing the results of first three columns we
see that combining Freebase and text achieves
significantly better results than using either Freebase
or text alone. Further comparing the results of last

two columns we also observe a significant drop in
MRR for the binarized version of PRA. This clearly
shows the importance of using the random walk
probabilities. It can also be seen that the MRR for
the parents relation is lower than those for other
relations. This is mainly because there are larger
number of potential answers for each query node of
Parent relation than for each query node of the other
two relations – all persons in Freebase versus all
professions or nationalities. Finally, it is important
to point out that our evaluations are actually lower
bounds of actual performance, because, for instance,
a person might have a profession besides the ones in
Freebase and in such cases, this evaluation does not
give any credit for predicting those professions —
they are treated as errors. We try to address this issue
with the manual evaluations in the next section.

Table 2 only reports results for the maximum path
length ` = 4 case. We found that shorter maximum
path lengths give worse results: for instance, with
` = 3 for the profession relation, MRR drops to
0.542, from 0.583 for ` = 4 when using both
Freebase and text. This difference is significant
at the 0.0001 level according to a difference of
proportions test. Further we find that using longer
path length takes much longer time to train and test,
but does not lead to significant improvements over
the ` = 4 case. For example, for profession, ` = 5
gives a MRR of 0.589.

Table 3 shows the top weighted features that
involve text edges for PRA models trained on both
Freebase and the text corpus. To make them
easier to understand, we group them based on their
functionality. For the profession and nationality
tasks, the conjunction dependency relation (in group
1,4) plays an important role: these features first find
persons mentioned in conjunction with the query
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Table 3: Top weighted path types involving text edges for each task grouped according to functionality. M relations
connect each concept in knowledge base to its mentions in the corpus. TW relations connect each token in a sentence to
the words in the text representation of this token. CW relations connect each concept in knowledge base to the words
in the text representation of this concept. We use lower case names to denote dependency edges, word capitalized
names to denote KB edges, and “−1 ” to denote the inverse of a relation.

Profession Top Weighted Features Comments
1

〈
M, conj,M−1,Profession

〉
Professions of persons mentioned in conjunction
with the query person: “McDougall and Simon
Phillips collaborated ...”

〈
M, conj−1,M−1,Profession

〉
2

〈
M,TW,CW−1,Profession−1,Profession

〉
Active if a person is mentioned by his profession:
“The president said ...”

3
〈
M,TW,TW−1,M−1,Children,Profession

〉
First find persons with similar names or
mentioned in similar ways, then aggregate the
professions of their children/parents/advisors:
starting from the concept BarackObama, words
such as “Obama”, “leader”, “president”, and
“he” are reachable through path 〈M,TW〉

〈
M,TW,TW−1,M−1,Parents,Profession

〉〈
M,TW,TW−1,M−1,Advisors,Profession

〉

Nationality Top Weighted Features Comments
4

〈
M, conj,TW,CW−1,Nationality

〉
The nationalities of persons mentioned in
conjunction with the query person: “McDougall
and Simon Phillips collaborated ...”

〈
M, conj−1,TW,CW−1,Nationality

〉
5

〈
M, nc−1,TW,CW−1,Nationality

〉
The nationalities of persons mentioned close to
the query person through other dependency
relations.

〈
M, tmod−1,TW,CW−1,Nationality

〉〈
M, nn,TW,CW−1,Nationality

〉
6

〈
M, poss, poss−1,M−1,PlaceOfBirth,ContainedBy

〉
The birth/death places of the query person with
restrictions to different syntactic constructions.

〈
M, title, title−1,M−1,PlaceOfDeath,ContainedBy

〉
Parents Top Weighted Features Comments

7
〈
M,TW,CW−1,Parents

〉
The parents of persons with similar names or
mentioned in similar ways: starting from the
concept CharlotteBronte words such as
“Bronte”, “Charlotte”, “Patrick’’, and “she” are
reachable through path 〈M,TW〉.

8
〈
M, nsubj, nsubj−1,TW,CW−1

〉
Persons with similar names or mentioned in
similar ways to the query person with various
restrictions or expansions.

〈
nsubj, nsubj−1

〉
and〈

nc−1, nc
〉

require the query to be subject and
noun compound respectively.

〈
TW−1,TW

〉
expands further by word similarities.

〈
M, nsubj, nsubj−1,M−1,CW,CW−1

〉〈
M, nc−1, nc,TW,CW−1

〉〈
M,TW,CW−1

〉〈
M,TW,TW−1,TW,CW−1

〉
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person, and then find their professions or nation-
alities. The features in group 2 capture the fact
that sometimes people are mentioned by their pro-
fessions. The subpath

〈
Profession−1,Profession

〉
ensures that only profession related concepts are
activated. Features in group 3 first find persons
with similar names or mentioned in similar ways
to the query person, and then aggregate the
professions of their children, parents, or advisors.
Features in group 6 can be seen as special
versions of feature 〈PlaceOfBirth,ContainedBy〉
and 〈PlaceOfDeath,ContainedBy〉. The subpaths〈
M, poss, poss−1,M−1

〉
and

〈
M, title, title−1,M−1

〉
return the random walks back to the query node only
if the mentions of the query node have poss (stands
for possessive modifier, e.g. “Bill’s clothes”) or title
(stands for person’s title, e.g. “President Obama”)
edges in text; otherwise these features are inactive.
Therefore, these features are active only for specific
subsets of queries. Features in group 8 generally find
persons with similar names or mentioned in similar
ways to the query person. However, they further
expand or restrict this person set in various ways.

Typically, each trained model includes hundreds
of paths with non-zero weights, so the bulk of
classifications are not based on a few high-precision-
recall patterns, but rather on the combination of
a large number of lower-precision high-recall or
high-precision lower-recall rules.

5.2 Manual Evaluation

We performed two sets of manual evaluations. In
each case, an annotator is presented with the triples
predicted by PRA, and asked if they are correct. The
annotator has access to the Freebase and Wikipedia
pages for the concepts (and is able to issue search
queries about the concepts).

In the first evaluation, we compared the perfor-
mance of two PRA models, one trained using the
stratified sampled queries and another trained using
a randomly sampled set of queries for the profession
relation. For each model, we randomly sample 100
predictions from the top 1000 predictions (sorted by
the scores returned by the model). We found that the
PRA model trained with stratified sampled queries
has 0.92 precision, while the other model has only
0.84 precision (significant at the 0.02 level). This
shows that stratified sampling leads to improved

Table 4: Human judgement for predicted new beliefs.
Task p@100 p@1k p@10k

Profession 0.97 0.92 0.84
Nationality 0.98 0.97 0.90

Parents 0.86 0.81 0.79

performance.
We also evaluated the new beliefs proposed by

the models trained for all the three relations using
stratified sampled queries. We estimated precision
for the top 100 predictions and randomly sampled
100 predictions each from the top 1,000 and 10,000
predictions. Here we use the PRA model trained
using both KB and text. The results of this
evaluation are shown in Table 4. It can be seen
that the PRA model is able to produce very high
precision predications even when one considers the
top 10,000 predictions.

Finally, note that our model is inductive. For
instance, for the profession relation, we are able to
predict professions for the around 2 million persons
in Freebase. The top 1000 profession facts extracted
by our system involve 970 distinct people, the top
10,000 facts involve 8,726 distinct people, and the
top 100,000 facts involve 79,885 people.

6 Conclusion

We have shown that path constrained random walk
models can effectively infer new beliefs from a
large scale parsed text corpus with background
knowledge. Evaluation by human annotators shows
that by combining syntactic patterns in parsed
text with semantic patterns in the background
knowledge, our model can propose new beliefs
with high accuracy. Thus, the proposed random
walk model can be an effective way to automate
knowledge acquisition from the web.

There are several interesting directions to con-
tinue this line of work. First, bidirectional search
from both query and target nodes can be an efficient
way to discover long paths. This would especially
useful for parsed text. Second, relation paths that
contain constant nodes (lexicalized features) and
conjunction of random walk features are potentially
very useful for extraction tasks.
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