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Abstract

Ergodic IMMs have been successfully
used for modeling sentence production.
However for some oriental languages
such as Chinese, a word can consist of
multiple characters without word bound-
ary markers between adjacent words
in a sentence. This makes word-
segmentation on the training and testing
data necessary before ergodic HMM can
be applied as the language model. This
paper introduces the N-th order Ergodic
Multigram HMM for language modeling
of such languages. FEach state of the
MM can generate a variable number
of characters corresponding to one word.
The model can be trained without word-
segmented and tagged corpus, and both
segmentation and tagging are trained in
one single model. Results on its applica-
tion on a Chinese corpus are reported.

1 Motivation

Statistical language modeling offers advantages
including minimal domain specific knowledge and
hand-written rules, trainability and scalability
given a language corpus. Language models, such
as N-gram class models (Brown et al., 1992) and
Ergodic Hidden Markov Models (Kuhn et al.,
1994) were proposed and used in applications such
as syntactic class (POS) tagging for English (Cut-
ting et al., 1992), clustering and scoring of recog-
nizer sentence hypotheses.

ITowever, In Chinese and many other oriental
languages, there are no boundary markers, such
as space, between words. Therefore preprocessors
have to be used to perform word segmentation in
order to identify individual words before applying
these word-based language models. As a result
current approaches to modeling these languages
arc separated into two seperated processes.
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Word segmentation is by no means a trivial pro-
cess, since ambiguity often exists. For proper seg-
mentation of a sentence, some linguistic informa-
tion of the sentence should be used. However,
commonly used heuristics or statistical based ap-
proaches, such as maximal matching, frequency
counts or mutual information statistics, have to
perform the segmentation without knowledge sich
as the resulting word categories.

To reduce the impact of erroneous segmenta-
tion on the subsequent language model, (Chang
and Chan, 1993) used an N-best segmentation in-
terface between them. However, since this is still
a two stage model, the parameters of the whole
model cannot be optimized together, and an N-
best interface is inadequate for processing outputs
from recognizers which can be highly ambiguous.

A better approach is to kecp all possible seg-
mentations in a lattice form, score the lattice
with a language model, and finally retricve the
best candidate by dynamic programming or some
searching algorithms. N-gram models are usu-
ally used for scoring (Gu et al., 1991) (Nagata,
1994), but their training requires the sentences of
the corpus to be manually segmented, and even
class-tagged if class-based N-gram is used, as in
(Nagata, 1994).

A language model which considers scgmenta-
tion ambiguities and integrates this with a N-
gram model, and able to be trained and tested
on a raw, unsegmented and untagged corpus, is
highly desirable for processing languages without
marked word boundaries.

2 The Ergodic Multigram HMM
Model

2.1 Overview

Based on the Hidden Markov Model, the Fr-
godic Multigram Hidden Markov Model (Law and
Chan, 1996), when applied as a language model,
can process directly on unsegmented input corpus



as it allows a variable number of characters in cach
word class. Other than that its properties are sim-
ilar to Frgodic Hidden Markov Models (Kuhn et
al., 1994}, that both training and scoring can be
done directly on a raw, untagged corpus, given a
lexicon with word classes.

Specifically, the N-th order Frgodic Multigram
MM, as in conventional class-based {N+1)-gram
model, assumes a doubly stochastic process in sen-
tence production. The word-class sequence in a
sentence follows the N-th order Markov assuinp-
tion, 1.e. the identity of a class i the sentence
depends only on the previous N classes, and the
word observed depends only on the class it be-
longs to. The difference is that ths is a multi-
gram model (Deligne and Bimbot, 1995) in the
sense that cach state (i.e. node in the TMM) can
generate a variable number of observed character
scequences. Sentence boundaries are modeled as a
special class.

This model can be applied to an input sentence
or a character lattice as a language model. The
maximun likelihood state sequence through the
model, obtained using the Viterbi or Stack De-
coding Algorithm, represents the best particular
segmentation and class-tagging for the input sen-
tence or lattice, since transition of states denotes
a word boundary and state identity denotes the
current word class.

2.2 Lexicon

A lexicon (CKIP, 1993) of 78,322 words, cach con-
taining up to 10 characters, is available for use in
this work. Practically all characters have an entry
in the lexicon, so that out-ol-vocabulary words arc
modeled as individual characters. There is a total
of 192 syntactic classes, arranged in a hicrarchical
way. l'or example, the month names are denoted
by the class Ndabe, where N denotes Noun, Nd de-
notes Temporal Nouns, Nda for 'Thine names and
Ndab for reusable time names. There is a total of
8 wajor categories.

Fach word in the dictionary is annotated with
one or more syntactic tags, representing diflerent
syntactic classes the word can possibly belong to.
Also, a frequency count for cach word, based on a
certain corpus, is given, but without informalion
on its distribution over different syntactic classes.

2.3  Terminology

Lel W obe the set of all Chinese words in the lex-
icon. A word w € W is made up of one or more
.sp) denote a sen-
A funclion &,
Yis il wy is a

characters. Let 57 = (s1,82,..
tence as a [-character sequence.

is defined such that 6, (U)k,sﬁ"”'"'

r-character word s; ...8;4,_1, and O otherwise, *

Let 12 be the upper bound of 7) t.e. the maximum
number of characters in a word (10 in this paper).

Let € = {ey...cp} be the set of syntactic
classes, where £ 1s the nuber of syntactic classes
in the lexicon (192 in our case). Tet C C W x
denote the relation for all syntactic classifications
of the Iexicon, such that (wg, ¢;) € C il ¢; is once of
the syntactic classes for wy. Mach word wyg must
belong to one or more of the classes.

A path through the model represents a partic-
nlar segmentation and class tagging for the sen-
tenee. Lel £ = (wy, e .. wi, e, ) be a particu-
lar segmentation and class tagging for the sentence
s{ where wy, is the kth word and ¢;, denotes the
class assigned o wy, as illustrated below.

W,y W, Cly WE,Clye

(818t m1 Sy St Sl ST
Lor £ to be proper, 12, 6 DYy — Land
0 be proper, [TpL, 6w (e, 857 ) = Lanc
(wi, ¢, ) € Cmust be satisflied, where ¢ = 1,4 =
T4 1 and lpo) <ty for | <k < K.

2.4 HMM States for the N-th order
model

In the first order MM (class bigram) model, each
IIMM state corresponds directly to the word-class
ol a word. But in general, for an N-th order 1IMM
model; since cach class depends on N previous
classes; cach state has to represent the combina-
tion of the classes of the most recent N words,
including the current word.

Let @ represent a state of the N-th order Er-
godic Multigram HMM. Thus ; = (¢i, ... ciny_,)
where ¢;, is the current word class, ¢;, is the previ-
ous word class, cte. There is a total of LY states,
which may mean too many parameters (LY 4! pos-
sible state transitions, cach state can transit to I,
other states) for the model il N is anything greater
than one.

1o solve this problem, a reasonable assump-
tion can be made that the detailed class iden-
titles of a more distant word have, In general,
less Influence than the closer ones to the current
word class. ‘T'hus instead of using C as the clas-
sification relation for all previous words, a scl of

"T'he algorithm to be described assumes that the
character identitics arc known for the sentence s7, but
it can also be applicd when cach character position
s¢ becomes a set of possible character candidates by
stinply letting 5,,,('11);;,5?7'*1) = 1 for all words wy
which can be constructed from the character positions
St ... Si40—1 of the input character lattice. This en-
ables the model to be used as the language model
component for recognizers and for decoding phonetic
input.



classification relations {C(®, ¢ . .c(¥N=D} can
be used, where C(®) = € represents the origi-
nal, most detailed classification relation for the
current word, and C™) is the less detailed clas-
sification scheme for the nth previous word at
each state. Thus the number of states reduces
to Lo = LOLW . LIN-Y jn which L < L.
Each state is represented as ; = (c(o) . (N 1))

ZN 1
where C(") = {c?")}, 1 <1< LM is the class tag
set for the nth previous word.

However, if no constraints are imposed on the
series of classification relations C(®), the number
of possible transitions may increase despite a de-
crease in the number of states, since state tran-
sitions may become possible between every two
state, resulting in a total of LO*m? LN-1?
possible transitions.

A constraint is imposed that, given that a word
belongs to the class cgn) in the classification C(?),
we can determine the corresponding word class
cg,nﬂ) the given word will belong to in C(*t1)
and for every word there is no extra classifica-
tions in C("*+1) not corresponding to one in C™),
Formally, there exist mapping functions F)
c — ot 0 < n < N — 2, such that if
(c("') (n+1)) € f(") then ((wy, (n)) € )y =
((wy, ey +1)) € ¢ty for all wy € W, and that
F) is surjective. In particular, to model sentence
boundaries, we allow $ to be a valid class tag for
all C™, and define F(")(§) = $

The above constraint ensures that given a state

(C(U) W= 1))

’!Nl

it can only transit to
Qi = (), 7O .

]o ’
where c( ) is any state in C(®), Thus reducing to
the maxxmum number of possible transitions to
L@ -1,

This constraint is easily satisfied by using a hi-
erarchical word-class scheme, such as the one in
the CKIP lexicon or one generated by hierarchi-
cal word-clustering, so that the classification for
more distant words (higher n in C()) uses a higher
level, less detail tag set in the scheme.

FN-D({I7)

IN-2

2.5 Sentence Likelihood Formulation

Let {L£} be the set of all possible segmentations
and class taggings of a sentence. Under the N-
th order model ©V, the likelihood of each valid
segmentation and tagging £ of the sentence s
P(sT, £|©N), can be derived as follows.

. 0y . N
P(wl,ch, Wa, Cly; -« .,’lUK,ClKIG) )
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= P(wilen,)P(er, I$Y)P(Slere - Cle_nyn) X

(Hf:z P(wklclk)P(clklclk—l "'Clk—N))
= P(wllcll)P(Qll|$N)P($IQ1K) X
(ITk=s P(wilen) P(Qu|Qu._y))

using Nth order Markov assumption and repre-
senting the class history as HMM states. $ de-
notes the sentence boundary, ¢;, is $ for & < 0, and

(c(o) . cgN b ). Note that @, can be de-
k—-N+41 .
telmmed from cr, and @, _, due to the constraint
on the classification, and thus P(Q|Q:,_,) =

Plen|Qu_,)-
The likelihood of the sentence s{ under the
model is given by the sum of the likelihoods of

its possible segmentations.

p(sileNy= > p(sf,cle™)

ce{c}

3 The Algorithms

3.1 The Parameters

As in conventional HMM, the Ergodic Multigram
HMM consists of parameters O = {4, B}, in
which A = {a;;}, 0 < 4,j < Lg (Total num-
ber of states), denotes the set of state transition
probabilities from @Q; to @, i.e. P(Q;|Q;).
particular, ap; = P(Q;|$") and a;0 = P($|Q:)
denote the probabilities that the state ¢); is the
initial and final state in traversing the HMM, re-
spectively. aqo is left undefined. B = {b;(w)},
where 1 < j < L9, denotes the set of word ob-
servation probabilities of wy at the state @, i.c.
P(w]Qj)-

The B matrix, as shown above, models the
probabilities that wy is observed given N most
recent classes, and contains Lg|W| parameters
(recall that Lo = LOLM  LIN=1) " Qur as-
sumption that wy only depends on the current
class reduces the number of parameters to L(O|W|
for the B matrix. Thus in the model, b;(wy)
representing P(wy|Q;) are tied together for all
states ); with the same current word-class, i.c.
Plwi|Q;) = Pwgla) if Q5 = (e1...). Also, a;5 is
0 if ; cannot transit to ;. As a result the num-
ber of parameters in the A matrix is only .l}(o)Lq.

Given the segmentation and class sequence £
of a sentence, the state secquence (@, ... Q) can
be derived from the class sequence (¢, ...c1,).
Thus the observation probability of the sentence
sT given £ and the model OV, P(sT, £]|©ON), can
be reformulated as

biy (w1)aon, @y o[ @112 by (1))



(iiven this formulation the training procedure is
mostly similar to that of the first order Ergodic
Multigram IMM.

3.2 Forward and Backward Procedure

The forward variable is defined as

(i) = P(sy

where () is the state of the MM when the word
containing the character s; as the lust character is

81, Qi = Qi]ON)

produced.
"The recursive cquations for (i) are

0fort <1

Z aojby (wi )b (Wi, s4) +

wr EW

n Lq

30> D e (Baighi(w)]
r=1lwiCW i=1

S (Wi, SLT_H)

for 1 <¢t <

Similarly, the backward variable is defined as

ﬁt(l) = P(SH-l .- -8'1’|Ql(z) = @i, (”)N)

"The recursive equations for 3,(7) are

Bi(4) O0fort>T

ﬂT(Z) = 4o

Il‘, IAQ

ST I aisBea ()b ()]
r=lwreW j=1

b (Wi, sii'l)
for I <t <T--1

i

[l

Be(3)

As A, B arrays and the 6, function are mostly Os,
considerable simplification can be done in imple-
mentation.

The likelihood of the sentence given the model
can be evaluated as

P! 10")

L arp ( a0

=1

The Viterbi algorithm for this model can be ob-
taincd by replacing the summations of the forward
algorithm with maximizations.

3.3 Re-estimation Algorithm

£:(7,7) is defined as the probability that given a

sentence s aund the model O a word ends at
1 )

the character s in the state Q; and the next word
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starls at the character spqq in the state ;. Thus

&1(i,7) can be expressed as

E E (Jt CL”

r=1lwrcW

11)k)(5u, (wk s ~5t+1),[7)t+r (])

P(stieN)

for 1 <t <1 —-1,1 <437 < Lg. PFurthermore
define 7,( i) to be the [)I‘O})d,blllLy that, given s!
and OV, a word ends at the character s, in the

state (2. 'Thus

A )
Ye(7) == 1;%%%% for 1 <¢ <1 <i< L.
Summation of &;(i, j) over ¢ gives the expected
numnber of times that state @; transits to state
@; in the sentence, and summation of v;(#) over
t gives the expected number of state ¢); occurring
in it. Thus the quotient of their summation over
t gives a;;, the new estimation for a;;.

T T
wi = Y €6, )/ i)

t=] t=1

for 1 <e,5 < Lo

The initial and final class probability estimates,
ag; and a;o can be re-estimated as follows.

>

“)k 'u)('wka '971‘)[7,7‘ (.})
r=lwyewW

EL“j - )( Y

flem)

o ar(Da
o = ])( FEYOVATSY ON /L%

"To derive b (wy), first define «}’* (4) as the prob-
ability of the sentence prefix (s) ...s;) with wg in

state (); as the last complete word. T'hus
Lg
() = agibi(wr)ée (wk, st) —|~EZ
r=14i=1

((.Yt#,.(ll)ui]’ bj (U)k)(sw

'I'his represents the contribution of wyg, occurring

(U)kl 'Si~r+1))

as the last word in 54, to ay(j ) Also define v,"* ()
to be the probability that, given the sentence s?
and the model, wy 1s observed to end at character
s in the state ();.

Wi . ﬁiﬂﬁﬁﬁ (])
Tt (])‘— P(br{'|(‘“)N)

Let )5 © Q4+ denotes the relation that both ()5
and Q- represent the same current word class.
Thus summation of 4% (j) over ¢ gives the ex-
pected number of times that wy is observed in



state @;, and summation of v;(j) over ¢ gives
the total expected number of occurrence of state
();. Since states with the same current word class
are tied together by our assumption, the required
value of b;(wy) is given by
2 e Tt @)

QjoQ

2 s Timnli)

Qj0Q;

bj(wg) =

4 Experimental Results

4.1 Setup

A corpus of daily newspaper articles is divided
into training and testing sets for the experiments,
which is 21M and 4M in size respectively. The first
order (N=1) algorithms arc applied to the train-
ing sets, and parameters obtained after different
iterations are used for testing.

The initial parameters of the HMM are set
based on the frequency counts from the lexicon.
The class-transition probability a;; is initialized
as the a priori probability of the state P(Q);), es-
tirmated from the relative frequency counts of the
lexicon. b;(wy) is initialized as the relative count
of the word w; within the class corresponding to
the current word class in ;. Words belonging
to multiple classes have their counts distributed
equally among them. Smoothing is then applied
by adding each word count by 0.5 and normaliz-
ng.

After training, the Viterbi algorithm is used to
retrieve the best segmentation and tagging £* of
each sentence of the test corpus, by tracing the
best state sequence traversed.

4.2 Perplexity

The test-sct perplexity, calculated as
1
PP* = exp(~—]V7 Z log(P(s1%, £*|OM))
i

where the summation i1s taken over all sentences
5&’" in the testing corpus, and M represents the
number of characters in it, is used to measure the
performance of the model.

T'he results for models trained on training cor-
pus subsets of various sizes, and after various it-
erations arc shown (Table 1). Tt is obvious that
with small training corpus, over-training occurs
with more iterations. With more training data,
the performance improves and over-training is not
cvident.

4.3 Phonetic Input Decoding

A further experiment is performed to use the mod-
els to decode phonetic inputs (Gu et al., 1991).
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'['raining Size 2 4 6 8
98K 194.009 214.096 246.613 286.721
1.3M 126.084 122.304 121.606 121.776
6.3M 118.531 113.600 111.745 110.783
21M 116.376 111.275 109.282 108.142

Table 1: Test Set Perplexities of testing sel after
different iterations on subsets of training set

‘I'his 1s not trivial since cach Chinese syllable
can correspond to up to 80 different characters.
Sentences from the testing corpus are first ex-
panded into a lattice, formed by generating all
the common homophones of each Chinese charac-
ter. Tested on 360K characters, a character recog-
nition rate of 91.24% is obtained for the model
trained after 8 iterations with 21M of training
text. The results are satisfactory given that the
test corpus contains many personal names and out
of vocabulary words, and the highly ambiguous
nature of the problem.

5 Discussion and Conclusion

In this paper the N-th order Ergodic Multigram
MM is introduced, whose application enables in-
tegrated, iterative language model training on un-
tagged and unsegmented corpus in languages such
as Chinese.

The performance on higher order models are ex-
pected to be better as the size of training corpus is
relatively large. Howcever some form of smoothing
may have to be applied when the training corpus
size is small.

With some modification this algorithm would
work on phonerne candidate input instead of char-
acter candidate input. This is useful in decod-
ing phonetic strings without character boundarices,
such as in continuous Chinese/Japancse/Korean
phonetic input, or speech recognizers which out-
put phonemes.

This model also makes a wealth of techniques
developed for IIMM in the speech recognition
ficld available for language modecling in thesc lan-
guages.
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