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Abstract

We present a video captioning approach that encodes features by progressively completing syn-
tactic structure (LSTM-CSS). To construct basic syntactic structure (i.e., subject, predicate, and
object), we use a Conditional Random Field to label semantic representations (i.e., motions, ob-
jects). We argue that in order to improve the comprehensiveness of the description, the local
features within object regions can be used to generate complementary syntactic elements (e.g.,
attribute, adverbial). Inspired by redundancy of human receptors, we utilize a Region Proposal
Network to focus on the object regions. To model the final temporal dynamics, Recurrent Neural
Network with Path Embeddings is adopted. We demonstrate the effectiveness of LSTM-CSS on
generating natural sentences: 42.3% and 28.5% in terms of BLEU@4 and METEOR. Superior
performance when compared to state-of-the-art methods are reported on a large video description
dataset (i.e., MSR-VTT-2016).

1 Introduction

Video has become a ubiquitous way of communication on the Internet, podcast channels, as well as mo-
bile devices. Accelerated by the explosive spread of video data, automatic analysis of semantic video
content remains a promising area. The advances of this task can provide comparatively favorable precon-
ditions for subsequent tasks, such as video retrieval, human-perception analysis, keyframe recommenda-
tion(Chen et al., 2017). To encapsulate the informative dynamics in the video, researchers have started
focusing on recognizing videos based on the predefined templates, such as (Kojima et al., 2002; Guadar-
rama et al., 2014). Rohrbach et al. (2013) learned a CRF to assemble between different components of
the input video and generated descriptions for videos. Xu et al. (2015) utilized a unified framework that
jointly models video and the corresponding text sentences.

Another line of work uses Recurrent Neural Network. In light of its success, the representations (e.g.
key objects, locations, motions, and scenes) can be concatenated into an input sequence and then trans-
lated to a natural sentence (Donahue et al., 2015). Follow-up works investigate the modeling of not only
video contents and their spatio-temporal relationships, but also the syntactical structure (Venugopalan et
al., 2015). More recently, a visual-semantic embedding learning technique has been proposed to model
video content and textual semantics as a regularizer in Long Short-Term Memory architecture (Pan et
al., 2016). This was extended by (Hori et al., 2017) where they utilized a modality-dependent attention
mechanism.

Over the past years, researchers have studied multiple strategies to effectively bridge the visual con-
tent and textual description based on some fresh ideas. (Pan et al., 2017) incorporated the transferred
semantic attributes learned from images and videos into the CNN plus RNN framework. (Baraldi et al.,
2017) proposed a novel LSTM cell which can modify the temporal connections of the encoding layer
according to the identified discontinuity points among frames. (Kaufman et al., 2017) transferred the
semantics of the selected reference clips to test clips, which keeps consistent and maintains temporal co-
herence. However, the existing methods fail to take advantage of the local constraints which can extract
compressed features for generating complementary syntactic elements.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

3576

Proceedings of the 27th International Conference on Computational Linguistics, pages 3576-3585
Santa Fe, New Mexico, USA, August 20-26, 2018.



Input video:
R AR REERRRRRRRRRRRRRRRERRRRRRRRRRERRERRRREN

'4
ﬁ":"p-xr/ ~»", f “\
A A B vt X

J N B 1 ;
AR R EEERRRRRERRRRRRERERERRRRRRRRERRRRERRRERERN

Output Sentence:

* LSTM-CSS [ours]: a fashion show is going on the runway.

* Human: a woman is modelling clothes. / a fashion show with
women walking. / fashion show runway walk involving several
models.

Figure 1: Examples of video description generation

This paper proposes a novel deep architecture, named Cascade Syntactic Structure (CSS), which takes
advantages of incorporating global representations and local object regions into sequence learning for
video captioning. Take the given video in Figure 1 as an example, the object regions of interest can be
extracted to depict primary objects with locations (e.g., “woman”) while motions from global features
convey the temporal dynamics (e.g., “walking”, “showing”). As “fashion show” and “runway” are not
in the motion and object candidate set, we believe it is the local features that convey this complemen-
tary information. This has facilitated video captioning to disentangle the global features (motions and
objects) and local features (object regions) enabling independent specification of both within the gener-
ation process. Our exploration of object regions as a modality for video captioning complements recent
advances. Concretely, we propose a hierarchical CNN plus RNN architecture to learn a low-dimensional
joint embedding for global and local features. The Convolutional Neural Network (CNN) has two dis-
criminatively trained streams, motion stream and object stream. The outputs of these two streams are
motions and objects respectively, which are used by Conditional Random Field (CRF) (Lafferty et al.,
2001) to formulate the basic syntactic structure. The Long Short-Term Memory Network, together with
Path embeddings (i.e., LSTM-PE) is used to generate a final sentence with optimal semantic structure.

As the final performance of our description generation relies on the accuracy of motion classification
and object detection, we argue that the two stream CNN needs to be discriminative enough to provide
information for following sub-structures. Its output global representation (i.e., a triplet of motion and
objects) is used to construct basic syntactic structure which determines the comprehensibility of a sen-
tence. As actions in MSR-VTT-2016 dataset (Xu et al., 2016) have a small range of movement and 3D
convolutional neural networks (C3D) (Tran et al., 2015) performs not well enough on these actions, we
prefer to use Temporal Segment Networks (7SN) (Wang et al., 2016) to extract motion features with
additional optical flows (Z. et al., 2017). A CRF model is then used to learn the optimal global represen-
tation which is sent to a Long Short-term Memory (LSTM) network. Inspired by object masks proposed
by Mask R-CNN (He et al., 2017), we believe that local constraints (i.e. object regions) can contribute to
generating more comprehensive information for the result. We apply region-based network to our object
stream and the output local constraints will be directly sent to aforementioned LSTM for generating the
final sentence. The path embeddings can model the relationship between word vectors and contribute
to the prediction of next word. This will help our model to cope with some recursive structures (e.g.,
nested conjunctions). Its efficacy is analyzed in section 2. Given a video, our framework can generate
a sentence invariant to recursive structures based on both global representations and local constraints
extracted from the video.

Our main technical contributions are three-fold:

e We propose a multi-task convnet to learn local embedding and global embedding for objects, which
outperforms, by a large margin, previous attempts that use deep convnets for learning only global
features.
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Figure 2: Hierarchical network combining global vectors (motions and objects) and local constraints
(object regions) to generate video description with CRF and LSTM. Each sub-structure is trained inde-
pendently (Section 2). M&O set denotes the semantic representation of motions and objects. Sub, Pred,
and Obj denotes subject, predicate, and Object respectively in CRF.

e We empirically show the advantage of our unified video description generation framework whereby
local constraints can be used to generate complementary syntactic elements, which can in turn
improve the comprehensiveness of the description.

e We show that giving too much information to LSTM decoder could lead to chaos in the final struc-
ture. Hence, our method also input path embeddings to the decoder as context.

2 Video Captioning with Cascade Syntactic Structure

The goal of our network is to generate a sentence that describes the contents and their relationships.
The problem is formulated as follows: given a video V with n, segmented clips, our objective is to
describe it by a textual sentence S with ns words noted as S = {wy,--- , wy,_} with each word in it as
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its column vector. M = {my,--- ,m,, } and O = {01, - , 04, } respectively denote the candidate of
motions (resp. objects). m; and o; are represented by a one-hot vector. n,, and n, refer to the size of
the candidates. The local constraints C are D, -dimensional local features, which are the mean pooling
of selected frames in a video.

In the remaining of this section, we describe our network architecture and training methodology for
generating a description for a specific video with local constraints. We first present two sub-structures of
our architecture (Figure 2): 1) Feature extraction network (Section 2.1), which unify two discriminatively
trained network streams that independently learn a motion (resp. object) feature embedding for a video;
2) Sentence generation network (Section 2.2), which uses CRF to learn optimal semantic representation
and LSTM to generate the final description.

2.1 Feature extraction network

2.1.1 Motion stream

For each clip, the motion stream incorporates a Spatial CNN accepting a frame of RGB image and a
Temporal CNN accepting a short snippet with 10 optical flow fields (5 for = directions and 5 for y
directions) stacked in channel dimension extracted by warped TVL1 (Wang and Schmid, 2014). The
frame sent to the Spatial CNN is randomly selected from a specific segment. The optical flow fields sent
to the Temporal CNN are randomly selected from those computed for arbitrary two consecutive frames
in each segment. Owing to the uncertain range of optical flow displacement, normalization is applied to
constraint the displacements in [0, 255] which is same as gray image. Thus, an optical flow field can be
regarded as an image with 10 channels in the motion stream. The output of the motion stream, motion
embedding M, is averaged over all segments.

2.1.2 Object stream with local constraints

In conventional methods (Venugopalan et al., 2015), only embedding of motions and objects are extracted
for LSTM. We believe that if visual features are sent to the LSTM, it is more generative to learn sentences
for videos. In the human retina, visual features which represent natural signals formed by the peripheral
receptors are very high-dimensional. However, we argue that the receptors to discover where and what
objects only occupy a small fraction of the space of all possible receptor activation due to the statistical
regularity and redundancy (Burton and Moorhead, 1987). We choose ROI pooling (Girshick, 2015) to
extract local features specifically for the object regions as our local constraints.

As the object stream is the main sub-structure in our model, a careful training protocol is required to
ensure convergence. For each clip, two images are randomly selected. For each input image, we train a
network with aforementioned local constraints. The Object CNN can use many networks with the output
discrete probability distribution p = (po, - - , Pk, - , Px—1), indexed by k. It is computed by a softmax
layer over K object classes. The RPN network is a stack of convolutional filters of different sizes. Its
outputs are the offsets of object regions, r¥ = (r¥, r’;, 7k, r¥), for the kth object class. The network can
be described with a function f(-) minimising:

L:m+ZLcl5+)\ZLloc (1)

where m is a margin promoting convergence and ¢ is the index of object region. The confidence loss
L5 is log loss for true class for each region. The location loss L, is the Smooth L1 loss (Girshick,
2015) between the predicted region and the ground truth region. Local constraint C (features in regions)
and object embedding O are the output of object stream. Use of local Constraints is later shown to yield
significant performance gain (Section 3.4.1).

2.2 Sentence generation

2.2.1 CREF: basic syntactic structure

The sentence generation network comprises two parts: CRF and LSTM. For CRF model, given z =
MU O as input, lety = {y1,--- ,¥n, }, g = nm + ns represents the label sequence of them, use the
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following standard energy formulation:
g
E(y,z) =Y E"(yiz)+ »_ E"(y;,y;) )
i=1 ij

where the first term defines the sum of quadratic unary terms and the second term describes the relation-
ship between pairs of (y;, y;) (Hu et al., 2016).

Corresponding to our predicted y*, we rearrange z for optimal semantic representation z*. It is sent
to the following LSTM model as well as local constraints C. The LSTM model is based on an encoder-
decoder framework (Sutskever et al., 2014). The encoder computes a intermediate representation e
for the input semantic representation z*. Based on encoded intermediate representation, the decoder
generates a translation, one target word at a time. The S is the output of the decoder. The log conditional
probability is as follows:

log p(S|z*) = Zlog P(Wi|wet, €) 3)
t=1

The objective is formulated as:

L= Z —log p(S|z*) “4)

(z*,S)eD
where D refers to the parallel training corpus of source and target representation pairs (z*, S).

2.2.2 LSTM-PE: final syntactic structure

The encoder and decoder share a common LSTM network with similar forward and backpropagation
process. The difference is the decoder starts from the intermediate representation rather than zero states.
In addition to the intermediate representation, the local constraints C are injected at the initial time of the
decoder to inform the whole memory cells in LSTM. For timestep ¢, x;, y; and h; are the input vector,
output vector, and hidden state respectively.

g = ¢(Ugxy + Wghy 1 +by), iy = 0(U;jx; + Wihy_1 + by),
fi =0(Usx; + Wrhy 1 +by),ci =g Oy +c-1 ©OF, )
o = 0(Uyxt + Wohy_1 + by), hy = ¢(ct) © oy,

where g;, iz, f;, ¢, 04, and hy are cell input, input gate, forget gate, cell state, output gate, and cell output
of the LSTM. ¢ is the element-wise sigmoid function and © is the element-wise product. U are the
weight matrices of different gates for input x;, W are the recurrent weight matrices for hidden state hy,
and b are bias vectors.

To make full use of aforementioned optimal label sequence y*, we learn the path embeddings from
sequences (Chen and Manning, 2014) and use them as context (Jiang Guo and Xu, 2016) for decoder.
We pre-train path embeddings together with word embeddings. At the initial time, the path embeddings
stand for generic dependencies between labels (i.e., subject, predicate, and object). The path embeddings
are then enlarged and refined during the learning phase. Let P; denote the path embeddings, which is
the concatenation of vectors representing labels:

p-1=[y'],
(6)
Pt = [Pt-1yt-1],
The LSTM updating procedure of decoder is as:
X1 = UCC,
x; = Uge,
t s (7)

h; = f(W;x; + Wyhy 1 + W, Py),
vt = softmax(W,hy),
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LSTM-CSS [ours]: a video game character is fighting a monster. LSTM-CSS [ours]: a person is folding a piece of paper.
GT1: cartoon battle scene with chasing. GT1: aperson is demonstrating how to make a paper airplane.
GT2: aperson is playing a video game. GT2: aperson is folding a paper airplane.
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LSTM-CSS [ours]: a large fireworks display is shown. LSTM-CSS [ours]: a woman is walking through a haunted hallway.
GT1: fireworks are being launched into the night sky. GT1: aperson is walking through a cave.
GT2: fireworks are going off. GT2: awoman in black is going into a cave.

Figure 4: Examples of generated captions on MSR-VTT. GT1 and GT2 are ground truth captions.

where U and Uy are the transformation matrices for local constraints and intermediate representation
respectively. W;, W;, W, W, are the weight matrices. f is the updating function within LSTM unit.
We also apply an attention mechanism proposed by (Bahdanau et al., 2015) to LSTM units. The details
can be illustrated in Figure 3. The output of LSTM is the final sentence S generated for video V.

3 EXPERIMENTS AND DISCUSSION

We evaluate and compare our proposed LSTM-CSS with state-of-the-art approaches (Section 3.3) and
analyze the effect of local constraints (Section 3.4.1). We also qualitatively analyze the effect of path
embeddings (Section 3.4.2).

3.1 Datasets and settings

Dataset. We use MSR-VTT-2016 (Xu et al., 2016) which contains 10,000 web-collected video clips.
There are roughly 20 available descriptions per video. In our experiment, our video captioning models
are trained, hyperparameter selected, and evaluated using the official partitioned training, validation, and
test set with 65%:5%:30% corresponding to 6,513, 497, 2,990 video clips, respectively.

Network detail. The motion stream is a reproduced model of TSN, fine-tuned over MSR-VTT-2016. For
a single CNN, it closely resembles BN Inception network (loffe and Szegedy, 2015). We take the output
of softmax layer from the combination of multiple CNNs as the motion representation M. The object
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Model BLEU@4 | METEOR | ROUGE-L | CIDEr-D
SA (Yao et al., 2015) 323 234 - -
S2VT (Venugopalan et al., 2015) 35.2 25.2 - -

Xu et al. (Xu et al., 2016) 36.6 259 - -
MTLM (Pasunuru and Bansal, 2017) 40.8 28.8 60.2 47.1
WS (Shen et al., 2017) 414 28.3 61.1 48.9
Rankl: v2t_navigator 40.8 28.2 60.9 44.8
Rank2: Aalto 39.8 26.9 59.8 45.7
Rank3: VideoLAB 39.1 27.7 60.6 44.1
LSTM-CSS 4.3 28.5 61.2 46.5

Table 1: BLEU@4, METEOR, CIDEr-D, and ROUGE-L of our LSTM-CSS and other state-of-the-art
methods on MSR-VTT-2016 dataset. All values are reported as percentage (%) and (-) indicates unknown
scores

Model BLEU@4 | METEOR | ROUGE-L | CIDEr-D
LSTM-SR 38.1 25.6 59.0 40.7
LSTM-CSS-E-N 40.4 26.6 59.8 43.2
LSTM-CSS-N 41.1 26.9 60.2 44.8
LSTM-CSS-E 42.0 27.0 60.2 46.7
LSTM-CSS 423 28.5 61.2 46.5

Table 2: Captioning accuracy of LSTM-CSS, LSTM-SR, LSTM-CSS-E, LSTM-CSS-N, and LSTM-
CSS-E-N on MSR-VTT-2016 test set

stream is trained from scratch, using an COCO (Lin et al., 2014) to evenly detect objects O belonging to
90 classes and extract local features. In each video, 5 frames are selected and local constraints C are the
average of local features extracted from these frames. We take the output of softmax layer and output
of 4096-way fc6 layer from the Resnet-50 (He et al., 2016) as O and C respectively. The margin m in
Equation 1 is set to 1. The dimension of the input and hidden layers in LSTM are both set to 512. In test
stage, we set the beam size to 4 in beam search.

Evaluation metric. We adopt four common metrics in video captioning task for quantitative evaluation
of our proposed model: BLEU@4, METEOR, CIDEr-D, and ROUGE-L (from MS-COCO evaluation
server (Chen et al., 2015)).

3.2 Compared methods

We compare our LSTM-CSS model with the following methods to evaluate the efficacy of our model.

SA (Soft-Attention) (Yao et al., 2015): utilizes a weighted attention mechanism to dynamically attend
to specific temporal segments of the video with the input of both frame representation (2-D CNN) and
video clip representation (3-D CNN). In the test, the frame representation is extracted from the same
feature, while the video clip representation is extracted from a C3D network.

S2VT (Sequence to Sequence - Video to Text) (Venugopalan et al., 2015): incorporates both RGB and
optical flow inputs. The encoding and decoding of inputs and word representations are jointly learned.
In the test, the RGB and optical flows are extracted from same structure with ours.

MTLM (Multi-Task Learning Method) (Pasunuru and Bansal, 2017): improves video captioning
by utilizing sharing representations with a temporally-directed unsupervised video prediction task to
learn richer context-aware video encoder representations, and a logically-directed language entailment
generation task to learn better caption decoder. In the test, the representation is extracted from same
structure with ours.

WS (Weakly Supervised) (Shen et al., 2017): links video regions with lexical labels by utilizing
lexical fully convolutional neural networks with weakly supervised learning. It also trains a sequence-to-
sequence language model with the weakly supervised information. In the test, the CNN model is trained
starting from the same structure with ours.

We also compare the baseline criterion and top-3 rank (i.e. v2t_navigator, Aalto, and VideoLAB)
results proposed by (Xu et al., 2016).
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Figure 5: Train loss of LSTM-CSS and LSTM-SR

3.3 Performance comparison

Table 1 shows our primary results on MSR-VTT-2016 dataset. Overall, our proposed LSTM-CSS out-
performs the other methods. Specifically, it reaches 42.3% BLEU @4, which makes the relative improve-
ment over the two state-of-the-art methods S2VT by 20.1% and MTLM by 3.7%, respectively. We are
also the new Rank1 on the MSR-VTT-2016 leaderboard, based on their ranking criteria. Figure 4 shows
several example captions generated by our approach for MSR-VTT-2016 videos. The result indicates the
utilizing of local constraints can contribute to the generation of comprehensive sentences.

In terms of BLEU scores, our method obtains bigger gains than others. Since the preference of longer
captions tend to obtain lower BLEU scores, we argue that our method can generate comprehensive but
concise captions. In terms of METEOR scores, our method does not perform best. From the aforemen-
tioned example, we can see that the subject of our caption is “fashion show” and the adverbial is “on
the runway”. In this example, there are no reference captions that have same syntactic structure with our
caption. This may influence our recall rate and further affect the METEOR score.

3.4 Ablation study

3.4.1 Effect of Complementary syntactic elements

Our model LSTM-CSS depicted in Figure 2 uses local constraints to construct the final syntactic struc-
ture with complementary elements. To perform the ablation studies for our local constraints, we also test
degraded versions of our model as follows: 1) LSTM-SR: the input of LSTM are semantic representa-
tion of motions and objects. Only global features are included; 2) LSTM-CSS-E: the local constraints
are added as another input modal of LSTM and they are input to the encoder; 3) LSTM-CSS-N: the
network without attention mechanism; 4) LSTM-CSS-E-N: the network remove attention mechanism
from LSTM-CSS-E; 5) LSTM-CSS w/o PE: the network remove path embeddings from LSTM-CSS.

Figure 5 shows that LSTM-CSS achieves better training loss than LSTM-SR, which shows the training
stability of LSTM-CSS. We can draw a conclusion that the local constraints can contribute to ensuring
the convergence rate and alleviate the fluctuation of training loss. Table 2 summarizes the results on the
MSR-VTT-2016 test set. As can be seen, in all the cases, LSTM-SR performs worse than the models
with local features. Base on these results, the validation of local constraints is certificated. From the
comparison of LSTM-CSS-E-N and LSTM-CSS-N, we can conclude that without attention mechanism,
modeling global and local information at the same level will weaken the ability of local constraints. We
can also find that LSTM-CSS and LSTM-CSS-E nearly perform equally. Therefore, we believe that
attention mechanism can make the LSTM translation network focus on relevant content and alleviate the
influence of the places where local constraints are input.
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LSTM-CSS: a woman is talking on a show. LSTM-CSS: a man is talking about a man who in black.
LSTM-CSS w/o PE: a woman is talking. LSTM-CSS w/o PE: a man is talking about.

Figure 6: Examples with recursive syntactic structure

3.4.2 Qualitative analysis of path embeddings

As we can see, in the MSR-VTT-2016 dataset, some videos are about news, products, slides. In fact,
people appearing in these videos are not the subject. Through visual analyzing, existing video caption
algorithms can tell people are talking but not understand the content they talking about. Though some
advanced methods can find both introducers and their contents, they are hard to model the relationship
and organize sentences. In cases like ‘someone is talking about something’, our method can generate a
completed sentence as shown in Figure 6. We can also see that in sentences generated by LSTM-CSS
w/o PE, the content people shows are not included.

4 Conclusions

Inspired by the human receptors for object detection, we propose a hierarchical model for video cap-
tioning. Our model not only precisely captures motions and objects in videos but also learns a sentence
constrained by cascade syntactic structure (CRF for the basic structure and LSTM-PE for the complemen-
tary elements). The experimental results demonstrate that our model performs on par with state-of-the-art
methods on a large video description dataset in terms of accuracy.

However, the structure of generated sentence is relatively fixed for all videos. It should be better
to improve the diversity of the sentences considering different object locations and make the syntactic
structure more logical. We will address this issue in our future work.
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