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Abstract

Sentiment analysis of short texts is challenging because of the limited contextual information they usually con-
tain. In recent years, deep learning models such as convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) have been applied to text sentiment analysis with comparatively remarkable results. In this
paper, we describe a jointed CNN and RNN architecture, taking advantage of the coarse-grained local features
generated by CNN and long-distance dependencies learned via RNN for sentiment analysis of short texts. Experi-
mental results show an obvious improvement upon the state-of-the-art on three benchmark corpora, MR, SST1 and
SST2, with 82.28%, 51.50% and 89.95% accuracy, respectively. 1

1 Introduction

The rapid development of the Internet, e-commerce and social networks brings about a large amount of
user-generated short texts on the Internet, such as online reviews for products, services and blogs. Such
short texts as online reviews are usually subjective and semantic oriented. To discriminate and classify
the semantic orientation of such short texts properly is of great research and practical value.

Sentiment analysis of short texts is challenging because of the limited contextual information and the
sparse semantic information they normally contain. The existing research on sentiment analysis of short
texts basically include emotional knowledge-based methods and feature-based classification methods.
The former mainly focuses on the extraction and the sentiment classification based on opinion-bearing
words and opinion sentences (Hu and Liu, 2004; Kim and Hovy, 2005). The latter focuses on the
sentiment classification based on features. Turney (2002) presented the unsupervised PMI-IR (Pointwise
Mutual Information and Information Retrieval) algorithm to measure the similarity of words or phrases.
Pang et al. (2002) and Cui et al. (2006) used n-grams and POS tags and applied them to NB, ME and
SVM classifiers. Based on these studies, Kim and Hovy (2006) introduced the positional features and
opinion-bearing word features. Mullen and Collier (2004) combined various features and used SVM for
classification.

With the development of deep learning, typical deep learning models such as convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) have achieved remarkable results in computer
vision and speech recognition. Word embeddings, CNNs and RNNs have been applied to text sentiment
analysis and gotten remarkable results. Kim (2014) applied CNN on top of pre-trained word vectors for
sentence-level classification. Some studies utilized recursive neural networks to construct the sentence-
level representation vector in sentiment analysis (Socher et al., 2011; Socher et al., 2012b; Socher et al.,
2013b). Le and Mikolov (2014) presented the paragraph vector in sentiment analysis. Tai et al. (2015)
put forward the tree-structured long short-term memory (LSTM) networks to improve the semantic rep-
resentations. The improved performance of these algorithms mainly benefits from the following aspects:
(1) The high-dimensional distributional vectors endow similar semantic-oriented words with high simi-
larity. Word embeddings can better solve the semantic sparsity of short texts compared with the one-hot
representation. (2) Similar to the translation, rotation and scale invariance of images in CNN, CNN is
able to learn the local features from words or phrases in different places of texts. (3) RNN takes words in

1Code and data are available at https://github.com/ultimate010/crnn
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a sentence in a sequential order and is able to learn the long-term dependencies of texts rather than local
features.

In this paper, we present a jointed CNN and RNN architecture that takes the local features extracted
by CNN as input to RNN for sentiment analysis of short texts. We develop an end-to-end and bottom-up
algorithm to effectively model sentence representation. We take the word embeddings as the input of our
CNN model in which windows of different length and various weight matrices are applied to generate a
number of feature maps. After convolution and pooling operations, the encoded feature maps are taken as
the input to the RNN model. The long-term dependencies learned by RNN can be viewed as the sentence-
level representation. The sentence-level representation is taken to the fully connected network and the
softmax output reveals the classification result. The deep learning algorithm we put forward differs from
the existing methods in that: (1) We apply windows of different length and various weight matrices in
convolutional operation. The max pooling operates on the adjacent features and moves from left to right
instead of on the entire sentence. In this case, the feature maps generated in our CNN model retain the
sequential information in the sentence context. (2) The deep learning architecture of our model takes
advantage of the encoded local features extracted from the CNN model and the long-term dependencies
captured by the RNN model. We experiment on three benchmarks for sentiment classification, MR,
SST1 and SST2 and achieve the state-of-the-art results.

This work is organized as follows. In section 2, we discuss some background knowledge about word
embeddings, sentence-level representation, convolutional neural network and recurrent neural network.
In section 3, we describe our jointed CNN model and RNN model in detail. Section 4 presents our
experiment results and some discussion. Finally, in section 5, we conclude and remark on our work.

2 Background

In this section, we discuss some background knowledge on word embeddings, sentence-level represen-
tation, convolutional neural network (CNN) and recurrent neural network (RNN).

2.1 Word Embeddings and Sentence-Level Representation
When applying deep learning methods to a text classification task, we normally need to transform words
into high-dimensional distributional vectors that capture morphological, syntactic and semantic informa-
tion about the words. Let d be the length of word embeddings and l be the length of a sentence. The
sentence-level representation is encoded by an embedding matrix C ∈ Rd×l, where Ci ∈ Rd corresponds
to the word embeddings of the i-th word in the sentence.

2.2 Convolution and Pooling
Convolution is widely used in sentence modeling (Kim, 2014; Kalchbrenner et al., 2014; dos Santos and
Gatti, 2014). The structure of convolution varies slightly in different research fields, among which the
structure used in natural language processing is shown in Figure 1.

Figure 1: (1) A sentence
matrix with padding. (2)
Convolution with a win-
dow of three words.

Generally, let l and d be the length of sentence and word vector, respec-
tively. Let C ∈ Rd×l be the sentence matrix. A convolution operation
involves a convolutional kernel H ∈ Rd×w which is applied to a window
of w words to produce a new feature. For instance, a feature ci is generated
from a window of words C[∗, i : i + w] by

ci = σ(
∑

(C[∗, i : i + w] ◦ H) + b) (1)

Here b ∈ R is a bias term and σ is a non-linear function, normally tanh
or ReLu. ◦ is the Hadamard product between two matrices. The convolu-
tional kernel is applied to each possible window of words in the sentence
to produce a feature map. c = [c1, c2, . . . , cl−w+1], with c ∈ Rl−w+1.

Next, we apply pairwise max pooling operation over the feature map to
capture the most important feature. The pooling operation can be consid-
ered as feature selection in natural language processing. The max pooling
operation is shown in Figure 2.
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Figure 2: Pairwise max
pooling operation on a
scaling of 2

Specifically, the output of convolution, the feature map c =
[c1, c2, . . . , cl−w+1] is the input of the pooling operation. Let the input
be downscaled by 2, namely, the adjacent two features in the feature map
be caculated as follows:

pi = max(c2×i−1, c2×i) (2)

The output of the max pooling operation is p = [p1, p2, . . . , p⌊ l−w+1
2

⌋],

p ∈ R⌊ l−w+1
2

⌋.

2.3 Recurrent neural network
Recurrent Neural Networks (RNNs) have shown great promise in machine translation tasks(Liu et al.,
2014; Sutskever et al., 2014; Auli et al., 2013). Unlike feedforward neural networks, RNNs are able to
handle a variable-length sequence input by having a recurrent hidden state whose activation at each time
is dependent on that of the previous time. Figure 3 shows what a typical RNN looks like.

The diagram shows a RNN being unrolled into a full network. For example, if the input se-
quence is a four-word sentence, the network would be unrolled into a 4-layer neural network,
one layer for each word. The formulas that govern the calculations in a RNN are as follows.

Figure 3: An unrolled re-
current neural network

• xt is the input at time step t. For example, xi could be a one-hot vector
or word embeddings corresponding to the i-th word of a sentence.

• ht is the hidden state and the ”memory” of the network at time step t.
ht is calculated according to the previous hidden state and the input
at the current step:

ht = σ(Uxt + Wht−1) (3)

Here h0 is typically initialized to a zero vector in order to calculate the first hidden state.

• ot is the output at time step t. For sentiment classification of short
texts, it would be a vector of probabilities across all the sentiment
categories. ot is calculated as follows:

ot = softmax(V ht) (4)

Similar to a traditional neural network, we can use a twisted backpropagation algorithm Backpropa-
gation Through Time (BPTT) to train a RNN (Mozer, 1989). Unfortunately, it is difficult to train RNN
to capture long-term dependencies because the gradients tend to either vanish or explode (Bengio et al.,
1994). Hochreiter and Schmidhuber (1997) proposed a long short-term memory (LSTM) unit and Cho
et al. (2014) proposed a gated recurrent unit (GRU) to deal with the problem effectively.

2.4 LSTM and GRU
2.4.1 LSTM
The Long Short-Term Memory (LSTM) was first proposed by Hochreiter and Schmidhuber (1997) that
can learn long-term dependencies. See Figure 4 for the graphical illustration.

Different from traditional recurrent unit, LSTM unit keeps the existing memory ct ∈ Rn at time t. The
input at time t is xt, ht−1, ct−1, the output is ht, ct, they can be updated by the following equaions:

it = σ(Wixt + Uiht−1 + bi) (5)

ft = σ(Wfxt + Ufht−1 + bf ) (6)

ot = σ(Woxt + Uoht−1 + bo) (7)

gt = tanh(Wgxt + Ught−1 + bg) (8)

ct = ft ⊙ ct−1 + it ⊙ gt (9)

ht = ot ⊙ tanh(ct) (10)
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Figure 4: LSTM unit
(Chung et al., 2014)

where σ(·) denotes the logistic sigmoid fuction. The opration ⊙ denotes
the element-wise vector product. At each time step t, there are an input
gate it, a forget gate ft, an output gate ot, a memory cell ct and a hidden
unit ht. h0 and c0 can be initialized to 0 and the parameters of the LSTM
is W,U, b.

2.4.2 GRU
A gated recurrent unit (GRU) was initially proposed by Cho et al. (2014)
to make each recurrent unit to adaptively capture dependencies of different
time scales. See Figure 5 for the graphical illustration of GRU.

The parameters can be updated by the following equations

rt = σ(Wrxt + Urht−1) (11)

zt = σ(Wzxt + Uzht−1) (12)

ĥt = tanh(Wxt + U(rt ⊙ ht−1)) (13)

ht = (1 − zt)ht−1 + ztĥt (14)

Figure 5: GRU unit
(Chung et al., 2014)

Where σ denotes the logistic sigmoid function, ⊙ denotes the element-
wise multiplication, rt denotes the reset gate, zt denotes the update gate
and ĥt denotes the candidate hidden layer.

3 Model

Convolutional neural networks (CNNs) are likely to extract local and deep
features from natural language. It has been shown that CNN has gotten
improved results in sentence classification (Kim, 2014). Recurrent neural
networks (RNNs) are various kinds of time-recursive neural network that
is able to learn the long-term dependencies in sequential data. Seeing that
we can view the words in a sentence as a sequence from left to right, RNNs
can be modeled in accordance with people’s reading and understanding behavior of a sentence. Socher
et al. (2012a) presented a convolutional-recursive deep model for 3D object classification that combined
the convolutional and recursive neural networks together. The CNN layer learns the low-level translation
invariant features which are inputs to multiple, fixed-tree RNNs (recursive neural networks) in order
to compose higher order features. Kim et al. (2015) described a model that employed a convolutional
neural network (CNN) and a highway network over characters, whose output is given to a long short-
term memory (LSTM) recurrent neural network language model (RNN-LM). These two models both get
better results than prior methods. However, the recursive neural networks need to build a tree structure
that is usually based on the parser result of sentence. The recurrent neural network is particularly suited
for modeling the sequential pattern. Inspired by those works and the fact that CNN can extract local
features of input and RNN (recurrent neural network) can process sequence input and learn the long-term
dependencies, we combine both of them in sentiment analysis of short texts. The model architecture is
shown in Figure 6.

Our model consists of the following parts: word embeddings and sentence-level representation, convo-
lutional and pooling layers, concatenation layer, RNN layer, fully connected layer with softmax output.

3.1 Word Embeddings and Sentence-Level Representation
Word embeddings play an important role in word representation. The commonly used are random initial-
ization and unsupervised pre-training of word embeddings. In our experiment, we perform unsupervised
learning of word-level embeddings using the word2vec method and also test random initialization. Let
ν be the size of bag-of-words and d be the length of a word embedding, then the word embeddings of
all the words in the vocabulary are encoded by column vectors in an embedding matrix Q ∈ Rd×ν . A
sentence can be represented by:

S = [w1, w2, . . . , wl] (15)
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Figure 6: Model architecture for an example sentence

wi ∈ [1, ν], i ∈ [1, l]

Here is the sentence-level representation:

Ci = Q[wi], Ci ∈ Rd (16)

C = [C1, C2, . . . , Cl], C ∈ Rd×l (17)

The column vector Ci corresponds to the word embedding of the i-th word in the sentence.

3.2 Convolution and Pooling
The convolutional layer applies a matrix-vector operation to each window of size w of successive win-
dows in the sentence-level representation sequence. Let H ∈ Rd×w be the weight matrix of the con-
volutional layer, we then add a bias item b to the result of the matrix-vector operation and get a feature
mapping c ∈ Rl−w+1. The i-th element of the feature map is:

ci = σ(
∑

(C[∗, i : i + w] ◦ H) + b) (18)

where C[∗, i : i + w] is the i-th to the i + w-th column vectors of the sentence-level representation.
The same weight matrix is used to extract local features for each window of the given sentence. Using

the matrix over all word windows of the sentence, we extract the n-grams feature vector of size l−w+1.
We also apply various kinds of weight matrices and multiple filter lengths to get various and sufficient
features.

We apply the max and average pooling operations and find that the former performs better with less
computational complexity. Thus, we apply the max pooling operation to the output of convolutional
layer which transform the feature map of size l − w + 1 to ⌊ l−w+1

2 ⌋,

p = [p1, p2, . . . , p⌊ l−w+1
2

⌋] (19)

We apply m kinds of matrix weight to get m feature maps.

P = [p1, p2, . . . , pm] (20)
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where P ∈ R⌊ l−w+1
2

⌋×m.
We borrow the experience from the literature (Zhang and Wallace, 2015; Kim, 2014) and choose

window size 4 and 5 to get matrix P4, P5. After trunking longer result, we concatenate P4 and P5

together to get Z, where

Z = ⊕(P4, P5), Z ∈ R⌊ l−w+1
2

⌋×(m×2) (21)

where ⊕ is the concatenation operator, Z can be viewed as the convolutional coding of a sentence.

3.3 Recurrent Neural Network

The features generated from convolution and pooling operation can be viewed as advanced features like
n-grams. Since recurrent neural network (RNN) can process sequential input and learn the long-term
dependencies, we take these features as the input of the recurrent neural network. We apply LSTM and
GRU that are mentioned in previous chapter and both get good results. The output of RNN T ∈ Rn is
deemed as the encoding of the whole sentence.

3.4 Fully Connected Network with Softmax Output

The features generated from RNN form the penultimate layer and are passed to a fully connected softmax
layer whose output is the probability distribution over all the categories. The softmax operation over the
scores of all the categories is calculated as follows:

P̂i =
exp(oi)∑C

j=1 exp(oj)
(22)

We take cross entropy as the loss function that measures the discrepancy between the real sentiment
distribution P̂ t(C) and the model output distribution P̂ (C) of sentences in the corpora.

loss = −
∑
s∈T

V∑
i=1

P̂ t
i (C)log(P̂i(C)) (23)

Here T is the training corpora, V is the number of the sentiment categories. P̂ t(C) is the V -dimension
one-hot coding vector where the elements corresponding to the sentence’s real sentiment category is 1
and other elements 0. The entire model is trained end-to-end with stochastic gradient descent.

4 Experimental Setup and Results

We conduct experiments to empirically evaluate our method by applying it to three benchmarks as fol-
lows.

• MR: Movie reviews with one sentence per review. Classification involves detecting posi-
tive/negative reviews (Pang and Lee, 2005).2

• SST1: Stanford Sentiment Treebank - an extension of MR but provided five kinds of labels, very
negative, negative, neutral, positive and very positive (Socher et al., 2013a). 3

• SST2: Same as SST1 but with neutral reviews removed and binary labels.

The experiment runs on Tesla K40c GPU. Summary statistics of the datasets are in Table 1.

2https://www.cs.cornell.edu/people/pabo/movie-review-data/
3http://nlp.stanford.edu/sentiment/
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Data c l |Vtrain| |Vval| |Vtest|
MR 2 20 8655 961 1046
SST1 5 18 151525 0 2200
SST2 2 19 76836 0 1811

Table 1: Summary statistics for the datasets after tokenization. c: Number of target classes. l: Average
sentence length. |Vtrain|: Training set size. |Vval|: Validation set size. |Vtest|: Test set size. The training
set of SST1 and SST2 includes phrases extracted from sentences and sentences themselves, and test set
only includes sentences.

4.1 Model Variations
We experiment with several variants of the model.

• CNN-GRU-word2vec: A model with pre-trained vectors from word2vec, max pooling and GRU
recurrent unit.

• CNN-LSTM-word2vec: A model with pre-trained vectors from word2vec, max pooling and LSTM
recurrent unit.

• AGV-GRU-word2vec: A model with pre-trained vectors from word2vec, average pooling and GRU
recurrent unit.

• CNN-GRU-rand: A model with randomly initialized vectors, max pooling and GRU recurrent unit.

• CNN-LSTM-rand: A model with randomly initialized vectors, max pooling and LSTM recurrent
unit.

4.2 Results and Dicussion
Results of our models against other methods are listed in tabel 2. Specially, our models with pre-trained
vectors from word2vec4 and max pooling perform best among all the models, of which the one with the
GRU recurrent unit performs better on MR and SST2 while the one with LSTM performs better on SST1.
The classification accuracy is raised by 0.7% on MR and 1.8% on SST2, when implementing CNN-GRU-
word2vec model compared with the existing models. At the same time, the CNN-LSTM-word2vec
model raises the classification accuracy by 0.1%. Furthermore, LSTM reveals good performance on
SST1 while GRU performs better on MR and SST2.

In the meantime, we find that our models with pre-trained vectors all perform better than the others
with randomly initialized vectors on all three corpora. Thus, we infer that the pre-trained vectors on
large-scale corpora can solve the semantic sparsity problem to some degree.

Compared with the existing methods and experiment results, we find that our jointed architecture of
CNN and RNN model performs better than the CNN and RNN models alone in sentiment classification
of short texts. We take advantage of both the CNN model and the RNN model thus get higher classifi-
cation accuracy than the existing models. CNN extracts the local features of input and RNN processes
sequence input while learning the long-term dependencies and get sentence-level feature representation.
The experiments substantiate the validity of our idea.

5 Conclusion

In this work we present a deep neural network architecture that takes advantage of the construction
of convolutional neural network (CNN) and recurrent neural network (RNN) and joint them together
for sentimental analysis of short texts. In particular, our pooling operation on adjacent words is able to
retain the local features and their sequential relations in a sentence. Besides, RNN can learn the long-term
dependencies and the positional relation of features as well as the global features of the whole sentence.

4Pre-trained vectors https://code.google.com/archive/p/word2vec/
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Group Model MR SST1 SST2

Other
NB(Socher et al., 2013b) – 41.0 81.8
SVM(Socher et al., 2013b) – 40.7 79.4

CNN

1-layer convolution(Kalchbrenner et al., 2014) – 37.4 77.1
Deep CNN(Kalchbrenner et al., 2014) – 48.5 86.8
Non-static(Kim, 2014) 81.5 48.0 87.2
Multichannel(Kim, 2014) 81.1 47.4 88.1

Recursive

Basic(Socher et al., 2013b) – 43.2 82.4
Matrix-vector (Socher et al., 2013b) – 44.4 82.9
Tensor (Socher et al., 2013b) – 45.7 85.4
Tree LSTM1 (Zhu et al., 2015) – 48.0 -
Tree LSTM2 (Tai et al., 2015) – 51.0 88.0
Tree LSTM3 (Le and Zuidema, 2015) – 49.9 88.0
Tree bi-LSTM (Li et al., 2015) 0.79 – –

Recurrent
LSTM(Tai et al., 2015) – 46.4 84.9
bi-LSTM(Tai et al., 2015) – 49.1 87.5

Vector
Word vector avg(Socher et al., 2013b) – 32.7 80.1
Paragraph vector(Le and Mikolov, 2014) – 48.7 87.8

TBCNNs
c-TBCNN(Mou et al., 2015) – 50.4 86.8
d-TBCNN(Mou et al., 2015) – 51.4 87.9

CNN-RNN

CNN-GRU-word2vec 82.28 50.68 89.95
CNN-LSTM-word2vec 81.52 51.50 89.56
AVG-GRU-word2vec 81.44 50.36 89.61
CNN-GRU-rand 76.34 48.27 86.64
CNN-LSTM-rand 77.04 49.50 86.80

Table 2: Results of our jointed architecture of CNN and RNN against other methods.

Our models perform well on three benchmark datasets and achieve higher classification accuracy than
the existing models.

Our jointed neural network architecture can be applied to sentence modeling as well as other natural
language processing tasks. For future work, we will extend our models to long texts classification tasks.
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