Linguistic features for Hindi light verb construction identification

Ashwini Vaidya Sumeet Agarwal Martha Palmer
IIT Delhi IIT Delhi University of Colorado, Boulder
irdl1278Qee.iitd.ac.in sumeet@iitd.ac.in martha.palmer@colorado.edu
Abstract

Light verb constructions (LVC) in Hindi are highly productive. If we can distinguish a case such
as nirnay lenaa ‘decision take; decide’ from an ordinary verb-argument combination kaagaz
lenaa ‘paper take; take (a) paper’, it has been shown to aid NLP applications such as parsing
(Begum et al., 2011) and machine translation (Pal et al., 2011). In this paper, we propose an LVC
identification system using language specific features for Hindi which shows an improvement
over previous work (Begum et al., 2011). To build our system, we carry out a linguistic analysis
of Hindi LVCs using Hindi Treebank annotations and propose two new features that are aimed
at capturing the diversity of Hindi LVCs in the corpus. We find that our model performs robustly
across a diverse range of LVCs and our results underscore the importance of semantic features,
which is in keeping with the findings for English. Our error analysis also demonstrates that our
classifier can be used to further refine LVC annotations in the Hindi Treebank and make them
more consistent across the board.

1 Introduction

Light verb constructions (LVC) are found across languages e.g. Japanese, Korean, Persian as well as
English. An LVC consists of a predicating element (usually a noun) and a verb, which is also known
as a light verb. For instance, take a walk or give a sigh are LVCs consisting of light verbs take and
give and their corresponding predicating nouns walk and sigh. The nouns in an LVC contribute to the
event semantics and the light verb supplies additional meaning e.g. agentivity, completeness, or permis-
sion. In Hindi, LVCs are productive and are also sometimes termed as ‘support verb’ or ‘conjunct verb’
constructions. Examples 1 and 2 contrast the use of a simple predicate de ‘give’ with its light verb usage.

(1) Simple predicate

raam=ne mohan=ko kitab d-ii
Ram.M.Sg=FErg Mohan.M.Sg=Dat book.F.Sg give-Perf.F.Sg

‘Ram gave Mohan a book’
(2) Noun-Verb complex predicate

raam=ne us baat=par zor di-yaa
Ram.M.Sg=Frg that topic=loc pressure.M.Sg give-Perf.M.Sg

‘Ram put an emphasis on that topic’

LVCs form a large part of the lexicon in Hindi. In the Hindi treebank (Palmer et al., 2009) (400,000
words), there are nearly 47,163 predicates, of which 37% have been annotated as LVCs. LVCs consist of
predicate types that are far more numerous than simple verbs. Hindi has approximately 700 simple verbs,
but potentially many more unique LVCs. This makes them a highly productive phenomenon in Hindi.
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Butt (2010) notes that light verbs in Hindi LVCs act as a verbalizers in order to create new predicates
and incorporate borrowed items into the language e.g. email kar ‘email do; email’. Therefore, LVCs are
sometimes described as “a preferred way of augmenting the creative potential of the language” (Kachru,
2006, pp 93).

The identification of LVCs in Hindi (as well as other South Asian languages) is an important NLP task,
which has been shown to improve parsing accuracy (Begum et al., 2011) as well as machine translation
performance (Pal et al., 2011). The detection of multi-words such as LVCs has been widely studied and
association measures, linguistic knowledge and parallel corpora have been used.

As LVCs are a type of multiword, a commonly used method is ‘N-gram classification’ (Green et al.,
2013). This strategy extracts n-grams from the corpus, filters them and assigns some values based on
a bigram measures such as log-likelihood or mutual information. A classifier is then used to make a
LVC/non-LVC decision. However, previous work has shown that LVCs benefit from the use of linguistic
features for identification. Vincze et al. (2011) used bigram association measures for English noun-
noun compounds and LVCs. They found that LVC detection improves when linguistic features are used
in addition to n-gram information. Tu and Roth (2011) showed that linguistic and statistical features
perform at par for English LVC detection.

For Hindi, we expect that linguistic features will be useful for automatic detection. At the same time,
the productivity and range of LVC constructions in Hindi result in some specific challenges. In the
next section, we carry out a linguistic analysis of LVCs based on the annotations in the Hindi Treebank.
We use these insights to propose two new features to identify LVCs. Following this, we describe our
experimental setup and then discuss the results.

2 Linguistic challenges for Hindi

The linguistic notion of an LVC differs across languages. While annotating an English corpus with LVC
information, Tu and Roth (2011) make use of a ‘replacing’ principle for their annotators, where if a
candidate light verb like take in take a walk can be replaced by walk without (too much) of a change in
meaning, then a combination like take a walk is considered an LVC.

In Hindi, such a ‘replacing’ principle is not available as the nouns that participate in LVCs are not
necessarily deverbal in nature i.e. the majority do not have a direct verbal counterpart. In fact, LVCs are
a preferred method of introducing new predicates into the language via borrowed nouns. Bhattacharyya
et al. (2007) have described a number of diagnostic criteria for Hindi LVCs, but these are not completely
robust—and can only be applied to LVCs that are transitive. In fact, most linguistic diagnostics mentioned
in Mohanan (1994) and Bhattacharyya et al. (2007) are appropriate for transitive LVCs that occur with
light verb kar. Such cases are the most frequently occurring LVCs in Hindi, but do not represent all
LVCs.

Consequently, the application of diagnostic tests for LVCs for a large corpus can be challenging. The
Hindi Treebank (Palmer et al., 2009) is a relatively large resource that is annotated with LVC information
using the pof label. We use this data to examine the behaviour of Hindi LVCs, focusing on each
component: the light verb and the predicating nominal.

2.1 Light verbs

Jespersen (1965) coined the term ‘light’ verb to refer to verbs that do not behave like standard verbal
predicates as they have a depleted semantic contribution to the event described by the LVC. These light
verbs tend to be similar cross-linguistically e.g. take, make and give can be found in English, Persian and
Hindi. At the same time, these verbs are distributed differently across languages.

In the Hindi Treebank, the distribution of light verbs reflects some interesting facts about LVC forma-
tion in Hindi. Figure 1 shows the 20 most frequently occurring light verbs in the Training and Develop-
ment sections of the Hindi Treebank (approx. 21,000 sentences). These light verbs include the following:
kar ‘do’, ho ‘be/happen’, de ‘give’, hE ‘be’, raha ‘stay’, aa ‘come’, karaa/karvaa ‘cause to do’, lagaa
‘touch/feel’, jataa ‘convey’, le ‘take’, banaa ‘make’, rakh ‘keep’, chal ‘go’, uthaa ‘rise’, daala ‘put’,
laDa ‘fight’, lag ‘seem’, ban ‘become’, maar ‘hit’. Each of these light verbs also appear as ‘full” verbs
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i.e. they can also appear without a nominal predicate, as a non-LVC.

The bar plot in Figure 1 shows that the frequency of kar ‘do’ is the greatest, followed by ho, ‘be’ and
de ‘give’. The light verb kar ‘do’ has many more positive cases of LVCs as compared to non-LVCs.For
other light verbs such as de, the distribution is more even and with other light verbs, there are far more
non-light usages of these verbs as compared to light.
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Figure 1: Light verb distribution in the Training and Development section of the Treebank

If we were to divide the training data by light verb and use the majority class to predict the light or non-
light case, we would still get reasonably good results. This is because the light kar cases far outnumber
the others, and one can expect the majority class baseline to be as high as 0.8. Conversely, a light verb
like aa ‘come’ has more non-light usages than light, hence the majority class prediction would also be
quite high.

Begum et al. (2011) describe a classifier for Hindi LVCs but do not mention the distribution of LVCs
in the data. Therefore, it is difficult to know whether the results are applicable to all LVCs or just the
light verb ‘kar’. In contrast, Butt et al. (2012) focus on light verbs kar ‘do’ and ho ‘be’ alone. In this
paper, we make use of the Hindi Treebank LVC annotations to evaluate our ‘combined’ system, but
provide evaluation across individual light verbs in the corpus. This also implies that we must incorporate
features that are specific not only to ‘kar’, but across all light verbs in the data.

2.2 Nominal predicates

The Hindi Treebank consists of more than 3000 unique nominals that can occur as part of an LVC. At the
same time, some of these nouns can combine with more than one light verb to form an LVC e.g. ishaara
kar ‘signal do; make a sign’ and ishaara de ‘signal give; give a sign’, with some subtle differences in
meaning. It is possible that one of these combinations is more frequent than the other- or they may be
equiprobable. There are also certain nouns where only one light verb is possible e.g. maut ho ‘death be;
die’.

We carried out a corpus study, examining 1853 unique nouns from the Training and Development sec-
tions of the Hindi Treebank and extracted the number of light verbs that occurred with them. Although,
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Figure 2: Number of light verbs that occur with a unique noun. (t=1853)

Figure 2 shows a ‘long tail’, where a large number of nouns occur with just one light verb, about 1/4th
of the data consists of nouns that alternate with more than one light verb.

These alternations show that a collocational measure that only looks at the bigram occurrences may
not be able to capture a noun-light verb alternation that is relatively infrequent. Therefore, linguistic
information would be required to identify a predicating nominal that appears in a number of contexts. In
the following section, we propose new features that could help capture this information.

3 Linguistic features used for LVCs

English LVC identification focuses on extracting linguistic features for LVCs (Tan et al., 2006; Grefen-
stette and Teufel, 1995; Stevenson et al., 2004). For example, the morpho-syntactic similarity between
nominal predicates and their verbal counterparts (e.g. walk and take a walk) is often exploited. Other
cues include the presence of indefinite determiners (such as a) before the nominal predicate.

Tu and Roth (2011) look at both statistical and linguistic contexts to detect English complex predicates.
Among their local linguistic features, they utilize bigram information about the nominal head and light
verb, the nouns themselves and the Levin verb class members of deverbal nouns. In a more recent study,
Chen et al. (2015) have described an improvement over Tu and Roth (2011)’s performance by using
lexical features from WordNet, as well as word sense information. Using the Tu and Roth (2011) testset,
they report a 0.89 F-score for English LVCs.

] Author/Feature \ Tan et al’06 (Eng) \ Tu and Roth’11 (Eng) \ Begum et al’11 (Hin) ‘
Deverbal noun Y Y
Noun semantics Y Y Y
Light verb list Y Y Y
Presence post-posn Y
Presence determiner Y Y
Collocational measure Y Y

Table 1: Commonly used linguistic features for English and Hindi LVC detection.
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The work for Hindi LVC detection makes use of a similar set of linguistic features. Begum et al.
(2011) look for the presence of postpositions and demonstratives, which preferentially do not occur with
a noun that is a part of an LVC. Like Tu and Roth (2011), they use the verb-object bigram and the noun
class information from Hindi WordNet (Narayan et al., 2002). They have achieved an accuracy of around
0.85 for identification of Hindi complex predicates. More recently, Singh et al. (2015) have compared
word embeddings and WordNet-based measures to detect Hindi noun compounds and LVCs. While word
embeddings are effective for compounds, they perform poorly for LVCs, suggesting the importance of
more precise linguistic features.

3.1 Linguistic features for Hindi

Our linguistic analysis of LVCs indicates that the properties of both noun and light verb are crucial as
features for identifying LVCs. In the previous section, we described some of the commonly used features
for LVC identification. Table 1 shows some of these: the presence of post-positions after the predicating
noun, collocational features and lexical features.

In this section, we introduce two new features that are based on our study of Hindi LVCs. The first is
based on the idea that there are semantic constraints on the combination of a particular noun and light
verb. Sulger and Vaidya (2014) examined the combinatorial properties of noun and light verb based on
relative frequency of occurrence. They found that a light verb such as de ‘give’ is likelier to combine
with nouns that have a ‘transfer’ property, whereas nouns that occur with kar ‘do’ will occur with nouns
that describe actions with animate agents. Light verb ho ‘be’ often appears with stative nouns or those
that indicate mental states.

In order to capture these properties, we used a feature that associated a light verb with the ontolog-
ical property of the noun that is likely to occur with it. For example kar was associated with Phys-
ical_Action_Abstract_Inanimate and de ‘give’ with Communication_Action_Abstract_Inanimate. These
ontological properties were extracted from Hindi WordNet (Bhattacharyya, 2010). If a noun occurred
with the ontological property that was associated with a particular light verb, it was marked positively
for this feature.

The second feature was based on the idea that predicating nominals usually introduce arguments of
their own. These usually occur with the postpositions par ‘on’, se ‘with’, ko ‘to’ or kii ‘of’. These indi-
cate that a nominal has introduced an argument of its own—and is likely to be a predicating nominal rather
than an ordinary argument of the verb. Examples 3-5 illustrate the cases where a nominal introduced an
argument with par, se or kii.

(3) pulis=ne logon=par hamlaa ki-yaa
police=Erg people=loc attack.M.Sg do-Perf.M.Sg
‘(The) Police attacked the people’

(4) samir=ne mohan=se nafrat  k-ii
samir.M.Sg=FErg Mohan.M.Sg=instr hatred.F do-perf.F.Sg
‘Samir hated Mohan’

(5) samir=ne ghadii=Kkii chorii k-ii

Samir.M.Sg-Erg watch.F.Sg-gen theft.F do-Perf.F
‘Samir stole the watch’

This feature was introduced to overcome some of the shortcomings of the ‘presence of post-position’
feature on the noun (Table 1). The post-position only looks at the presence or absence of post-positions on
the predicating noun, whereas the proposed feature looks at the postpositions on the nominal’s arguments.
The former feature is restricted to agentive nominals, whereas this feature is applicable to all predicating
nominals that license arguments.

4 Experimental setup

We make use of the Hindi Treebank data to train our LVC identification system. The Hindi Treebank
annotation guidelines describe the use of the label pof to identify Hindi LVCs. They make use of
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Test Test

Train | Development (Treebank) | (ICON)

News 14282 | 3500 1708 2757
LVC 6739 | 1665 790 1056
non-LVC | 7543 | 1835 918 1701

Table 2: Training, Development and Test instances, with the number of light and non-light verbs

annotators’ linguistic intuition to identify pof cases with a “full understanding that it may lead to some
inconsistency in the data” (Bharati et al., 2012, p41). This is probably because of the lack of reliable
linguistic diagnostics mentioned earlier in section 2. As a result, we can think of the Hindi Treebank
annotation of LVCs as reflecting a fairly generous conceptualization of LVCs.

In order to reduce any errors and inconsistencies, in this work we take into consideration only the
top 20 most frequently occurring light verbs in the corpus'. These account for 90% of the LVCs in the
Treebank. The remaining light verbs occur only less than 10 times in the corpus and we assume that low
frequency might indicate an annotation error. Although this may leave out some valid cases of LVCs, we
make the assumption that LVCs represented by these 20 light verbs give us a fairly good representation of
the LVC construction. Begum et al. (2011) also make use of the 20 most frequently occurring light verbs
in their model. However, they do not provide a list of these light verbs in their paper. Although we may
not be able to make a very exact comparison with their model, we would imagine that the differences
will be minor, with respect to the low frequency light verbs.

In order to select candidates, we identified positive and negative instances of LVCs in the Hindi parse
trees. In the Hindi dependency parse tree, the predicative noun is a dependent of the light verb and
in the majority of the cases, both noun and light verb occur next to each other in the sentence. The
noun and light verb can be scrambled away from each other, but we found this to be fairly rare in the
Treebank LVC examples. Therefore, we chose candidates based on proximity; e.g. if a phrase annotated
as an NP occurred next to a verb phrase containing a light verb, this was taken to be a candidate for LVC
identification. Apart from NP phrases, we also accepted phrases annotated as ‘BLK’, which indicated that
the noun was borrowed from English. Such nouns often occur as part of LVCs, as complex predication
is used to introduce new words into the language.

Our training data made use of the splits provided by the Hindi Treebank, to which we added a small
sub-part of the Treebank consisting of conversational data, taken from fiction. The rest of the Hindi
Treebank is news text. We made use of the training and test splits given by the Treebank, but kept a
small portion of the training set as a development set. Table 2 shows the division between the training,
development and test sets and the distribution of positive and negative classes. Across the board, we find
that the number of non-LVCs is higher than the LVC instances.

The two test sets are drawn from different genres. The Treebank test set is from the testing split
provided by the Hindi Treebank and is news text. The second test set consists of sentences taken from
literary criticism. This data is not from the Treebank, but taken from the ICON 2009 Shared task for
Hindi parsing (Husain, 2009) and we will refer to this test set as ‘ICON’. We included this test set to
compare the performance of our model with Begum et al. (2011).

4.1 Features

The features used for identification of LVCs can be grouped into roughly four categories viz. lexical,
morphosyntactic, collocational and semantic. We used features that are similar to those included in
Begum et al. (2011) as well as Tu and Roth (2011), and additionally introduced two new features (section
3.1). Table 3 shows the set of features used for identifying LVC cases in the Treebank. The other features
have been used in previous work to identify English or Hindi LVCs. For the collocational features, the
values were obtained from a large corpus (Hindi Wikipedia) and then converted to binary features. For
log-likelihood, this was done using a table of critical values to decide whether the ratio was significant.

'These verbs are listed in section 2.1
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Accordingly, it got the binary feature O or 1. In the case of PMI, we checked whether its value was
greater than or less than O for a given noun and verb candidate. If it was greater, then the noun-verb pair
was likely to be a better collocation.

Type No | Feature
. 1 Verb lemma (Baseline)
Lexical
2 Noun lemma
3 Postposition after noun
Morpho-syntactic 4 Arguments of eventive noun
(eventive nouns have an ‘extra’ argument)
5 Log-likelihood value
Collocational 6 Pointwise Mutual Information value
7 Ontological category of noun
Semantic 8 Acceptability of noun with a given light verb

Table 3: Features used for LVC detection

4.2 Model

We experimented with two types of models: a linear model (Logistic Regression) and SVM with an
RBF kernel. The eight feature types described earlier generated 3278 features, over which we performed
feature selection to choose 1638 (roughly half) of the features based on their individual f-scores. The
motivation to carry out feature selection was because of the large number of lexical features, some of
which may not have been significantly useful for the classifier. We made use of the fselect.py tool for
feature selection (Chen and Lin, 2006).

We used the Scikit-learn package (Pedregosa et al., 2011) to train our model. Scikit-learn uses the
LIBSVM implementation of support vector machines (Chang and Lin, 2011) and the LIBLINEAR im-
plementation for logistic regression (Fan et al., 2008). We made use of 10-fold cross validation to find
the best value of C and gamma for the RBF kernel (C=1, gamma=0.05).

5 Evaluation

We trained our two models using the features described in section 4.1 and evaluated them against the
two test sets that we described earlier. We used the verb lemma as our baseline feature. Table 4 shows
the performance of our system in comparison to the verb lemma baseline and the system described in
Begum et al. (2011).

Logistic Regression SVM with RBF
ICON Precision | Recall | F1 Precision | Recall | F1
LVC 87.77 76.13 81.54 | 88.42 76.7 82.15
Non-LVC 86.31 9341 89.72 | 86.63 93.76 90.06
Accuracy 86.79 87.23
Begum et. al. (2011) 85.28
Verb lemma Baseline 75.87 75.66
News Precision | Recall | F1 Precision | Recall | F1
LVC 86.36 91.39 88.80 | 85.8 90.25 87.97
Non-LVC 92.20 87.58 89.83 | 91.22 87.14 89.13
Accuracy 89.34 88.58
Verb lemma Baseline 80.97 80.91

Table 4: Precision, recall and F1 scores for the ICON and News test sets

Both our models perform better than Begum et al. (2011) on the same test set. Additionally, we also
evaluated our system on the news test set from the Hindi Treebank. The performance on the news dataset
is better, most probably because of the smaller number of unseen nouns in news (180) as compared to
ICON (612).

The diversity of the LVCs in Hindi implies that we would like to check the performance of our system
across all light verbs. As the light verb kar is the most frequently occurring light verb, we expect
that it will give us the best results. We carried out two types of experiments for light verbs: first we
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ran individual classifiers across light verbs using the same feature set and compared its micro-averaged
performance with that of the combined model. We found that this result was almost exactly similar to the
combined model. As a second experiment, we also looked at the performance for individual light verbs
within the combined model itself.

Table 5 describes the performance for individual light verbs kar, ho, de and le. The other light verbs
are fairly infrequent, hence they are grouped into LF-TR for transitive light verbs and LF-INTR for
intransitive light verbs. We find that LVCs with kar are identified with high accuracy because of their
high frequency. The performance is slightly less accurate for other light verbs, notably 4o ‘be’. However,
they still perform above the baseline, indicating that the features are robust enough to identify a wide
range of LVCs. The LF-INT cases have a poor recall because the number of negative examples far
outnumber the positive. The baseline accuracy for LF-INT also reflects this imbalance. We see a similar
performance for individual light verbs in the news test set.

Individual LVs | LVsin test data | Precision | Recall | F1 Baseline | Accuracy
kar ‘do’ 650 96.54 95.07 | 95.80 | 81.23 93.23

ho ‘be’ 454 72.26 83.49 | 7747 | 54.62 77.97

de ‘give’ 216 85.36 70.00 | 76.92 | 53.7 80.5

le ‘take’ 110 91.66 52.38 | 66.66 | 61.81 80
LF-TR 263 85.71 42.85 57.14 | 73.0 86.31
LF-INT 1064 83.33 16.12 | 27.02 | 88.34 89.84

Table 5: Precision, Recall and F1 for individual light verbs in the ICON test set, using Logistic Regres-
sion. The baseline accuracy uses the verb lemma as the feature.

5.1 Discussion

In order to understand the most informative features for our model, we examined the top 25 best per-
forming features for the SVM model. We found that the best features for the positive class included the
light verb lemma kar and a high-frequency noun lemma shuru ‘begin’. Both log-likelihood and PMI
were highly predictive of the positive class as well as the new feature using nominal argument postposi-
tions. Semantic features such as ‘Artifact,Object,Inanimate,Noun’ were predictive of the negative class.
This shows us that the linguistically motivated features are indeed effective for identification. From the
analysis, it also appeared that semantic features overall can be more discriminative than lexical features
for Hindi. This result is congruent with the results from English in Chen et al. (2015), who also use
WordNet and sense annotated data as features.

We also made use of the probability scores for each class to understand the confidence of the classifier
in assigning an instance to a positive or negative class. We found that in general, both classifiers were
more confident in predicting the negative class label as their probabilities formed a distribution that was
grouped closer to 1. The scores given to the positive class on the other hand were more distributed, with
several instances that were less than 0.5. When we examined the LVCs with lower confidence scores,
we saw that this was a mixed bag. For example, there were some LVCs like bhojan kar ‘meal do; eat’,
which appeared to be non-LVCs. Others such as photo le ‘photo take; take a photo’ were perhaps cases
of noun incorporation as suggested in Davison (2005). Still others were cases like bojh daal ‘weight put;
to be a burden (on someone)’, which were more idiomatic in nature. This result shows that perhaps some
of these cases are simply less frequent, but also that LVC annotation in the Hindi Treebank itself could
be re-considered, or made more fine-grained based on the confidence scores of these models.

Our experiments show that LVCs in Hindi consist of diverse types that can be identified automatically
using linguistic features. Unlike English, where the deverbal noun can be used as an important lexical
indicator of ‘lightness’, in Hindi it becomes necessary to make use of other morpho-syntactic cues such
as postpositions. However, it appears that the role of semantic features in general seems to be important
for light verb identification in Hindi as well as English.

The models we have described in this paper show an improvement over previous work, but at the same
time they can also be used to further refine the LVC annotation in the Hindi Treebank. This would give
us more clarity with respect to the linguistic behaviour of these cases in Hindi and serve as a guideline
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for LVC annotation in the future.
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