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Abstract

A key component in surface realization in natural language generation is to choose concrete
syntactic relationships to express a target meaning. We develop a new method for syntactic choice
based on learning a stochastic tree grammar in a neural architecture. This framework can exploit
state-of-the-art methods for modeling word sequences and generalizing across vocabulary. We
also induce embeddings to generalize over elementary tree structures and exploit a tree recurrence
over the input structure to model long-distance influences between NLG choices. We evaluate the
models on the task of linearizing unannotated dependency trees, documenting the contribution of
our modeling techniques to improvements in both accuracy and run time.

1 Introduction

Where natural language understanding systems face problems of ambiguity, natural language genera-
tion (NLG) systems face problems of choice. A wide coverage NLG system must be able to formulate
messages using specialized linguistic elements in the exceptional circumstances where they are appro-
priate; however, it can only achieve fluency by expressing frequent meanings in routine ways. Empirical
methods have thus long been recognized as crucial to NLG; see e.g. Langkilde and Knight (1998).

With traditional stochastic modeling techniques, NLG researchers have had to predict choices using
factored models with handcrafted representations and strong independence assumptions, in order to avoid
combinatorial explosions and address the sparsity of training data. By contrast, in this paper, we leverage
recent advances in deep learning to develop new models for syntactic choice that free engineers from
many of these decisions, but still generalize more effectively, match human choices more closely, and
enable more efficient computations than traditional techniques.

We adopt the characterization of syntactic choice from Bangalore and Rambow (2000): the problem
is to use a stochastic tree model and a language model to produce a linearized string from an unordered,
unlabeled dependency graph. The first step to producing a linearized string is to assign each item an
appropriate supertag—a fragment of a parse tree with a leaf left open for the lexical item. This process
involves applying a learned model to make predictions for the syntax of each item and then searching over
the predictions to find a consistent assignment for the entire sentence. The resulting assignments allow
for many possible surface realization outputs because they can underdetermine the order and attachment
of adjuncts. To finish the linearization, a language model is used to select the most likely surface form
from among the alternatives. While improving the language model would improve the linearized string,
we focus here on more accurately predicting the correct supertags from unlabeled dependency trees.

Our work exploits deep learning to improve the model of supertag assignment in two ways. First,
we analyze the use of embedding techniques to generalize across supertags. Neural networks offer a
number of architectures that can cluster tree fragments during training; such models learn to treat related
structures similarly, and we show that they improve supertag assignments. Second, we analyze the
use of tree recurrences to track hierarchical relationships within the generation process. Such networks
can track more of the generation context than a simple feed-forward model; as a side effect, they can
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simplify the problem of computing consistent supertag assignments for an entire sentence. We evaluate
our contributions in two ways: first, by varying the technique used to embed supertags, and then by
comparing a feed-forward model against our recurrent tree model.

Our presentation begins in § 2 with an introduction to tree grammars and a deterministic methodology
for inducing the elementary trees of the grammar. Next, § 3 presents the techniques we have developed
to represent a tree grammar using a neural architecture. Then, in § 4, we describe the specific models
we have implemented and the algorithms used to exploit the models in NLG. The experiments in § 5
demonstrate the improvement of the model over baseline results based on previous work on stochastic
surface realization. We conclude with a brief discussion of the future potential for neural architectures to
predict NLG choices.

2 Tree Grammars

Broadly, tree grammars are a family of tree rewriting formalisms that produce strings as a side effect of
composing primitive hierarchical structures. The basic syntactic units are called elementary trees; ele-
mentary trees combine using tree-rewrite rules to form derived phrase structure trees describing complex
sentences. Inducing a tree grammar involves fixing a formal inventory of structures and operations for
elementary trees and then inferring instances of those structures to match corpus data.

2.1 Grammar Formalism
The canonical tree grammar is perhaps lexicalized tree-adjoining grammar (LTAG) (Joshi and Schabes,
1991). The elementary trees of LTAG consist of two disjoint sets with distinct operations: initial trees
can perform substitution operations and auxiliary trees can perform adjunction operations. The substi-
tution operation replaces a non-terminal leaf of a target tree with an identically-labeled root node of an
initial tree. The adjunction operation modifies the internal structure of a target tree by expanding a node
identically-labeled with the root and a distinguished foot note in the auxiliary tree. The lexicalization of
the the grammar requires each elementary tree to have at least one lexical item as a leaf.

LTAG incurs computational costs because it is mildly context-sensitive in generative power. Several
variants reduce the complexity of the formalism by limiting the range of adjunction operations. For
example, the Tree Insertion Grammar allows for adjunction as long as it is either a left or right auxiliary
tree (Schabes and Waters, 1995). Tree Substitution Grammars, meanwhile, allow for no adjunction and
only substitutions (Cohn et al., 2009). We adopt one particular restriction on adjunction, called sister-
adjunction or insertion, which allows trees to attach to an interior node and add itself as a first or last
child (Chiang, 2000). Chiang’s sister-adjunction allows for the flat structures in the Penn Treebank while
limiting the formalism to context-free power.

2.2 Grammar Induction
In lexicalized tree grammars, the lexicon and the grammatical rules are one and the same. The set of
possible grammatical moves which can be made are simultaneously the set of possible words which can
be used next. This means that inducing a tree grammar from a data set is a matter of inferring the set of
constructions in the data.

We follow previous work in using bracketed phrase structure corpora and deterministic rules to induce
the grammar (Bangalore et al., 2001; Chiang, 2000). Broadly, the methodology is to split the observed
trees into the constituents which make it up, according to the grammar formalism. We use head rules
(Chiang, 2000; Collins, 1997; Magerman, 1995) to associate internal nodes in a bracketed tree with the
lexical item that owns it. We use additional rules to classify some children as complements, correspond-
ing to substitution sites and root notes of complement trees; and other children as adjuncts, corresponding
to insertion trees that combine with the parent node, either to the right or to the left of the head. This
allows us to segment the tree into units of substitution and insertion.1

1One particular downside of deterministically constructing the grammar this way is that it can produce an excess of superflu-
ous elementary trees. We minimize this by collapsing repeated projections in the treebank. Other work has provided Bayesian
models for reducing grammar complexity by forcing it to follow Dirichlet or Pitman-Yor processes (Cohn et al., 2010)—an
interesting direction for future work.
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(A)  Tree Node Embedding (B)  Convolutional Filter Encoding

Figure 1: Embedding supertags using convolutional neural networks. In (A), a tree is encoded by its
features and then embedded. In (B), convolutional layers are used to encode the supertag into a vector.

3 Neural Representations

The grammar induction of § 2 allows us to construct an inventory of supertags to match a corpus. For
NLG, we also need to predict the most likely supertag for any lexical item given the generation context.
We approach this problem using neural networks. In particular, this work makes two contributions to
improve stochastic tree modeling with neural networks. First, we represent supertags as vectors through
embedding techniques that enable to model to generalize over complex, but related structures. Second,
we address the hierarchical dependence between choices using a recurrent tree network that can capture
long-distance influences as well as local ones. We now describe these representations in more detail.

3.1 Embedding Supertags
Different supertags for the same word can encode differences in the item’s own combinatorial syntax,
differences in argument structure, and differences in word order. Accordingly, words have many related
supertags, with substantial overlaps in structure, and, presumably, corresponding similarities in their
patterns of occurrence. A traditional machine learning approach to supertag prediction would treat indi-
vidual supertags as atoms for classification; generalizing across supertags would require linking model
parameters to handcrafted features or back-off categories.

By contrast, neural techniques work by embedding such tokens into a vector space. This process learns
an abstract representation of tokens that clusters similar items together and makes further predictions as
a function of those items’ learned features. The resulting ability to generalize across sparse data seems
to be one of the most important reasons for the success of deep learning in NLP.

The simplest way to embed supertags is to treat each structure as a distinct token that indexes a corre-
sponding learned vector. This places no constraints on the learned similarity function, but it also ignores
the hierarchical structure of the elementary trees themselves. Previous work on deep learning with graph
structures suggests convolutional neural networks can exploit similarities in structure (Kalchbrenner et
al., 2014; Niepert et al., 2016). Thus, we developed analogous techniques to encode supertags based
on their underlying tree structure. In particular, to embed a supertag, we embed each node, group the
resulting vectors to form a tensor, and then summarize the tensor into a single vector using a series of
convolutional neural networks.

Note that each elementary tree is a complex structure with nodes labeled by category and assigned a
role that enables further tree operations. The root node’s role represents the overall action associated with
that elementary tree—either substitution or insertion. The remaining nodes either have the substitution
point role or the spine role—they are along the spine from root to the lexical attachment point, and thus
provide targets for further insertion.

We first embed each node independently, then combined the vectors to form a tensor of embeddings.
Specifically, symbols representing the syntactic category and node roles are treated as distinct vocabulary
tokens, mapped to integers, and used to retrieve a vector representation that is learned during training.
The vectors are grouped into a tensor by placing the root node into the first cell of the first row and left-
aligning the descendants in the subsequent rows. The two tensors are concatenated along the embedding
dimension. This embed-and-group method is shown in on the left in Figure 1.
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Figure 2: A recurrent tree network. (A) The dependency structure as a tree. (B) The dependency structure
as a sequence.

Using a series of convolutional neural networks which learn their weights during training, the tensor
of embeddings can be reduced to a single vector. To reduce the tensor to a vector, the convolutions are
designed with increasingly larger filter sizes. Additionally, the dimensions are reduced alternatingly to
also facilitate the capture of features. The entire process is summarized in Eq. 1 with Λ representing
the supertags, G representing embedding matrices, and C representing the convolutional neural network
layers. Specifically, Gs is the syntactic category embedding matrix and Gr is the node role embedding
matrix. Each convolutional layer C is shown with its corresponding height and width as Ci,j . The
encoding first constructs the tensor, TΛ, through the embed-and-group method. Then, the embedding
matrix GΛ is summarized from TΛ using the series of convolutional layers.

TΛ = [Gs(Λsyntactic category); Gr(Λrole)]

GΛ = C4,5(C3,1(C1,3(C2,1(C1,2(TΛ))))) (1)

The final product, a vector per supertag, is aggregated with the other vectors and turned into an embed-
ding matrix. This is visualized in on the right in Figure 1. During training and test time, supertags are
simply input as indices and their feature representations retrieved as an embedding.

3.2 Recurrent Tree Networks
Our models predict supertags as a function of the target word and its context. Neural networks make it
possible to generalize over such contexts by learning to represent them with a hidden state vector that
aggregates and clusters information from the relevant history. Our approach is to do this using a recurrent
tree network. While recurrent neural networks normally use the previous hidden state in the sequential
order of the inputs, recurrent tree networks use the hidden state from the parent. Utilizing the parent’s
hidden state rather than the sequentially previous hidden state, the recurrent connection can travel down
the branches of a tree. An example of a recurrent tree network is shown in Figure 2.

In our recurrent tree network, child nodes gain access to a parent’s hidden state through an internal
tree state. During a tree recurrence, the nodes in the dependency graph are enumerated in a top-down
traversal. At each step in the recurrence, the resulting recurrent state is stored in the tree state at the step
index. Descendents access the recurrent state using a topological index that is passed in as data.

The formulation is summarized in Equation 2. The input to each time step in the current tree is the
data, xt, and a topological index, pt. The recurrent tree uses pt to retrieve the parent’s hidden state, sp,
from the tree state, Stree, and applies the recurrence function, g()̇. The resulting recurrent state is the
hidden state for child node, sc. The recurrent state sc is stored in the tree state, Stree, at index t.

sc = RTN(xt, pt)
= g(xt, Stree[pt])
= g(xt, sp)

Stree[t] = sc (2)

The use of topological indices allows for many recurrent tree networks to be run in parallel on a GPU
for efficiency. GPU implementations must be formulated homogeneously so that the same operations are
applied across the entire data structure. Normally, tree operations involve conditional access to parent
nodes, but using topological indices and a tree state accesses the parent in a homogeneous way.
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4 Models

To analyze the representations we describe in § 2 and § 3, we developed two alternative architectures for
predicting supertags in context. The first is a feed-forward neural network designed to solve a closely
analogous task to the supertagging step of Bangalore and Rambow (2000)’s original FERGUS model.
We call it Fergus-N (for Neuralized). The second uses a recurrent tree network to model the generation
context. Because it has this richer context representation, it takes advantage of a slightly different char-
acterization of the supertag prediction problem to streamline the problem solving involved in using the
model. We call this Fergus-R (for Recurrent).

For both stochastic tree models, a recurrent neural network language model is used to complete the
linearization task. The same language model is used to eliminate the confound of language model per-
formance and measure performance differences in the stochastic tree modeling.

4.1 Model 1: Fergus-N
Fergus-N is a stochastic tree model which uses local parent-child information as inputs to a feed-forward
network. Each parent-child pair is treated as independent of all others. The probability of the parent’s
supertag is predicted using an embedding of the pair’s lexical material and an embedding of the child’s
supertag. (Our experiments compare the different embedding options surveyed in § 3.) Training maxi-
mizes the likelihood of the training data according to the model. Formally, our objective is to minimize
the negative log probability of the observed parent supertags for each parent-child pair, as formally de-
fined in Eq. 3.

minθ − [
∑
p

∑
p→c

log[Pθ(tagp|lexp, lexc, tagc)] +
∑
c

log[Pθ(tagc|lexp, lexc)]] (3)

Here tagp is the parent supertag, tagc is the child supertag, lexp is the parent’s lexical material, and
lexc is the child’s lexical material. Note that the probability of supertags for the leaves of the tree are
computed with respect to their parent’s lexical material.

The model is implemented as a feed-forward neural network. Equation 4 details the model formula-
tion. The lexical material, lexp and lexc, are embedded using the word embedding matrix, Gw, concate-
nated, and mapped to a new vector, ωlex, with a fully connected layer, FC1. The child supertag, tagc, is
embedded using the target supertag embedding Gs and concatenated with the lexical vector, ωlex, form-
ing an intermediate vector representation of the node, ωnode. The node vector is repeated for each of
the parent’s possible supertags, tagsetp, and then concatenated with their embeddings to construct the
set of treelet vectors, Ωtreelet. The vector states for the leaf nodes are similarly constructed, but instead
combine the lexical vector, ωlex with the embeddings of the child’s possible supertags, tagsetc. The final
operation induces a probability distribution over the treelet and leaf vectors using a score computed by
the vectorized function, Ψpredict, as the scalar in a softmax distribution.

ωlex = FC1([Gw(lexp); Gw(lexc)]) (4)

ωnode = concat([Gs(tagc); ωlex])
Ωtreelet = concat([repeat(ωnode), Gs(tagsetp)])
Ωleaf = concat([repeat(ωlex), Gs(tagsetc)])

Pθ(tagp,i|lexp, lexc, tagc) =
exp(Ψpredict(ωtreeleti)))∑

j∈|tagsetp| exp(Ψpredict(ωtreeletj )))

Pθ(tagc,i|lexp, lexc) =
exp(Ψpredict(ωleafi

)))∑
j∈|tagsetc| exp(Ψpredict(ωleafj

)))

At generation time, we are given a full dependency tree. A decoding step is necessary to compute
a high probability assignment for all supertags simultaneously. In this process, tags for children must
be chosen consistently with one another, and the resulting probabilistic information must be propagated
upward to rerank tags elsewhere in the tree. We solve this problem with an A* algorithm. At each step,
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the algorithm uses a priority queue to select subtrees based on their inside-outside scores. The inside
score is computed as the sum of the log probabilities of the supertags in the subtree. The outside score is
the sum of the best supertag for nodes outside the subtree, similar to Lewis and Steedman (2014). Once
selected, the subtree is attached to the possible supertags of its parent that are both locally consistent
and consistent among its already attached children. These resulting subtrees are placed into the priority
queue and the algorithm iterates to progress the search. The search succeeds when the first complete tree
has been found.2

4.2 Model 2: Fergus-R

Fergus-R is a stochastic tree model implemented in a top-down recurrent tree network and augmented
with soft attention. For each node in the input dependency tree, soft attention—a method which learns
a vectorized function to weight a group of vectors and sum into a single vector—is used to summarize
its children. The soft attention vector and the node’s embedded lexical material serve as the input to
the recurrent tree. The output of the recurrent tree represents the vectorized state of each node and
is combined with each node’s possible supertags to form prediction states. Importantly, removing the
conditional dependence on descendents’ supertags results in the simplified objective function in Eq. 5
where lexC is the children’s lexical information, lexp is the parent’s lexical information, tagp is the
supertag for the parent node, and RTN is the recurrent tree network.

minθ − [
∑
(p,C)

Pθ(tagp|RTN, lexp, lexC)] (5)

The Fergus-R model uses only lexical information as input to calculate the probability distribution over
each node’s supertags. The specific formulation is detailed in Eq. 6. First, a parent node’s children, lexC ,
are embedded using the word embedding matrix, Gw, and then summarized with an attention function,
Ψattn, to form the child context vector, ωC . The child context is concatenated with the embedded lexical
information of the parent node, lexp, and mapped to a new vector space with a fully connected layer,
FC1, to form the lexical context vector, ωlex. The context vector and a topological vector for indexing
the internal tree state (see § 3.2) are passed to the recurrent tree network, RTN , to compute the full state
vector for the parent node, ωnode. Similar to Fergus-N, the state vector is repeated and concatenated with
the vectors of the parent node’s possible supertags, tagsetp, and mapped to a new vector space with a
fully connected layer, FC2. A vector in this vector space is labeled ωelementary because the combination
of supertag and lexical item constitutes an elementary tree. The last step is to compute the probability of
each supertag using the vectorized function, Ψpredict.

ωC = Ψattn(Gw(lexC)) (6)

ωlex = FC1(concat(ωC , Gw(lexp)))
ωnode = RTN(ωlex, topology)
Ωelementary = FC2(concat(repeat(ωnode), Gs(tagsetp)))

Pθ(tagp,i | RTN, lexp, lexC) =
exp(Ψpredict(ωelementaryi

)))∑
j∈|Ω| exp(Ψpredict(ωelementaryj))

Although the same A* algorithm from Fergus-N is used, the decoding for Fergus-R is far simpler.
As supertags are incrementally selected in the algorithm, the inside score of the subsequent subtree is
computed. Where Fergus-N had to compute a incremental dynamic program to evaluate the inside score,
Fergus-R decomposes into a sum of conditionally independent distributions. The resulting setup is a
chart parsing problem where the inside score of combining two consistent (non-conflicting) edges is just
the sum of their inside scores.

2Although, the data has some noise so that sometimes there is no complete tree that can possibly be formed.
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4.3 Linearization
The final step to linearizing the output of Fergus-N and Fergus-R—a dependency tree annotated with
supertags and partial attachment information—is a search over possible orderings with a language model.
There are many possibilities, primarily due to ambiguities in insertion order. Following Bangalore and
Rambow (2000), a language model is used to select between the alternate orderings. The language model
used is a two-layer LSTM trained using the Keras library on the surface form of the Penn Treebank. The
surface form was minimally cleaned3 to simulate realistic scenarios.

The difficulty of selecting orderings with a language model is that the possible linearizations can
grow exponentially. In particular, our implementations result in a large amount of insertion trees.4 We
approach this problem using a prefix tree which stores the possible linearizations as back-pointers to their
last step and the word for the current step. The prefix tree is greedily searched with 32 beams.

5 Experiments

Using the representations of § 3, the models of § 4 can be instantiated in six different ways. We can use
a feed-forward Fergus-N architecture or a recurrent Fergus-R architecture. Each architecture can embed
supertags minimally, by learning a scalar corresponding to each supertag; atomically, by learning an
embedding vector corresponding to each supertag; or structurally, by using convolutional coding over
each supertag’s tree structure to form a vector. In each case, the vector (a size-one vector in the minimal
condition) is concatenated as described in § 4.

5.1 Training
We trained six such models using a common experimental platform. We started from the Wall Street
Journal sections of the Penn Treebank, which have been previously used for evaluating statistical tree
grammars (Chiang, 2000).5 Our data pipeline breaks each sentence in the treebank into component ele-
mentary trees and then represents the sentence in terms of a derivation tree, specifying the tree-rewriting
operations required to construct the actual treebank surface tree from the basic supertags. Removing
supertags from the derivation tree leads to the unlabeled dependency trees our models assume as input.

From this input, we extracted the atomic supertag prediction instances and trained a network defined
by each of the architectures of § 4 and each of the supertag representations of § 3. As always, we used
Sections 02-21 for training, Section 22 for development, and Section 23 for testing. A complete descrip-
tion of network organization and training parameters is given in the appendix. The code and complete
experimental setup are publicly available.6

5.2 Performance Metrics
We evaluate the performance of the models in several ways. First, we look at the accuracy of the supertag
predictions directly output by each model. Second, we look at the accuracy of the final supertags ob-
tained by decoding the model predictions to the best-ranked consistent global assignment. These metrics
directly assess the ability of the models to successfully learn the target distributions.

Next, we evaluate the models on the full NLG task, including linearization. The linearization task
allows more freedom in supertag classifications because supertags may differ in minor ways, such as
the projections present along the spine, which will not affect generation output for a particular target
input. The freedom means models may not be penalized based on decisions that don’t matter—thus, at
the same time, it also mutes the distinctions between classification decisions. We report a modified edit
distance measure, Generation String Accuracy, following (Bangalore et al., 2000). Since linearization
uses a beam search, we report statistics both for the top-ranked beam and for the empirically based beam
among the candidates computed during search. The difference gives an indication of the effect of the
language model in guiding the decisions that remain after supertagging.

3With respect to the surface form, the only cleaning operations were to merge proper noun phrases into single tokens.
Punctuation and other common cleaning operations were not performed.

4Many of the validation examples had more than 240 possible linearizations.
5A possible additional data source, the data from the 2011 Shared Task on Surface Realization, was not available.
6https://github.com/braingineer/neural_tree_grammar
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Accuracy
Model Embedding Raw Model After Decoding Running Time
Fergus-N Structural 58.17% 57.40% 1.97s

Atomic 60.69% 55.56% 1.81s
Minimal 52.09% 54.18% 2.02s

Fergus-R Structural 67.62% 57.04% 0.30s
Atomic 82.65% 62.73% 0.36s
Minimal 10.13% 19.66% 0.54s

Table 1: For each supertag and embedding pair, the mean accuracy of supertag classification directly
output by the model and in the consistent global assignment output by A* decoding. Also shown is the
median running time—which includes model computation and A* search. The structural embeddings
are computed with convolutional coding, the atomic embeddings as rows in a matrix, and the minimal
embeddings as scalars in a vector.

Finally, we report statistics about the run time of different generation steps. This allows us to assess
the complexity of the different decoding steps involved in generation, to reveal any tradeoffs among the
models between speed and accuracy.

5.3 Results

Table 1 shows the results of supertag prediction. All differences between model are significant using
a Paired-Sample t-test (p < 10−5) The structural and atomic embedding methods consistently perform
better, suggesting that the clustering capabilities of neural methods is a crucial part of their effective-
ness. For post-decoding performance, Fergus-N utilizes the structural embeddings more than the atomic
embeddings. This merits further investigation: it might be because Fergus-N predicts one supertag as a
function of another, and so the compositional relationships among the two trees are more important—
or because Fergus-R’s contextualized decisions depend on similarities among supertags (involving ar-
gument structure or information structure) that are difficult for the convolutional coding to represent or
learn. Additionally, the minimal embeddings suggests that Fergus-N’s architecture might provide enough
structure to reduce the difficulty of a large number of cases.

The overall best results come from Fergus-R, suggesting that it is worthwhile to take additional context
into account in this task. At the same time, the median time taken to classify and decode a sentence with
Fergus-R is just one sixth that of Fergus-N. We suspect that there is a general lesson in this speedup:
because neural models can be more flexible about the information they take into account in decisions,
it’s especially advantageous in designing neural architectures to break a problem down into decisions
that can be combined easily.

Finally, decoding the network generally leads to lower accuracy. It seems that our models are not
doing a good job of using the predictions they make to triangulate to accurate and consistent supertags.
This suggests that the models could be improved by taking more or better information into account in
decoding. This is more pronounced in the atomic embeddings than the structural embeddings, which
suggests that the lack of structure in the vector representation allows for the model to learn clustering
relationships that don’t correlate with the structural requirements.

Figure 2 shows the NLG evaluation results for the different models. All differences in model are sig-
nificant using an Independent t-test (p < 10−5). 7 For both models, the differences between structural
embeddings (using convolutional coding) and atomic embeddings (using standard vector embedding
techniques) were not significant, while the differences between the two embeddings and minimal em-
beddings were significant (p < 10−5). The performance confirms our expectation that differences in
supertag accuracy after decoding correlate with NLG accuracy overall, but that differences in NLG per-
formance are attenuated. We note by comparison that Bangalore and Rambow report an accuracy of

7An Indepedent t-test was used instead of a Paired-Sample t-test because of intermittent failures during linearization that
resulted in slightly different numbers of observations.
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Accuracy
Model Embedding Top Scoring Best Performance
Fergus-N Structural 65.80% 72.58%

Atomic 65.52% 71.82%
Minimal 63.79% 71.09%

Fergus-R Structural 68.22% 74.70%
Atomic 69.29% 75.56%
Minimal 58.23% 65.04%

Table 2: Shown above as accuracy is the percentage of tokens in the linearized strings that are in correct
positions according to an edit distance measure.

74.9% in their best evaluation of FERGUS—on a data set of just 100 sentences with an average length
of 16.7. Our evaluation, on 2400 sentences with an average length of 22.1, is more strenuous.

6 Related Work

There are several lines of related work which explore stochastic tree models from the standpoint of
parsing and understanding. While using the same methods, NLG has different goals and we think the
perspective is instructive. Where parsing infers the most probable underlying structure, generation infers
the most likely way of expressing a semantic structure. This divergence of goals leads to different
concerns, alternatives, and emphasis.

The works most similar to ours explicitly model tree structures, but focus on resolving the uncertainty
involved with the latent structure of an observed sentence. For example, the top down tree structure of
Zhang et al. (2016) expresses the generation of a dependency structure as the decisions of a set of long
short-term memory networks. For each decision, the possible options are different tree structures which
can produce the target linear form. In contrast, the generation problem is concerned with different linear
forms that can result from the same tree structure. In more extensive tasks, the generation problem can
include simulated interpretation to inform decisions; using the ease of structural inference from linear
form quantifies the understandability of a sentence.

Although the methodology presented in this work is closely related to several recent neural networks
models for long-distance relationships, it differs distinctly in its treatment of state and search. Specif-
ically, forward-planning in a generation task produces a growing horizon of syntactic choices while
shrinking the horizon of semantic goals. At each step, syntactic operations grow the number of available
syntactic choices while limiting the number of semantic goals left to express. In contrast, parsing and
understanding begin with the surface form and construct the organized semantic content, either for a
downstream decision or just for the structure itself. The most notable works in this line of research are
the recurrent neural network grammars (Dyer et al., 2016), a shift-reduce parser and interpreter (Bow-
man et al., 2016), and a dynamic network for composing other neural network modules (Andreas et al.,
2016). Interestingly, there is a common theme of using indexable and dynamic data structures in neural
architecture to make long-distance decisions.

7 Conclusion

This paper has explored issues in deep learning of probabilistic tree grammars from the standpoint of nat-
ural language generation. For NLG, we need models that predict high-probability structures to encode
deep linguistic relationships—rather than to infer deep relationships from surface cues. This problem
brings new challenges for learning, as it requires us to represent new kinds of linguistic elements and
new kinds of structural context in order to capture the regularities involved. Despite these challenges,
however, the problem continues to have the mix of data sparsity, rich primitives and combinatorial inter-
actions that has made deep learning attractive for use in natural language parsing and understanding.

Of the range of models we surveyed here, the best combines a top down tree recurrence to cluster
contexts with appropriate embedding methods to cluster syntactic and lexical elements. Our evaluations
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suggest that the model is more accurate and faster than alternative techniques. However, it would still be
good to analyze the performance of the model more deeply. Can we get better results in the key decoding
step? How do human readers find the output of the system?

Looking forward, we see this research a step towards learned models that capture more of the NLG
task. We plan to explore similar techniques in planning surface text from more properly semantic in-
puts or even from abstract communicative goals. Further, we plan to integrate learned methods with
knowledge-based techniques to offer designers more control over system output in specific applications.
Developing methods appropriate to such settings will require researchers to revisit the core problems of
generalizing across linguistic structures and contexts—and, we hope, to build on and extend the provi-
sional solutions we have explored here.
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A Appendix

All of our models were implemented in the Keras (Chollet, 2015) and Theano (Theano Development
Team, 2016) libraries. The specific parameters that were used are shown in Table 3. The parameters
were selected by measured performance on the development portion of the data set. In the accompanying
code repository, the full experiment parameters—including programmatic parameters controlling the
experimental design—are specified in configuration files.

In our experiments, the corpus was preprocessed using Stanford NLP tools (De Marneffe et al., 2006)
to fix common issues and remove extraneous information. The resulting parse trees were then analyzed
to mark the head words, the dependents, and the adjuncts. The marked-up trees were split at adjunction
and substitution positions to form the grammar. Our models use an output distribution that’s restricted
to the set of supertags that have occurred with the lexical item, which requires indices to the supertag
embedding matrix to be passed into the computation with the rest of the data. We implement the affinity
matrix between the supertag embeddings and lexical state vectors, by concatenating the vectors, mapping
them to a new space using a fully connected layer, and computing a score with a vectorized function.
(The vectorized function operation is the same mechanism which calculates the probability distribution
used in soft attention.)

Model Parameter Value
Fergus-N Parameters

Fully connected layer size 256
Batch size 128

Fergus-R Parameters
Fully connected layer size 256
Hidden state size 128
Batch size 16

Embedding Parameters
Convolution filter size 48
Syntactic category embedding size 32
Node role embedding size 32
Word embedding size
(Pennington et al., 2014)

300

Model Parameter Value
Language Model Parameters

Hidden state size 368
Batch size 32

Optimization Parameters
Optimization Algorithm ADAM
Fergus-R and Fergus-N Learning Rate 1e-4
Language Model Learning Rate 0.01
Fully-Connected Dropout Rate 0.5
Recurrent Weight Dropout Rate 0.2
L2 Weight Decay 1e-6
Max gradient norm 10.0
Gradient clip threshold 5.0

Table 3: The parameters for the Fergus-R, Fergus-N, and language models. The exact specifications in
configuration files can be found in the code repository that accompanies this paper.
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