
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers,
pages 1197–1207, Dublin, Ireland, August 23-29 2014.

Query-focused Multi-Document Summarization: Combining a Topic
Model with Graph-based Semi-supervised Learning

Yanran Li and Sujian Li∗
Key Laboratory of Computational Linguistics,

Peking University, MOE, China
{liyanran,lisujian}@pku.edu.cn

Abstract

Graph-based learning algorithms have been shown to be an effective approach for query-focused
multi-document summarization (MDS). In this paper, we extend the standard graph ranking algo-
rithm by proposing a two-layer (i.e. sentence layer and topic layer) graph-based semi-supervised
learning approach based on topic modeling techniques. Experimental results on TAC datasets
show that by considering topic information, we can effectively improve the summary perfor-
mance.

1 Introduction

Query-focused multi-document summarization (MDS) can facilitate users to grasp the main idea of the
documents according to the users’ concern. In query-focused summarization, one query is firstly pro-
posed at the beginning of the documents. Then according to the given query and its influence on sen-
tences, a ranking score is assigned to each of the sentences and higher ranked sentences are picked into
a summary.

Among existing approaches, graph-based semi-supervised learning algorithms have been shown to be
an effective way to impose a query’s influence on sentences (Zhou et al, 2003; Zhou et al, 2004; Wan
et al, 2007). Specifically, a weighted network is constructed where each sentence is modeled as a node
and relationships between sentences are modeled as directed or undirected edges. With the assumption
that a query is the most important node, initially, a positive score is assigned to the query and zero to the
remaining nodes. All nodes then spread their ranking scores to their nearby neighbors via the weighted
network. This spreading process is repeated until a global stable state is achieved, and all nodes obtain
their final ranking scores.

The primary disadvantage of existing learning method is that sentences are ranked without considering
topic level information. As we know, a collection of related documents usually covers a few different
topics. For example, the specific event “Quebec independence” may involve the topics such as “leader
in independence movement”, “referendum”, “related efforts in independence movement” and so on. It
is important to discover the latent topics when summarizing a document collection, because sentences in
an important topic would be more important than those talking about trivial topics (Hardy et al, 2002;
Harabagiu and Lacatusu, 2005; Otterbacher et al, 2005; Wan and Yang, 2008).

The topic models (Blei et al, 2003) offer a good opportunity for the topic-level information modeling
by offering clear and rigorous probabilistic interpretations over other existing clustering techniques. So
far, LDA has been widely used in summarization task by discovering topics latent in the document
collections (Daume and Marcu, 2006; Haghighi and Vanderwende, 2009; Jin et al, 2010; Mason and
Charniak, 2011; Delort and Alfonseca, 2012). However, as far as we know, how to combine topic
information and semi-supervised learning into a unified framework has seldom been exploited.

In this paper, inspired by the graph-based semi-supervised strategy and topic models, we propose
a two-layer (i.e. sentence layer and topic layer) graph-based semi-supervised learning approach for
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query-focused MDS. By using two revised versions of LDA topic model (See Section 2), our approach
naturally models the relations between topics and sentences, and further use these relations to construct
the two-layer graph. Experiments on the TAC datasets demonstrate that we can improve summarization
performance under the framework of two-layer graph-based semi-supervised learning.

The rest of this paper is organized as follows: Section 2 describes our LDA based topic models, W-
LDA and S-LDA. Section 3 presents the construction of the two-layer graph and the semi-supervised
learning and the experimental results are provided in Section 4. Then, Section 5 describes related work
on query-focused multi-document summarization and topic modeling techniques and we conclude this
paper in Section 6.

2 Topic Modeling

2.1 Model Description
As discussed in Section 1, a collection of documents often involves different topics related to a specific
event. The basic idea of our summarization approach is to discover the latent topics and cluster sentences
according to the topics. Inspired by (Chemudugunta et al, 2006) and (Li et al, 2011), we find 4 types of
words in the text: (1) Stop words that occur frequently in the text. (2) Background words that describe
the general information about an event, such as ”Quebec” and ”independence”. (3) Aspect words talking
about topics across the corpus. (4) Document-specific words that are local to a single document and do
not appear across different corpus. Similar ideas can also be found in many LDA based summarization
techniques (Haghighi and Vanderwende, 2009; Li et al, 2011; Delort and Alfonseca, 2012).

Stop words can easily be filtered out by a standard list of stopwords. We use a background word
distribution ϕB to model vocabularies commonly used in the document collection. We assume that there
are K aspect topics shared across corpus and each topic is associated with a topic-word distribution
ϕk, k ∈ [1,K]. For each document m, there is a document-specific word distribution ϕm, m ∈ [K +
1, K + M ]. Each word w is modeled as a mixture of background topics, document-specific topics or
aspect topics. We use a latent parameter yw to denote whether it is a background word, a document-
specific word or an aspect word. yw is sampled from a multinomial distribution with parameter π.

2.2 W-LDA and S-LDA
We describe two models: a word level model W-LDA and a sentence level S-LDA. Their difference only
lies in whether the words within a sentence are generated from the same topic.

W-LDA: Figure 1 and Figure 3 show the graphical model and generation process of W-LDA, which is
based on Chemudugunta et al’s work (2007). Using the Gibbs sampling technique, in each iteration two
latent parameters yw and zw are sampled simultaneously as follows:

P (yw = 0) ∝ Nm0,−w + γ

Nm,−w + 3γ

Ew
B + λ∑

w′ Ew′
B + V λ

(1)

P (yw = 1) ∝ Nm1,−w + γ

Nm,−w + 3γ

Ew
m + λ∑

w′ Ew′
m + V λ

(2)

P (yw = 2, zw = k) ∝ Nm2,−w + γ

Nm,−w + 3γ
× Ck

m + α∑
k′ C

k
m + Kα

Ew
k + λ∑

w′ Ew′
k + V λ

(3)

where Nm0,−w, Nm1,−w and Nm2,−w denote the number of words assigned to background, document-
specific and aspect topic in current document. Nm,−w denotes the total number of words in current
document. Ew

B , Ew
m and Ew

k are the number of times that word w appears in background topic, document-
specific topic and aspect topic k. Ck

m denotes the number of words assigned to topic k in current docu-
ment.

With one Gibbs sampling, we can make the following estimation:

ϕw
k =

Ew
k + λ∑

w′ Ew′
k + V λ

(4)
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Then, the probability that a sentence s is generated from topic k is computed based on the probability
that each of its aspect words is generated from topic k:

P (s|zs = k) =
∏

w∈s,yw=2

ϕw
k (5)

Figure 1: Graphical model for W-LDA Figure 2: Graphical model for S-LDA

1. Draw background distribution ϕB ∼ Dir(λ)
2. For each document m:

draw doc proportion vector θm ∼ Dir(α)
draw doc proportion vector πm ∼ Dir(γ)
draw doc specific distribution ϕm ∼ Dir(λ)

3. For each topic k:
draw topic distribution ϕk ∼ Dir(λ)

4. For each word w in document m:
(a) draw yw ∼ Multi(πm)
(b) if yw = 0: draw w ∼ ϕB

if yw = 1: draw w ∼ ϕm

if yw = 2:
draw zw ∼ Multi(θm)

w ∼ Multi(ϕzw)

Figure 3: Generation process for W-LDA

1. Draw background distribution ϕB ∼ Dir(λ)
2. For each document m:

draw doc proportion vector θm ∼ Dir(α)
draw doc proportion vector πm ∼ Dir(γ)
draw doc specific distribution ϕm ∼ Dir(λ)

3. For each topic k:
draw topic distribution ϕk ∼ Dir(λ)

4. For each sentence s in document m:
4.1 draw zs ∼ Multi(θm)
4.2 for each word in sentence s:

(a) draw yw ∼ Multi(πm)
(b) if yw = 0: draw w ∼ ϕB

if yw = 1: draw w ∼ ϕm

if yw = 2: draw w ∼ Multi(ϕzw)

Figure 4: Generation process of S-LDA

S-LDA: In S-LDA, each sentence is treated as a whole and words within a sentence are generated
from the same topic (Gruber et al., 2007). Its graphical model and generated process are shown in Figure
2 and Figure 4. In S-LDA, we firstly sample the topic zs for each sentence as follows:

P (zs = k|z−s, y, w) ∝ Γ(
∑

w′ Ew′
k + V λ)

Γ(
∑

w′ Ew′
k + NA

s + V λ)

×
∏

w∈s,yw=2

Γ(Ew
k + Nw

s + λ)
Γ(Ew

k + λ)
· Ck

m + α∑
k′ C

k′
m + Kα

(6)

Ck
m denotes the number of sentences in document m assigned to topic k. NA

s denotes the number of
aspect words in current sentence. Then yw is sampled.

In our experiments, we set hyperparameters α = 1, β = 0.5, λ = 0.01. We run 500 burn-in iterations
through all documents in the collection to stabilize the distribution of z and y before collecting samples.

3 Graph-based Semi-supervised Learning

As stated before, the consideration of higher level information (i.e. topics) would be helpful for sentence
ranking in summarization. In our two-layer graph, the upper layer is composed of topic nodes and the
lower layer is composed of sentences nodes, among which there is one node representing the query.
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Formally, given a document set D, let G =< Vs, Vt, E > be the two-layer graph, where Vs =
{s1, s2, ..., sN} denotes the set of all the sentence nodes and s1 is the query. Vt = {z1, z2, ..., zK}
corresponds to all the topic nodes. The collection of edges E in the graph consists of the relations
within layers and between layers. And the edge weights are measured according to the similarities
between nodes, which are computed based on the topic distribution from our two topic model extensions.
Specifically, we introduce four edge weight matrices ŴN∗K , W̄K∗N , U and P to describe the sentence-
to-topic relations, the topic-to-sentence relations, the sentence-to-sentence relations and the topic-to-
topic relations respectively.

Firstly, the row-normalized edge weight matrices ŴN∗K and W̄K∗N denotes the similarity matrix
between sentences and topics,

Ŵi,j =
sim(si, zk)∑
k′ sim(si, zk′)

W̄i,j =
sim(si, zk)∑
j sim(sj , zk)

(7)

where sim(si, zk) = p(si|zsi = zk) is the probability that the sentence is generated from that topic
calculated in Equation (5).

The edge weight matrix U describe the sentence-to-sentence relations. In the same way, the simi-
larity between two sentences is the cosine similarity between their topic distributions, sim(si, sj) =
1

C1

∑
k p(si|zsi = k) · p(sj |zsj = zk), where C1 =

√∑
k p2(si|zsi = k)

√∑
k p2(sj |zsj = k) is the

normalized factor. Since the row-normalization process will make the sentence-to-sentence relation ma-
trix asymmetric, we adopt the following strategy: let Sim(s) denote the similarity matrix between sen-
tences, where Sim(s)(i, j) = sim(si, sj) and D denotes the diagonal matrix with (i, i)-element equal
to the sum of the ith row of Sim(s). Edge weight matrix between sentences U is calculated as follows:

U = D− 1
2 Sim(s)D− 1

2 (8)

Then, the edge weight matrix between topics P is the normalized symmetric matrix of the similairty
matrix between two topics. The cosine similarity between two topics is calculated according to word-
topic distribution.

sim(zi, zj) =
1
C2

∑
w

p(w|zi)p(w|zj) =
1
C2

∑
w

ϕw
zi

ϕw
zj (9)

where C2 =
√∑

w p2(w|zi) ·
√∑

w p2(w|zj) is the normalized factor.
We further transform the task to an optimizing problem based on the assumption that closely related

nodes (sentences and topics) tend to have similar scores. So we would give more penalty for the differ-
ence between closely related nodes with regard to edge weight matrices ŴN∗K , W̄K∗N , U and P . This
motivates the following optimization function Ω(f, g) in Equation (10) similar to the graph harmonic
function(Zhu et al, 2003). f denotes the sentence score vector and g denotes the topic score vector.
Intuitively, Ω(f, g) measures the sum of difference between graph nodes; the more they differ, the larger
Ω(f, g) would be.

Ω(f, g) = a
∑

0≤i,j≤N

Ui,j(fi − fj)
2 + a

∑
0≤i,j≤K

Pi,j(gi − gj)
2

+ (1− a)
∑

0≤i≤N

∑
0≤j≤K

Ŵij(fi − gj)
2

+ (1− a)
∑

0≤i≤N

∑
0≤j≤K

W̄ij(gi − fj)
2

(10)

The score vectors can be achieved by minimizing the function in Equation (10). That is,
(f, g)=argminf,gΩ(f, g). We can get the following equations (details are shown in Appendix).

f = aUf +
1
2
(1− a)(Ŵ + W̄ T )g

g = aPg +
1
2
(1− a)(Ŵ T + W̄ )f

(11)
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Equation (11) conforms to our intuition: (1) A sentence would be important if it is heavily connected
with many important sentences and a topic would be important if it is closely related to other important
topics. (2) A sentence would be important if it is expressing an important topic, and in turn a topic would
be important if it is referred by an important sentence. Based on Equation (11), the ranking algorithm is
designed in a semi-supervised way, where the score of the labeled query is fixed to the largest score of 1
during each iteration, as shown in Figure 5. Then, our algorithm iteratively calculates the score of topics
and sentences until convergence1.

Input: The sentence set {s1, s2, ..., sN}, topic set
{z1, z2, ..., zK}, edge weight matrix Ŵ , W̄ , U
and P . s1 is the query.
Output: Sentence score vector f and topic score
vector g.
BEGIN
1. Initialization, k=0:

f0 = (1, 0, 0, ..., 0)T , g0 = (0, 0, ..., 0)T

2. Update sentence score vector
fk+1 = aUfk + 1

2(1− a)(Ŵ + W̄ T )gk

3. Update topic score vector
gk+1 = aPgk + 1

2(1− a)(Ŵ T + W̄ )fk

4. fix the score of query in fk+1 to 1.
5. k=k+1 Go to Step 2 until convergence.
END

Figure 5: Sentence Ranking Algorithm

Input: The sentence set S = {s1, s2, ..., sN},
sentence score vector f
Output: Summary Y.
BEGIN:
1. Initialization: Y = Φ, X = {S − s1}.
2. while word num is less than 100:

(a) sm = arg maxsi∈X f(si)
(b) If sim(sm, s) < Thsem, for all s ∈ Y :

Y = Y + {sm}
(c) X = x− {sm}

END

Figure 6: Sentence Selection Algorithm

3.1 Summary Generation
Sentence compression can largely improve summarization quality (Zajic et al, 2007; Peng et al, 2011).
Since sentence compression is not the main task in this paper, we just use the revised sentence compres-
sion techniques in (Li et al, 2011).Here, we remove the redundant modifiers such as adverbials, relative
clause modifiers, abbreviations, participials and infinitive modifiers for each sentence.

As for the sentence selection process, sentences with higher ranking score are selected into the sum-
mary. Then Maximum Marginal Relevance (MMR)(Goldstein et al, 1999) is further used for redundancy
removal. We just apply a simple greedy algorithm for sentence selection as shown in Figure 6. We use Y
to denote the summary set which contains the selected summary sentences. The algorithm first initializes
Y to Φ and X as the set {S − s1}. During each iteration, we select the highest ranked sentence sj from
the sentence set X. We need to assure that the value of semantic similarity between two sentences is less
than Thsem. Thsem denotes the threshold for the cosine similarity between two sentences and is set to
0.5 in our model.

4 Experiments

The query-focused MDS task defined in TAC (Text Analysis Conference) evaluations requires generating
a concise and well organized summary for a collection of related documents according to a given query.
The query usually consists of a narrative/question sentence. Our experiment data is composed of TAC
(2008-2009) data2, which contain 48 and 44 document collections respectively. We use docset-A data
sets in TAC which has 10 documents per collection. The average numbers of sentences per document
in TAC2008 and TAC2009 are 252 and 243 respectively, and the system-generated summary is limited
to 100 words. It is noted that the corpus of TAC2008 and TAC2009 are similar. In our experiment, we
apply the optimal topic number trained on TAC2008 dataset to TAC2009 dataset.

1In our experiments, if |fk
i − fk+1

1 | ≤ 0.0001(1 ≤ i ≤ N) and |gk
i − gk+1

1 | ≤ 0.0001(1 ≤ i ≤ T ), iteration stops.
2TAC data sets are for the update summarization tasks, where the summarization for docset-A can be seen the query-focused

summarization task referred in this paper.

1201



1 2

3 4

Figure 7: ROUGE score via (1)(2) topic number and (3)(4) parameter a on TAC2008.

As for evaluation metrics, we use ROUGE (Recall-Oriented Understudy for Gisting Evaluation) (Lin,
2004) measures. ROUGE measures summary quality by counting overlapping units such as the n-gram,
word sequences and word pairs between the candidate summary and the reference summary. We report
ROUGE-1, ROUGE-2, and ROUGE-SU43 scores and their corresponding 95% confidential intervals,
to evaluate the performance of the system-generated summaries. As a preprocessing step, stopwords
are firstly removed with a list of 598 stop words and the remaining words are then stemmed using
PorterStemmer.4.

4.1 Parameter Tuning

There are two parameters to tune in our model. The first parameter is a in Equation (11) that controls
the tradeoff between influence from topics and from sentences. The second one is the topic number
K in LDA topic model. The combination of the two factors makes it hard to find a global optimized
solution. So we apply a gradient search strategy. At first, parameter a is fixed to a given value. Then
the performance of using different topic numbers is evaluated. After that, we fix the topic number to the
value which has achieved the best performance, and conduct experiments to find an appropriate value for
a. Here, we use TAC2008 as training data and test our model on TAC2009.

First, a is set to 0.5, then we change topic number K from 2 to 20 at the interval of 2. The ROUGE
score reaches their peaks when the topic number is around 12, as shown in Figure 7(1) and Figure 7(2).
Then we fix the number of K to 12 and change the value of parameter a from 0 to 1 with the interval
of 0.1. When the value of a is set to 0, the model degenerates into a one-layer graph ranking algorithm
where topic clustering information is neglected. As we can see from Figure 7(3) and Figure 7(4) , the
ROUGE scores reach their peaks around 0.6 and then drop afterwards. Thus, the topic number is set to
12 and a is set to 0.6 in the test dataset.

3Jackknife scoring for ROUGE is used in order to compare with the human summaries.
4http://tartarus.org/martin/PorterStemmer/

1202



4.2 Baseline Comparison

We firstly compare W-LDA and S-LDA with other clustering approaches. To be fair, we use the identical
sentence compression techniques and preprocessing methods for all baselines. Summaries are truncated
to the same length of 100 words.

Standard-LDA: A simplified version of W-LDA without considering the background or document-
specific information.

K-means: Using the K-means clustering algorithm for graph construction. We firstly randomly select
K sentences as initial centroid for clusters and then iteratively assign a sentence to each cluster. The
centroid is recomputed until convergence. The similarity between nodes in the graph (sentence or cluster)
is computed using the standard cosine measure based on the tf-idf information. K is set to 12, the same
as topic number in LDA.

Agglomerative: a bottom-up hierarchical clustering algorithm and starts with the sentences as indi-
vidual clusters and, at each step, merges the most similar or closest pair of clusters, until the number of
the clusters reduces to the desired number K = 12.

Divisive: a top-down hierarchical clustering algorithm and starts with one, all-inclusive cluster and,
at each step, splits the largest cluster until the number of clusters increases to the desired number K,
K = 12.

Approach Rouge-1 Rouge-2 Rouge-SU4
W-LDA 0.3791 (0.3702-0.3880) 0.1092 (0.1047-0.1135) 0.1382 (0.1350-0.1414)
S-LDA 0.3802 (0.3721-0.3883) 0.1109 (0.1061-0.1157) 0.1398 (0.1342-0.1454)

Standard LDA 0.3702 (0.3614-0.3790) 0.1012 (0.0960-0.1064) 0.1292 (0.1242-0.1344)
K-means 0.3658 (0.3582-0.3734) 0.1046 (0.0992-0.1080) 0.1327 (0.1263-0.1391)

Agglomerative 0.3681 (0.3612-0.3750) 0.1042 (0.091-0.1093) 0.1319 (0.1266-0.1272)
Divisive 0.3676 (0.3610-0.3742) 0.1021 (0.0981-0.1061) 0.1320 (0.1275-0.1365)

Table 1: Comparison with other clustering baselines.

Table 1 presents the performance of different clustering algorithms for summarization. Traditional
clustering algorithms such as K-means, Agglomerative and Divisive clustering achieve comparative re-
sults. Compared with traditional clustering algorithms, LDA based models (W-LDA, S-LDA, Standard-
LDA) achieve better results. This can be explained by the clear and rigorous probabilistic interpretation
of topic models. Background information and document-specific information would influence the per-
formance of topic modeling (Chemudugunta et al, 2006), that is why S-LDA and W-LDA achieve better
ROUGE performance than the standard LDA. We can also see that S-LDA is slightly better than W-LDA
in regard with ROUGE performance. The reason can be explained as follows: The aim of topic mod-
eling in this task is to cluster sentences according to their topics. So treating sentence as a unit in topic
modeling would be better than treating it as a set of independent words. In addition, forcing the words in
one sentence to share the same aspect topic can ensure semantic cohesion of the mined topics.

Next, we compare our model with the following widely used summarization approaches.
Manifold: One-layer graph-based semi-supervised approach developed by Wan et al.(2008). Sentence

relations are calculated according to tf − idf and topic information is neglected.
LexRank: An unsupervised graph-based summarization approach(Erkan and Radev, 2004), which is

a revised version of the famous web ranking algorithm PageRank.
KL-Divergence: The approach developed by (Lin et al, 2006) by using a KL-divergence based sen-

tence selection strategy.

KL(Ps||Qd) =
∑
w

P (w)log
P (w)
Q(w)

(12)

where Ps is the unigram distribution of candidate summary and Qd denotes the unigram distribution of
document collection. Since this approach is designed for general summarization, query influence is not
considered.
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Hiersum: A LDA based approach proposed by (Haghighi and Vanderwende, 2009), where unigram
distribution is calculated from LDA topic model in Equation (12).

MEAD: A centroid based summary algorithm by (Radev et al, 2004). Cluster centroids in MEAD
consists of words which are central not only to one article in a cluster, but to all the articles. Similarity is
measured by using tf − idf .

Approach Rouge-1 Rouge-2 Rouge-SU4
W-LDA 0.3891 (0.3802-0.3980) 0.1192 (0.1147-0.1235) 0.1482 (0.1450-0.1514)
S-LDA 0.3902 (0.3821-0.3983) 0.1209 (0.1161-0.1257) 0.1498 (0.1442-0.1554)

Manifold 0.3581 (0.3508-0.3656) 0.1007 (0.0952-0.1062) 0.1267 (0.1214-0.1320)
LexRank 0.3442 (0.3381-0.3502) 0.0817 (0.0782-0.0852) 0.1106 (0.1064-0.1148)

KL-divergence 0.3468 (0.3410-0.3526) 0.0820 (0.0782-0.0858) 0.1117 (0.1073-0.1161)
Hiersum 0.3599 (0.3526-0.3672) 0.1004 (0.0956-0.1052) 0.1280 (0.1221-0.1339)
MEAD 0.3451 (0.3390-0.3512) 0.0862 (0.0817-0.0907) 0.1131 (0.1080-0.1182)

Table 2: Performance comparison with baselines

Performance is presented at Table 2. We can find that ROUGE performance of one-layer graph rank-
ing algorithms such as Manifold and LexRank, where topic information is neglected, achieve worse
results than all two-layer models where topic information is considered (See Table 1). This verifies our
previous claim (Hardy et at., 2002; Harabagiu and Lacatusu, 2005; Wan and Yang, 2008) that the con-
sideration of topic information will improve summarization performance. S-LDA and W-LDA achieve
better performance than KL-divergence and Hiersum. This is because the sentence selection strategy for
KL-divergence and Hiersum tries to select sentence best representing the document as shown in Equation
(12), but do not consider the influence of query.

4.3 Manual Evaluation
W-LDA and S-LDA get comparative ROUGE scores. To obtain a more accurate measure to decide which
approach is better, we perform a simple user study concerning the following aspects on 40 randomly
selected topics in TAC2009: (1) Overall quality. (2) Focus: Whether the summary contains less irrelevant
content? (3) Responsiveness: Whether the summary is responsive to the query. (4) Non-Redundancy:
Whether the summary is non-redundant. Each respect is rated from 1 (very poor) to 5 (very good). Four
native speakers who are Ph.D. students in computer science (none are authors) performed the task.

The average score and standard deviation for W-LDA and S-LDA are displayed in Table 3. We can see
that the two models almost tie in foucs and non-redundancy. This is because two models use the same
sentence selection strategy based on MMR for redundancy removal and propagation model to impose
the query’s influence on sentences. S-LDA outperforms W-LDA in overall ranking and responsiveness
ranking. This implies that treating sentence as a unit in topic modeling would be preferable to just
treating it as a series of independent words.

S-LDA W-LDA
Overall 3.98± 0.52 3.58± 0.55
Focus 3.65± 0.54 3.35± 0.61
Responsiveness 3.73± 0.43 3.38± 0.46
Non-Redundancy 3.48± 0.51 3.45± 0.48

Table 3: Manual evaluation for S-LDA and W-LDA.

5 Related Work

Graph-based ranking approaches have been hot these days for both generic and query-focused summa-
rization (Zhou et al, 2003; Zhou et al, 2004; Erkan and Radev, 2004; Wan et al, 2007; Wei et al, 2008).
Commonly used graph-based ranking algorithms are mainly inspired by the link analysis algorithm in
web research such as PageRank (Page et al, 1999). (Wan et al, 2007) proposed the approach that treated
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the task of query-focused MDS as a semi-supervised learning task, in which the query is treated as a
labeled node, and sentences as unlabeled nodes. Then the scores of sentences are determined from the
manifold learning algorithm proposed by (Zhou et al, 2003) or the harmonic approach proposed by (Zhu
et al, 2003).

It is worthy of noting that researchers have found that by considering topic level information, the sum-
marization performance can be effectively improved (Hardy et al, 2002; Wan and Yang, 2008; Harabagiu
and Lacatusu, 2005). For example, (Otterbacher et al, 2005) models documents as a stochastic graph and
calculates sentence ranking scores with a topic-sensitive version of PageRank. (Wan and Yang, 2008)
developed a two-layer graph by clustering sentences by using standard clustering algorithms such as
K-means or agglomerate clustering. However, his algorithm is for general summarization where the
influence of query is not considered.

A significant portion of recent work incorporates LDA topic models (Blei et al, 2008) in summarization
tasks for their clear and rigorous probabilistic topic interpretations (Daume and Marcu, 2006; Titov and
McDonald, 2008; Haghighi and Vanderwende, 2009; Mason and Charniak, 2011; Li et al, 2013a; Li
et al, 2013b). (Haghighi and Vanderwende, 2009) introduced a LDA based model called Hiersum to
find the subtopics or aspects by combining KL-divergence criterion for selecting relevant sentences.
AYESSUM (Daume and Marcu, 2006) and the Special Words and Background model (Chemudugunta
et al, 2006) are very similar to Hiersum. In the same way, (Delort and Alfonseca, 2012) tried to use LDA
to model different levels of information for novelty detection in update summarization. Furthermore,
(Paul and Dredze, 2013) extends their f-LDA to jointly model combinations of drug, aspect and route of
administration as an exploratory tool for extractive summarization.

6 Conclusions and Future Work

In this paper, we propose a two-layer graph-based semi-supervised algorithm for query-focused MDS.
Topic modeling techniques are used for sentence clustering and further graph construction. By consider-
ing different kinds of information such as background or document-specific information, our two LDA
topic model extensions achieve better results than traditional clustering algorithms.

One primary disadvantage of our models is that it is hard to decide the topic number K in LDA models
and how to define topic number is still a open problem in LDA topic models. From Figure 7, we can
see that summarization performance is sensitive to topic number. We train the value of topic number
on TAC2008 dataset and test the model on TAC2009. Such process makes sense because the corpus
sizes and contents of two datasets are similar. But it would be hard to extend optimal topic number in
TAC2008 to other datasets. Using non-parametric topic modeling techniques where topic number does
not have to be predefined is one of our future works.
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APPENDIX
To optimize Ω(f, g), shown in Equation (10), we set the partial derivative with respect to fm to 0, for

m ∈ [1, N ]. Let δmn denote the index function as follows:

δmn =

{
1 if m = n

0 if m ̸= n

0 =
∂Ω(f, g)

ft

= 2a
∑
i,j

Ui,j(fi − fj)(δit − δjt) + 2(1− a)

×
∑
i,j

Ŵij(fi − gj)δit − 2(1− a)
∑
i,j

W̄ij(gi − fj)δjt

= 2(1− a)
∑

j

Ŵtj(ft − gj) + 2(1− a)
∑

i

W̄it(gi − ft)

+ 2a
∑

j

Utj(ft − fj) + 2a
∑

i

Uit(fi − ft)

= ft[4a
∑

j

Utj + 2(1− a)
∑

j

Ŵtj + 2(1− a)
∑

j

W̄jt]

− 4a
∑

j

Utjfj − 2(1− a)
∑

j

Ŵtjgj − 2(1− a)
∑

j

W̄jtgj∑
j

Utj = 1
∑

j

Ŵtj = 1
∑

j

W̄jt = 1

ft = a
∑

j

Utjfj +
1
2
(1− a)[

∑
j

(Ŵtj + W̄jt)gj ]

So we have:
f = aUf +

1
2
(1− a)(Ŵ + W̄ T )g

A similar approach is used to obtain the second part of Equation (11).
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