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ABSTRACT
We address the challenge of automatically generating questions from topics. We consider that
each topic is associated with a body of texts containing useful information about the topic.
Questions are generated by exploiting the named entity information and the predicate argument
structures of the sentences present in the body of texts. To measure the importance of the
generated questions, we use Latent Dirichlet Allocation (LDA) to identify the sub-topics (which
are closely related to the original topic) in the given body of texts and apply the Extended String
Subsequence Kernel (ESSK) to calculate their similarity with the questions. We also propose
the use of syntactic tree kernels for computing the syntactic correctness of the questions. The
questions are ranked by considering their importance (in the context of the given body of texts)
and syntactic correctness. To the best of our knowledge, no other study has accomplished this
task in our setting before. Experiments show that our approach can significantly outperform
the state-of-the-art results.

KEYWORDS: Question generation, named entity information, predicate argument structures,
latent dirichlet allocation (LDA), extended string subsequence kernel (ESSK), syntactic tree
kernel.
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1 Introduction

When a user is served with a ranked list of relevant documents by the standard document
retrieval systems (i.e. search engines), his/her search task is usually not over (Chali et al.,
2009b). The next step for him/her is to look into the documents themselves and search for
the precise piece of information he/she was looking for. This method is time consuming, and
a correct answer could easily be missed, by either an incorrect query resulting in missing
documents or by careless reading. This is why, Question Answering (QA) has received immense
attention from the information retrieval, information extraction, machine learning, and natural
language processing communities (Kotov and Zhai, 2010). One of the main requirements
of a QA system is that it must receive a well-formed question as input in order to come up
with the best possible correct answer as output. Available studies revealed that humans are
not very skilled in asking good questions about a topic of their interest. They are forgetful in
nature which often restricts them to properly express whatever that is peeking in their mind.
Therefore, they would benefit from automated Question Generation (QG) systems that can assist
in meeting their inquiry needs (Olney et al., 2012; Ali et al., 2010; Kotov and Zhai, 2010; Rus
and Graesser, 2009; Lauer et al., 1992; Graesser et al., 2001). Question asking and Question
Generation are important components in advanced learning technologies such as intelligent
tutoring systems, and inquiry-based environments (Graesser et al., 2001). A QG system would
be useful for building better question asking facilities in intelligent tutoring systems. Another
benefit of QG is that it can be a good tool to help improve the quality of the Question Answering
(QA) systems (Graesser et al., 2001; Rus and Graesser, 2009).

The main motivation of this work is to generate all possible questions about a given topic. For
example, given the topic “Apple Inc. Logos”, we can generate questions such as “What is Apple
Inc.?”, “Where is Apple Inc. located?”, “Who designed Apple’s Logo?” etc. We consider this task
of automatically generating questions from topics and assume that each topic is associated
with a body of texts having useful information about the topic. Our main goal is to generate
fact-based questions1 about a given topic from its associated content information. We generate
questions by exploiting the named entity information and the predicate argument structures of
the sentences (along with semantic roles) present in the given body of texts. The named entities
and the semantic role labels are used to identify relevant parts of a sentence in order to form
relevant questions over them. The importance of the generated questions is measured in two
steps. In the first step, we identify whether the question is asking something about the topic or
something that is very closely related to the topic. We call this the measure of topic relevance.
For this purpose, we use Latent Dirichlet Allocation (LDA) (Blei et al., 2003) to identify the
sub-topics (which are closely related to the original topic) in the given body of texts and apply
the Extended String Subsequence Kernel (ESSK) (Hirao et al., 2003) to calculate their similarity
with the questions. In the second step, we judge the syntactic correctness of each generated
question. We apply the tree kernel functions (Collins and Duffy, 2001) and re-implement the
syntactic tree kernel model according to Moschitti et al. (2007) for computing the syntactic
similarity of each question with the associated content information. We rank the questions by
considering their topic relevance and syntactic correctness scores. Experimental results show
the effectiveness of our approach for automatically generating topical questions. The remainder
of the paper is organized as follows. Section 2 describes the related work and motivation
followed by Section 3 that presents the description of our QG system. Section 4 explains the
experiments and shows evaluation results. We conclude the paper in the next section.

1We mainly focus on generating Who, What, Where, Which, When, Why and How questions in this research.

476



2 Related Work and Motivation

Recently, question generation has got immense attention from the researchers and hence,
different methods have been proposed to accomplish the task in different relevant fields
(Andrenucci and Sneiders, 2005). McGough et al. (2001) proposed an approach to build a
web-based testing system with the facility of dynamic question generation. Wang et al. (2008)
showed a method to automatically generate questions based on question templates (which
are created from training on medical articles). Brown et al. (2005) described an approach
to automatically generate questions to assess the user’s vocabulary knowledge. To mimic the
reader’s self-questioning strategy during reading, Chen et al. (2009) developed a method to
generate questions automatically from informational text. On the other hand, Agarwal et al.
(2011) considered the question generation problem beyond sentence level and proposed an
approach that uses discourse connectives to generate questions from a given text. Several other
QG models have been proposed over the years that deal with transforming answers to questions
and utilizing question generation as an intermediate step in the question answering process
(Echihabi and Marcu, 2003; Hickl et al., 2005). There are some other researchers who have
approached the task of generating questions for educational purposes (Mitkov and Ha, 2003;
Heilman and Smith, 2010b).

The Natural Language Processing (NLP), Natural Language Generation (NLG), Intelligent
Tutoring System, and Information Retrieval (IR) communities have currently identified the
Text-to-Question generation task as promising candidates for shared tasks2 (Rus and Graesser,
2009; Boyer and Piwek, 2010). In the Text-to-Question generation task, a QG system is given a
text, and the goal is to generate a set of questions for which the text contains answers. The task
of generating a question about a given text can be typically decomposed into three subtasks.
First, given the source text, a content selection step is necessary to select a target to ask about,
such as the desired answer. Second, given a target answer, an appropriate question type is
selected, i.e., the form of question to ask is determined. Third, given the content, and question
type, the actual question is constructed. Based on this principle, several approaches have been
described in Boyer and Piwek (2010) that use named entity information, syntactic knowledge
and semantic structures of the sentences to perform the task of generating questions from
sentences and paragraphs (Heilman and Smith, 2010a; Mannem et al., 2010). Inspired by these
works, we perform the task of topic to question generation using named entity information and
semantic structures of the sentences. A task that is similar to ours is the task of keywords to
question generation that has been addressed recently in Zheng et al. (2011). They propose a
user model for jointly generating keywords and questions. However, their approach is based
on generating question templates from existing questions which requires a large set of English
questions as training data. In recent years, some other related researches have proposed the
tasks of high quality question generation (Ignatova et al., 2008) and generating questions from
queries (Lin, 2008). Fact-based question generation has been accomplished previously by Rus
et al. (2007); Heilman and Smith (2010b). We also focus on generating fact-based questions in
this research.

Besides grammaticality, an effective QG system should focus deeply on the importance of the
generated questions (Vanderwende, 2008). This motivates the use of a question ranking module
in a typical QG system. Over-generated questions can be ranked using different approaches such
as statistical ranking methods, dependency parsing, identifying the presence of pronouns and

2http://www.questiongeneration.org/QGSTEC2010
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named entities, and topic scoring (Heilman and Smith, 2010a; Mannem et al., 2010; McConnell
et al., 2011). However, most of these automatic ranking approaches ignore the aspects of
complex paraphrasing by not considering lexical semantic variations (e.g. synonymy) while
measuring the importance of the questions. In our work, we use Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) to identify the sub-topics (which are closely related to the original
topic) in the given body of texts. In recent years, LDA has become one of the most popular topic
modeling techniques and has been shown to be effective in several text-related tasks such as
document classification, information retrieval, and question answering (Misra et al., 2008; Wei
and Croft, 2006; Celikyilmaz et al., 2010). Hirao et al. (2003) introduced ESSK considering all
possible senses to each word to perform their summarization task. Their method is effective.
However, the fact that they do not disambiguate word senses cannot be disregarded. In our
task, we apply ESSK to calculate the similarity between important topics (discovered using
LDA) and the generated questions in order to measure the importance of each question. We use
disambiguated word senses for this purpose.

Syntactic information has been used successfully in question answering previously (Chali et al.,
2009a, 2011; Zhang and Lee, 2003; Moschitti et al., 2007; Moschitti and Basili, 2006). Pasca
and Harabagiu (2001) argued that with the syntactic form of a sentence one can see which
words depend on other words. We also feel that there should be a similarity between the
words which are dependent in the sentences present in the associated body of texts and the
dependency between words of the generated question. This motivates us to propose the use of
syntactic kernels in judging the syntactic correctness of the generated questions automatically.

The main goal of our work is to generate as many questions as possible related to the topic. We
use NE information and the predicate argument structures of the sentences to accomplish this
goal. Our approach is different from the setup in shared tasks (Rus and Graesser, 2009; Boyer
and Piwek, 2010) as we generate a set of basic questions which are useful to add variety in
the question space. A paragraph associated with each topic is used as the source of relevant
information about the topic. We evaluate our systems in terms of topic relevance which is
different from the prior works (Heilman and Smith, 2010a; Mannem et al., 2010). Syntactic
correctness is also an important property of a good question. For this reason, we evaluate
our system in terms of syntactic correctness as well. The proposed system will be useful to
generate topic related questions from the associated content information which can be used
to incorporate a “question suggestions for a certain topic” facility in the search systems. For
example, if a user searches for some information related to a certain topic, the search system
could generate all possible topic-relevant questions from a preexistent related body of texts
to provide suggestions. Kotov and Zhai (2010) approached a similar task by proposing a
technique to augment the standard ranked list presentation of search results with a question
based interface to refine user given queries.

The major contributions of our work can be summarized as follows:

• We perform the task of topic to question generation which can help users in expressing
their information needs. Questions are generated using a set of general-purpose rules
based on named entity information and the predicate argument structures of the sentences
(along with semantic roles) present in the associated body of texts.

• We use LDA to identify the sub-topics (which are closely related to the original topic) in
the given body of texts and apply ESSK (with disambiguated word senses) to calculate
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their similarity with the questions. This helps us to measure the importance of each
question.

• We apply the tree kernel functions and re-implement the syntactic tree kernel model
for computing the syntactic similarity of each question with the associated content
information. In this way, we judge the syntactic correctness of each generated question
automatically.

• The ESSK similarity scores and the syntactic similarity scores are used to rank the gener-
ated questions. In doing so, we show that the use of ESSK and syntactic kernels improve
the relevance and the syntactic correctness of the top-ranked questions, respectively.

• We also run experiments by narrowing down the topic focus. Experiments with the topics
about persons (biographical focus) reveal improvements in the overall results.

3 Topic to Question Generation

Our QG approach mainly builds on four steps. In the first step, complex sentences (from the
given body of texts) related to a topic are simplified as it is easier to generate questions from
simple sentences. In the next step, named entity information and predicate argument structures
of the sentences are extracted and then, questions are generated using them. In the third step,
LDA is used to identify important sub-topics from the given body of texts and then ESSK is
applied to find their similarity with the generated questions. In the final step, syntactic tree
kernel is employed and syntactic similarity between the generated questions and the sentences
present in the body of texts determines the syntactic correctness of the questions. Questions are
then ranked by considering the ESSK similarity scores and the syntactic similarity scores. We
describe the overall procedure in the following subsections.

3.1 Sentence Simplification

Sentences may have complex grammatical structure with multiple embedded clauses. Therefore,
we simplify the complex sentences with the intention to generate more accurate questions. We
use the simplified factual statement extractor model3 of Heilman and Smith (2010a). Their
model extracts the simpler forms of the complex source sentence by altering lexical items,
syntactic structure, and semantics and by removing phrase types such as leading conjunctions,
sentence-level modifying phrases, and appositives. For example, given a complex sentence s,
we get a corresponding simple sentence as follows:

Complex Sentence (s): Apple’s first logo, designed by Jobs and Wayne, depicts Sir Isaac
Newton sitting under an apple tree.

Simple Sentence: Apple’s first logo is designed by Jobs and Wayne.

3.2 Named Entity (NE) Information and Semantic Role Labeling (SRL)
for QG

We use the Illinois Named Entity Tagger4, a state of the art NE tagger that tags a plain text
with named entities (people, organizations, locations, miscellaneous) (Ratinov and Roth, 2009).

3Available at http://www.ark.cs.cmu.edu/mheilman/
4Available at http://cogcomp.cs.illinois.edu/
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Once we tag the topic in consideration and its associated body of texts, we use some general
purpose rules to create some basic questions even though the answer is not present in the body
of texts. For example, “Apple Inc.” is tagged as an organization, so we generate a question:
“Where is Apple Inc. located?”. The main motivation behind generating such questions is to add
variety to the generated question space. Table 1 shows some example rules for basic questions
generated in this work.

Tag Example Question

person Who is person?
organization Where is organization located?

location Where is location?
misc. What do you know about misc.?

Table 1: Example basic question rules

Our next task is to generate specific questions from the sentences present in the given body of
texts. For this purpose, we parse the sentences semantically using a Semantic Role Labeling
(SRL) system (Kingsbury and Palmer, 2002; Hacioglu et al., 2003), ASSERT5. ASSERT is
an automatic statistical semantic role tagger, that can annotate naturally occuring text with
semantic arguments. When presented with a sentence, it performs a full syntactic analysis of
the sentence, automatically identifies all the verb predicates in that sentence, extracts features
for all constituents in the parse tree relative to the predicate, and identifies and tags the
constituents with the appropriate semantic arguments. For example, the output of the SRL
system for the sentence “Apple’s first logo is designed by Jobs and Wayne.” is: [ARG1 Apple ’s
first logo] is [TARGET designed ] [ARG0 by Jobs and Wayne]. The output contains one verb
(predicate) with its arguments (i.e. semantic roles). These arguments are used to generate
specific questions from the sentences. For example, we can replace [ARG1 ..] with What and
generate a question as: “What is designed by Jobs and Wayne?”. Similarly, [ARG0 ..] can be
replaced and the question: “Who designed Apple’s first logo?” can be generated. The semantic
roles ARG0...ARG5 are called mandatory arguments. There are some additional arguments or
semantic roles that can be tagged by ASSERT. They are called optional arguments and they start
with the prefix ARGM. These are defined by the annotation guidelines set in (Palmer et al.,
2005). A set of about 350 general purpose rules are used to transform the semantic-role labeled
sentences into the questions. The rules were set up in a way that we could use the semantic
role information to find the potential answer words in a sentence which would be replaced
by suitable question words. In case of a mandatory argument, the choice of question word
depends on the argument’s named entity tag (e.g. “Who” for a person, “Where” for a location
etc.). Table 2 shows how different semantic roles can be replaced by possible question words in
order to generate a question.

3.3 Importance of Generated Questions

3.3.1 Latent Dirichlet Allocation (LDA)

To measure the importance of the generated questions, we use LDA (Blei et al., 2003) to identify
the important sub-topics from the given body of texts. LDA is a probabilistic topic modeling
technique where the main principle is to view each document as a mixture of various topics.

5Available at http://cemantix.org/assert.html
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Arguments Question Words

ARG0...ARG5 Who, Where, What, Which
ARGM-ADV In what circumstances
ARGM-CAU Why
ARGM-DIS How
AGRM-EXT To what extent
ARGM-LOC Where
ARGM-MNR How
ARGM-PNC Why
ARGM-TMP When

Table 2: Semantic roles with possible question words

Here each topic is a probability distribution over words. LDA assumes that documents are made
up of words and word ordering is not important (“bag-of-words” assumption) (Misra et al.,
2008). The main idea is to choose a distribution over topics while generating a new document.
For each word in the new document, a topic is randomly chosen according to this distribution
and a word is drawn from that topic. LDA uses a generative topic modeling approach to specify
the following distribution over words within a document:

P(wi) =
K∑

j=1

P(wi |zi = j)P(zi = j) (1)

where K is the number of topics, P(wi |zi = j) is the probability of word wi under topic j and
P(zi = j) is the sampling probability of topic j for the i th word. The multinomial distributions
φ( j) = P(w|zi = j) and θ (d) = P(z) are termed as topic-word distribution and document-topic
distribution, respectively (Blei et al., 2003). A Dirichlet (α) prior is placed on θ and a Dirichlet
(β) prior is set on φ to refine this basic model (Blei et al., 2003; Griffiths and Steyvers, 2002).
Now the main goal is to estimate the two parameters: θ and φ. We apply this framework
directly to solve our problem by considering each topic-related body of texts as a document.
We use a GUI-based toolkit for topic modeling6 that uses the popular MALLET (McCallum,
2002) toolkit for the back-end. The process starts by removing a list of “stop words” from the
document and runs 200 iterations of Gibbs sampling (Geman and Geman, 1984) to estimate
the parameters: θ and φ. From each body of texts, we discover K topics and choose the most
frequent words from the most likely unigrams as the desired sub-topics. For example, from the
associated body of texts of the topic Apple Inc. Logos, we get these sub-topics: janoff, themes,
logo, color, apple.

3.3.2 Extended String Subsequence Kernel (ESSK)

Once we identify the sub-topics, we apply ESSK to measure their similarity with the generated
questions. ESSK is the simple extension of the Word Sequence Kernel (WSK) (Cancedda
et al., 2003) and String Subsequence Kernel (SSK) (Lodhi et al., 2002). WSK receives two
sequences of words as input and maps each of them into a high-dimensional vector space. WSK’s
value is just the inner product of the two vectors. But, WSK disregards synonyms, hyponyms,
and hypernyms. On the other hand, SSK measures the similarity between two sequences of

6Available at http://code.google.com/p/topic-modeling-tool/
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“alphabets”. In ESSK, each “alphabet” in SSK is replaced by a disjunction of an “alphabet” and its
alternative (Hirao et al., 2003). In ESSK, each word in a sentence is considered an “alphabet”,
and the alternative is its all possible senses. However, our ESSK implementation considers the
alternative of each word as its disambiguated sense. We use a dictionary based Word Sense
Disambiguation (WSD) System assuming one sense per discourse. We use WordNet (Fellbaum,
1998) to find the semantic relations (such as repetition, synonym, hypernym and hyponym,
holonym and meronym, and gloss) for all the words in a text. We assign a weight to each
semantic relation and used all of them. Our WSD technique is decomposed into two steps: (1)
building a representation of all possible senses of the words and (2) disambiguating the words
based on the highest score. To be specific, each candidate word from the context is expanded
to all of its senses. A disambiguation graph is constructed as the intermediate representation
where the nodes denote word instances with their WordNet senses and the weighted edges
(connecting the senses of two different words) represent semantic relations. This graph is
exploited to perform the WSD. We sum the weights of all edges leaving the nodes under their
different senses. The sense with the highest score is considered to be the most probable sense.
In case of a tie between two or more senses, we select the sense that comes first in WordNet,
since WordNet orders the senses of a word by decreasing order of their frequency.

ESSK is used to measure the similarity between all possible subsequences of the question
words/senses and topic words/senses. We calculate the similarity score Sim(Ti ,Q j) using ESSK
where Ti denotes a topic/sub-topic word sequence and Q j stands for a generated question.
Formally, ESSK is defined as follows7:

Kessk(T,Q) =
d∑

m=1

∑
ti∈T

∑
q j∈Q

Km(t i , q j)

Km(t i , q j) =

¨
val(t i , q j) if m= 1
K
′
m−1(t i , q j) · val(t i , q j)

Here, K
′
m(t i , q j) is defined below. t i and q j are nodes of T and Q, respectively. The function

val(t, q) returns the number of attributes common (i.e. the number of common words/senses)
to the given nodes t and q.

K
′
m(t i , q j) =

¨
0 if j = 1
λK

′
m(t i , q j−1) + K

′′
m(t i , q j−1)

Here λ is the decay parameter for the number of skipped words. K
′′
m(t i , q j) is defined as:

K
′′
m(t i , q j) =

¨
0 if i = 1
λK

′′
m(t i−1, q j) + Km(t i−1, q j)

Finally, the similarity measure is defined after normalization as below:

simessk(T,Q) =
Kessk(T,Q)p

Kessk(T, T )Kessk(Q,Q)

7The formulae denotes a dynamic programming technique to compute the ESSK similarity score where d is the
vector space dimension i.e. the number of all possible subsequences of up to length d. More information about these
formulae can be obtained from Hirao et al. (2003, 2004)
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3.4 Judging Syntactic Correctness
The generated questions might be syntactically incorrect due to the process of automatic
question generation. It is time consuming and a lot of human intervention is necessary to
check for the syntactically incorrect questions manually. We strongly believe that a question
should have a similar syntactic structure to a sentence from which it is generated. For example,
the sentence “Apple’s first logo is designed by Jobs and Wayne.”, and the generated question
“What is designed by Jobs and Wayne?” are syntactically similar. Hence, to judge the syntactic
correctness of each generated question automatically, we apply the tree kernel functions and
re-implement the syntactic tree kernel model for computing the syntactic similarity of each
question with the associated content information. We first parse the sentences and the questions
into syntactic trees using the Charniak parser8 (Charniak, 1999). Then we calculate the
similarity between the two corresponding trees using the tree kernel method (Collins and Duffy,
2001). We convert each parenthetic representation generated by the Charniak parser into its
corresponding tree and give the trees as input to the tree kernel functions for measuring the
syntactic similarity.

Each tree T is represented by an m dimensional vector v(T ) =
�

v1(T ), v2(T ), · · · vm(T )
�
, where

the i-th element vi(T) is the number of occurrences of the i-th tree fragment in tree T . The
tree fragments of a tree are all of its sub-trees which include at least one production with the
restriction that no production rules can be broken into incomplete parts. Figure 1 shows an
example tree and a portion of its subtrees.

Figure 1: (a) An example tree (b) The sub-trees of the NP covering “the press”.
Implicitly we enumerate all the possible tree fragments 1,2, · · · , m. These fragments are the
axis of this m-dimensional space. Note that this could be done only implicitly, since the number
m is extremely large. Because of this, Collins and Duffy Collins and Duffy (2001) defined the
tree kernel algorithm whose computational complexity does not depend on m. The tree kernel
of two syntactic trees T1 and T2 is actually the inner product of v(T1) and v(T2):

T K(T1, T2) = v(T1).v(T2) (2)

We define the indicator function Ii(n) to be 1 if the sub-tree i is seen rooted at node n and 0
otherwise. It follows:

vi(T1) =
∑

n1∈N1

Ii(n1)

8Available at ftp://ftp.cs.brown.edu/pub/nlparser/
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vi(T2) =
∑

n2∈N2

Ii(n2)

where, N1 and N2 are the set of nodes in T1 and T2 respectively. So, we can derive:

T K(T1, T2) = v(T1).v(T2)

=
∑

i

vi(T1)vi(T2)

=
∑

n1∈N1

∑
n2∈N2

∑
i

Ii(n1)Ii(n2)

=
∑

n1∈N1

∑
n2∈N2

C(n1, n2) (3)

where, we define C(n1, n2) =
∑

i Ii(n1)Ii(n2). Next, we note that C(n1, n2) can be computed in
polynomial time, due to the following recursive definition:

1. If the productions at n1 and n2 are different then C(n1, n2) = 0

2. If the productions at n1 and n2 are the same, and n1 and n2 are pre-terminals, then
C(n1, n2) = 1

3. Else if the productions at n1 and n2 are not pre-terminals,

C(n1, n2) =
nc(n1)∏

j=1

(1+ C(ch(n1, j), ch(n2, j))) (4)

where, nc(n1) is the number of children of n1 in the tree; because the productions at n1 and n2
are the same, we have nc(n1) = nc(n2). The i-th child-node of n1 is ch(n1, i).

Note that, the tree kernel (TK) function computes the number of common subtrees between
two trees. Such subtrees are subject to the constraint that their nodes are taken with all or none
of the children they have in the original tree. The TK (tree kernel) function gives the similarity
score between each sentence in the given body of texts and the generated question based on the
syntactic structure. Each sentence9 contributes a score to the questions and then the questions
are ranked by considering the average of similarity scores.

4 Experiments

4.1 System Description

We consider the task of automatically generating questions from topics where each topic is
associated with a body of texts having a useful description about the topic. The proposed QG
system ranks the questions by combining the topic relevance scores and the syntactic similarity
scores of Section 3.3 and Section 3.4 using the formula as follows:

w ∗ ESSKscore + (1−w) ∗ SY Nscore (5)

Here w is the importance parameter which holds the value in [0,1]. We kept w = 0.5 to give
equal importance10 to topic relevance and syntactic correctness.

9We consider that a question is syntactically fluent as well as relevant to the topic if it has similar syntactic sub-trees
as those of the most sentences in the body of texts.

10A syntactically incorrect question is not useful even if it is relevant to the topic. This motivated us to give equal
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4.2 Corpus

To run our experiments, we use the dataset provided in the Question Generation Shared Task and
Evaluation Challenge11 (QGSTEC, 2010) for the task of question generation from paragraphs.
This dataset consists of 60 paragraphs about 60 topics that were originally collected from
several Wikipedia, OpenLearn, and Yahoo!Answers articles. The paragraphs contain around
5− 7 sentences for a total of 100− 200 tokens (including punctuation). This dataset includes a
diversity of topics of general interest. We consider these topics and treat the paragraphs as their
associated useful content information in order to generate a set of questions using our proposed
QG approach. We use 10 topics and their associated paragraphs as the development data12. A
total of 2186 questions are generated from the remaining 50 topics (test data) to be ranked.

4.3 Evaluation Setup

4.3.1 Methodology

We use a methodology derived from Boyer and Piwek (2010); Heilman and Smith (2010b)
to evaluate the performance of our QG systems. Three native English-speaking university
graduate students judge13 the quality of the top-ranked 20% questions using two criteria: topic
relevance and syntactic correctness. For topic relevance, the given score is an integer between 1
(very poor) and 5 (very good) and is guided by the consideration of the following aspects: 1.
Semantic correctness (i.e. the question is meaningful and related to the topic), 2. Correctness
of question type (i.e. a correct question word is used), and 3. Referential clarity (i.e. it is clearly
possible to understand what the question refers to). For syntactic correctness, the assigned score
is also an integer between 1 (very poor) and 5 (very good). Whether a question is grammatically
correct or not is checked here. For each question, we calculate the average of the judges’ scores.

4.3.2 Systems for Comparison

We report the performance of the following systems in order to do a meaningful comparison
with our proposed QG system:

(1) Baseline1: This is our QG system without any question-ranking method applied to it. Here,
we randomly select 20% questions and rate them.

(2) Baseline2: For our second baseline, we build a QG system using an alternative topic
modeling approach. Here we use a topic signature model (instead of using LDA as discussed in
Section 3.3.1) (Lin and Hovy, 2000) to identify the important sub-topics from the sentences
present in the body of texts. The sub-topics are the important words in the context which are
closely related to the topic and have significantly greater probability of occurring in the given
text compared to that in a large background corpus. We use a topic signature computation tool14

for this purpose. The background corpus that is used in this tool contains 5000 documents from
the English GigaWord Corpus. For example, from the given body of texts of the topic Apple Inc.

importance to topic relevance and syntactic correctness. The parameter w can be tuned to investigate its impact on the
system performance.

11http://www.questiongeneration.org/mediawiki
12We use this data to build necessary general purpose rules for our QG model.
13The inter-annotator agreement of Fleiss’ κ= 0.41,0.45,0.62, and 0.33 are computed for the three judges for the

results in Table 3 to Table 6, indicating moderate (for the first two tables), substantial and fair agreement (Landis and
Koch, 1977) between the raters, respectively.

14Available at http://www.cis.upenn.edu/ lannie/topicS.html
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Logos, we get these sub-topics: jobs, logo, themes, rainbow, monochromatic. Then we use the
same steps of Section 3.3.2 and Section 3.4, and use equation 5 to combine the scores. We
evaluate the top-ranked 20% questions and show the results.

(3) State-of-the-art: We choose a publicly available state-of-the-art QG system15 to generate
questions from the sentences in the body of texts. This system was shown to achieve good
performance in generating fact-based questions about the content of a given article (Heilman
and Smith, 2010b). Their method ranks the questions automatically using a logistic regression
model. Given a paragraph as input, this system processes each sentence and generates a set of
ranked questions for the entire paragraph. We evaluate the top-ranked 20% questions16 and
report the results.

4.3.3 Results and Discussion

Table 3 shows the average topic relevance and syntactic correctness scores for all the systems.
From these results we can see that the proposed QG system improves the topic relevance and
syntactic correctness scores over the Baseline1 system by 61.86%, and 34.98%, respectively,
and improves the topic relevance and syntactic correctness scores over the Baseline2 system by
7.40%, and 7.57%, respectively. On the other hand, the proposed QG system improves the topic
relevance and syntactic correctness scores over the state-of-the-art system by 3.88%, and 2.89%,
respectively. From these results, we can clearly observe the effectiveness of our proposed QG
system. The improvements in the results are statistically significant17 (p < 0.05).

The main goal of this work was to generate as many questions as possible related to the topic.
For this reason, we considered generating the basic questions. These questions were also useful
to provide variety in the question space. We generated these questions using the NE information.
As the performance of the NE-taggers were not that great, we had a few of these questions
generated. In most cases, these questions were outranked by other important questions that
included a combination of topics and sub-topics to show higher topic relevance score measured
by ESSK. Therefore, they do not have a considerable impact on the evaluation statistics. We
claim that the overall performance of our systems could be further improved if the accuracy of
the NE-tagger and the semantic role labeler could be increased.

Systems Topic Relevance Syntactic Correctness

Baseline1 (No Ranking) 2.15 2.63
Baseline2 (Topic Signature) 3.24 3.30

State-of-the-art (Heilman and Smith, 2010b) 3.35 3.45
Proposed QG System 3.48 3.55

Table 3: Topic relevance and syntactic correctness scores

Acceptability Test In another evaluation setting, the three annotators judge the questions for
their overall acceptability as a good question. If a question shows no deficiency in terms of
the criteria considered for topic relevance and syntactic correctness, it is termed as acceptable.
We evaluate the top 15% and top 30% questions separately for each QG system and report

15Available at http://www.ark.cs.cmu.edu/mheilman/questions/
16We ignore the yes-no questions for our task.
17We tested statistical significance using Student’s t-test.
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the results indicating the percentage of questions rated as acceptable in Table 4. The results
indicate that the percentage of the questions rated acceptable is reduced when we evaluate
more number of questions which proves the effectiveness of our QG system.

Systems Top 15% Top 30%

Baseline1 (No Ranking) 35.2 32.6
Baseline2 (Topic Signature) 45.9 33.8

State-of-the-art (Heilman and Smith, 2010b) 44.7 38.5
Proposed QG System 46.5 40.6

Table 4: Acceptability of the questions (in %)

Systems Topic Relevance Syntactic Correctness

Baseline1 (No Ranking) 3.20 3.54
Baseline2 (Topic Signature) 3.80 3.92

State-of-the-art (Heilman and Smith, 2010b) 4.01 4.15
Proposed QG System 4.12 4.25

Table 5: Topic relevance and syntactic correctness scores (narrowed focus)

Systems Top 15% Top 30%

Baseline1 (No Ranking) 41.3 37.1
Baseline2 (Topic Signature) 53.5 43.6

State-of-the-art (Heilman and Smith, 2010b) 57.5 43.2
Proposed QG System 58.4 44.5

Table 6: Acceptability of the questions in % (narrowed focus)

Narrowing Down the Focus We run further experiments by narrowing down the topic focus.
We consider only the topics about persons (biographical focus). We choose 10 persons as
our topics from the list of the 20th century’s 100 most influential people, published in Time
magazine in 1999 and obtained the paragraphs containing their biographical information from
Wikipedia articles18. We generate a total of 390 questions from the considered 10 topics and
rank them using different ranking schemes as discussed before. We evaluate the top 20%
questions using the similar evaluation methodologies and report the results in Table 5. Again,
we evaluate the top 15% and top 30% questions separately for each QG system and report
the results indicating the percentage of questions rated as acceptable in Table 6. From these
tables, we can clearly see the improvements in all the scores for all the QG approaches. This is
reasonable because the accuracy of the NE tagger and the semantic role labeler is increased
for the biographical data. These results further demonstrate that the proposed system is
significantly better (at p < 0.05) than the other considered systems. We plan to make our
created resources available to other researchers.

18http://en.wikipedia.org/wiki/Time_100
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Systems Top-ranked questions
Baseline2 Who presented Jobs with several different monochromatic themes for the bitten logo?

What were conceived to make the logo more accessible?
Who liked the logo?

State-of-the-art Whose first logo depicts Sir Isaac Newton sitting under an apple tree?
What depicts Sir Isaac Newton sitting under an apple tree?
What did Janoff present Jobs with?

Proposed QG System Who designed Apple’s first logo?
What was replaced by Rob Janoff ’s “rainbow Apple”?
What were conceived to make the logo more accessible?

Table 7: System output

4.3.4 An Input-Output Example

An input to our systems is for instance, the topic “Apple Inc. Logos” with the associated content
information (body of texts): “Apple’s first logo, designed by Jobs and Wayne, depicts Sir Isaac
Newton sitting under an apple tree. Almost immediately, though, this was replaced by Rob Janoff ’s
“rainbow Apple”, the now-familiar rainbow-colored silhouette of an apple with a bite taken out of it.
Janoff presented Jobs with several different monochromatic themes for the “bitten” logo, and Jobs
immediately took a liking to it. While Jobs liked the logo, he insisted it be in color to humanize
the company. The Apple logo was designed with a bite so that it would be recognized as an apple
rather than a cherry. The colored stripes were conceived to make the logo more accessible, and to
represent the fact the monitor could reproduce images in color. In 1998, with the roll-out of the
new iMac, Apple discontinued the rainbow theme and began to use monochromatic themes, nearly
identical in shape to its previous rainbow incarnation.” The output of our systems is the ranked
lists of questions. We show an example output in Table 7.

Conclusion and Future Work

In this paper, we have considered the task of automatically generating questions from topics
where each topic is associated with a body of texts containing useful information. We have
exploited the named entity and semantic role labeling information to accomplish the task. A key
aspect of our approach is the use of LDA to automatically discover the hidden sub-topics from
the sentences. We have proposed a method to rank the generated questions by considering:
1) sub-topical similarity determined using ESSK algorithm in combination with word sense
disambiguation, and 2) syntactic similarity determined using the syntactic tree kernel based
method. We have compared the proposed QG system with two baseline systems and one state-
of-the-art system. The evaluation results have shown that the proposed QG system significantly
outperforms all other considered systems as our system generated top-ranked questions are
found to be better in topic-relevance and syntactic correctness than those of the other systems.
We have conducted another experiment by narrowing down the topic focus. In this experiment,
we have considered persons as topics. Our experiments have demonstrated the effectiveness
of the proposed topic to question generation approach. We hope to carry on this ideas and
develop further mechanisms to question generation based on the dependency features of the
answers and answer finding (Li and Roth, 2006; Pinchak and Lin, 2006).
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