Varro: An Algorithm and Toolkit for Regular Structure Discovery in
Treebanks

Scott Martens
Centrum voor Computerlingstiek, KU Leuven
scott@ccl.kuleuven.be

Abstract philosophy of language irDe Lingua Latina
(Harris and Taylor, 1989)
The Varro toolkit is a system for identi- The Varro toolkit focuses on a general problem

fying and counting a major class of reg- in performing statistical analyses on treebanks:
ularity in treebanks and annotated nat- identifying, counting and extracting the distribu-
ural language data in the form of tree- tions of frequently recurring unordered subtrees
structures: frequently recurring unordered in treebanks. From this base, it is possible to con-
subtrees. This software has been designed struct more linguistically motivated schemes for
for use in linguistics to be maximally performing treebank analysis. Complex statistical
applicable to actually existing treebanks analyses are constructed from knowledge about
and other stores of tree-structurable nat- frequency and distribution, so this constitutes a
ural language data. It minimizes mem- |ow level task on top of which higher level analy-
ory use so that moderately large treebanks ses can be performed.

are tractable on commonly available com- An algorithm that can efficiently extract fre-
puter hardware. This article introduces quently recurring subtrees from treebanks has a
condensed canonically ordered treas a number of immediate applications in computa-

data structure for efficiently discovering tional linguistics:
frequently recurring unordered subtrees.
e Speeding up treebank search algorithms like

1 Credits Tgrep2. (Rohde, 2001)

e Rule discovery for tree transducers used in
parsing and machine translation. (Knight and
Graehl, 2005; Knight, 2007)

e Generalizing lexical statistics techniques in
NLP — e.g., collocation — to a broader array
of linguistic structures. (Sinclair, 1991)

¢ Efficiently identifying useful features for tree

Treebanks and similarly enhanced corpora are in- kernel methods. (Moschitti, 2006)

creasingly available for research, but these more

complex structures are resistant to the techniqué& Theory and Previous Work

used in NLP for the statistical analysis of strings.))

This paper introduces a new treebank analys,:sOr th? purposes of this paper, a treepa_nk IS any

suite Varro, named after Roman philologist Mar- collection of disjoint labeled trees. While in prac-

cus Terentius Varro (116 BC-27 BC), who madéice this mostly means parsed_ natural Iz_;lnguage
linguistic regularity and irregularity central to his Sentences, the approach described here is equally

applicable to other kinds of data, including seman-
http://www.cs.kuleuven.belliir/projects/amass/ tic feature structures, morphological analyses, and

This research is supported by the AMASS++
Project directly funded by thenstitute for the
Promotion of Innovation by Science and Technol-
ogy in Flanders (IWT}JSBO IWT 060051).

2 Introduction

810

Coling 2010: Poster Volume, pages 810-818,
Beijing, August 2010

doubtless many other kind of linguistically moti-
vated structures. Figure 1 is an example of a parse
tree from a Dutch-language treebank.

Figure 1. A tree from the Europarl Dutch cor-
pus. (Koehn, 2005) It has been parsed and labeled
automatically by the Alpino parser. (van Noord,
2006) A word-for-word translation islit‘also has

a legal reasori. (=~ “There is also a legal reason
(for that).”)

In this paper, we are concerned with identify-
ing and countindrequent induced unordered sub- (b) ©
treesin treebanks. The tersubtreehas a number
of definitions, but this paper will follow the ter-
minology of Chi et al. (2004). Figure 2 contains
three examples dhduced unordered subtreed
the tree in Figure 1. Note that the ordering of
the vertices in the subtrees is different from thapears at least times (sinced = 2), so those
of Figure 1. This is what makes theamordered are rejected. Each of the remaining set elements
subtrees Induced subtreeare more formally de- {a,b,c,d} is extended by counting the number

Figure 2: Three induced unordered subtrees of the
tree in Figure 1

scribed in Section 4. of two-element sets that include it and some el-
o ement to the right in the ordered itemsetsGn
3.1 Apriori For b, these are{{b, ¢}, {b,d},{b,e}}. Of this

The research builds on frequent subtree discoget, only those that appear at le@times are re-
ery algorithms based on the well-knowkpri- tained: {{b, c}, {b,d}}. This process is repeated
ori algorithm, which is used to discover fre-for size three sets, and iterated over and over for
guent itemsets in databases. (Agrawal et alincreasingly large subsets, until there are no ex-
1993) As a brief summary ofApriori, con- tensions that appear at ledstimes. This whole
sider a collection of ordered itemsefS = procedure is then repeated for each unique item.
{{a,b,c},{a,b,d},{b,c,d,e}}. Apriori discov- Finally, Apriori will have extracted and counted
ers all the subsets of those elements that appearadititemsets that appear at ledsimes inC.

least some user-determinédimes. As an exam- Extending Apriori to frequent subtree dis-
ple, let us set = 2, and then count the numbercovery dates to the work of Zaki (2002) and
of times each unique item appearsin Any sin- Asai et al. (2002). Chi et al. (2004) summa-
gle element inC that appears less than two timegizes much of this line of research. Kyriori,
cannot be a member of a set of elements that afarger and less frequent itemsets are discovered

811

style algorithms have the general property that
their run-time is proportionate to the size of the
output. Given a data-sé? and a user-determined

OIOIOXT. < minimum frequency thresholé this class of so-
lution outputs all the patterns that appear at least
OIOIONOXOIC. 6 times inD. If D containsn patterns that ap-

pear at least times,P = {p1,p2,....,pn}; Vp; €
@) (b) © P : freq(p;) > 6, then the time necessary to

identify and count all the patterns i is pro-

portionate to> ", freq(p;). In weakly corre-

o o o lated data, this is a very efficient method of find-
ing patterns. In highly correlated data, however,
o the number of patterns present can become pro-
hibitively large and extend run-time to unaccept-
QXD

able lengths, especially for smdllor large data-
sets. Each frequent pattern may have any number
of sub-patterns, each of which is also frequent and
(d) must be separately counted.
If we identify patterns with subtrees, a subtree

Figure 3: 3(b) and 3(c) are a subtrees of 3(a). Th\é{ith n vertices will, depending on its structure,

subtrees in 3(d) are possible extensions to 3(djave @ minimum ofa(n — 1) and a maximum
while 3(c) is not. of (n — 1)! + 1 subtrees. If each of those sub-

trees is also a pattern that must be counted, then

runtime grows very rapidly even for very small
and counted by adding items to shorter and morgata-sets. Since natural language data is highly
frequent ones. This extends naturally to trees byorrelated, simple subtree-discovery extensions of
|n|tla”y IOC&ting and Counting all the One'VerteXApriori, like those proposed in (Zakh 2002) and
trees in a treebank, and then constructing larggAsai, 2002), are not feasible for linguistic use. As
trees by adding vertices and edges to their rightported in Martens (2009b), run-times become
sides. intractably long very quickly as data size increases

In Figure 3, subtree 3(b) has as valid extensior®r really existing treebanks.
subtrees 3(d), all of which extend 3(b) to the right. However, there are compact representations of
An extension like subtree 3(c), which adds a nodgequent patterns that are better suited to highly-
to the left of the rightmost node of 3(b), is not acorrelated data and which can be efficiently dis-
valid extension. covered by modifiedApriori schemes. This pa-
per will only address one such representatioex:
qguent closures (Boulicaut and Bykowski, 2000)
Applying these algorithms to natural languagd-requent closures are widely used in subtree dis-
treebanks, however, presents a number of chatevery and have an intuitive meaning when dis-
lenges. cussing natural language.

The approach described above, because it con-Given a treebank, and a tred” that has a sup-
structs and tests subtrees by moving from left tport of freq(T") = 6, thenT is closedif there is
right, is well-suited to findingordered subtrees no supertred” > T wherefreq(T’) = 6. In Fig-
However, this paper will considemordered sub- ure 3, if subtree 3(c) is as frequent in some tree-
treesas better motivated linguistically. Word or-bank as 3(b), then 3(b) is not a closed subtree, nor
der is not completely fixed in any language, and¢an any further extension of it to the right be a
can be very free in many important contexts. closed subtree.

But there are other problems as well. Apriori- As a natural language example, given a corpus

3.2 Treebank applications

812

of English sentences, let us assume we have fousdbtrees. Figure 5 shows the kind of tree where
a pattern of the formnfiNP make up NP to VP; that approach is unable to correctly identify and
such as irfHe has made up his mind to study lin- count an unordered subtree. Second, it requires a
guistics.” If every time this pattern appears in thegreat deal more memory than solutions that align
corpus, the second NP contaiimind” , then the each subtree discovered and check directly for
pattern isnotclosed. A larger pattern appears justlosure, and is therefore of limited use with very
as often and in exactly the same places. large corpora.

This makes the notion of frequent closed sub- o
tree discovery a generalization céllocationand 4 Definitions
coligation- well known in corpus-based lexicog- o fy|ly-labeled rooted treeis a rooted tree in
raphy - to arbitrary tree structures. (Sinclairyyhich each vertex and each edge has a labet=
1991) J.R. Firth famously said, “You shall know<V’ B, Lv, L), whereV is the set of vertices?
a word by the company it keeps.” (Firth, 1957)q the set of edged, is a mapLy : V — Ly
Frequent subtree discovery tells us exactly whatom the vertices to a set of labels; and similarly
company entire linguistic structures keep. L maps the edges to labels; : £ — L. We
will designate an edge connecting vertex; to

)) its child v, by the notatiore = (vq,v3). Ly and
Chi etal. (2005a) outlines a general method for eﬁlE constitute collectively théexicon Figure 1 is

ficiently finding frequent closed subtrees withoutan example of a fully-labelled, rooted tree from

findir_lg all frequent subtrees first. Th_eir apprga(?% Dutch-language treebank. This formalization
requires each subtree fqund to be aligned with L) broadly applicable to all linguistic formalisms
supertree before checking for closure and extellhose structures argee-basedor can be con-
5'0(;‘?- However, thehallgnmefnt betW(te)en a SUb_tr%rted one-to-one into trees without loss of gener-
and its supertreg -t e, map from su _tlree _’ert'ce:iity. This may require some degree of restructur-
0 Eupertree \;\emces -1S EOt nfecess%rll y LIJ_nlque. ﬁﬁg of the tree formats used in particular linguistic
sy tr_ee may have a number ot poss| ealignmeniRe ories. For example, in many formal linguistic
with 'FS supertrge, eve_n_ if one or more _Of the Verfheories, labels are not atomic symbols, but may
tex_allgnments is specificed, as shown in Figure ave many parts or even whole structured feature
which uses an example from the hand—correctegets_ In general, these can be mapped to trees with

AIpinp Treebank of DUFCH' , _ . atomic labels by inserting additional vertices, or
This can only be avoided by adding a restrlctlorby taking advantage of edge labelling

to trees: the combination of edge and vertex labels The algorithm described here is insufficient

for each child of a ve_rtgx must be unique. _Th'%or formal structures that require more powerful
guarantees that specifying just one vertex in thglraph formalisms like directed acyclic graphs.

alignment of a subtree to its supertree is enoug The relationgarent child andsibling are taken

to determine the entire unique mapping, but it ig,o g i their ordinary sense in discussing trees. In
incompatible with most linguistic theories. Pro'Figure 1 the vertex labeleadvis a child of the

cesses like tree binarization can meet this requirgz, . labelecsmain the parentof the vertex la-

frequent closed subtrees in a collection of treeg . iha two vertices labelew. To simplify defi-
like Figure 4(a) will no longer be frequent, or will nitions, the operatalabel(x) will indicate the la-

be less frequent, in a collection of binary trees. bel of vertex or edge

Martens (200961) describes ar_1 alternative An induced unordered subtrde a connected
method ?f checklngo:‘or closure WhlchI dtz)eS NOL hset of the vertices of some tree that preserves
;equwe a |ghnmer;;[andcan, conzequgnt i _ € mUQHe vertex and edge labels and the parent-child re-
.aster. It as, however, two drawbacks: Firsty,ions of that tree but need not preserve the or-
it does not find all frequent closed unordereqjering of siblings. Given a fully-labeled trae:—

2http:/ivww.let.rug.nl/vannoord/trees/ (Vr, Er, Ly,., Lg,), aninduced subtre® of T" is

3.3 Efficient closed subtree discovery

813

Figure 4: In 4(a) is a Dutch phrase conjoining multiple nouns. It translatgsoéise work, recreation,
planning and court activities”4(b) has six unique unordered alignments with 4(a).

(a) (b) (c)

Figure 5: Subtree 5(c) is an unordered subtree of both 5(a) and 5(b), but the algorithm described in
Martens (2009a) is unable to capture this in all cases.

a fully-labeled treeS := (Vs, Eg, Ly, Lg) for researchers in frequent subtree discovery tech-
which there is an injectiod/ : Vs — Vp from nigques, notably in Chi et al. (2005b). Since the
the vertices ofS to some subset of the vertices ofApriori-style approaches described in Section 3.1

T, and for which: are suited only to finding subtrees whose vertices
appear in a particular order, this paper will de-
Vv € Vs scribe a mechanism for converting fully-labeled

trees into canonical forms that guarantee that all
instances of any unordered subtree will have an
, identical order to their vertices.
¢ = (M(parent(v)), M(v)) € Br We must first define a strict total ordering over
. label(e) = label(e’) vertex and edge labels. Given lexica for the edge
See Figures 1 and 2 for examples of subtrees @nhd vertex labelsL.p and Ly respectively, we
a particular tree. define a strict total ordering on each such that
We will further define all subtrees that are iden¥l;,l; € L eitherl; < I orl; = [orl; = I
tical except in the ordering of their vertices to beand ifl; < I; andl; < Iy, thenl; < I.
unordered isomorphiclf a treeT is a subtree of In a collection of fully-labeled trees, ev-
tree T, we will follow set notation by denoting ery vertex v that is not the root of some

a. label(v) = label (M (v))
b. e = (parent(v),v) € Eg —

this relation ag” C T". tree can be associated with dull la-
_ _ bel which is the pair fullLabel(v) =
4.1 Canonical Ordering (label({parent(v),v)), label(v)), containing

Using canonical orderings to solve frequent unthe label of the edge leading to its parent and the
ordered subtree problems was first proposed iabel of the vertex itself. For any pair of vertices
Luccio et al. (2001) and expanded by othewhere the edge to their parent is different, we

814

order the vertices by the order of those edges. This is performed in breadth-first order ovEr
Where the edges are the same, we order thefe result is guaranteed to be a tree where each
by the ordering of their vertex labels. Wherevertex never has two children with the same edge
we have two sibling vertices; andv; such that and vertex labels. Figure 6 shows how the trees
fullLabel(v;) = fullLabel(v;), we recursively in Figure 5 look after they are converted into con-
order the descendants ef and v;, and then densed trees. We will denote condensed trees as
compare them. In this way, two nodes can onl$f = cond(7T), to indicate that¥ has been con-
have an undefined order if they have both exactlgtructed fromir".

the same full labels and identical descendants. If two non-condensed trees are unordered iso-

A canonically ordered treds a treeT := morphic, then their condensed forms will be iden-
(Vr, Er, Lvy., L), where for each € Vr, the tical, including in their vertex orderings and par-
children ofv are ordered in just that fashion. ent indexes. If two condensed trees are identical,

then the non-condensed trees from which they are
constructed are always unordered isomorphic.

Each vertex of a condensed treg = cond(T)
has a parent index containing some number of en-
tries corresponding to a set of vertices in non-
condensed tre@. We will designate that set as
orig(v), a subset of the vertices ifi. Given a
condensed tree vert@and its pareng, if the size
of orig(p) is larger than one, then the verticesin
may have different parents ifi. We can interpret
the integers in the parent index of each condensed
tree vertex as indicating which parent each mem-
Condensed trees are constructed from notper oforig(v) has.
condensed trees as follows: In this way, givenT = cond(T), there is a
Given a treeT := (V,E, Ly, Lg), we first one-to-one mapping from the vertices Bfto a
canonically order it, as described in the previoupair (v,4) consisting of some vertex i@ and an
section. Then, we attach a parent index to eagAdex to an entry in its parent index. If some
vertexv € V which is not the root off. The ini- vertexv in T maps to(v,), then all the chil-
tial parent index of each node consists of a singlgren of v, ¢ € children(v) map to pairs(c, j)
Zero. such thatparent(c¢) = v and thejth entry in
We then traverse the vertices of the now orparentIndex(c) is i. We can use this to define
dered tre€l" in breadth-first order from the the parent-child operations over condensed trees that
root downwards and from left to right. Givenperfectly match parent-child operations in non-
somewv; € V, if it has no sibling to its right, condensed ones.
or if the sibling to its immediate right has a dif- \we will define a skeleton treeas a con-

ferent vertex label or a different edge label oryensed tree stripped of its parent indices, and
the edge to its parent, we do nothing. Othefgengte it asskel(T). Note that for any non-
wise, if v; has a sibling to its immediate right condensed tre@ and any non-condensed sub-
vi with the same full label, we séf to the size yee g C T, skel(cond(T)) will always contain
of parentIndez(v;), and then we append thegyci(cond(S)) as anorderedsubtree, including

parentIndex(v;) to parentIndex(vi). Then,we iy cases like Figure 5, as shown in Figure 6.
take the children of;, and for each one, we incre-

ment each value in its parent index fyand then
insert it undemw; as one ofy;’s children. We delete
v; and then we reorder the childrenqfinto the An alignment of a condensed subtréewith a
canonical order defined in Section 4.1. condensed tre® has two parts:

4.2 Condensed trees

A condensed treés a fully-labeled tre€l’ :=
(Vr, Er, Ly,., Lg,) with two additional proper-
ties:

a. Each vertew € V is associated to a list of
indices parentIndex(v) = {i1,i2,...,0n},
which we will call itsparent index Each en-
try i1, 9, ..., i, IS @ NON-Negative integer.

b. No vertexv € V has two children with the
same full label.

4.3 Alignment

815

o o o
DI IR OIDIDIOINCID
@ (b) (c)

Figure 6: The trees in Figure 5 transformed into their condensed equivalents, with their parent arrays.
Note that 6(c) is visibly an ordered subtree of both 6(a) and 6(b) if you ignore the parent arrays.

a. Skeleton Alignment: The remaining index alignments must still be
AninjectionM : Vg — Vz fromthe vertices checked to verify that each one can form a part
of & to the vertices of. of a one-to-one mapping fromrig(s) to orig(t).

b. Index Alignment: This is equivalent to finding a maximal bipar-
For each vertews € Vg, a bipartite map- tite matching fromorig(s) to orig(t) for each
ping from the vertices inrig(ve) to the ver- possible alignment fromarig(s) to orig(t). Bi-
tices inorig(M (ve)). partite matching is a problem with a number

of well-documented solutions. (Dijkstra (1959),

The first part is an alignment afel(S) with Lovasz (1986), among others)

skel(%). Given an alignment from the root &

to some vertex.n‘f, this can be performed in time ? Algorithm

proportionate, in the worst case, to the number o

vertices inskel(T). If all the parent indices of the Having outlined condensed trees and how to align

aligned vertices in the subtree and supertree hatteem, we can build an algorithm for extracting alll

only one index in them, then the index alignmenfrequent closed unordered subtrees from a tree-

is trivial and the alignment ofs to T is complete. bank of condensed trees, given a minimum fre-
In other cases, index alignment is nonquency threshold. Space restrictions preclude

trival. The method here draws on the procea full formal description of the algorithm, but it

dure for unordered subtree alignment proposed lyosely follows the general outline for closed tree

Kilpelainen (1992). In the worst case, it resolvesliscovery schemes advanced by Chi et al. (2005a):

to the same algorithm, but can perform better on

the average because of the structure of condensed. Pass through the treebank collecting all the

trees. subtrees that consist of a single vertex label
Alignment proceeds from the bottom-up, start- and all their locations.

ing with the leaves of5. If vertexs is a leaf of . Remove those that appear less thaimes.

N

G and is aligned to some vertéxn T, then we
initially assume any member of-ig(s) can map

to any member obrig(t). We then proceed up-

wards in&, checking each vertexin & to find a
mapping fromorig(s) to orig(t) such that if some
s € orig(s) can be mapped to sonmec orig(t),

then the children of can be mapped to children

of ¢.

Once we reach the root &, we proceed back

(621

3. Loop over each remaining subtree, aligning

it to each place it appears in the treebank

4. Collect all the possible extensions, creating a

new list of two vertex subtrees and all their
locations.

. Use the extensions to the left of the rightmost
vertex in each alignment to check if the sub-
tree is closed to the left, and reject it if it is
not.

downwards, removing those mappings from each 6. Use the extensions to the right of the right-

orig(s) to its correspondingrig(t) that are im-
possible because their parents do not align.

816

most vertex to check if the subtree is closed
to the right, and output it if it is.

7. Retain the extensions to the right of the righttrees than reported by Martens (2009b) on the
most vertex and their locations if those extensame data and considerably more time.

sions appear at leagtimes. Speed and memory performance are the major

8. Repeat for those subtrees. practical issues in this line of research. Choos-
ing to designvarro with memory footprint mini-

6 Implementation and Performance mization in mind is a source of some performance

Thev kit impl q q (gottlenecks. Using Python also takes a heavy toll
evarro toolkitimplements condensed trees ang, speed and a C++ implementation is planned.

the algorithm described above in Python 3.1 an(flhe fast alignment-free closure checking scheme

Easdbe(;n spplleddto treebanks aTshIargeftz\:Ilvs Se\/‘%F’F"l\/lartens (2009b) can also be implemented us-
undred thousand sentences. e software apf -ondensed trees. On small treebanks this will

source code is available from sourceforgémﬂ improve speed without loss of precision, but has
includes a small treebank of parsed Latin teXtﬁmited applicability to large treebanks.
provided by the Perseus Digital Library. (Bam-
man and Crane, 2007) 7 Conclusions

The worst case memory performance of this al-)
gorithm isO(nm) wheren is the number of ver- 1€ trade-off between memory usage, run-time
tices in the treebank and is the largest frequent 2Nd completeness for this kind of algorithm is
subtree found in it. However, only the most pathoPunitive The user must balanoeery long run-

logically structured treebank could come close t§MeS against excessive memory usage if they
this ceiling, and in practice, the current implemen¥Vant to accurately count all frequent unordered

tation has so far never used as much twice tH@duced subtrees. Théarro toolkit is designed to
memory required to store the original treebank. make it possible to choose what tradeoffs to make.

The runtime performance is, as described il§ince any subtree can be extended and checked for

Section 3.2, proportionate to the size of the outS'0SUre independently of other subtreesiro can

put. However, aligning each occurrence of eacﬁasilyimplement heuristics designed to further re-
subtree adds an additional factor. Given a Cor{j_uce the number of subtrees extracted. We believe

densed subtre& and its condensed supertreethe future of this line of research lies in large part
< containingsize(%) vertices, and one alreadyin that direction and hope that public release of

aligned vertex, the worst case alignment time arrowill aid in its qlevelopment. _
O(size(T)25), but only a highly pathological tree We have _also Fjlscovered that there_ls_ a very
structure would approach this. The best Cas%tron_g relatlons_hlp _bgtween the congision and
alignment time isO(siz¢(6&)). Therefore, it al- consistency of linguistic formalisms anﬂ%rro’s
ways takes more time to align larger subtrees, ar{berformanf:e. hweh reztructuref]l the Alpmo data
since larger subtrees are less frequent than smal@f promoting the head of eac constltugnt, cre-
ones, setting lower minimum frequency thresh@lNg dependency-style trees along the lines de-

olds increases the average time required to proce%%r_ibed by Tesrére (1959) and Meguk (1988).
a subtree. This reduced the number of subtrees found by

o0 L .
Processing even the small Alpino Treebanlg’O/o 60% and reduced run-times consistently by

o700 .
produces very large numbers of frequent close %-70% across a range of minimum frequency

subtrees. After removing punctuation and the to_t— resholds and treebank sizes. As a general rule,

kens themselves, leaving just parts-of-speech aH&creasing the degree of linguistic abstraction in-
consituency labels - the Alpino treebank’s 71371€ases the number of frequent suptrees, and con-
sentences are reduced to 206,520 vertices. With] quently slows/arro down dramatically. lden-

this small setVarro took 1252 seconds to find tifying linguistic formalisms that lend themselves

7307 frequent closed subtrees that appear at Ieégtefnuent and productive subtree discovery is an-

100 times. This is both considerably more sub(-)ther ?'gﬂ'f'cam_ dlre_ctlon for this research_, a.nd
one with immediate impact on other areas in lin-

Shttp://ivarro.sourceforge.net/ guistics.

817

References Knight, Kevin. 2007. Capturing practical natural

o . language transformations.Machine Translation
Agrawal, Rakesh, Tomasz Imielinski and Arun Swami. 51:121-133.

1993. Mining association rules between sets of

items in large databasesroceedings of the 1993 Knight, Kevin and Graehl, Jonathan. 2005. An
ACM SIGMOD International Conference on Man- Overview of Probabilistic Tree Transducers for Nat-
agement of Datgpp. 207-216. ural Language Processingroceedings of the 6th
CICLing, 1-24.
Asai, Tatsuya, Kenji Abe, Shinji Kawasoe, Hiroki
Arimura, Hiroshi Sakamoto and Setsuo ArikawaKoehn, Philipp. 2005. Europarl: A Parallel Corpus for
2002. Efficient substructure discovery from large Statistical Machine TranslatiolRroceedings of the
semi-structured data.Proceedings of the Second 10th Machine Translation Summint9—-86.
SIAM International Conference on Data Mining)
158—174. Lovasz, laszb and M.D. Plummer. 1986Matching
Theory Amsterdam: Elsevier Science.
Ba_m@aﬂaﬁnDa[\)/édpegggncgrgr%ce)ggaﬁ:a?ne.a Clﬁ&?g}_uccio, Fabrizio, Antonio Enriquez, Pablo Rieumont
Heritage Digital Library. Proceedings of the and L!nda_ Pagll._ 2001. Exact_Rooft‘ed _Sult_)tree
Workshop on Language Technology for Cul- Match!ng in Sublinear Time Universia Di Pisa
tural Heritage Data LaTeCH 2007: pp. 33-40. lechnical Report TR-01-14.

http://nlp.perseus.ufts.edu/syntax/treebank/ Moschitti, Alessandro. Making tree kernels practical

for natural language learningProceedings of the
11th Conference of the European Association for
Computational LinguisticéEACL 2006), 113-120.

Boulicaut, J.-F. and A. Bykowski. 2000. Frequent
closures as a concise representation for binary data
mining. Knowledge discovery and data mining:
current issues and new applicatigi3AKDD 2000:

6273 Mel’ €uk, Igor A. 1988. Dependency syntax: Theory
pp. 62-73.

and practice Albany, NY: SUNY Press.

Chi, Yun, Richard R. Muntz, Siegfried Nijssen andMartens, Scott. 2009a. Frequent Structure Discovery
Joost N. Kok. 2004. Frequent Subtree Mining - An in Treebanks. Proceedings of the 19th Computa-
Overview. Fundamenta Informatica®6(1-2):161— tional Linguistics in the Netherland€LIN 19).

198.
Martens, Scott 2009b. Quantitative analysis of

Chi, Yun, Yi Xia, Yirong Yang and Richard R. Muntz. treebanks using frequent subtree mining methods.
2005a. Mining Closed and Maximal Frequent Proceedings of the 2009 Workshop on Graph-
Subtrees from Databases of Labeled Rooted Trees. based Methods for Natural Language Processing
IEEE Transactions on Knowledge and Data Engi- (TextGraphs-4)84-92.
neering 17(2):190-202.

Rohde, Douglas. 2001. Tgrep2 User Manual

Chi, Yun, Yi Xia, Yirong Yang and Richard R. Muntz. http://tedlab.mit.edutdr/Tgrep2
2005b . Canonical forms for labelled trees and theig.. .
applications in frequent subtree miningnowledge élnclaw, John. 1991Corpus, Concordance, Colloca-

and Information System8(2):203—234. tion. Oxford: OUP.

Tesnére, Lucien. 1959.Eléments de syntaxe struc-

Dijkstra, E. W. 1959. A note on two problems in turale. Paris-Editions Klincksieck.

connexion with graphs. Numerische Mathematik

1:269-271. van Noord, Gertjan. 2006. At last parsing is now

operational. Verbum Ex Machina. Actes de la
13e conérence sur le traitement automatique des

Harris, Roy and Talbot J. Taylor. 1989/1997. Varro on langues naturelle¢TALNG), 20-42.

Linguistic Regularity. InHarris and Taylor, Land- Mohammed J. Zaki. 2002. Efficiently mining fre-

marks in Linguistic Thought I: The Western Tra- quent trees in a foresProceedings of the 8th ACM

dition from Socrates to Saussutgnd ed. London: S|GKDD International Conference on Knowledge
Routledge. pp. 47-59. Discovery and Data Miningl021-1035.

Firth, J.R. 1957 Papers in LinguisticsLondon: OUP.

Kilpelainen, Pekka. 1992Tree Matching Problems
with Applications to Structured Text Databases.
PhD dissertation. Univ. Helsinki, Dept. of Computer
Science.

818

