
Coling 2010: Poster Volume, pages 810–818,
Beijing, August 2010

Varro: An Algorithm and Toolkit for Regular Structure Discovery in
Treebanks

Scott Martens
Centrum voor Computerlinguı̈stiek, KU Leuven

scott@ccl.kuleuven.be

Abstract

The Varro toolkit is a system for identi-
fying and counting a major class of reg-
ularity in treebanks and annotated nat-
ural language data in the form of tree-
structures: frequently recurring unordered
subtrees. This software has been designed
for use in linguistics to be maximally
applicable to actually existing treebanks
and other stores of tree-structurable nat-
ural language data. It minimizes mem-
ory use so that moderately large treebanks
are tractable on commonly available com-
puter hardware. This article introduces
condensed canonically ordered treesas a
data structure for efficiently discovering
frequently recurring unordered subtrees.

1 Credits

This research is supported by the AMASS++
Project1 directly funded by theInstitute for the
Promotion of Innovation by Science and Technol-
ogy in Flanders (IWT)(SBO IWT 060051).

2 Introduction

Treebanks and similarly enhanced corpora are in-
creasingly available for research, but these more
complex structures are resistant to the techniques
used in NLP for the statistical analysis of strings.
This paper introduces a new treebank analysis
suiteVarro, named after Roman philologist Mar-
cus Terentius Varro (116 BC-27 BC), who made
linguistic regularity and irregularity central to his

1http://www.cs.kuleuven.be/˜liir/projects/amass/

philosophy of language inDe Lingua Latina.
(Harris and Taylor, 1989)

TheVarro toolkit focuses on a general problem
in performing statistical analyses on treebanks:
identifying, counting and extracting the distribu-
tions of frequently recurring unordered subtrees
in treebanks. From this base, it is possible to con-
struct more linguistically motivated schemes for
performing treebank analysis. Complex statistical
analyses are constructed from knowledge about
frequency and distribution, so this constitutes a
low level task on top of which higher level analy-
ses can be performed.

An algorithm that can efficiently extract fre-
quently recurring subtrees from treebanks has a
number of immediate applications in computa-
tional linguistics:

• Speeding up treebank search algorithms like
Tgrep2. (Rohde, 2001)

• Rule discovery for tree transducers used in
parsing and machine translation. (Knight and
Graehl, 2005; Knight, 2007)

• Generalizing lexical statistics techniques in
NLP – e.g., collocation – to a broader array
of linguistic structures. (Sinclair, 1991)

• Efficiently identifying useful features for tree
kernel methods. (Moschitti, 2006)

3 Theory and Previous Work

For the purposes of this paper, a treebank is any
collection of disjoint labeled trees. While in prac-
tice this mostly means parsed natural language
sentences, the approach described here is equally
applicable to other kinds of data, including seman-
tic feature structures, morphological analyses, and

810



doubtless many other kind of linguistically moti-
vated structures. Figure 1 is an example of a parse
tree from a Dutch-language treebank.

Figure 1: A tree from the Europarl Dutch cor-
pus. (Koehn, 2005) It has been parsed and labeled
automatically by the Alpino parser. (van Noord,
2006) A word-for-word translation is “It also has
a legal reason.” (≈ “There is also a legal reason
(for that).”)

In this paper, we are concerned with identify-
ing and countingfrequent induced unordered sub-
treesin treebanks. The termsubtreehas a number
of definitions, but this paper will follow the ter-
minology of Chi et al. (2004). Figure 2 contains
three examples ofinduced unordered subtreesof
the tree in Figure 1. Note that the ordering of
the vertices in the subtrees is different from that
of Figure 1. This is what makes themunordered
subtrees. Induced subtreesare more formally de-
scribed in Section 4.

3.1 Apriori

The research builds on frequent subtree discov-
ery algorithms based on the well-knownApri-
ori algorithm, which is used to discover fre-
quent itemsets in databases. (Agrawal et al.,
1993) As a brief summary ofApriori, con-
sider a collection of ordered itemsetsC =
{{a, b, c}, {a, b, d}, {b, c, d, e}}. Apriori discov-
ers all the subsets of those elements that appear at
least some user-determinedθ times. As an exam-
ple, let us setθ = 2, and then count the number
of times each unique item appears inC. Any sin-
gle element inC that appears less than two times
cannot be a member of a set of elements that ap-

(a)

(b) (c)

Figure 2: Three induced unordered subtrees of the
tree in Figure 1

pears at leastθ times (sinceθ = 2), so those
are rejected. Each of the remaining set elements
{a, b, c, d} is extended by counting the number
of two-element sets that include it and some el-
ement to the right in the ordered itemsets inC.
For b, these are{{b, c}, {b, d}, {b, e}}. Of this
set, only those that appear at leastθ times are re-
tained: {{b, c}, {b, d}}. This process is repeated
for size three sets, and iterated over and over for
increasingly large subsets, until there are no ex-
tensions that appear at leastθ times. This whole
procedure is then repeated for each unique item.
Finally, Apriori will have extracted and counted
all itemsets that appear at leastθ times inC.

Extending Apriori to frequent subtree dis-
covery dates to the work of Zaki (2002) and
Asai et al. (2002). Chi et al. (2004) summa-
rizes much of this line of research. InApriori,
larger and less frequent itemsets are discovered

811



(a) (b) (c)

(d)

Figure 3: 3(b) and 3(c) are a subtrees of 3(a). The
subtrees in 3(d) are possible extensions to 3(b),
while 3(c) is not.

and counted by adding items to shorter and more
frequent ones. This extends naturally to trees by
initially locating and counting all the one-vertex
trees in a treebank, and then constructing larger
trees by adding vertices and edges to their right
sides.

In Figure 3, subtree 3(b) has as valid extensions
subtrees 3(d), all of which extend 3(b) to the right.
An extension like subtree 3(c), which adds a node
to the left of the rightmost node of 3(b), is not a
valid extension.

3.2 Treebank applications

Applying these algorithms to natural language
treebanks, however, presents a number of chal-
lenges.

The approach described above, because it con-
structs and tests subtrees by moving from left to
right, is well-suited to findingordered subtrees.
However, this paper will considerunordered sub-
treesas better motivated linguistically. Word or-
der is not completely fixed in any language, and
can be very free in many important contexts.

But there are other problems as well. Apriori-

style algorithms have the general property that
their run-time is proportionate to the size of the
output. Given a data-setD and a user-determined
minimum frequency thresholdθ, this class of so-
lution outputs all the patterns that appear at least
θ times inD. If D containsn patterns that ap-
pear at leastθ times,P = {p1, p2, ..., pn};∀pi ∈
P : freq(pi) ≥ θ, then the time necessary to
identify and count all the patterns inP is pro-
portionate to

∑n
i=1 freq(pi). In weakly corre-

lated data, this is a very efficient method of find-
ing patterns. In highly correlated data, however,
the number of patterns present can become pro-
hibitively large and extend run-time to unaccept-
able lengths, especially for smallθ or large data-
sets. Each frequent pattern may have any number
of sub-patterns, each of which is also frequent and
must be separately counted.

If we identify patterns with subtrees, a subtree
with n vertices will, depending on its structure,
have a minimum ofn(n − 1) and a maximum
of (n − 1)! + 1 subtrees. If each of those sub-
trees is also a pattern that must be counted, then
runtime grows very rapidly even for very small
data-sets. Since natural language data is highly
correlated, simple subtree-discovery extensions of
Apriori, like those proposed in (Zaki, 2002) and
(Asai, 2002), are not feasible for linguistic use. As
reported in Martens (2009b), run-times become
intractably long very quickly as data size increases
for really existing treebanks.

However, there are compact representations of
frequent patterns that are better suited to highly-
correlated data and which can be efficiently dis-
covered by modifiedApriori schemes. This pa-
per will only address one such representation:fre-
quent closures. (Boulicaut and Bykowski, 2000)
Frequent closures are widely used in subtree dis-
covery and have an intuitive meaning when dis-
cussing natural language.

Given a treebankD, and a treeT that has a sup-
port of freq(T ) = θ, thenT is closedif there is
no supertreeT ′ ⊃ T wherefreq(T ′) = θ. In Fig-
ure 3, if subtree 3(c) is as frequent in some tree-
bank as 3(b), then 3(b) is not a closed subtree, nor
can any further extension of it to the right be a
closed subtree.

As a natural language example, given a corpus

812



of English sentences, let us assume we have found
a pattern of the form“NP make up NP to VP”,
such as in“He has made up his mind to study lin-
guistics.” If every time this pattern appears in the
corpus, the second NP contains“mind” , then the
pattern isnotclosed. A larger pattern appears just
as often and in exactly the same places.

This makes the notion of frequent closed sub-
tree discovery a generalization ofcollocationand
coligation - well known in corpus-based lexicog-
raphy - to arbitrary tree structures. (Sinclair,
1991) J.R. Firth famously said, “You shall know
a word by the company it keeps.” (Firth, 1957)
Frequent subtree discovery tells us exactly what
company entire linguistic structures keep.

3.3 Efficient closed subtree discovery

Chi et al. (2005a) outlines a general method for ef-
ficiently finding frequent closed subtrees without
finding all frequent subtrees first. Their approach
requires each subtree found to be aligned with its
supertree before checking for closure and exten-
sions. However, the alignment between a subtree
and its supertree - the map from subtree vertices
to supertree vertices - is not necessarily unique. A
subtree may have a number of possible alignments
with its supertree, even if one or more of the ver-
tex alignments is specificed, as shown in Figure 4,
which uses an example from the hand-corrected
Alpino Treebank of Dutch.2

This can only be avoided by adding a restriction
to trees: the combination of edge and vertex labels
for each child of a vertex must be unique. This
guarantees that specifying just one vertex in the
alignment of a subtree to its supertree is enough
to determine the entire unique mapping, but it is
incompatible with most linguistic theories. Pro-
cesses like tree binarization can meet this require-
ment, but only with some loss of generality: Some
frequent closed subtrees in a collection of trees
like Figure 4(a) will no longer be frequent, or will
be less frequent, in a collection of binary trees.

Martens (2009a) describes an alternative
method of checking for closure which does not
require alignment and can, consequently, be much
faster. It has, however, two drawbacks: First,
it does not find all frequent closed unordered

2http://www.let.rug.nl/vannoord/trees/

subtrees. Figure 5 shows the kind of tree where
that approach is unable to correctly identify and
count an unordered subtree. Second, it requires a
great deal more memory than solutions that align
each subtree discovered and check directly for
closure, and is therefore of limited use with very
large corpora.

4 Definitions

A fully-labeled rooted treeis a rooted tree in
which each vertex and each edge has a label:T :=
〈V,E, LV , LE〉, whereV is the set of vertices,E
is the set of edges,LV is a mapLV : V → LV

from the vertices to a set of labels; and similarly
LE maps the edges to labelsLE : E → LE . We
will designate an edgee connecting vertexv1 to
its child v2 by the notatione = 〈v1, v2〉. LV and
LE constitute collectively thelexicon. Figure 1 is
an example of a fully-labelled, rooted tree from
a Dutch-language treebank. This formalization
is broadly applicable to all linguistic formalisms
whose structures aretree-basedor can be con-
verted one-to-one into trees without loss of gener-
ality. This may require some degree of restructur-
ing of the tree formats used in particular linguistic
theories. For example, in many formal linguistic
theories, labels are not atomic symbols, but may
have many parts or even whole structured feature
sets. In general, these can be mapped to trees with
atomic labels by inserting additional vertices, or
by taking advantage of edge labelling.

The algorithm described here is insufficient
for formal structures that require more powerful
graph formalisms like directed acyclic graphs.

The relationsparent, child andsiblingare taken
here in their ordinary sense in discussing trees. In
Figure 1, the vertex labeledadv is a child of the
vertex labeledsmain, theparentof the vertex la-
beledook, and a sibling of the vertex labeledverb
and the two vertices labelednp. To simplify defi-
nitions, the operatorlabel(x) will indicate the la-
bel of vertex or edgex.

An induced unordered subtreeis a connected
subset of the vertices of some tree that preserves
the vertex and edge labels and the parent-child re-
lations of that tree but need not preserve the or-
dering of siblings. Given a fully-labeled treeT :=
〈VT , ET , LVT

, LET
〉, aninduced subtreeS of T is

813



(a) (b)

Figure 4: In 4(a) is a Dutch phrase conjoining multiple nouns. It translates as“police work, recreation,
planning and court activities”. 4(b) has six unique unordered alignments with 4(a).

(a) (b) (c)

Figure 5: Subtree 5(c) is an unordered subtree of both 5(a) and 5(b), but the algorithm described in
Martens (2009a) is unable to capture this in all cases.

a fully-labeled treeS := 〈VS , ES , LVS
, LES

〉 for
which there is an injectionM : VS → VT from
the vertices ofS to some subset of the vertices of
T , and for which:

∀v ∈ VS :

a. label(v) = label(M(v))
b. e = 〈parent(v), v〉 ∈ ES →

e′ = 〈M(parent(v)),M(v)〉 ∈ ET

c. label(e) = label(e′)

See Figures 1 and 2 for examples of subtrees of
a particular tree.

We will further define all subtrees that are iden-
tical except in the ordering of their vertices to be
unordered isomorphic. If a treeT is a subtree of
treeT ′, we will follow set notation by denoting
this relation asT ⊆ T ′.

4.1 Canonical Ordering

Using canonical orderings to solve frequent un-
ordered subtree problems was first proposed in
Luccio et al. (2001) and expanded by other

researchers in frequent subtree discovery tech-
niques, notably in Chi et al. (2005b). Since the
Apriori-style approaches described in Section 3.1
are suited only to finding subtrees whose vertices
appear in a particular order, this paper will de-
scribe a mechanism for converting fully-labeled
trees into canonical forms that guarantee that all
instances of any unordered subtree will have an
identical order to their vertices.

We must first define a strict total ordering over
vertex and edge labels. Given lexica for the edge
and vertex labels,LE and LV respectively, we
define a strict total ordering on each such that
∀li, lj ∈ L either li ≺ lj or li � lj or li = lj
and if li ≺ lj andlj ≺ lk, thenli ≺ lk.

In a collection of fully-labeled trees, ev-
ery vertex v that is not the root of some
tree can be associated with afull la-
bel which is the pair fullLabel(v) =
〈label(〈parent(v), v〉), label(v)〉, containing
the label of the edge leading to its parent and the
label of the vertex itself. For any pair of vertices
where the edge to their parent is different, we

814



order the vertices by the order of those edges.
Where the edges are the same, we order them
by the ordering of their vertex labels. Where
we have two sibling verticesvi andvj such that
fullLabel(vi) = fullLabel(vj), we recursively
order the descendants ofvi and vj , and then
compare them. In this way, two nodes can only
have an undefined order if they have both exactly
the same full labels and identical descendants.

A canonically ordered treeis a treeT :=
〈VT , ET , LVT

, LET
〉, where for eachv ∈ VT , the

children ofv are ordered in just that fashion.

4.2 Condensed trees

A condensed treeis a fully-labeled treeT :=
〈VT , ET , LVT

, LET
〉 with two additional proper-

ties:

a. Each vertexv ∈ V is associated to a list of
indicesparentIndex(v) = {i1, i2, ..., in},
which we will call itsparent index. Each en-
try i1, i2, ..., in is a non-negative integer.

b. No vertexv ∈ V has two children with the
same full label.

Condensed trees are constructed from non-
condensed trees as follows:

Given a treeT := 〈V,E, LV , LE〉, we first
canonically order it, as described in the previous
section. Then, we attach a parent index to each
vertexv ∈ V which is not the root ofT . The ini-
tial parent index of each node consists of a single
zero.

We then traverse the vertices of the now or-
dered treeT in breadth-first order from the the
root downwards and from left to right. Given
somevj ∈ V , if it has no sibling to its right,
or if the sibling to its immediate right has a dif-
ferent vertex label or a different edge label on
the edge to its parent, we do nothing. Other-
wise, if vj has a sibling to its immediate right
vi with the same full label, we set̀i to the size
of parentIndex(vi), and then we append the
parentIndex(vj) toparentIndex(vi). Then, we
take the children ofvj , and for each one, we incre-
ment each value in its parent index by`i, and then
insert it undervi as one ofvi’s children. We delete
vj and then we reorder the children ofvi into the
canonical order defined in Section 4.1.

This is performed in breadth-first order overT .
The result is guaranteed to be a tree where each
vertex never has two children with the same edge
and vertex labels. Figure 6 shows how the trees
in Figure 5 look after they are converted into con-
densed trees. We will denote condensed trees as
T = cond(T ), to indicate thatT has been con-
structed fromT .

If two non-condensed trees are unordered iso-
morphic, then their condensed forms will be iden-
tical, including in their vertex orderings and par-
ent indexes. If two condensed trees are identical,
then the non-condensed trees from which they are
constructed are always unordered isomorphic.

Each vertexv of a condensed treeT = cond(T )
has a parent index containing some number of en-
tries corresponding to a set of vertices in non-
condensed treeT . We will designate that set as
orig(v), a subset of the vertices inT . Given a
condensed tree vertexv and its parentp, if the size
of orig(p) is larger than one, then the vertices inv
may have different parents inT . We can interpret
the integers in the parent index of each condensed
tree vertex as indicating which parent each mem-
ber oforig(v) has.

In this way, givenT = cond(T ), there is a
one-to-one mapping from the vertices ofT to a
pair 〈v, i〉 consisting of some vertex inT and an
index to an entry in its parent index. If some
vertex v in T maps to〈v, i〉, then all the chil-
dren of v, c ∈ children(v) map to pairs〈c, j〉
such thatparent(c) = v and thejth entry in
parentIndex(c) is i. We can use this to define
parent-child operations over condensed trees that
perfectly match parent-child operations in non-
condensed ones.

We will define a skeleton treeas a con-
densed tree stripped of its parent indices, and
denote it asskel(T). Note that for any non-
condensed treeT and any non-condensed sub-
treeS ⊆ T , skel(cond(T )) will always contain
skel(cond(S)) as anorderedsubtree, including
in cases like Figure 5, as shown in Figure 6.

4.3 Alignment

An alignment of a condensed subtreeS with a
condensed treeT has two parts:

815



(a) (b) (c)

Figure 6: The trees in Figure 5 transformed into their condensed equivalents, with their parent arrays.
Note that 6(c) is visibly an ordered subtree of both 6(a) and 6(b) if you ignore the parent arrays.

a. Skeleton Alignment:
An injectionM : VS → VT from the vertices
of S to the vertices ofT.

b. Index Alignment:
For each vertexvS ∈ VS, a bipartite map-
ping from the vertices inorig(vS) to the ver-
tices inorig(M(vS)).

The first part is an alignment ofskel(S) with
skel(T). Given an alignment from the root ofS
to some vertex inT, this can be performed in time
proportionate, in the worst case, to the number of
vertices inskel(T). If all the parent indices of the
aligned vertices in the subtree and supertree have
only one index in them, then the index alignment
is trivial and the alignment ofS toT is complete.

In other cases, index alignment is non-
trival. The method here draws on the proce-
dure for unordered subtree alignment proposed by
Kilpeläinen (1992). In the worst case, it resolves
to the same algorithm, but can perform better on
the average because of the structure of condensed
trees.

Alignment proceeds from the bottom-up, start-
ing with the leaves ofS. If vertex s is a leaf of
S and is aligned to some vertext in T, then we
initially assume any member oforig(s) can map
to any member oforig(t). We then proceed up-
wards inS, checking each vertexs in S to find a
mapping fromorig(s) to orig(t) such that if some
s ∈ orig(s) can be mapped to somet ∈ orig(t),
then the children ofs can be mapped to children
of t.

Once we reach the root ofS, we proceed back
downwards, removing those mappings from each
orig(s) to its correspondingorig(t) that are im-
possible because their parents do not align.

The remaining index alignments must still be
checked to verify that each one can form a part
of a one-to-one mapping fromorig(s) to orig(t).
This is equivalent to finding a maximal bipar-
tite matching fromorig(s) to orig(t) for each
possible alignment fromorig(s) to orig(t). Bi-
partite matching is a problem with a number
of well-documented solutions. (Dijkstra (1959),
Lovász (1986), among others)

5 Algorithm

Having outlined condensed trees and how to align
them, we can build an algorithm for extracting all
frequent closed unordered subtrees from a tree-
bank of condensed trees, given a minimum fre-
quency thresholdθ. Space restrictions preclude
a full formal description of the algorithm, but it
closely follows the general outline for closed tree
discovery schemes advanced by Chi et al. (2005a):

1. Pass through the treebank collecting all the
subtrees that consist of a single vertex label
and all their locations.

2. Remove those that appear less thanθ times.
3. Loop over each remaining subtree, aligning

it to each place it appears in the treebank
4. Collect all the possible extensions, creating a

new list of two vertex subtrees and all their
locations.

5. Use the extensions to the left of the rightmost
vertex in each alignment to check if the sub-
tree is closed to the left, and reject it if it is
not.

6. Use the extensions to the right of the right-
most vertex to check if the subtree is closed
to the right, and output it if it is.

816



7. Retain the extensions to the right of the right-
most vertex and their locations if those exten-
sions appear at leastθ times.

8. Repeat for those subtrees.

6 Implementation and Performance

TheVarro toolkit implements condensed trees and
the algorithm described above in Python 3.1 and
has been applied to treebanks as large as several
hundred thousand sentences. The software and
source code is available from sourceforge.net3 and
includes a small treebank of parsed Latin texts
provided by the Perseus Digital Library. (Bam-
man and Crane, 2007)

The worst case memory performance of this al-
gorithm isO(nm) wheren is the number of ver-
tices in the treebank andm is the largest frequent
subtree found in it. However, only the most patho-
logically structured treebank could come close to
this ceiling, and in practice, the current implemen-
tation has so far never used as much twice the
memory required to store the original treebank.

The runtime performance is, as described in
Section 3.2, proportionate to the size of the out-
put. However, aligning each occurrence of each
subtree adds an additional factor. Given a con-
densed subtreeS and its condensed supertree
T containingsize(T) vertices, and one already
aligned vertex, the worst case alignment time is
O(size(T)2.5), but only a highly pathological tree
structure would approach this. The best case
alignment time isO(size(S)). Therefore, it al-
ways takes more time to align larger subtrees, and
since larger subtrees are less frequent than smaller
ones, setting lower minimum frequency thresh-
olds increases the average time required to process
a subtree.

Processing even the small Alpino Treebank
produces very large numbers of frequent closed
subtrees. After removing punctuation and the to-
kens themselves, leaving just parts-of-speech and
consituency labels - the Alpino treebank’s 7137
sentences are reduced to 206,520 vertices. Within
this small set,Varro took 1252 seconds to find
7307 frequent closed subtrees that appear at least
100 times. This is both considerably more sub-

3http://varro.sourceforge.net/

trees than reported by Martens (2009b) on the
same data and considerably more time.

Speed and memory performance are the major
practical issues in this line of research. Choos-
ing to designVarro with memory footprint mini-
mization in mind is a source of some performance
bottlenecks. Using Python also takes a heavy toll
on speed and a C++ implementation is planned.
The fast alignment-free closure checking scheme
in Martens (2009b) can also be implemented us-
ing condensed trees. On small treebanks this will
improve speed without loss of precision, but has
limited applicability to large treebanks.

7 Conclusions

The trade-off between memory usage, run-time
and completeness for this kind of algorithm is
punitive. The user must balancevery long run-
times against excessive memory usage if they
want to accurately count all frequent unordered
induced subtrees. TheVarro toolkit is designed to
make it possible to choose what tradeoffs to make.
Since any subtree can be extended and checked for
closure independently of other subtrees,Varro can
easily implement heuristics designed to further re-
duce the number of subtrees extracted. We believe
the future of this line of research lies in large part
in that direction and hope that public release of
Varro will aid in its development.

We have also discovered that there is a very
strong relationship between the concision and
consistency of linguistic formalisms andVarro’s
performance. We restructured the Alpino data
by promoting the head of each constituent, cre-
ating dependency-style trees along the lines de-
scribed by Tesnière (1959) and Mel’̌cuk (1988).
This reduced the number of subtrees found by
50%-60% and reduced run-times consistently by
60%-70% across a range of minimum frequency
thresholds and treebank sizes. As a general rule,
increasing the degree of linguistic abstraction in-
creases the number of frequent subtrees, and con-
sequently slowsVarro down dramatically. Iden-
tifying linguistic formalisms that lend themselves
to efficient and productive subtree discovery is an-
other significant direction for this research, and
one with immediate impact on other areas in lin-
guistics.

817



References

Agrawal, Rakesh, Tomasz Imielinski and Arun Swami.
1993. Mining association rules between sets of
items in large databases.Proceedings of the 1993
ACM SIGMOD International Conference on Man-
agement of Data, pp. 207–216.

Asai, Tatsuya, Kenji Abe, Shinji Kawasoe, Hiroki
Arimura, Hiroshi Sakamoto and Setsuo Arikawa.
2002. Efficient substructure discovery from large
semi-structured data.Proceedings of the Second
SIAM International Conference on Data Mining,
158–174.

Bamman, David and Gregory Crane. 2007.
The Latin Dependency Treebank in a Cultural
Heritage Digital Library. Proceedings of the
Workshop on Language Technology for Cul-
tural Heritage Data, LaTeCH 2007: pp. 33–40.
http://nlp.perseus.tufts.edu/syntax/treebank/

Boulicaut, J.-F. and A. Bykowski. 2000. Frequent
closures as a concise representation for binary data
mining. Knowledge discovery and data mining:
current issues and new applications, PAKDD 2000:
pp. 62–73.

Chi, Yun, Richard R. Muntz, Siegfried Nijssen and
Joost N. Kok. 2004. Frequent Subtree Mining - An
Overview.Fundamenta Informaticae, 66(1-2):161–
198.

Chi, Yun, Yi Xia, Yirong Yang and Richard R. Muntz.
2005a. Mining Closed and Maximal Frequent
Subtrees from Databases of Labeled Rooted Trees.
IEEE Transactions on Knowledge and Data Engi-
neering, 17(2):190–202.

Chi, Yun, Yi Xia, Yirong Yang and Richard R. Muntz.
2005b . Canonical forms for labelled trees and their
applications in frequent subtree mining.Knowledge
and Information Systems, 8(2):203–234.

Dijkstra, E. W. 1959. A note on two problems in
connexion with graphs. Numerische Mathematik
1:269–271.

Firth, J.R. 1957.Papers in Linguistics. London: OUP.

Harris, Roy and Talbot J. Taylor. 1989/1997. Varro on
Linguistic Regularity. InHarris and Taylor, Land-
marks in Linguistic Thought I: The Western Tra-
dition from Socrates to Saussure. 2nd ed. London:
Routledge. pp. 47-59.

Kilpeläinen, Pekka. 1992.Tree Matching Problems
with Applications to Structured Text Databases.
PhD dissertation. Univ. Helsinki, Dept. of Computer
Science.

Knight, Kevin. 2007. Capturing practical natural
language transformations.Machine Translation,
21:121–133.

Knight, Kevin and Graehl, Jonathan. 2005. An
Overview of Probabilistic Tree Transducers for Nat-
ural Language Processing.Proceedings of the 6th
CICLing, 1–24.

Koehn, Philipp. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation.Proceedings of the
10th Machine Translation Summit, 79–86.

Lovász, Ĺaszĺo and M.D. Plummer. 1986.Matching
Theory. Amsterdam: Elsevier Science.

Luccio, Fabrizio, Antonio Enriquez, Pablo Rieumont
and Linda Pagli. 2001. Exact Rooted Subtree
Matching in Sublinear Time. Universit̀a Di Pisa
Technical Report TR-01-14.

Moschitti, Alessandro. Making tree kernels practical
for natural language learning.Proceedings of the
11th Conference of the European Association for
Computational Linguistics(EACL 2006), 113–120.

Mel’ čuk, Igor A. 1988. Dependency syntax: Theory
and practice. Albany, NY: SUNY Press.

Martens, Scott. 2009a. Frequent Structure Discovery
in Treebanks. Proceedings of the 19th Computa-
tional Linguistics in the Netherlands(CLIN 19).

Martens, Scott 2009b. Quantitative analysis of
treebanks using frequent subtree mining methods.
Proceedings of the 2009 Workshop on Graph-
based Methods for Natural Language Processing
(TextGraphs-4), 84–92.

Rohde, Douglas. 2001. Tgrep2 User Manual.
http://tedlab.mit.edu/∼dr/Tgrep2

Sinclair, John. 1991.Corpus, Concordance, Colloca-
tion. Oxford: OUP.

Tesnìere, Lucien. 1959.Éléments de syntaxe struc-
turale. Paris:Éditions Klincksieck.

van Noord, Gertjan. 2006. At last parsing is now
operational. Verbum Ex Machina. Actes de la
13e conf́erence sur le traitement automatique des
langues naturelles(TALN6), 20–42.

Mohammed J. Zaki. 2002. Efficiently mining fre-
quent trees in a forest.Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, 1021–1035.

818


