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Abstract the specific words involved. For exampleetired
(science teachet)and “(social science) teacher
have different structures even though they have
identical POS sequences.

Lexical statistics are therefore needed in order
to parse the above examples, and they must be
computed over a lot of text to avoid sparsity. All
of our lexical statistics are derived from a new
and improved web-scale N-gram corpus (Lin et
al., 2010), which we call Google V2.

We use web-scale N-grams in a base NP
parser that correctly analyzes 95.4% of the
base NPs in natural text. Web-scale data
improves performance. That s, there is no
data like more data. Performance scales
log-linearly with the number of parame-

ters in the model (the number of unique

N-grams). The web-scale N-grams are
particularly helpful in harder cases, such

as NPs that contain conjunctions. Despite the importance of base NPs, most
_ sentence parsers do not parse base NPs, since
1 Introduction the main training corpus for parsers, the Penn

Noun phrases (NPs) provide an index to thd reebank (PTB) (Marcus et al., 1994), leaves a
world’s information. About 70% of web queries flat structure for base NPs. Recent annotations
are NPs (Barr et al., 2008). A robust NP parse'Py Vadas and Curran (2007a) added NP structure
could help search engines improve retrieval pef® the PTB. We use these annotations (described
formance on multi-word NP queries (Zhai, 1997)in Section 3) for our experiments.
For example, by knowing the correct parse of NP parsers usually focus on bracketing three-
“washed (baby carrots),” a search engine coul@iord noun compounds. Parsing three-word noun
ensure that returned pages (and advertisementsmpounds is a fairly artificial task; we show that
concern clean carrots rather than clean babies. Nequences of three nouns make up less than 1%
structure is also helpful for query expansion anaf the three-word-or-longer base NPs in natural
substitution (Jones et al., 2006). text. As the NP length increases, the number of
This paper is concerned with base NP pargossible binary trees (parses) increases with the
ing. We are given a base NP string as inputCatalan numbers (Church and Patil, 1982). NPs of
and the task is to produce a parse tree as outplgngth three have just two possible parses (chance
Base NPs are NPs that do not contain embeddésl 50%), while NPs of length six already have
noun phrases. These are sometimes called N@rty-two possible parses (chance is 2%). Long
chunks, or core/non-recursive NPs (Church, 1988Ps therefore provide much more opportunity to
Ramshaw and Marcus, 1995). Correctly parsingnprove performance over the baseline. In Table
(or, equivalently, bracketing) base NPs is chall (Section 7), we show the distribution of base NP
lenging because the same part-of-speech (POBhgth in the PTB. While most NPs are of length
sequence can be parsed differently depending dhree, NP length has a long tail.

886

Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 886—-894,
Beijing, August 2010



The three-word noun compound assumptiod993) and thelependency mod€Lauer, 1995).
also restricts research to the case in which allnder the adjacency model, the bracketing deci-
words are nouns, while base NPs also contain dsion is made by comparing the associations be-
terminers, possessives, adjectives, and conjurtwveen words one and two versus words two and
tions. Conjunctions and their scopes are particuhree (i.e. comparingetired scienceversussci-
larly challenging. For example, inthe NFErfench  ence teachér In contrast, the dependency model
television and movie producetsa parser should compares the associations between one and two
conjoin “(television and (movig,” as opposed to versus one and threeeired scienceversugetired
“(French televisiopand (movig,” “( French tele- teachej. Lauer (1995) compares the two models
vision) and (movie producens or “(televisio) and finds the dependency model to be more accu-
and (movie producers’ rate.

To resolve these issues, we train a classifier Nakov and Hearst (2005) compute the associ-
which uses contextual information from the entireation scores using frequencies, conditional proba-
NP and lexical statistics derived from the web+ilities, y2, and mutual information, for both pairs
scale N-gram corpus to predict if a given spamf words and for linguistically-motivated para-
is a constituent. Our parser then uses this claphrases. Lapata and Keller (2005) found that us-
sifier to produce a score for every possible NPing web-scale data for associations is better than
internal bracketing and creates a chart of bracketising the (smaller) 100M-word British National
ing scores. This chart can be used as features irGorpus.
full sentence parser or parsed directly with a chart
parser. Our parses are highly accurate, creating2e2 Longer NPs

strong new standard for this task. : .
Focusing on only the three word case misses a

Finally, we present experiments that investigatia . .
.farge opportunity for base NP parsing. NPs longer
the effects of N-gram frequency cutoffs and vari- g€ opportuntty parsing 9

: than three words commonly occur, making up
pus sou_rces qf N-gram data. We show an mteresé-g% of our test set. In addition, a chance baseline
ing relationship between accuracy and the numb%Ioes exponentially worse as the length of the NP
of unique N-gram types in the data.

increases. These longer NPs are therefore a major

2 Reated Work opportunity to improve overall base NP parsing.
Since in the general case, NP parsing can no
2.1 Three-Word Noun Compounds longer be thought of as a single binary classifica-

The most commonly used data for NP parsing iton problem, different strategies are required.
from Lauer (1995), who extracted 244 three-word Barker (1998) reduces the task of parsing
noun compounds from the Grolier encyclopedialonger NPs to making sequential three-word de-
When there are only three words, this task reducessions, moving a sliding window along the NP.
to a binary decision: The window is first moved from right-to-left, in-
serting right bracketings, and then again from left-
to-right, finalizing left bracketings. While Barker

¢ Right Branching:retired [science teachér (1998) assumes that these three-word decisions

can be made in isolation, this is not always valid.

In Lauer (1995)'s set of noun compounds, WOvjaqas and Curran (2007b) employ Barker's algo-
thirds are left branching. rithm, but use a supervised classifier to make the

The main approach to these three-word noUgeqential bracketing decisions. Because these

compounds has been to compute associatigynrgaches rely on a sequence of binary decisions,
statistics between pairs of words and then choose

the bracketing that corresponds to the more highly 1E.g., although the right-most three words are identical
associated pair. The two main models are thé 1) _“Soag Ofe(a_StarS Z”d tr?;'r?Vi_Si_inp_roﬁugé’sEd 2)
adjacency mOdE(MarCUS, 1980, Libel’man and movie and television pro ucershe initial right-bracketing

} _ decision for ‘and television producetsshould be different
Sproat, 1992; Pustejovsky et al., 1993; Resnikp each.

e Left Branching: * fetired sciencgteacher
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early mistakes can cascade and lead to a chainmbssible, we exploit web-scale N-gram corpora.
incorrect bracketings. N-gram counts are an efficient way to compress
Our approach differs from previous work in NPlarge amounts of data (such as all the text on the
parsing; rather than greedily inserting brackets aseb) into a manageable size. An N-gram corpus
in Barker's algorithm, we use dynamic program+ecords how often each unique sequence of words
ming to find the global maximum-scoring parseoccurs. Co-occurrence probabilities can be calcu-
In addition, unlike previous approaches that haviated directly from the N-gram counts. To keep
used local features to make local decisions, we uske size manageable, N-grams that occur with a
the full NP to score each potential bracketing. frequency below a particular threshold can be fil-
A related line of research aims tsegment tered.
longer phrases that are queried on Internet searchThe corpus we use i§oogle V2 (Lin et al.,
engines (Bergsma and Wang, 2007; Guo et al2010): a new N-gram corpus with N-grams of
2008; Tan and Peng, 2008). Bergsma and Warigngth 1-5 that we created from the same 1 tril-
(2007) focus on NP queries of length four orion word snapshot of the web as Google N-grams
greater. They use supervised learning to makgersion 1 (Brants and Franz, 2006), but with sev-
segmentation decisions, with features derivedral enhancements. Duplicate sentences are re-
from the noun compound bracketing literaturemoved, as well as “sentences” which are probably
Evaluating the benefits oparsing NP queries, noise (indicated by having a large proportion of
rather than simply segmenting them, is a naturalon-alphanumeric characters, being very long, or
application of our system. being very short). Removing duplicate sentences
is especially important because automatically-
3 Annotated Data generpated V\)I/ebSitF()ES, boilerplate text, and legal d)i/s-
Our training and testing data are derived from reclaimers skew the source web data, with sentences
cent annotations by Vadas and Curran (2007aat may have only been authored once occurring
The original PTB left a flat structure for base nourimillions of times. We use the suffix array tools
phrases. For exampleretired science teachgr described in Lin et al. (2010) to quickly extract
would be represented as: N-gram counts.
(NP (JJ retired) (NN science) (NN teacher))
Vadas and Curran (2007a) annotated NP-internal Base NP Parsing Approach
structure by adding annotations whenever there is _ _ _
a left-bracketing. If no annotations were addedUr goal is to take a base NP string as input and
right-branching is assumed. The inter-annotatd?™0duce a parse tree as output. In practice, it
agreement for exactly matching the brackets on aifould be most useful if the NP parse could be
NP was 98.5%. integrated into a sentence parser. Previous NP
This data provides a valuable new resource fdarsers are difficult to apply in practi€e Work
parsing research, but little work has so far mad® Prepositional phrase attachment that assumes
use of it. Vadas and Curran (2007b) perfornfi©ld-standard knowledge of the competing attach-
some preliminary experiments on NP bracketing',“ent sites has been criticized as unrealistic (At-
but use gold standard part-of-speech and namel§rer and Schitze, 2007).
entity annotations as features in their classifier. OUr system can easily be integrated into full
Our work establishes a strong and realistic starR@rsers. Its input can be identified quickly and
dard on this data; our results will serve as a basf§liably and its output is compatible with down-
for further research on this topic. stream parsers.

4 Unlabded N-gr am Data 2For example, Vadas and Curran (2007b) report results on
NP parsing, but these results include NPs containing prepos

All of our N-gram features described in Sec-ional or adverbial phrases (confirmed by personal communi-
. | babiliti derived f | cation). Practical application of their system would tliere
tion 6.1 rely on probabilities derived from unla- require resolving prepositional phrase attachment as a pre
beled data. To use the largest amount of dat@ocessing step.
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Our parser’s input is base NPs, which can béhe position of the proposed bracketing. Since
identified with very high accuracy. Kudo and Mat-the features for differing proposed bracketings are
sumoto (2001) report 95.8% NP chunking accunow disjoint, this is equivalent to scoring bracket-
racy on PTB data. ings with different classifiers, with each classifier

Once provided with an NP, our system uses ahosen according to the bracketing position. We
supervised classifier to predict the probability ohow outline the feature types that are common,
a particular contiguous subsequence (span) of theit weighted differently, in each proposed brack-
NP being a constituent, given the entire NP as coreting’s feature set.
text. This probability can be inserted into the chart
that a standard chart parser would use. 6.1 N-gram Features

For example, the base NHAFrfench television All of the features described in this section require
and movie producetsvould be decomposed into estimates of the probability of specific words or
nine different classification problems, scoring thesequences of words. All probabilities are com-

following potential bracketings: puted usingsoogle V2 (Section 4).
(French television) and movie producers 6.1.1 PMI
French (television and) movie producers Recall that the adjacency model for the three-
(French television and) movie producers word task uses the associations of the two pairs of

adjacent words, while the dependency model uses
the associations of the two pairs of attachment
In Section 6, we detail the set of statistical andgites for the initial noun. We generalize the ad-
structural features used by the classifier. jacency and dependency models by including the
The output of our classifier can be easily usegointwise mutual information (Church and Hanks,
as afeature in a full-sentence structured predictioh990) betweerall pairs of words in the NP:
parser, as in Taskar et al. (2004). Alternatively, o
our work could be integrated into a full-sentence PMI(z,y) = log M 1)
parser by using our feature representations di- p("x" )p(

rectly in a discriminative CFG parser (Finkel etFor NPs of lengthn, for each proposed bracket-

a:., 2133? gr ;In a parjeKre-raZnokoesr.(I;itnapal:khl 'lllg, we include separate features for the PMI be-
al » ~OlinS and 1100, » Lhariak anGyeen all(}) pairs of words in the NP. For NPs in-

Johngon, 2005)'_ L cluding conjunctions, we include additional PMI
While our main objective is to use Web'scalq‘eatures (Section 6.1.2)
lexical statistics to create an accurate classifier for ¢i. .o these feat.ur.es. are also tied to the pro-

base I:IP-n;ternaI Icor:_stltuents, we dT% prOdléCilfosed bracketing positions (as explained above),
!oarsfe ree for evalua dlop ptérposis. 2 pro fah his allows us to learn relationships between var-
Ity of a parse tree Is defined as the product of thy o 5545 iations within the NP and each poten-

probabilities of all the spans _(constituents) i_n th?ial bracketing. For example, consider a proposed
tree. The most probable tree is computed with thBracketing from word! to word5. We learn that

CYK algorithm. a high association of words inside a bracketing
(here, a high association between wé@hd word

5) indicates a bracketing is likely, while a high
Over the course of development experiments, wassociation between words that cross a proposed
discovered that the more position-specific our feadracketing (e.g., a high association between word
tures were, the more effectively we could pars& and word4) indicates the bracketing is unlikely.
NPs. We define a word’s position as its distance The value of these features is the PMI, if it is
from the right of the full NP, as the semantic headlefined. If the PMI is undefined, we include one
of NPs is most often the right-most word. Ulti- of two binary features:

mately, we decided to conjoin each feature witlp(“xy” ) = 0 or p(“x” ) V p("y” ) = 0.

French television and (movie producers)

6 Features
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We illustrate the PMI features with an exampleand (British radio)) starswhere both of the fol-
In deciding whetherrfovie producersis a rea- lowing hold:
sonable bracketing withinFrench television and  PMl,,4(TV, radio) > PMl,,,4(TV, British)
movie producer’ the classifier weighs features PMl,,,4(TV, radio) > PMI,,.4(TV, starg

for all of:
6.2 Lexical

We include a binary feature to indicate the pres-
ence of a particular word at each position in the
NP. We learn that, for instance, the wdrtt. in

PMiI(television, producejs names tends to occur outside of brackets.

PMI(French, televisioh
PMI(French, and

PMI(and, producers
PMI(movie, produceds 6.3 Shape

Previous work on NP bracketing has used gold-
standard named entity tags (Vadas and Curran,
Properly handling NPs containing conjunc-20g7b) as features. We did not want to use any
tions (NP+conj) requires special statistical feago|d-standard features in our experiments, how-
tures. For examplefelevision and movie are  eyer NER information is helpful in separating pre-
commonly conjoined, but the relevant statisticsnogifiers from names, i.enews reporter) (Wal-
that suggest placing brackets around the phragg cronkite)
“television and movfeare not provided by the  ag an expedient way to get both NER informa-
above PMI features (i.e., this is not clear ffoMion and useful information from hyphenated ad-

PMi(television, anyl PMi(television, movig nor jectives, abbreviations, and other punctuation, we
PMi(and, movig). Rather, we want to know if the yormalize each string using the following regular
full phrase “television and movie” is common. expressions:

6.1.2 Conjunctions

We_z thus have additio_na_l NP+conj features that [A-Z]+ — A [a-z]+ — a
consider the PMI association across thewamd  \ye yse this normalized string as an indicator
p(*xandy”) feature. E.g. the word “Saudi-born” will fire the

PMlgna(z,y) = log p(*x and” )p(“and y") (2) binary feature “Aa-a.”

When PMl},,; between a pair of words is high, 64 Position

they are likely to be the constituents of a conjuncye also include the position of the proposed
tion. bracketing as a feature. This represents the prior

Let NP=(w; ... w;—1,'and’,w;t1...wn) be  of a particular bracketing, regardless of the actual
an NP+conj. We include the Plyj); features be- words.

tweenw;_; and allw € w; 41 ... w,. Inthe exam-
ple “French television and movie producgrave 7 Experiments
would include features PM} (television, movig
and PM|,,4(television, produceds

In essence, we are assuming_; is the head We use Vadas and Curran (2007a)’s annotations
of one of the items being conjoined, and we scoréSection 3) to create training, development and
the likelihood of each of the words to the righttesting data for base NPs, using standard splits of
of the and being the head for the other item. Inthe Penn Treebank (Table 1). We consider all non-
our running example, the conjunction has narrowrivial base NPs, i.e., those longer than two words.
scope, and PM},4(television, movigis greater For training, we expand each NP in our train-
than PM|,,4(television, producejs indicating to ing set into independent examples corresponding
our classifier thattélevision and mov)ds a good to all the possible internal NP-bracketings, and
bracketing. In other examples the conjunction wilkepresent these examples as feature vectors (Sec-
join heads that are further apart, ag(ifrench TV) tion 5). Each example is positively labeled if it is

7.1 Experimental Details
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Data Set Train Dev Test Chance 8 Results

PTB Section| 2-22 24 23

Length=3 | 41353 1428 2498  50% o1 BaseNPs

Length=4 12067 445 673 20% Our method improves substantially over the base-

Length=5 3930 148 236 7% line of assuming a completely right-branching
Length=6 1272 34 81 2% structure, 95.4% versus 72.6% (Table 2). The ac-
Length>6 616 29 34 < 1% curacy of the constituency classifier itself (before
Total NPs 59238 2084 3522 the CYK parser is used) is 96.1%.

The lexical features are most important, but all
fbature classes are somewhat helpful. In particu-
lar, including N-gram PMI features significantly
improves the accuracy, from 94.0% to 95.2%.
Correctly parsing more than 19 base NPs out of 20

Table 1: Breakdown of the PTB base NPs used i
our experiments. Chance = 1/Catalan(length).

Features | AllNPs | NP+conj| NP-conj is an exceptional level of accuracy, and provides a
Al features | 95.4 89.7 057 strong new standard on this task. The most com-
“N-grams 940 840 945 parable result is by Vadas and Curran (2007b),
_lexical 922 87.4 025 who achieved 93.0% accuracy on a different set of
_shape 94.9 89.7 95.2 PTB noun phrases (see footnote 2), but their clas-
_position 95 3 89.7 95.6 sifier used features based on gold-standard part-
Right of-speech and named-entity information.
bracketing 72.6 58.3 73.5 Exact match is a tough metric for parsing, and

the difficulty increases as the length of the NP
Table 2: Accuracy (%) of base NPs parsing; ablancreases (because there are more decisions to
tion of different feature classes. make correctly). At three word NPs, our accu-
racy is 98.5%; by six word NPs, our accuracy
drops to 79.0% (Figure 1). Our method’s accu-
racy decreases as the length of the NP increases,

consistent with the gold-standard bracketing, otf2ut much less rapidly than a right-bracketing or

erwise it is a negative example. chance baseline.

We train using LIBLINEAR, an efficient linear 8.2 BaseNPswith Conjunctions

Support Vector Machine (SVM)We use an L2- N-gram PMI features help more on NP+conj than

loss function, and optimize the regularization paon those that do not contain conjunctions (NP-

rameter on the development set (reaching an opton;j) (Table 2). N-gram PMI features are the most

mum atC'=1). We converted the SVM output to important features for NP+conj, increasing accu-

probabilities? Perhaps surprisingly, since SVMsracy from 84.0% to 89.7%, a 36% relative reduc-

are not probabilistic, performance on the develtion in error.

opment set with these SVM-derived probabilities _

was higher than using probabilities from the LI1B-8-3 Effect of Thresholding N-gram data

LINEAR logistic regression solver. We now address two important related questions:

1) how does our parser perform as the amount

At test time, we again expand the NPs and cabf unlabeled auxiliary data varies, and 2) what

culate the probability of each constituent, insertis the effect of thresholding an N-gram corpus?

ing the score into a chart. We run the CYK algo-The second question is of widespread relevance as

rithm to find the most probable parse of the entire ————— o

NP according to the chart. Our evaluation metric ,VWW-csie.ntu.edutw/  ~cjlinfliblinear/

. . . Following instructions irhttp://www.csie.ntu.

is Accuracy: the proportion of times our proposedeqy.tw/ -~ cjlin/liblinear/FAQ.htm

parse of the NP exactly matches the gold standard. *McNemar’s testp < 0.05
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100 — Corpus | #oftokens| r | # of types
ET T . NEWS 32B| 1 3.7B
x. Google V1| 1,024.9 B| 40 3.4B
g . N . Google V2 207.4B| 10 4.1B
g 10 | ) T Table 4. N-gram data, with total number of words
3 *. (tokens in the original corpus (in billions, B), fre-
< guency threshold used to filter the dataand to-
Right_bﬁ’;‘gﬁggﬁg VI tal number of unique N-gramgype$ remaining
Chance ---x--- . in the data after thresholding.

1 1

3

4 5

6

Length of Noun Compound (words)

Figure 1: Accuracy (log scale) over different NP
lengths, of our method, the right-bracketing base-

line, and chance (1/Catalan(length)).

age and accuracy. There are consistent improve-
ments in accuracy from lowering the threshold
and increasing the amount of auxiliary data. If for
some application it is necessary to reduce storage
by several orders of magnitude, then one can eas-
ily estimate the resulting impact on performance.

thresholded N-gram corpora are now widely used We repeat the thresholding experiments using

in NLP. Without thresholds, web-scale N-gramwo other N-gram sources:

data can be unmanageable.
While we cannot lower the threshold after creof news articles including the Reuters and Giga-

ating the N-gram corpus, we can raise it, filteringyord (Graff, 2003) corpora, not thresholded.

more N-grams, and then measure the relationship Google V1: The original web-scale N-gram

between threshold and performance.

NEWS: N-gram data created from a large set

corpus (Section 4).
Details of these sources are given in Table 4.

Threshold | Unique N-gramg Accuracy . . .
For a given number of unique N-grams, using

10 4,145,972,000 95.4% ;

any of the three sources does about the same (Fig-
100 391,344,991 95.3%

ure 2). It does not matter that the source corpus
1,000 39,368,488~ 95.2% for Google V1 is about five times larger than the
10,000 3,924,478 94.8% source ?:or us for Google V2 whic% in turn is
100,000 386,639|  94.8% sixty-five tirﬁes larger thgn NEWS (Table 4). Ac-
1,000,000 37,567]  94.4% cur;/cies increase ﬁnearl with the log of the.num-
10,000,000 3,317| 94.0% ; arty 9

ber oftypesin the auxiliary data set.

Table 3: There is no data like more data. Accuracy Google V1 is the one data source for which

improves with the number of parameters (uniquéhe relationship between accuracy and number of
N-grams). N-grams is not monotonic. After about 100 mil-

lion unique N-grams, performance starts decreas-

We repeat the parsing experiments while ining. This drop shows the need for Google V2.
cluding in our PMI features only N-grams with Since Google V1 contains duplicated web pages
a count>10 (the whole data set)>100, >1000, and sentences, mistakes that should be rare can
..., >107. All other features (lexical, shape, posi-appear to be quite frequent. Google V2, which
tion) remain unchanged. The N-gram data almostomes from the same snapshot of the web as
perfectly exhibits Zipf's power law: raising the Google V1, but has only unique sentences, does
threshold by a factor of ten decreases the numbept show this drop.
of uniqgue N-grams by a factor of ten (Table 3). We regard the results in Figure 2 as a compan-
The improvement in accuracy scales log-linearlyon to Banko and Brill (2001)'s work on expo-
with the number of unique N-grams. From a pracnentially increasing the amount of labeled train-
tical standpoint, we see a trade-off between stoing data. Here we see that varying the amount of
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data. Performance improves log-linearly with the

T T T T T T ] .
% number of parameters (unigue N-grams). One can
increase performance with larger models, e.g., in-
S 955 1 K creasing the size of the unlabeled corpora, or by
E P decreasing the frequency threshold. Alternatively,
g o " ] one can decrease storage costs with smaller mod-
§ els, e.g., decreasing the size of the unlabeled cor-
94.5 - Google Vi —— | Pora, or by increasing the frequency threshold. Ei-
s Google V2 ---x--- ther way, the log-linear relationship between accu-
04 ¥ NEWS ---%--- | : : )
L L L L I L racy and model size makes it easy to estimate the
le4 le5 1e6 le7 1le8 1e9 trade-off between performance and storage costs.

Number of Unique N-grams
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