
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 886–894,
Beijing, August 2010

Using Web-scale N-grams to Improve Base NP Parsing Performance

Emily Pitler
Computer and Information Science

University of Pennsylvania
epitler@seas.upenn.edu

Shane Bergsma
Department of Computing Science

University of Alberta
sbergsma@ualberta.ca

Dekang Lin
Google, Inc.

lindek@google.com

Kenneth Church
Human Language Technology Center of Excellence

Johns Hopkins University
kenneth.church@jhu.edu

Abstract

We use web-scale N-grams in a base NP
parser that correctly analyzes 95.4% of the
base NPs in natural text. Web-scale data
improves performance. That is, there is no
data like more data. Performance scales
log-linearly with the number of parame-
ters in the model (the number of unique
N-grams). The web-scale N-grams are
particularly helpful in harder cases, such
as NPs that contain conjunctions.

1 Introduction

Noun phrases (NPs) provide an index to the
world’s information. About 70% of web queries
are NPs (Barr et al., 2008). A robust NP parser
could help search engines improve retrieval per-
formance on multi-word NP queries (Zhai, 1997).
For example, by knowing the correct parse of
“washed (baby carrots),” a search engine could
ensure that returned pages (and advertisements)
concern clean carrots rather than clean babies. NP
structure is also helpful for query expansion and
substitution (Jones et al., 2006).

This paper is concerned with base NP pars-
ing. We are given a base NP string as input,
and the task is to produce a parse tree as output.
Base NPs are NPs that do not contain embedded
noun phrases. These are sometimes called NP
chunks, or core/non-recursive NPs (Church, 1988;
Ramshaw and Marcus, 1995). Correctly parsing
(or, equivalently, bracketing) base NPs is chal-
lenging because the same part-of-speech (POS)
sequence can be parsed differently depending on

the specific words involved. For example, “retired
(science teacher)” and “(social science) teacher”
have different structures even though they have
identical POS sequences.

Lexical statistics are therefore needed in order
to parse the above examples, and they must be
computed over a lot of text to avoid sparsity. All
of our lexical statistics are derived from a new
and improved web-scale N-gram corpus (Lin et
al., 2010), which we call Google V2.

Despite the importance of base NPs, most
sentence parsers do not parse base NPs, since
the main training corpus for parsers, the Penn
Treebank (PTB) (Marcus et al., 1994), leaves a
flat structure for base NPs. Recent annotations
by Vadas and Curran (2007a) added NP structure
to the PTB. We use these annotations (described
in Section 3) for our experiments.

NP parsers usually focus on bracketing three-
word noun compounds. Parsing three-word noun
compounds is a fairly artificial task; we show that
sequences of three nouns make up less than 1%
of the three-word-or-longer base NPs in natural
text. As the NP length increases, the number of
possible binary trees (parses) increases with the
Catalan numbers (Church and Patil, 1982). NPs of
length three have just two possible parses (chance
is 50%), while NPs of length six already have
forty-two possible parses (chance is 2%). Long
NPs therefore provide much more opportunity to
improve performance over the baseline. In Table
1 (Section 7), we show the distribution of base NP
length in the PTB. While most NPs are of length
three, NP length has a long tail.

886

The three-word noun compound assumption
also restricts research to the case in which all
words are nouns, while base NPs also contain de-
terminers, possessives, adjectives, and conjunc-
tions. Conjunctions and their scopes are particu-
larly challenging. For example, in the NP, “French
television and movie producers,” a parser should
conjoin “(television) and (movie),” as opposed to
“(French television) and (movie),” “(French tele-
vision) and (movie producers)” or “(television)
and (movie producers).”

To resolve these issues, we train a classifier
which uses contextual information from the entire
NP and lexical statistics derived from the web-
scale N-gram corpus to predict if a given span
is a constituent. Our parser then uses this clas-
sifier to produce a score for every possible NP-
internal bracketing and creates a chart of bracket-
ing scores. This chart can be used as features in a
full sentence parser or parsed directly with a chart
parser. Our parses are highly accurate, creating a
strong new standard for this task.

Finally, we present experiments that investigate
the effects of N-gram frequency cutoffs and vari-
ous sources of N-gram data. We show an interest-
ing relationship between accuracy and the number
of unique N-gram types in the data.

2 Related Work

2.1 Three-Word Noun Compounds

The most commonly used data for NP parsing is
from Lauer (1995), who extracted 244 three-word
noun compounds from the Grolier encyclopedia.
When there are only three words, this task reduces
to a binary decision:

• Left Branching: * [retired science] teacher

• Right Branching:retired [science teacher]

In Lauer (1995)’s set of noun compounds, two-
thirds are left branching.

The main approach to these three-word noun
compounds has been to compute association
statistics between pairs of words and then choose
the bracketing that corresponds to the more highly
associated pair. The two main models are the
adjacency model(Marcus, 1980; Liberman and
Sproat, 1992; Pustejovsky et al., 1993; Resnik,

1993) and thedependency model(Lauer, 1995).
Under the adjacency model, the bracketing deci-
sion is made by comparing the associations be-
tween words one and two versus words two and
three (i.e. comparingretired scienceversussci-
ence teacher). In contrast, the dependency model
compares the associations between one and two
versus one and three (retired scienceversusretired
teacher). Lauer (1995) compares the two models
and finds the dependency model to be more accu-
rate.

Nakov and Hearst (2005) compute the associ-
ation scores using frequencies, conditional proba-
bilities,χ2, and mutual information, for both pairs
of words and for linguistically-motivated para-
phrases. Lapata and Keller (2005) found that us-
ing web-scale data for associations is better than
using the (smaller) 100M-word British National
Corpus.

2.2 Longer NPs

Focusing on only the three word case misses a
large opportunity for base NP parsing. NPs longer
than three words commonly occur, making up
29% of our test set. In addition, a chance baseline
does exponentially worse as the length of the NP
increases. These longer NPs are therefore a major
opportunity to improve overall base NP parsing.

Since in the general case, NP parsing can no
longer be thought of as a single binary classifica-
tion problem, different strategies are required.

Barker (1998) reduces the task of parsing
longer NPs to making sequential three-word de-
cisions, moving a sliding window along the NP.
The window is first moved from right-to-left, in-
serting right bracketings, and then again from left-
to-right, finalizing left bracketings. While Barker
(1998) assumes that these three-word decisions
can be made in isolation, this is not always valid.1

Vadas and Curran (2007b) employ Barker’s algo-
rithm, but use a supervised classifier to make the
sequential bracketing decisions. Because these
approaches rely on a sequence of binary decisions,

1E.g., although the right-most three words are identical
in 1) “soap opera stars and television producers,” and 2)
“movie and television producers,” the initial right-bracketing
decision for “and television producers” should be different
in each.

887

early mistakes can cascade and lead to a chain of
incorrect bracketings.

Our approach differs from previous work in NP
parsing; rather than greedily inserting brackets as
in Barker’s algorithm, we use dynamic program-
ming to find the global maximum-scoring parse.
In addition, unlike previous approaches that have
used local features to make local decisions, we use
the full NP to score each potential bracketing.

A related line of research aims tosegment
longer phrases that are queried on Internet search
engines (Bergsma and Wang, 2007; Guo et al.,
2008; Tan and Peng, 2008). Bergsma and Wang
(2007) focus on NP queries of length four or
greater. They use supervised learning to make
segmentation decisions, with features derived
from the noun compound bracketing literature.
Evaluating the benefits ofparsing NP queries,
rather than simply segmenting them, is a natural
application of our system.

3 Annotated Data

Our training and testing data are derived from re-
cent annotations by Vadas and Curran (2007a).
The original PTB left a flat structure for base noun
phrases. For example, “retired science teacher,”
would be represented as:
(NP (JJ retired) (NN science) (NN teacher))

Vadas and Curran (2007a) annotated NP-internal
structure by adding annotations whenever there is
a left-bracketing. If no annotations were added,
right-branching is assumed. The inter-annotator
agreement for exactly matching the brackets on an
NP was 98.5%.

This data provides a valuable new resource for
parsing research, but little work has so far made
use of it. Vadas and Curran (2007b) perform
some preliminary experiments on NP bracketing,
but use gold standard part-of-speech and named-
entity annotations as features in their classifier.
Our work establishes a strong and realistic stan-
dard on this data; our results will serve as a basis
for further research on this topic.

4 Unlabeled N-gram Data

All of our N-gram features described in Sec-
tion 6.1 rely on probabilities derived from unla-
beled data. To use the largest amount of data

possible, we exploit web-scale N-gram corpora.
N-gram counts are an efficient way to compress
large amounts of data (such as all the text on the
web) into a manageable size. An N-gram corpus
records how often each unique sequence of words
occurs. Co-occurrence probabilities can be calcu-
lated directly from the N-gram counts. To keep
the size manageable, N-grams that occur with a
frequency below a particular threshold can be fil-
tered.

The corpus we use isGoogle V2 (Lin et al.,
2010): a new N-gram corpus with N-grams of
length 1-5 that we created from the same 1 tril-
lion word snapshot of the web as Google N-grams
Version 1 (Brants and Franz, 2006), but with sev-
eral enhancements. Duplicate sentences are re-
moved, as well as “sentences” which are probably
noise (indicated by having a large proportion of
non-alphanumeric characters, being very long, or
being very short). Removing duplicate sentences
is especially important because automatically-
generated websites, boilerplate text, and legal dis-
claimers skew the source web data, with sentences
that may have only been authored once occurring
millions of times. We use the suffix array tools
described in Lin et al. (2010) to quickly extract
N-gram counts.

5 Base NP Parsing Approach

Our goal is to take a base NP string as input and
produce a parse tree as output. In practice, it
would be most useful if the NP parse could be
integrated into a sentence parser. Previous NP
parsers are difficult to apply in practice.2 Work
in prepositional phrase attachment that assumes
gold-standard knowledge of the competing attach-
ment sites has been criticized as unrealistic (At-
terer and Schütze, 2007).

Our system can easily be integrated into full
parsers. Its input can be identified quickly and
reliably and its output is compatible with down-
stream parsers.

2For example, Vadas and Curran (2007b) report results on
NP parsing, but these results include NPs containing preposi-
tional or adverbial phrases (confirmed by personal communi-
cation). Practical application of their system would therefore
require resolving prepositional phrase attachment as a pre-
processing step.

888

Our parser’s input is base NPs, which can be
identified with very high accuracy. Kudo and Mat-
sumoto (2001) report 95.8% NP chunking accu-
racy on PTB data.

Once provided with an NP, our system uses a
supervised classifier to predict the probability of
a particular contiguous subsequence (span) of the
NP being a constituent, given the entire NP as con-
text. This probability can be inserted into the chart
that a standard chart parser would use.

For example, the base NP “French television
and movie producers” would be decomposed into
nine different classification problems, scoring the
following potential bracketings:

(French television) and movie producers
French (television and) movie producers
(French television and) movie producers...
French television and (movie producers)

In Section 6, we detail the set of statistical and
structural features used by the classifier.

The output of our classifier can be easily used
as a feature in a full-sentence structured prediction
parser, as in Taskar et al. (2004). Alternatively,
our work could be integrated into a full-sentence
parser by using our feature representations di-
rectly in a discriminative CFG parser (Finkel et
al., 2008), or in a parse re-ranker (Ratnaparkhi et
al., 1994; Collins and Koo, 2005; Charniak and
Johnson, 2005).

While our main objective is to use web-scale
lexical statistics to create an accurate classifier for
base NP-internal constituents, we do produce a
parse tree for evaluation purposes. The probabil-
ity of a parse tree is defined as the product of the
probabilities of all the spans (constituents) in the
tree. The most probable tree is computed with the
CYK algorithm.

6 Features

Over the course of development experiments, we
discovered that the more position-specific our fea-
tures were, the more effectively we could parse
NPs. We define a word’s position as its distance
from the right of the full NP, as the semantic head
of NPs is most often the right-most word. Ulti-
mately, we decided to conjoin each feature with

the position of the proposed bracketing. Since
the features for differing proposed bracketings are
now disjoint, this is equivalent to scoring bracket-
ings with different classifiers, with each classifier
chosen according to the bracketing position. We
now outline the feature types that are common,
but weighted differently, in each proposed brack-
eting’s feature set.

6.1 N-gram Features

All of the features described in this section require
estimates of the probability of specific words or
sequences of words. All probabilities are com-
puted usingGoogle V2 (Section 4).

6.1.1 PMI

Recall that the adjacency model for the three-
word task uses the associations of the two pairs of
adjacent words, while the dependency model uses
the associations of the two pairs of attachment
sites for the initial noun. We generalize the ad-
jacency and dependency models by including the
pointwise mutual information (Church and Hanks,
1990) betweenall pairs of words in the NP:

PMI(x, y) = log
p(“x y”)

p(“x”)p(“y”)
(1)

For NPs of lengthn, for each proposed bracket-
ing, we include separate features for the PMI be-
tween all

(n
2

)
pairs of words in the NP. For NPs in-

cluding conjunctions, we include additional PMI
features (Section 6.1.2).

Since these features are also tied to the pro-
posed bracketing positions (as explained above),
this allows us to learn relationships between var-
ious associations within the NP and each poten-
tial bracketing. For example, consider a proposed
bracketing from word4 to word5. We learn that
a high association of words inside a bracketing
(here, a high association between word4 and word
5) indicates a bracketing is likely, while a high
association between words that cross a proposed
bracketing (e.g., a high association between word
3 and word4) indicates the bracketing is unlikely.

The value of these features is the PMI, if it is
defined. If the PMI is undefined, we include one
of two binary features:
p(“x y”) = 0 or p(“x”) ∨ p(“y”) = 0.

889

We illustrate the PMI features with an example.
In deciding whether (movie producers) is a rea-
sonable bracketing within “French television and
movie producers,” the classifier weighs features
for all of:

PMI(French, television)
PMI(French, and)
. . .

PMI(television, producers)
PMI(and, producers)
PMI(movie, producers)

6.1.2 Conjunctions

Properly handling NPs containing conjunc-
tions (NP+conj) requires special statistical fea-
tures. For example,television and movie are
commonly conjoined, but the relevant statistics
that suggest placing brackets around the phrase
“ television and movie” are not provided by the
above PMI features (i.e., this is not clear from
PMI(television, and), PMI(television, movie), nor
PMI(and, movie)). Rather, we want to know if the
full phrase “television and movie” is common.

We thus have additional NP+conj features that
consider the PMI association across the wordand:

PMIand(x, y) = log
p(“x and y”)

p(“x and”)p(“and y”)
(2)

When PMIand between a pair of words is high,
they are likely to be the constituents of a conjunc-
tion.

Let NP=(w1 . . . wi−1, ‘and’, wi+1 . . . wn) be
an NP+conj. We include the PMIand features be-
tweenwi−1 and allw ∈ wi+1 . . . wn. In the exam-
ple “French television and movie producers,” we
would include features PMIand(television, movie)
and PMIand(television, producers).

In essence, we are assumingwi−1 is the head
of one of the items being conjoined, and we score
the likelihood of each of the words to the right
of the and being the head for the other item. In
our running example, the conjunction has narrow
scope, and PMIand(television, movie) is greater
than PMIand(television, producers), indicating to
our classifier that (television and movie) is a good
bracketing. In other examples the conjunction will
join heads that are further apart, as in((French TV)

and (British radio)) stars, where both of the fol-
lowing hold:

PMIand(TV, radio) > PMIand(TV, British)
PMIand(TV, radio) > PMIand(TV, stars)

6.2 Lexical

We include a binary feature to indicate the pres-
ence of a particular word at each position in the
NP. We learn that, for instance, the wordInc. in
names tends to occur outside of brackets.

6.3 Shape

Previous work on NP bracketing has used gold-
standard named entity tags (Vadas and Curran,
2007b) as features. We did not want to use any
gold-standard features in our experiments, how-
ever NER information is helpful in separating pre-
modifiers from names, i.e.(news reporter) (Wal-
ter Cronkite).

As an expedient way to get both NER informa-
tion and useful information from hyphenated ad-
jectives, abbreviations, and other punctuation, we
normalize each string using the following regular
expressions:

[A-Z]+ → A [a-z]+ → a
We use this normalized string as an indicator

feature. E.g. the word “Saudi-born” will fire the
binary feature “Aa-a.”

6.4 Position

We also include the position of the proposed
bracketing as a feature. This represents the prior
of a particular bracketing, regardless of the actual
words.

7 Experiments

7.1 Experimental Details

We use Vadas and Curran (2007a)’s annotations
(Section 3) to create training, development and
testing data for base NPs, using standard splits of
the Penn Treebank (Table 1). We consider all non-
trivial base NPs, i.e., those longer than two words.

For training, we expand each NP in our train-
ing set into independent examples corresponding
to all the possible internal NP-bracketings, and
represent these examples as feature vectors (Sec-
tion 5). Each example is positively labeled if it is

890

Data Set Train Dev Test Chance
PTB Section 2-22 24 23
Length=3 41353 1428 2498 50%
Length=4 12067 445 673 20%
Length=5 3930 148 236 7%
Length=6 1272 34 81 2%
Length>6 616 29 34 < 1%
Total NPs 59238 2084 3522

Table 1: Breakdown of the PTB base NPs used in
our experiments. Chance = 1/Catalan(length).

Features All NPs NP+conj NP-conj
All features 95.4 89.7 95.7
-N-grams 94.0 84.0 94.5
-lexical 92.2 87.4 92.5
-shape 94.9 89.7 95.2
-position 95.3 89.7 95.6
Right

72.6 58.3 73.5
bracketing

Table 2: Accuracy (%) of base NPs parsing; abla-
tion of different feature classes.

consistent with the gold-standard bracketing, oth-
erwise it is a negative example.

We train using LIBLINEAR, an efficient linear
Support Vector Machine (SVM).3 We use an L2-
loss function, and optimize the regularization pa-
rameter on the development set (reaching an opti-
mum atC=1). We converted the SVM output to
probabilities.4 Perhaps surprisingly, since SVMs
are not probabilistic, performance on the devel-
opment set with these SVM-derived probabilities
was higher than using probabilities from the LIB-
LINEAR logistic regression solver.

At test time, we again expand the NPs and cal-
culate the probability of each constituent, insert-
ing the score into a chart. We run the CYK algo-
rithm to find the most probable parse of the entire
NP according to the chart. Our evaluation metric
is Accuracy: the proportion of times our proposed
parse of the NP exactly matches the gold standard.

8 Results

8.1 Base NPs

Our method improves substantially over the base-
line of assuming a completely right-branching
structure, 95.4% versus 72.6% (Table 2). The ac-
curacy of the constituency classifier itself (before
the CYK parser is used) is 96.1%.

The lexical features are most important, but all
feature classes are somewhat helpful. In particu-
lar, including N-gram PMI features significantly
improves the accuracy, from 94.0% to 95.4%.5

Correctly parsing more than 19 base NPs out of 20
is an exceptional level of accuracy, and provides a
strong new standard on this task. The most com-
parable result is by Vadas and Curran (2007b),
who achieved 93.0% accuracy on a different set of
PTB noun phrases (see footnote 2), but their clas-
sifier used features based on gold-standard part-
of-speech and named-entity information.

Exact match is a tough metric for parsing, and
the difficulty increases as the length of the NP
increases (because there are more decisions to
make correctly). At three word NPs, our accu-
racy is 98.5%; by six word NPs, our accuracy
drops to 79.0% (Figure 1). Our method’s accu-
racy decreases as the length of the NP increases,
but much less rapidly than a right-bracketing or
chance baseline.

8.2 Base NPs with Conjunctions

N-gram PMI features help more on NP+conj than
on those that do not contain conjunctions (NP-
conj) (Table 2). N-gram PMI features are the most
important features for NP+conj, increasing accu-
racy from 84.0% to 89.7%, a 36% relative reduc-
tion in error.

8.3 Effect of Thresholding N-gram data

We now address two important related questions:
1) how does our parser perform as the amount
of unlabeled auxiliary data varies, and 2) what
is the effect of thresholding an N-gram corpus?
The second question is of widespread relevance as

3www.csie.ntu.edu.tw/ ˜ cjlin/liblinear/
4Following instructions inhttp://www.csie.ntu.

edu.tw/ ˜ cjlin/liblinear/FAQ.html
5McNemar’s test,p < 0.05

891

 1

 10

 100

6543

A
cc

ur
ac

y
(%

)

Length of Noun Compound (words)

Proposed
Right-bracketing

Chance

Figure 1: Accuracy (log scale) over different NP
lengths, of our method, the right-bracketing base-
line, and chance (1/Catalan(length)).

thresholded N-gram corpora are now widely used
in NLP. Without thresholds, web-scale N-gram
data can be unmanageable.

While we cannot lower the threshold after cre-
ating the N-gram corpus, we can raise it, filtering
more N-grams, and then measure the relationship
between threshold and performance.

Threshold Unique N-grams Accuracy
10 4,145,972,000 95.4%
100 391,344,991 95.3%
1,000 39,368,488 95.2%
10,000 3,924,478 94.8%
100,000 386,639 94.8%
1,000,000 37,567 94.4%
10,000,000 3,317 94.0%

Table 3: There is no data like more data. Accuracy
improves with the number of parameters (unique
N-grams).

We repeat the parsing experiments while in-
cluding in our PMI features only N-grams with
a count≥10 (the whole data set),≥100, ≥1000,
. . ., ≥107. All other features (lexical, shape, posi-
tion) remain unchanged. The N-gram data almost
perfectly exhibits Zipf’s power law: raising the
threshold by a factor of ten decreases the number
of unique N-grams by a factor of ten (Table 3).
The improvement in accuracy scales log-linearly
with the number of unique N-grams. From a prac-
tical standpoint, we see a trade-off between stor-

Corpus # of tokens τ # of types
NEWS 3.2 B 1 3.7 B
Google V1 1,024.9 B 40 3.4 B
Google V2 207.4 B 10 4.1 B

Table 4: N-gram data, with total number of words
(tokens) in the original corpus (in billions, B), fre-
quency threshold used to filter the data,τ , and to-
tal number of unique N-grams (types) remaining
in the data after thresholding.

age and accuracy. There are consistent improve-
ments in accuracy from lowering the threshold
and increasing the amount of auxiliary data. If for
some application it is necessary to reduce storage
by several orders of magnitude, then one can eas-
ily estimate the resulting impact on performance.

We repeat the thresholding experiments using
two other N-gram sources:

NEWS: N-gram data created from a large set
of news articles including the Reuters and Giga-
word (Graff, 2003) corpora, not thresholded.

Google V1: The original web-scale N-gram
corpus (Section 4).

Details of these sources are given in Table 4.
For a given number of unique N-grams, using

any of the three sources does about the same (Fig-
ure 2). It does not matter that the source corpus
for Google V1 is about five times larger than the
source corpus for Google V2, which in turn is
sixty-five times larger than NEWS (Table 4). Ac-
curacies increase linearly with the log of the num-
ber oftypesin the auxiliary data set.

Google V1 is the one data source for which
the relationship between accuracy and number of
N-grams is not monotonic. After about 100 mil-
lion unique N-grams, performance starts decreas-
ing. This drop shows the need for Google V2.
Since Google V1 contains duplicated web pages
and sentences, mistakes that should be rare can
appear to be quite frequent. Google V2, which
comes from the same snapshot of the web as
Google V1, but has only unique sentences, does
not show this drop.

We regard the results in Figure 2 as a compan-
ion to Banko and Brill (2001)’s work on expo-
nentially increasing the amount of labeled train-
ing data. Here we see that varying the amount of

892

 94

 94.5

 95

 95.5

 96

1e91e81e71e61e51e4

A
cc

ur
ac

y
(%

)

Number of Unique N-grams

Google V1
Google V2

NEWS

Figure 2: There is no data like more data. Ac-
curacy improves with the number of parameters
(unique N-grams). This trend holds across three
different sources of N-grams.

unlabeleddata can cause an equally predictable
improvement in classification performance, with-
out the cost of labeling data.

Suzuki and Isozaki (2008) also found a log-
linear relationship between unlabeled data (up to
a billion words) and performance on three NLP
tasks. We have shown that this trend continues
well beyond Gigaword-sized corpora. Brants et
al. (2007) also found that more unlabeled data (in
the form of input to a language model) leads to
improvements in BLEU scores for machine trans-
lation.

Adding noun phrase parsing to the list of prob-
lems for which there is a “bigger is better” rela-
tionship between performance and unlabeled data
shows the wide applicability of this principle. As
both the amount of text on the web and the power
of computer architecture continue to grow expo-
nentially, collecting and exploiting web-scale aux-
iliary data in the form of N-gram corpora should
allow us to achieve gains in performance linear in
time, without any human annotation, research, or
engineering effort.

9 Conclusion

We used web-scale N-grams to produce a new
standard in performance of base NP parsing:
95.4%. The web-scale N-grams substantially im-
prove performance, particularly in long NPs that
include conjunctions. There is no data like more

data. Performance improves log-linearly with the
number of parameters (unique N-grams). One can
increase performance with larger models, e.g., in-
creasing the size of the unlabeled corpora, or by
decreasing the frequency threshold. Alternatively,
one can decrease storage costs with smaller mod-
els, e.g., decreasing the size of the unlabeled cor-
pora, or by increasing the frequency threshold. Ei-
ther way, the log-linear relationship between accu-
racy and model size makes it easy to estimate the
trade-off between performance and storage costs.

Acknowledgments

We gratefully acknowledge the Center for Lan-
guage and Speech Processing at Johns Hopkins
University for hosting the workshop at which this
research was conducted.

References

Atterer, M. and H. Schütze. 2007. Prepositional
phrase attachment without oracles.Computational
Linguistics, 33(4):469–476.

Banko, M. and E. Brill. 2001. Scaling to very very
large corpora for natural language disambiguation.
In ACL.

Barker, K. 1998. A trainable bracketer for noun mod-
ifiers. InTwelfth Canadian Conference on Artificial
Intelligence (LNAI 1418).

Barr, C., R. Jones, and M. Regelson. 2008. The lin-
guistic structure of English web-search queries. In
EMNLP.

Bergsma, S. and Q.I. Wang. 2007. Learning noun
phrase query segmentation. InEMNLP-CoNLL.

Brants, T. and A. Franz. 2006. The Google Web 1T
5-gram Corpus Version 1.1. LDC2006T13.

Brants, T., A.C. Popat, P. Xu, F.J. Och, and J. Dean.
2007. Large language models in machine transla-
tion. In EMNLP.

Charniak, E. and M. Johnson. 2005. Coarse-to-fine n-
best parsing and MaxEnt discriminative reranking.
In ACL.

Church, K.W. and P. Hanks. 1990. Word associa-
tion norms, mutual information, and lexicography.
Computational Linguistics, 16(1):22–29.

Church, K. and R. Patil. 1982. Coping with syntactic
ambiguity or how to put the block in the box on the
table.Computational Linguistics, 8(3-4):139–149.

893

Church, K.W. 1988. A stochastic parts program and
noun phrase parser for unrestricted text. InANLP.

Collins, M. and T. Koo. 2005. Discriminative rerank-
ing for natural language parsing.Computational
Linguistics, 31(1):25–70.

Finkel, J.R., A. Kleeman, and C.D. Manning. 2008.
Efficient, feature-based, conditional random field
parsing. InACL.

Graff, D. 2003. English Gigaword. LDC2003T05.

Guo, J., G. Xu, H. Li, and X. Cheng. 2008. A unified
and discriminative model for query refinement. In
SIGIR.

Jones, R., B. Rey, O. Madani, and W. Greiner. 2006.
Generating query substitutions. InWWW.

Kudo, T. and Y. Matsumoto. 2001. Chunking with
support vector machines. InNAACL.

Lapata, M. and F. Keller. 2005. Web-based models for
natural language processing.ACM Transactions on
Speech and Language Processing, 2(1):1–31.

Lauer, M. 1995. Corpus statistics meet the noun com-
pound: some empirical results. InACL.

Liberman, M. and R. Sproat. 1992. The stress and
structure of modified noun phrases in English.Lex-
ical matters, pages 131–181.

Lin, D., K. Church, H. Ji, S. Sekine, D. Yarowsky,
S. Bergsma, K. Patil, E. Pitler, R. Lathbury, V. Rao,
K. Dalwani, and S. Narsale. 2010. New tools for
web-scale n-grams. InLREC.

Marcus, M.P., B. Santorini, and M.A. Marcinkiewicz.
1994. Building a Large Annotated Corpus of En-
glish: The Penn Treebank.Computational Linguis-
tics, 19(2):313–330.

Marcus, M.P. 1980. Theory of Syntactic Recogni-
tion for Natural Languages. MIT Press, Cambridge,
MA, USA.

Nakov, P. and M. Hearst. 2005. Search engine statis-
tics beyond the n-gram: Application to noun com-
pound bracketing. InCoNLL.

Pustejovsky, J., P. Anick, and S. Bergler. 1993. Lex-
ical semantic techniques for corpus analysis.Com-
putational Linguistics, 19(2):331–358.

Ramshaw, L.A. and M.P. Marcus. 1995. Text chunk-
ing using transformation-based learning. In3rd
ACL Workshop on Very Large Corpora.

Ratnaparkhi, A., S. Roukos, and R.T. Ward. 1994.
A maximum entropy model for parsing. InThird
International Conference on Spoken Language Pro-
cessing.

Resnik, P. 1993.Selection and information: a class-
based approach to lexical relationships. Ph.D. the-
sis, University of Pennsylvania.

Suzuki, J. and H. Isozaki. 2008. Semi-supervised se-
quential labeling and segmentation using giga-word
scale unlabeled data. InACL.

Tan, B. and F. Peng. 2008. Unsupervised query
segmentation using generative language models and
Wikipedia. InWWW.

Taskar, B., D. Klein, M. Collins, D. Koller, and
C. Manning. 2004. Max-margin parsing. In
EMNLP.

Vadas, D. and J.R. Curran. 2007a. Adding noun
phrase structure to the Penn Treebank. InACL.

Vadas, D. and J.R. Curran. 2007b. Large-scale su-
pervised models for noun phrase bracketing. InPA-
CLING.

Zhai, C. 1997. Fast statistical parsing of noun phrases
for document indexing. InANLP.

894

