Polibox: Generating descriptions, comparisons, and
recommendations from a database

Manfred Stede
Inst. fiir Linguistik / Angewandte Computerlinguistik
Universitat Potsdam
P.O. Box 601553
14415 Potsdam
Germany
stede@ling.uni-potsdam.de

Abstract

We describe our ongoing work on “Polibox”,
a web-based text generator producing adap-
tive hypertext from a product database, cur-
rently one of computational linguistics text-
books. When given a specification of a desired
ideal book, Polibox selects suitable candidates
from the database, and presents them one-by-
one to the user. Books are described, compared
to one another, and, under the right circum-
stances, actively recommended. This project
note concentrates on the stages of content se-
lection, text planning and sentence planning.

1 Introduction

Work in automated natural language generation
(NLG) has typically focused on specific types
of text, such as advices (e.g., on correcting pro-
gram errors), reports (e.g., of project activities),
or persuasions (e.g., to stop smoking). The
“Polibox” generator, whose first prototype is
just being completed, combines in a single sys-
tem three different discourse purposes: describe
an object, compare an object to another, evalu-
ate one object with respect to another. A mix-
ture of these purposes can be found in discourses
that inform about certain products and — pos-
sibly — involve recommendations on choosing
one rather than the other. In a typical scenario,
a client asks an expert about a particular type
of product suitable for the client’s needs, and
the expert responds with descriptions of several
candidates, compares them, and possibly singles
out one candidate as especially well-suited.
While in general this amounts to a dialogue
application, Polibox merely handles the text
generation side. The client thus provides a de-
scription of their needs via a menu, and Polibox
selects suitable products and generates descrip-
tions. However, rather than combining them

all into a single text, individual descriptions are
kept distinct, and the user can select the order
in which they are presented. This takes up the
idea of “adaptive hypertext” realised in ILEX
(Mellish et al. 1998) or Peba-II (Milosavljevic
1997).

The following section describes the overall ar-
chitecture of Polibox, and subsequent sections
explain in more detail how content selection,
text planning, and sentence planning are being
done. Finally, Polibox is compared to related
earlier research.

2 System overview
2.1 Application scenario

Polibox implements the scenario of a client (e.g.,
a student) inquiring about a textbook suitable
for his current interests and capabilities. The
subject matter realized in the prototype is com-
putational linguistics, i.e., a database with in-
formation on 25 CL texts is the basis for the
generator to select information from and present
it. The student specifies topics they want to
see covered by the book, the language, the pro-
gramming language used, the desired presence
of code examples and exercises. Polibox deter-
mines a small number of books that match the
requirements and generates a description of the
first, accompanied by hyperlinks to further de-
scriptions, if any. When the student selects a
link, a text on the second title is generated and
presented, and this description is very likely to
contain explicit comparisons to the book that
has been presented before. Hence, all but the
first book description pay attention not only to
the “target features” specified by the user, but
also to the prior descriptions, as stored in the
discourse history. Furthermore, the generator
may decide that one book is a clear favourite
and actively recommend this one, using various



In contrast to TITLE1, TITLE2 by AUTHOR2
uses Lisp as the underlying programming lan-
guage. With 180 pages it is a rather short book.
Besides parsing and generation, it covers ma-
chine translation as an application of CL. Un-
fortunately, the book is already 12 years old.

Figure 1: English translation of a Polibox para-
graph

means, as explained below.

While Polibox will eventually generate both
German and English text, the first prototype is
restricted to German. For illustration, figure 1
shows the (anonymized) English translation of a
short sample paragraph as selected by the user.
In this case, the user had asked for a recent book
covering parsing and generation, and this is the
second book suggested by Polibox; the first was
very similar but based on Prolog.

2.2 Architecture

Polibox is a web application that features ele-
ments of “adaptive hypertext” as classified by
(De Bra 1999): Via a standard web browser, the
user interacts with the system, which produces
HTML pages on-the-fly in response to user’s
choices. On the welcome page, the user se-
lects from a range of checkboxes the features she
wishes to find in a CL textbook. The web server
submits the request to the generation module,
which implements a variant of the “standard
pipeline model” of NLG (Dale, Reiter 2000):

1. Content Selection matches the target fea-
tures against the book database and de-
termines a range of suitable books (max.
four!), a ranking of these candidates, com-
municative goals, and for each book those
DB attributes that are to be actually ver-
balized. These are being mapped to propo-
sitions.

2. Text Planning maps a communicative goal
and a set of propositions (corresponding to
a single book description) to a ‘rhetorical
tree’ that specifies coherence relations be-
tween propositions and sub-trees, as well as
a partial order for presenting the informa-
tion.

!This limit is an arbitrary choice and can be changed
without affecting the program.

3. Sentence Planning maps the partially-
ordered rhetorical tree to a fully linearized
sequence of sentence specifications linked
by ‘conjunctive relations’ (Martin 1992).

4. Surface realization maps each sentence
specification to a German sentence.

Content selection, text planning, and sen-
tence planning are discussed in more detail be-
low. As for surface realization, we currently
employ two different approaches: A template-
based generation using the TG /2 module (Buse-
mann 1998), and a “deep” generation using
the KPML multilingual generation environment
(Bateman 1997). The goal is to eventually eval-
uate the relative merits of both approaches for
the kind of application realized in Polibox; for
the purposes of this paper, we describe only
the “deep” variant. Hence, the sentence plan-
ner produces expressions in the Sentence Plan
Language (Kasper 1989), which KPML maps to
linguistic output.

2.3 Implementation

Polibox is being implemented in Common Lisp.
While both alternative surface realizers run
within Allegro CL runtime images, the remain-
ing modules are built with the freely available
CMU Common Lisp (CMUCL URL). Through-
out the prototype, the description logic LOOM
and its reasoning services (LOOM URL) are uti-
lized where possible. Non-deterministic algo-
rithms (in text planning) are implemented with
Screamer (Siskind, McAllister 1993), which is
embedded in Common Lisp. The web server
is the Common Lisp Hypermedia Server (CL-
HTTP URL).

3 Content selection and text
planning

3.1 Retrieve candidate books

The “database” of book entries is stored in
the LOOM KR system, where the terminolog-
ical component (TBox) corresponds to a DB
schema, and the assertional component (ABox)
corresponds to DB entries. In fact, the TBox,
as usual in description logics, holds knowledge
about subsumption relationships, in our appli-
cation a hierarchy of CL topics (so that the user
can ask for ‘parsing’ and will also find books
about ‘LR-parsing’, etc.). When the user has



specified the attributes of the “ideal” book, they
are translated into a LOOM query. If this query
succeeds, the user’s requirements are matched
perfectly — a non-typical case. Should the
number of books retrieved be less than four (in-
cluding zero), the search attributes are relaxed
step-by-step in order to produce more matches,
up to the point where four books have been re-
trieved. (If more than four result, a random
selection is made.) This occurs according to
a pre-defined relaxation sequence: First look
for “similar” topics covered by the book, then
relax the requirements on code examples and
exercises, then on the programming language;
the least flexible attribute is the language of
the book, for if the user has explicitly specified
one language, they probably will not welcome a
book in another.?2 The number and weight of re-
laxed constraints define a ranking of the books,
which leads to the establishment of communica-
tive goals.

3.2 Determine communicative goals
and attributes to be verbalized

The book database has some 15 different at-
tributes (author, title, publisher, year, pages,
topics covered, exercises, etc.), not all of which
are to be included in a book’s description. The
list of attributes to include is not pre-stored, but
arises from four different sources:

e Identificational attributes: trivially, author
name and book title are always included.

e Atypical attributes: book is very long or
very short; very old or very recent; covers
very many or very few topics, etc. (deter-
mined by comparing to “typicality thresh-
old”, which is computed over the whole
range of entries)

e Un-/desired attributes: those that match
the user’s target values very well, and those
that are in conflict

e Comparative attributes: similarities and
differences between this book and the one
described previously

Those attributes that relate to the user’s tar-
get feature specification receive an evaluation

In principle, the relaxation sequence could also be
specified by the user, but for now it is hard-wired.

that reflects the degree of the mis/match com-
bined with the importance of the feature; val-
ues are arranged on a numerical scale from +3
to -3. Next, for each book a communicative
goal is computed, which abstratcs over the can-
didate ranking and the factors used for evalu-
ating the suitability. Depending on the close-
ness of the match and the distance to the com-
petitors, for the first book presented the goal is
one of describe-and-highly-recommend, describe-
and-recommend, and describe; for subsequent
books, compare is added to the labels.

3.3 Map DB attributes to propositions

Before we can construct a text plan that repre-
sents the propositional contents of the text, the
individual DB attributes are mapped to a level
of propositions; this often involves aggregation
of attributes. Examples:

e The author and title attributes can be com-
bined into a “(WRITTEN-BY title au-
thor)” proposition.

e Binary features like has-ezercises and has-
code-examples can be combined into a
proposition “(CONTAINS book (and exer-
cises code))”.

e A feature that is relevant to the user can
be re-formulated by a computation. In our
sample text in fig. 1, this applied to (YEAR
1990), which was in conflict with the user’s
wish for a recent book, and hence was
mapped to the proposition “(OLD book
12yrs)”.

e If the book is evaluated very positively, a
distinct “(RECOMMEND book)” proposi-
tion can be added.

Notice that propositions are still “pre-verbal”;
in the sentence planning stage, lexicalization
will choose from a range of lexemes that can
express the given content.

3.4 Build a rhetorical tree

As in many current generation systems, a text
plan amounts to a tree of propositions and
“rhetorical relations”, as inspired by (Mann,
Thompson 1987). Unlike many current systems,
however, we distinguish between the rhetorical
relations in the text plan and the more surface-
oriented “conjunctive relations” (Martin 1992)



established in sentence planning (see the next
section).

Building the text plan proceeds in two steps:
First, a set of rules tries, bottom-up, to es-
tablish rhetorical relations between individual
propositions and then recursively between the
resulted trees of depth one; then, another set of
rules link the set of small trees together into
a complete tree (top-down). In both stages,
we first try to establish “informative” relations,
and only if this fails, the relatively “weak” re-
lations ELABORATION or, worse, JOINT are
established. Altogether, we currently use these
rhetorical relations: CAUSE, CONCESSION,
CONTRAST, ELABORATION, JOINT, LIST,
RESULT. Examples of the bottom-up stage:

e If there is exactly one proposition with pos-
itive evaluation and exactly one with a neg-
ative evaluation, they are combined into a
CONCESSION tree. E.g.: Although the
book is rather old, it covers all the topics
you are interested in. If there are more
positive or negative propositions, these are
combined first, in order to avoid multiple
concessions within the same paragraph.

e When a “(RECOMMEND book)” propo-
sition is present, it is linked to positively-
evaluated propositions via a RESULT rela-
tion. E.g.: The book covers all the topics
you are interested in. Also, it is quite re-
cent. Therefore, it would be a good choice
for you.

The operation of the top-down rules depends
on the communicative goal. For describing and
comparing, little more than arranging similar
propositions into LISTs or ELABORATIONSs
is done. For recommending a book, however,
the rules are responsible for achieving the over-
all rhetorical effect. How this is done depends
on the configuration produced by the bottom-
up rules; in general, the top-down rules have
to make sure that, e.g., a “(RECOMMEND
book)” proposition appears either at the begin-
ning or the end of the paragraph, and that the
paragraph does not end with a negative propo-
sition.

4 Sentence planning

An architectural innovation of Polibox is its sep-
arating the tree of deep rhetorical relations from

a structure involving surface-oriented ‘conjunc-
tive relations’. The latter is constructed in sen-
tence planning and represents a level of repre-
sentation at which sentence scope and structure
have been fixed, but lexicalisation is still ahead.

Conjunctive relations (henceforth CR) are an
approach to characterizing text connectedness
developed by (Martin 1992). Martin offers a
fine-grained classification of relations and the
range of their realizations in English, character-
ized by sets of semantic features, which Martin
organizes as system networks.

The groups of relations distinguished by Mar-
tin are the following: additive (addition, al-
ternation), comparative (similarity, contrast),
temporal (simultaneous, successive), conse-
quential (purpose, condition, consequence, con-
cession, manner). FEach group is analyzed in
great detail and systematically linked to real-
ization through connectives and clause struc-
ture. Notice that there are some similari-
ties to the relations proposed by RST (Mann,
Thompson 1987); however, Martin’s approach
is decidedly oriented to linguistic realization,
whereas RST relations were considered “pre-
realizational”. Polibox indeed implements this
distinction by employing RST in text planning
and CR in sentence planning. The ordering step
proceeds as follows: Propositions are treated as
nodes in an (initially disconnected) graph, and
the ordering information already present in the
rhetorical tree provides the first directed edges.
By computing similarity /contrastiveness among
propositions, the remaining edges are inserted.
Next, the proposition stream is “chunked” into
clauses and sentences in accordance with the re-
lations present in the rhetorical tree; the graph
edges are labelled with appropriate CRs.

Introducing the CR level leads us to split the
sentence planning stage in two parts: First,
propositions are packaged into clause- and
sentence-chunks, decisions between paratactic
and hypotactic connection are made, and the
class of connectives to be used is fixed. All
these decisions are influenced by the commu-
nicative goal and by the discourse memory,
which records the linearization in order to sup-
port subsequent ordering decisions as well as
choice of clause themes.

The remaining tasks in moving from CR
to sentence plans (Kasper 1989) are choosing



open-class words and connectives, and map-
ping proposition participants to thematic roles.
Here, interactions between choosing connectives
and determining the verb complex can be ac-
counted for. Once again, the communicative
goal and information from the discourse mem-
ory enter these decisions as parameters, e.g. for
choosing a connective that marks a proposition
as given (cf. the difference between since and
because). For the lexicalisation step, we use an
extended version of the ‘Moose’ module (Stede
1999).

5 Related work

The merge between NLG and adaptive hyper-
text was introduced by the ILEX (Mellish et
al. 1998) and Peba-IT (Milosavljevic 1997) sys-
tems, and with respect to user interface, Polibox
adopts the same general approach as these two
systems. However, we have put an emphasis on
the variety of communicative goals that can be
pursued in Polibox, resulting in a broader range
of text types.

Rhetorical trees have been employed by many
generation systems (including ILEX) as the out-
put of text planning, but in the earlier systems,
a single layer of coherence relations was used.
A proposal for distinguishing “deep” rhetori-
cal relations from conjunctive relations operat-
ing close to the surface was made by (Bateman
1999) for the task of handling spoken language,
but to our knowledge this approach has so far
not been implemented. Polibox, in contrast to
earlier systems, treats the text plan tree as only
partially ordered and leaves remaining ordering
decisions to sentence planning. Controlling in-
formation structure is one advantage of using
two distinct layers; eventually, the method will
be applied to bilingual generation, where the
different linguistic means for attaching clauses
and sentences can be systematically related by
a (language-specific) layer of conjunctive rela-
tions.

References

J. Bateman. “Enabling technology for multilin-
gual natural language generation: the KPML
development environment.” In: Journal of
Natural Language Engineering 3(1), 1997.

J. Bateman. “The dynamics of surfacing.” Proc.

of the workshop on levels of representation in
discourse, Edinburgh Univ., 1999

S. Busemann. “Best-first surface realization.”
Proc. of the Eighth Int’l Workshop on Natu-
ral Language Generation, Herstmonceux Cas-
tle, 1998.

CMU Common Lisp. http://www.cons.org/
cmucl/

Common Lisp Hypermedia Server. http://
www.ai.mit.edu/projects/iiip/doc/cl-http/
home-page.html

R. Dale, E. Reiter. Building natural language
generation systems. Cambridge University
Press, 2000.

P. De Bra. “Design Issues in Adaptive Hyper-
media Application Development.” Proc. of
the Second Workshop on Adaptive Systems
and User Modeling on the World Wide Web,
Toronto and Banff, 1999.

R. Kasper. “A flexible interface for linking ap-
plications to the PENMAN sentence gen-
erator.” Proc. of the DARPA workshop
on speech and natural language processing.
Univ. of Pennsylvania, 1989.

Loom Knowledge Representation Language.
http://www.isi.edu/projects/loom

W. Mann, S. Thompson. “Rhetorical structure
theory: a theory of text organization.” In:
L. Polyani (ed.): The structure of discourse.
Norwood: Ablex, 1987.

J. Martin. English Text: System and Structure.
Amsterdam: John Benjamins, 1992.

C. Mellish, M. O’Donnell, J. Oberlander, A.
Knott. “An architecture for opportunistic
text generation.” Proc. of the Ninth Int’l
Workshop on Natural Language Generation,
Niagara-on-the-Lake, Ontario, 1998.

M. Milosavljevic. “Content Selection in Com-
parison Generation.” Proc. of the 6th Euro-
pean Workshop on Natural language Genera-
tion. Duisburg, 1997.

J. Siskind, D. McAllister. “Nondeterministic
Lisp as a Substrate for Constraint Logic Pro-
gramming.” Proc. of AAAI-93, 1993.

M. Stede. Lexical semantics and knowledge rep-
resentation in multilingual text generation.
Dordrecht/Boston: Kluwer, 1999.



	Table of Content
	Topics
	Authors

