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Abstract 
 

While Named Entity extraction is useful in 
many natural language applications, the 
coarse categories that most NE extractors 
work with prove insufficient for complex 
applications such as Question Answering and 
Ontology generation.  We examine one 
coarse category of named entities, persons, 
and describe a method for automatically 
classifying person instances into eight finer-
grained subcategories.  We present a 
supervised learning method that considers the 
local context surrounding the entity as well as 
more global semantic information derived 
from topic signatures and WordNet.  We 
reinforce this method with an algorithm that 
takes advantage of the presence of entities in 
multiple contexts. 

 
1. Introduction 
 

There has been much interest in the recent past 
concerning automated categorization of named 
entities in text.  Recent advances have made some 
systems (such as BBN’s IdentiFinder (Bikel, 
1999)) very successful when classifying named 
entities into broad categories, such as person, 
organization, and location.  While the accurate 
classification of general named entities is useful in 
many areas of natural language research, more fine-
grained categorizations would be of particular 
value in areas such as Question Answering, 
information retrieval, and the automated 
construction of ontologies.   

The research presented here focuses on the 
subcategorization of person names, which extends 
research on the subcategorization of location names 
(Fleischman, 2001).  While locations can often be 
classified based solely on the words that surround 
the instance, person names are often more 
challenging because classification relies on much 
deeper semantic intuitions gained from the 

surrounding text.  Further, unlike the case with 
location names, exhaustive lists of person names by 
category do not exist and cannot be relied upon for 
training and test set generation.  Finally, the domain 
of person names presents a challenge because the 
same individual (e.g., “Ronald Reagan”) is often 
represented differently at different points in the 
same text (e.g., “Mr. Reagan”, “Reagan”, etc.). 

The subcategorization of person names is not a 
trivial task for humans either, as the examples 
below illustrate.  Here, names of persons have been 
encrypted using a simple substitution cipher.  The 
names are of only three subtypes: politician, 
businessperson, and entertainer, yet prove 
remarkably difficult to classify based upon the 
context of the sentence. 
 

1.  Unfortunately, Mocpm_____ and his immediate 
family did not cooperate in the making of the film . 
2. "The idea that they'd introduce Npn Fuasm______ 
into that is amazing ,"he said. 
3. "It's dangerous to be right when government is 
wrong ," Lrsyomh______ told reporters 

 
1. Mocpm = Nixon: politician 
2. Npn Fuasm = Bob Dylan: entertainer 
3. Lrsyomh = Keating: businessperson 

 

In this work we examine how different features 
and learning algorithms can be employed to 
automatically subcategorize person names in text.  
In doing this we address how to inject semantic 
information into the feature space, how to 
automatically generate training sets for use with 
supervised learning algorithms, and how to handle 
orthographic inconsistencies between instances of 
the same person. 
 
2. Data Set Generation 
 

A large corpus of person instances was 
compiled from a TREC9 database consisting of 
articles from the Associated Press and the Wall 
Street Journal.  Data was word tokenized, stemmed 



 

using the Porter stemming algorithm (Porter, 1980), 
part of speech tagged using Brill’s tagger (Brill, 
1994), and named entity tagged using BBN’s 
IdentiFinder (Bikel, 1999).  Person instances were 
classified into one of eight categories: athlete, 
politician/government, clergy, businessperson, 
entertainer/artist, lawyer, doctor/scientist, and 
police.  These eight categories were chosen because 
of their high frequency in the corpus and also 
because of their usefulness in applications such as 
Question Answering.  A training set of roughly 
25,000 person instances was then created using a 
partially automated classification system. 

In generating the training data automatically we 
first attempted to use the simple tagging method 
described for location names in (Fleischman, 
2001).  This method involved collecting lists of 
instances of each category from the Internet and 
using those lists to classify person names found by 
IdentiFinder.  Although robust with location names, 
this method proved inadequate with persons (in a 
sample of 300, over 25% of the instances were 
found to be incorrect).  This was due to the fact that 
the same name will often refer to multiple 
individuals (e.g., “Paul Simon” refers to a 
politician, an entertainer, and Belgian scientist). 

In order to avoid this problem we implemented 
a simple bootstrapping procedure in which a seed 
data set of 100 instances of each of the eight 
categories was hand tagged and used to generate a 
decision list classifier using the C4.5 algorithm 
(Quinlan, 1993) with the word frequency and topic 
signature features described below.  This simple 
classifier was then run over a large corpus and 
classifications with a confidence score above a 
90% threshold were collected.  These confident 
instances were then compared to the lists collected 
from the Internet, and, only if there was agreement 
between the two sources, were the instances 
included in the final training set.  This procedure 
produced a large training set with very few 
misclassified instances (over 99% of the instances 
in a sample of 300 were found to be correct).  A 
validation set of 1000 instances from this set was 
then hand tagged to assure proper classification. 

A consequence of using this method for data 
generation is that the training set created is not a 
random sample of person instances in the real 
world.  Rather, the training set is highly skewed, 
including only those instances that are both easy 
enough to classify using a simple classifier and 
common enough to be included in lists found on 

the Internet.  To examine the generalizability of 
classifiers trained on such data, a held out data set 
of 1300 instances, also from the AP and WSJ, was 
collected and hand tagged.   
 
3. Features 
 
3.1 Word Frequency Features 
 

Each instance in the text is paired with a set of 
features that represents how often the words 
surrounding the target instance occur with a 
specific sub-categorization in the training set.  For 
example, in example sentence 2 in the introduction, 
the word “introduce” occurs immediately before 
the person instance.  The feature set describing this 
instance would thus include eight different features; 
each denoting the frequency with which 
“introduce” occurred in the training set 
immediately preceding an instance of a politician, a 
businessperson, an entertainer, etc.  The feature set 
includes these eight different frequencies for 10 
distinct word positions (totaling 80 features per 
instance).  The positions used include the three 
individual words before the occurrence of the 
instance, the three individual words after the 
instance, the two-word bigrams immediately before 
and after the instance, and the three-word trigrams 
immediately before and after the instance (see 
Figure 1). 

 
# Position N-gram Category Freq. 
1 previous unigram “introduce” politician 3 
2 previous unigram “introduce” entertainer 43 
3 following bigram “into that” politician 2 
4 following bigram “into that” business 0 

Figure 1.  Subset of word frequency features for instance in 
example 2, above.  Shows the frequency with which an n-gram 
appears in the training data in a specific position relative to 
instances of a specific category. 

 
These word frequency features provide 

information similar to the binary word features that 
are often used in text categorization (Yang, 1997) 
with only a fraction of the dimensionality.  Such 
reduced dimensionality feature sets can be 
preferable when classifying very small texts 
(Fleischman, in preparation).  

 
3.2 Topic Signature Features 
 

Inspection of the data made clear the need for 
semantic information during classification.  We 
therefore created features that use topic signatures 



 

for each of the person subcategories.  A topic 
signature, as described in (Lin and Hovy, 2000), is 
a list of terms that can be used to signal the 
membership of a text in the relevant topic or 
category.  Each term in a text is given a topic 
signature score that indicates its ability to signal 
that the text is in a relevant category (the higher the 
score, the more that term is indicative of that 
category).  The topic signatures are automatically 
generated for each specific term by computing the 
likelihood ratio (λ-score) between two hypotheses 
(Dunning, 1993).  The first hypothesis (h1) is that 
the probability (p1) that the text is in the relevant 
category, given a specific term, is equivalent to the 
probability (p2) that the text is in the relevant 
category, given any other term (h1: p1=p2).  The 
second hypothesis (h2) is that these two 
probabilities are not equivalent, and that p1 is much 
greater than p2 (h2: p1>>p2).  The calculation of 
this likelihood ratio [-2logL(h1)/L(h2)] for each 
feature and for each category gives a list of all the 
terms in a document set with scores indicating how 
much the presence of that term in a specific 
document indicates that the document is in a 
specific category.  
 

Politician Entertainer 
Word λ-score Word λ-score 

campaign 3457.049 Star 3283.872 
republican 1969.707 Actor 2478.675 
budget 140.292 Budget 17.312 
bigot 2.577 Sexist 3.874 

Figure 2.  Subset of topic signatures generated from training set 
for two categories. 
 

In creating topic signature features for the 
subcategorization of persons, we created a database 
of topic signatures generated from the training set 
(see Figure 2).1  Each sentence from the training set 
was treated as a unique document, and the 
classification of the instance contained in that 
sentence was treated as the relevant topic.  We 
implemented the algorithm described in (Lin and 
Hovy, 2000) with the addition of a cutoff, such that 
the topic signatures for a term are only included if 
the p1/p2 for that term is greater than the mean 
p1/p2 over all terms.  This modification was made 
to ensure the assumption that p1 is much greater 
than p2.  A weighted sum was then computed for 
each of the eight person subcategories according to 
the formula below: 

                                                 
1 To avoid noise, we used only those sentences in which 
each person instance was of the same category. 

 
Topic Sig ScoreType= ΣN [ λ-score of wordn,Type 

          /(distance from instance)2] 
 
where N is the number of words in the sentence, 
λ-score of wordn,Type is the topic signature score of 
word n for topic Type, and distance from instance 
is the number of words away from the instance 
that word n is.  These topic signature scores are 
calculated for each of the eight subcategories.   

These eight topic signature features convey 
semantic information about the overall context 
in which each instance exists.  The topic 
signature scores are weighted according to the 
inverse square of their distance under the (not 
always true) assumption that the farther away a 
word is from an instance, the less information it 
bears on classification.  This weighting is 
particularly important when instances of 
different categories occur in the same sentence 
(e.g., “…of those donating to Bush’s campaign 
was actor Arnold Schwarzenegger…”). 
 
3.3 WordNet Features 
 

A natural limitation of the topic signature 
features is their inability to give weight to 
related and synonymous terms that do not 
appear in the training data.  To address this 
limitation, we took advantage of the online 
resource WordNet (Fellbaum, 1998).  The 
WordNet hypernym tree was expanded for each 
word surrounding the instance and each word in 
the tree was given a score based on the topic 
signature database generated from the training 
data.  The scores were then weighted by the 
inverse of their height in the tree and then 
summed together, similarly to the procedure in 
(Resnik, 1993).  These sums are computed for 
each word surrounding the instance, and are 
summed according to the weighting process 
described above.  This produces a distinct 
WordNet feature for each of the eight classes 
and is described by the equation below: 

 
WordNet Score Type=  
ΣN[ΣM λ-score of wordm,Type/(depth of wordm in WordNet)] 

/(distance from instance) 2 
 
where the variables are as above and M is the 
number of words in the WordNet hypernym 
tree.  These WordNet features supplement the 
coverage of the topic signatures generated from 
the training data by including synonyms that 



 

may not have existed in that data set.  Further, 
the features include information gained from the 
hypernyms themselves (e.g., the hypernym of 
“Congress” is “legislature”).  These final 
hypernym scores are weighted by the inverse of 
their height in the tree to reduce the effect of 
concepts that may be too general (e.g., at the top 
of the hypernym tree for “Congress” is 
“group”).  In order to avoid noise due to 
inappropriate word senses, we only used data 
from senses that matched the part of speech.  
These eight WordNet features add to the above 
features for a total of 96 features. 
 
4. Methods 
 
4.1 Experiment 1: Held out data 
 
 

To examine the generalizability of classifiers 
trained on the automatically generated data, a C4.5 
decision tree classifier (Quinlan, 1993) was trained 
and tested on the held out test set described above.   

Initial results revealed that, due to differing 
contexts, instances of the same name in a single 
text would often be classified into different 
subcategories.  To deal with this problem, we 
augmented the classifier with another program, 
MemRun, which standardizes the subcategorization 
of instances based on their most frequent 
classification.  Developed and tested in 
(Fleischman, 2001), MemRun is based upon the 
hypothesis that by looking at all the classifications 
an instance has received throughout the test set, an 
“average” sub-categorization can be computed that 
offers a better guess than a low confidence 
individual classification. 

MemRun operates in two rounds.  In the first 
round, each instance of the test set is evaluated 
using the decision tree, and a classification 
hypothesis is generated.  If the confidence level of 
this hypothesis is above a certain threshold 
(THRESH 1), then the hypothesis is entered into 
the temporary database (see Figure 3) along with 
the degree of confidence of that hypothesis, and the 
number of times that hypothesis has been received. 

Because subsequent occurrences of person 
instances frequently differ orthographically from 
their initial occurrence (e.g., “George Bush” 
followed by “Bush”) a simple algorithm was 
devised for surface reference disambiguation.  The 
algorithm keeps a record of initial full name usages 
of all person instances in a text.  When partial 

references to the instance are later encountered in 
the text, as determined by simple regular 
expression matching, they are entered into the 
MemRun database as further occurrences of the 
original instance.  This record of full name 
references is cleared after a text is examined to 
avoid possible instance confusions (e.g., “George 
W. Bush” and “George Bush Sr.”).  This simple 
algorithm operates on the assumption that partial 
references to individuals with the same last name in 
the same text will not occur due to human authors’ 
desire to avoid any possible confusion.2  When all 
of the instances in the data set are examined, the 
round is complete.  
In MemRun’s second round, the data set is 
reexamined, and hypothesis classifications are 
again produced.  If the confidence of one of these 
hypotheses is below a second threshold (THRESH 
2), then the hypothesis is ignored and the database 
value is used.3  In this experiment, the entries in the 
database are compared and the most frequent entry 
(i.e., the max classification based on confidence 
level multiplied by the increment) is returned.  
When all instances have been again examined, the 
round is complete.   

 

Figure 3. MemRun database for Decision Tree classifier 
 
4.2 Experiment 2: Learning Algorithms 
 

Having examined the generalizability when 
using automatically generated training data, we turn 
to the question of appropriate learning algorithms 
for the task.  We chose to examine five different 
learning algorithms.  Along with C4.5, we 
examined a feed-forward neural network with 50 
hidden units, a k-Nearest Neighbors 
implementation (k=1) (Witten & Frank, 1999), a 
Support Vector Machine implementation using a 
linear kernel (Witten & Frank, 1999), and a naïve 
Bayes classifier using discretized attributes and 
                                                 
2 This algorithm does not address definite descriptions and 
pronominal references because they are not classified by 
IdentiFinder as people names, and thus are not marked for 
fine-grained classification in the test set. 
3 The ability of the algorithm to ignore the database’s 
suggestion in the second round allows instances with the 
same name (e.g., “Paul Simon”) to receive different 
classifications in different contexts. 

Instance Class Confidence Occur 
George Bush Politician 97.5% 4 
 Business 83.4% 1 
Dana Carvey Entertainer 92.4% 7 
 Politician 72.1% 2 



 

with feature subset selection (Kohavi & 
Sommerfield, 1996).  For each classifier, 
comparisons were based on results from the 
validation set (~1000 instances) described above. 
 
4.3 Experiment 3: Feature sets 
 

To examine the effectiveness of the individual 
types of features, a C4.5 decision tree classifier 
(Quinlan, 1993) was trained on the 25,000 instance 
data set described above using all possible 
combinations of the three feature sets.  The 
performance was ascertained on the validation set 
described above. 
 
5. Results 
 
5.1 Experiment 1: Held out data 
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Figure 4.  Results of classifier on validation set and held 
out data.  Results compare baseline of always choosing 
most probable class with C4.5 classifier both with and 
without MemRun.   
 

The results of the classifier on both the 
validation set and the held out test set can be seen 
in Figure 4.  The results are presented for a 
classifier trained using the C4.5 algorithm both 
with and without MemRun (THRESH1=85, 
THRESH2=98).  Also shown is the baseline score 
for each test set computed by always choosing the 
most frequent classification (Politician for both).   

It is clear from the figure that the classifiers for 
both test sets and for both conditions performed 
better than baseline.  Also clear is that the MemRun 
algorithm significantly improves performance on 
both the validation and held out test sets.   

Figure 4 further shows a large discrepancy 
between the performance of the classifier on the 
two data sets.  Expectedly, the validation set is 
classified more easily both with and without 
MemRun.  The size of the discrepancy is a function 

of how different the distribution of the training set 
is from the true distribution of person instances in 
the world.  While this discrepancy is undeniable, it 
is interesting to note how well the classifier 
generalizes given the very biased sample upon 
which it was trained. 
 
5.2 Experiment 2: Learning Algorithms 
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 Figure 5. Comparison of different learning algorithms on 
a validation set.  Learners include: k-Nearest Neighbors, 
Naïve Bayes, support vector machine, neural network, and 
C4.5 decision tree. 
 

Figure 5 shows the results of comparing 
different machine learning strategies.  It is clear 
from the figure that all the algorithms perform 
better than the baseline score, while the C4.5 
algorithm performs the best.  This is not 
surprising as decision trees combine powerful 
aspects of non-linear separation and feature 
selection.   

Interestingly, however, there is no clear 
relationship between performance and the 
theoretical foundations of the classifier.    
Although the two top performers (decision tree 
and the neural network) are both non-linear 
classifiers, the linear SVM outperforms the non-
linear k-Nearest Neighbors.  This must, 
however, be taken with a grain of salt, as little 
was done to optimize either the k-NN or SVM 
implementation. 

Another interesting finding in recent work 
is an apparent relationship between classifier 
type and performance on held out data.  While 
the non-parametric learners, i.e. C4.5 and k-NN, 
are fairly robust to generalization, the 
parametric learners, i.e. Naïve Bayes and SVM, 
perform significantly worse on the new 
distribution.  In future work, we intend to 
examine further this possible relationship. 
 



 

5.3 Experiment 3: Feature sets 
 

The results of the feature set experiment can 
be seen in figure 6.  Results are shown for the 
validation set using all combinations of the 
three feature sets.  A baseline measure of 
always classifying the most frequent category 
(Politician) is also displayed.  

It is clear that each of the single feature sets 
(frequency features, topic signature features, 
and WordNet features) is sufficient to 
outperform the baseline.  Interestingly, topic 
signature features outperform WordNet 
features, even though they are similar in form.  
This suggests that the WordNet features are 
noisy and may contain too much generality.  It 
may be more appropriate to use a cutoff, such 
that only the concepts two levels above the term 
are examined.  Another source of noise comes 
from words with multiple senses.  Although our 
method uses only word senses of the 
appropriate part of speech, WordNet still often 
provides many different possible senses.  
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 Figure 6. Results of using different combinations of 
feature sets.  Results shown on validation set using C4.5 
classifier without MemRun. 

 
Also of interest is the effect of combining 

any two feature sets.  While using topic 
signatures and either word frequencies or 
WordNet features improves performance by a 
small amount, combining frequency and 
WordNet scores results in performance worse 
than WordNet alone.  This suggests over fitting 
of the training data and may be due to the noise 
in the WordNet features. 

It is clear, however, that the combination of 
all three features provides considerable 
improvement in performance over any of the 
individual features.  In future work we will 
examine how ensemble learning (Hastie, 2001) 

might be used to capitalize further on these 
qualitatively different feature sets. 
 
6. Related Work 
 

While much research has gone into the coarse 
categorization of named entities, we are not aware 
of much previous work using learning algorithms 
to perform more fine-grained classification.   

Wacholder et al. (1997) use hand-written rules 
and knowledge bases to classify proper names into 
broad categories.  They employ an aggregation 
method similar to MemRun, but do not use 
multiple thresholds to increase accuracy. 

MacDonald (1993) also uses hand-written rules 
for coarse named entity categorization.  However, 
where Wacholder et al. use evidence internal to the 
entity name, MacDonald employs local context to 
aid in classification.  Such hand-written heuristic 
rules resemble those we automatically generate. 

Bechet et al. (2000) use a decision tree 
algorithm to classify unknown proper names into 
the categories: first name, last name, country, town, 
and organization.  This is still a much coarser 
distinction than that focused on in this research.  
Further, Bechet et al. focused only on those proper 
names embedded in complex noun phrases (NPs), 
using only elements in the NP as its feature set.   
 
7. Conclusions 
 

The results of these experiments, though 
preliminary, are very promising.  Our research 
makes clear that positive results are possible 
with relatively simple statistical techniques.  
This research has shown that training data 
construction is critical.  The failure of our 
automatic data generation algorithm to produce 
a good sample of training data is evident in the 
large disparity between performances on 
validation and held out test sets.  There are at 
least two reasons for the algorithm’s poor 
sampling. 

First, by using only high confidence guesses 
from the seed trained classifier, the training data 
may have a disproportionate number of 
instances that are easy to classify.  This is 
evident in the number of partial names that are 
present in the held out test set versus the 
training set.  Partial names, such as “Simon” 
instead of “Paul Simon,” usually occur with 
weaker evidence for classification than full 



 

names.  In the training set only 45.1% of the 
instances are partial names, whereas in the more 
realistic distribution of the held out set, 58.4% 
are partial names. 

The second reason for the poor sampling 
stems from the use of lists of person names.  
Because the training set is derived from 
individuals in these lists, the coverage of 
individuals included in the training set is 
inherently limited.  For example, in the 
businessperson category, lists of individuals 
were taken from such resources as Forbes’ 
annual ranking of the nation’s wealthiest 
people, under the assumption that wealthy 
people are often in the news.  However, the list 
fails to mention the countless vice presidents 
and analysts that frequent the pages of the Wall 
Street Journal.  This failure to include such 
lower level businesspersons means that a large 
space of the classification domain is not 
covered by the training set, which in turn leads 
to poor results on the held out test set. 

The results of these experiments suggest 
that better fine-grained classification of named 
entities will require not only more sophisticated 
feature selection, but also a better data 
generation procedure.  In future work, we will 
investigate more sophisticated bootstrapping 
methods, as (Collins & Singer, 1999) as well as 
co-training and co-testing (Muslea et al., 2000).   

In future work we will also examine 
adapting the hierarchical decision list algorithm 
from (Yarowsky, 2000) to our task.  Treating 
fine-grained classification of named entities as a 
word sense disambiguation problem (where 
categories are treated as different senses of a 
generic “person name”) allows these methods to 
be directly applicable.  The algorithm is 
particularly relevant in that it provides an 
intuitive way to take advantage of the 
similarities of certain categories (e.g., Athlete 
and Entertainer). 

Of more theoretical concern are the 
problems of miscellaneous classifications that 
do not fit easily into any category, as well as, 
instances that may fit into more than one 
category (e.g., Ronald Reagan can be either a 
Politician or an Entertainer).  We plan to 
address these issues as well as problems that 
may arise with extending this system for use 
with other classes, such as organizations.   
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