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Abstract

Typically, statistical alignment models are
based on single-word dependencies. These mod-
els do not include contextual information, which
can lead to inadequate alignments. In this pa-
per, we present an approach to include contex-
tual dependencies in the statistical alignment
model by using a refined lexicon model. Un-
like previous work, we directly integrate this
in the EM algorithm of statistical alignment
models. Experimental results are given for the
French-English Canadian Parliament Hansards
task and the Verbmobil task. The evalua-
tion is performed by comparing the obtained
alignments with a manually annotated reference
alignment.

1 Introduction

The performance of a statistical machine trans-
lation system depends directly on the quality
of the lexicon and the alignment models used.
So far, most of the statistical machine transla-
tion systems are based on single-word alignment
models as described in (Brown et al.,, 1993).
Typically, the lexicon models used in these sys-
tems do not include any linguistic or contex-
tual information, which often yields inadequate
alignments in pairs of sentences. In this paper,
we present an approach to improve the quality
of the word-to-word alignments for this family
of statistical translation models by using a max-
imum entropy (ME) approach. We define a set
of context-dependent ME lexicon models, which
is directly integrated into a conventional EM
training of statistical alignment models. Exper-
imental results are given for the French-English
Canadian Parliament Hansards corpus and the
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Verbmobil task. The evaluation is performed by
comparing the obtained alignment with a man-
ually annotated reference alignment.

The ME approach has been applied in nat-
ural language processing and machine transla-
tion to a variety of tasks. Berger et al. (1996)
applies this approach to the so-called IBM Can-
dide system to build context-dependent models,
to compute automatic sentence splitting and to
improve word reordering in translation. Garcia-
Varea et al. (2001) use ME models to reduce
translation test perplexities and translation er-
rors by means of a rescoring algorithm, which is
applied to n-best translation hypotheses. Foster
(2000) describes two methods for incorporating
information about the relative position of bilin-
gual word pairs into a ME translation model.

2 Statistical machine translation

The goal of the translation process in statisti-
cal machine translation can be formulated as
follows: A source language string f = f{ =
fi-..f7 is to be translated into a target lan-
guage string e = e{ = e1...e;. Every tar-
get string is regarded as a possible translation
for the source language string with maximum
a-posteriori probability Pr(e|f). According to
Bayes’ decision rule, we have to choose the tar-
get string that maximizes the product of both
the target language model Pr(e) and the string
translation model Pr(f|e).

Alignment models to structure the transla-
tion model are introduced in (Brown et al.,
1993). These alignment models are similar to
the concept of Hidden Markov models (HMM)
in speech recognition. The alignment mapping
is j — ¢ = a; from source position j to target
position 7 = a;. In statistical alignment mod-
els, Pr(f,ale), the alignment a is introduced as
a hidden variable.



The translation probability Pr(f,ale) can be
rewritten as follows:
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Pr(f,ale) =

Pr(fj|ff—l,a{,e{)) 0

Typically, the probability Pr(f;| 1 _l,a{,e{) is
approximated to by a lexicon model p(f;leq;)
by dropping the dependencies on ffl, ajlfl,
ecllj_l, and eﬁj +1-  Obviously, this simplifica-
tion is not true for many natural language phe-
nomena. The straightforward approach to in-
clude more dependencies in the lexicon model
would be to add additional dependencies (e.g.
p(fjlea;,€a;_,)). This approach would yield a
significant data sparseness problem.

3 EM training of simple alignment
models (review)

In this section, we describe the training of the
model parameters. Every model has a specific
set of free parameters. For example, the pa-
rameters @ for Model 4 of (Brown et al., 1993),
consist of alignment parameters py;,(-) and fer-
tility parameters pfe,¢(-) in addition to the lex-
icon parameters p(f|e):

0 = { {p(f‘e)} s {palig(')} ’ {pfert(')} } (2)

To train the model parameters €, we pursue a
maximum likelihood approach using a parallel
training corpus consisting of S sentence pairs

{(fs,e5) :s=1,...,5}h

~

S
o = argmgxnzpﬁ(f57a|es) (3)

s=1 a

We do this by applying the EM algorithm
(Baum, 1972). The different models are trained
in succession on the same data, where the final
parameter values of a simpler model serve as the
starting point for a more complex model.

In the E-step, the lexicon parameter counts

for one sentence pair (e, f) are calculated:

c(fle;e f) = N(e,f)-ZPr(a|e,f)

oS f)dle,ea;)  (4)

J

Here, N(e, f) is the training corpus count of the
sentence pair (f,e).

In the M-step, we want to compute the lexi-
con parameters p(f|e) that maximize the likeli-
hood of the training corpus. This results in the
following re-estimation (Brown et al., 1993):

el fle £, el))
el = > c(fle; £6), e()) (5)

Similarly, the alignment and fertility probabil-
ities can be estimated for all other alignment
models (Brown et al., 1993). When bootstrap-
ping from a simpler model to a more complex
model, the simpler model is used to weigh the
alignments and the counts are accumulated for
the parameters of the more complex model.

4 Maximum entropy modeling

Here, the role of ME is to build a stochastic
model that efficiently takes a larger context into
account. In the remainder of the paper, we shall
use pe(f|z) to denote the probability that the
ME model (which is associated to e) assigns to
f in the context . Actually, the context x refers
to the dropped dependencies. Please note that
the ME model must be distinguished by the ba-
sic lexicon model p(fle).

In the ME approach, we describe all prop-
erties that we deem to be useful by so-called
feature functions ¢, x(z, f),k = 1,...,K,.. For
example, let us suppose we want to model the
existence or absence of a specific word e}, in
the context of an English word e, which can be
translated by f,. We can express this depen-
dence using the following feature function:

1 f f=f,ande, €x
0 otherwise

beate, )= { (6)

Consequently the k-th feature for word e has
associated the pair (e}, f1).

The ME principle suggests that the optimal
parametric form of a model p.(f|z) taking into



account the feature functions ¢ 1,k = 1,..., K,
is given by:

K.
pe(fkc) = ZAl(iU) €xXp (Z/\e,kﬁbe,k(aja f))

k=1
(7)

Here, Zp_ (z) is a normalization factor. The
resulting model has an exponential form with
free parameters A = {Aep, kb = 1,...,Kc}.
The parameter values that maximize the like-
lihood for a given training corpus can be com-
puted using the so-called GIS algorithm (gen-
eralized iterative scaling)(Darroch and Ratcliff,
1972) or its improved version IIS (Pietra et al.,
1997; Berger et al., 1996).

It is important to stress that, in principle, we
obtain one ME model for each target language
word e. To avoid data sparseness problems for
rarely seen words, we use only words that have
been seen a certain number of times.

5 Contextual information and
feature definition

Berger et al. (1996) use a window of 3 words to
the left and 3 words to the right of the target
word as contextual information. As in (Garcia-
Varea et al., 2001), in addition to a dependence
on the words themselves, we also use a depen-
dence on the word classes. We thereby, improve
the generalization of the models and include
some semantic and syntactic information. The
word classes are computed automatically using
the approach described in (Och, 1999).

Table 1 summarizes the feature functions that
we use for a specific pair of aligned words
(ei, fj): Category 1 features depend only on the
source word f; and the target word e;. Cate-
gories 2 and 3 describe features that also depend
on an additional word €’ that appears one posi-
tion to the left or to the right of e;, respectively.
The features of category 4 and 5 depend on an
additional target word €' that appears in any
position of the context . Analogous features
are defined using the word class associated to
each word instead of the word identity.

To reduce the number of features, we perform
a threshold-based feature selection. Any feature
that occurs less than 7" times is not used. The
aim of the feature selection is two-fold. Firstly,
we obtain smaller models by using fewer fea-
tures. Secondly, we hope to avoid overfitting on

the training data. In addition, we use ME mod-
eling for target words that are seen at least 150
times.

6 Training of refined alignment
models

6.1 Basic/Dynamic approach

Using a ME lexicon model for a target word e,
we have to train the model parameters A, =
{Xer : k=1,..., K.} instead of the parameters
{p(fle)}. We pursue the following approach. In
the E-step, we perform a refined count collection
for the lexicon parameters:

c(fle,z;e,f) = N(e,f) - ZPr(a|e,f)

D 0(f, fi)b(eseq;)b(m, 2j0;)  (8)
j

Here, z;,; should denote the ME context that
surrounds f; and e,; .

In the M-step, we want to compute the lexi-
con parameters that maximize the likelihood:

~

Ao = argrrﬂxy[dfle,w; e,f) - logpe(flz) (9)
\T

Hence, the refined lexicon counts c(fle,z;e,f)
are the weights of the set of training samples
(f,e,z) which is used to train the ME model.

The re-estimation of the alignment and fertil-
ity probabilities does not change if we use a ME
lexicon model.

Thus, we obtain the following steps of each
iteration for the EM algorithm:

1. E-step:
e Collect counts for alignment and fer-
tility parameters.
e Collect refined lexicon counts.
2. M-step:
e Re-estimate alignment and fertility
parameters.
e Perform GIS training for lexicon pa-
rameters.

6.2 Simplification: Static approach

A simplification of the approach described
above can be obtained in the following way:



Table 1: Meaning of different feature categories where orepresents a specific target word (to be
placed in e) and ¢ represents a specific source word, where k has associated the pair (o,0).

Category | ¢, x(z, f;) =1 if and only if ...
1 f] =<
2 fi=<¢ and e o ¢
3 fi=¢ and oe €e;
4 fj=¢ and oe o ¢
5 fj =¢ and oe e;

First, perform a normal training of the EM algo-
rithm. Then, after the final iteration, perform
the ME training only once. Finally, a new EM
training is performed where the lexicon param-
eters are fixed to the ME lexicon models ob-
tained previously. This is why we call the basic
approach the dynamic approach as well.

6.3 Avoiding overfitting

ME modeling is maximum likelihood training
for exponential models (Berger et al., 1996).
As with other maximum likelihood methods, we
have to deal with the problem of overfitting on
the training data. To address this problem, we
usually apply smoothing. We perform a linear
interpolation of the baseline lexicon model with
the ME lexicon model:

Pe(flz) = A-pe(flz) + (1 = A) - p(fle)  (10)

The interpolation parameter A is optimized dur-
ing training using held-out data. Hence, we
choose the A that maximizes the log-likelihood
of the test data. The value of A\ obtained in the
results presented is 0.5.

Overfitting in the GIS training should also be
avoided. Therefore, we stop the training if the
change in training perplexity from one iteration
to the next is below a certain threshold. This
threshold is adjusted empirically by taking into
account the perplexity on a test corpus.

6.4 Comparison of the different
approaches

In this work, the type of features and con-
texts used are very similar to those used in
(Berger et al., 1996) and (Garcia-Varea et al.,
2001). In these studies, the ME models were
obtained after the normal training of the trans-
lation models. These models had no effect on
the training of the statistical alignment mod-
els itself. Thus, only a refined lexicon model

was obtained, but the fertility and alignment
model were not changed. In this work, the
ME models are used and/or trained within the
EM training to obtain a better set of parame-
ters. In this work, all the other models (namely
alignment and fertility models) are also indi-
rectly improved thanks to the refined context-
dependent lexicon parameters.

The dynamic/basic approach gives us a more
feasible parameter estimation than the static
approach. In the dynamic approach, we do not
know the Viterbi alignment of a given pair of
sentences during EM training. This leads to
the problem of constructing/extracting the cor-
responding training sample for the defined ME
model training. To solve this problem, the set
of all possible alignments for each sentence pair
is considered.

Static training has the following advantages:
the training time is faster because only one ME
training has to be performed; a bootstrapping
strategy of refinement could be applied. Hence,
iterate the process of: “EM training — use the
Viterbi alignment to train the ME models — re-
peat the EM training using the last ME models
— ...”, and so on.

On the other hand, dynamic training has the
following advantages: a tight and feasible inte-
gration is provided; a refined set of ME models
is obtained in each iteration of the EM algo-
rithm; the set of p. models considered is refined
from one iteration to another in the same way
as the parameters of the other models.

7 Evaluation methodology

We use the same annotation scheme for single-
word-based alignments and a corresponding
evaluation criterion as described in (Och and
Ney, 2000). The annotation scheme explicitly
allows for ambiguous alignments. The people
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Figure 1: Example of a manual alignment with
S(ure) (B)and P(ossible) (O) connections.

performing the annotation are asked to spec-
ify two different kinds of alignments: an S(ure)
alignment, which is used for alignments that are
unambiguous and a P(ossible) alignment, which
is used for ambiguous alignments. The P label
is used particularly to align words within id-
iomatic expressions, free translations, and miss-
ing function words (S C P).

The reference alighment thus obtained may
contain many-to-one and one-to-many relation-
ships. Figure 1 shows an example of a manually
aligned sentence with S and P labels.

The quality of an alignment A = {(j,a;)|a; >
0} is then computed by appropriately redefined
precision and recall measures:

1AN S|
S|

|AN P
|A]

recall =

, precision =

and the following alignment error rate, which is
derived from the well known F-measure:

_|AnS|+|ANP]

AER(S, P; A) = 1
(5, P; 4) A+ (5]

Thus, a recall error can only occur if a S(ure)
alignment is not found. A precision error can
only occur if the alignment found is not even
P(ossible).

The set of sentence pairs, for which the man-
ual alignment is produced, is randomly selected
from the training corpus. It should be empha-
sized that all the training is done in a completely
unsupervised way, i.e. no manual alignments
are used. From this point of view, there is no
need to have a separate test corpus.

8 Experimental results

We show results on the Verbmobil task and the
Hansards task. The Verbmobil task is a speech
translation task in the domain of appointment
scheduling, travel planning, and hotel reserva-
tion. The task is difficult because it consists
of spontaneous speech and the syntactic struc-
tures of the sentences are less restricted and
highly variable. The French-English Hansards
task consists of the debates in the Canadian
Parliament. This task has a very large vocabu-
lary of more than 100,000 French words.

The corpus statistics are shown in Table 2.
The number of running words and the vocabu-
laries are based on full-form words including the
punctuation marks. We produced smaller train-
ing corpora by randomly choosing 500, 8000
and 34000 sentences from the Verbmobil task
and 500, 8000 and 128000 sentences from the
Hansards task.

To train the context-dependent statistical
alignment models, we extended the publicly
available toolkit GIZA++ (Och and Ney,
2001). The training of the ME models was
carried out using the YASMET toolkit (Och,
2002).

All the results shown in this paper were ob-
tained using the static ME integration.

Table 3 and Table 4 show the alignment
quality for different training sample sizes of
the Hansards and Verbmobil tasks, respectively.
These tables show the baseline AER for differ-
ent training schemes and the corresponding val-
ues when the integration of the ME is done. The
training scheme is defined in accordance with
the number of iterations performed for each
model (4% means 3 iterations of Model 4). In all
the experiments, we started applying the ME
models in the first iteration of Model 1.

The recall and precision results for the
Hansards task with and without ME training
are shown in Figures 2 and 3.

We observe that the alignment error rate im-



Table 2: Corpus characteristics.

Verbmobil Hansards
German | English | French | English
Train Sentences 34446 1470K
Words 329625 | 343076 || 24.33M | 22.16M
Vocabulary 5936 3505 || 100269 78332

Table 3: AER [%] on Hansards task.

Table 4: AER [%] on Verbmobil task.

Size of train corpus Size of train corpus
Training Model | 0.5K | 8K | 128K Training Model | 0.5K | 8K | 34K
15 1 48.0 | 35.1 | 29.2 15 1 27.7 119.2 | 17.6
1+ME | 47.7 | 32.7 | 225 1+ME | 246 | 16.6 | 13.7
1595 2 46.0 | 29.2 | 21.9 1595 2 26.8 | 15.7 | 13.5
2+ME | 44.7 | 28.0 | 19.0 2+ME | 25.3 | 14.1 | 10.8
159533 3 43.2 | 273 | 20.8 159533 3 25.6 | 13.7 | 10.8
3+ME | 42.5 | 264 | 17.2 3+ME | 24.1 | 11.6 8.8
4 41.8 [ 249 | 174 4 23.6 | 10.0 7.7
5052343 5059343
P23 oNE s 243 | 141 238 ME 28 [ 93| 70
5 41.5 | 24.8 | 16.2 5 22.6 9.9 7.2
50523 43r3 5059343r3
U235 eyE a5 (245 | 143 235" e 223 96 | 68
100
proves when using the context-dependent lexi- o 125”?“333 g R e
con models. For the Verbmobil task, the im- ol o W e IR gR Rk B |
provements were smaller than for the Hansards 5

task, which might be due to the fact that
the baseline alignment quality was already very
good. It can be seen that greater improvements
were obtained for the simpler models.

As expected, ME training plays a more im-
portant role when larger sizes of the corpus
are used. For the smallest corpora, the num-
ber of training events for the ME models is
very low, so it is not possible to disambiguate
some translations/alignments for different con-
texts. For larger sizes of the corpora, greater
improvements are obtained. Therefore, we ex-
pect to obtain better improvements when using
even larger corpora.

After observing the common alignment er-
rors, we plan to include more discriminant-
ing features that would provide greater im-
provements. We also expect improvements
by performing a refined modeling of the
rare/infrequent words, which are currently not
taken into account by the ME models.

0.5K-MaxEnt
B - o

g 0.5K-baseline

Recall
g

Y T
Training scheme

20

1! 15

Figure 2: Recall [%] results for Hansards task
for different corpus sizes.

9 Conclusions

In this paper, we show an efficient and straight-
forward integration of ME context-dependent
models within a maximum likelihood training
of statistical translation models.

We evaluate the quality of the alignments ob-
tained with this new training scheme compar-
ing the results with the baseline results. As can
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Figure 3: Precision [%)] results for Hansards task
for different corpus sizes.

be seen in Section 8, we obtain better align-
ment quality using the context-dependent lexi-
con model.

In the future, we plan to include more fea-
tures in the ME model, such us dependencies
with other source and target words, POS tags
and syntactic constituents. We also plan to de-
sign ME alignment and fertility models. This
will allow for an easy integration of more depen-
dencies, such as second-order alignment models
without running into the problem of an unman-
ageable number of alignment parameters. We
have just started to perform experiments for
a very distant pair of languages as is Chinese-
English with very promising results.

References

L.E. Baum. 1972. An Inequality and Asso-
ciated Maximization Technique in Statisti-
cal Estimation for Probabilistic Functions of
Markov Processes. Inequalities, 3:1-8.

Adam L. Berger, Stephen A. Della Pietra,
and Vincent J. Della Pietra. 1996. A
maximum entropy approach to natural lan-
guage processing. Computational Linguistics,
22(1):39-72, March.

Peter F. Brown, Stephen A. Della Pietra, Vin-
cent J. Della Pietra, and Robert L. Mercer.
1993. The mathematics of statistical machine
translation: Parameter estimation. Compu-
tational Linguistics, 19(2):263-311.

J.N. Darroch and D. Ratcliff. 1972. Generalized
iterative scaling for log-linear models. Annals
of Mathematical Statistics, 43:95-144.

George Foster. 2000. Incorporating position in-
formation into a maximum entropy/minimum
divergence translation model. In Proc. of
CoNNL-2000 and LLL-2000, pages 37-52,
Lisbon, Portugal.

Ismael Garcia-Varea, Franz J. Och, Hermann
Ney, and Francisco Casacuberta. 2001. Re-
fined lexicon models for statistical machine
translation usign a maximum entropy ap-
proach. In Proc. of the 39th Annual Meet-
ing of the Association for Computational Lin-
guistics, pages 204-211, Toulouse, France,
July.

Franz J. Och and Hermann Ney. 2000. A com-
parison of alignment models for statistical
machine translation. In COLING ’00: The
18th Int. Conf. on Computational Linguistics,
pages 1086-1090, Saarbriicken, Germany, Au-
gust.

Franz J. Och and Hermann Ney. 2001.
Giza++: Training of statistical translation
models. http://www-i6.Informatik.RWTH-
-Aachen.DE/"och/software/GIZA++.html.

Franz J. Och. 1999. An efficient method for
determining bilingual word classes. In EACL
’99: Ninth Conf. of the Europ. Chapter of
the Association for Computational Linguis-
tics, pages 71-76, Bergen, Norway, June.

Franz J. Och. 2002. Yet another
small maxent toolkit: Yasmet.
http://www-i6.Informatik.RWTH-
-Aachen.DE/"och/software/YASMET.html.

Stephen Della Pietra, Vincent Della Pietra, and
John Lafferty. 1997. Inducing features in ran-
dom fields. IEEFE Trans. on Pattern Analy-
sis and Machine Inteligence, 19(4):380-393,
July.



	Table of Content
	Topics
	Authors

