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Abstract

In this article, we present a statistical approach to
machine translation that is based on Data-Oriented
Parsing: Data-Oriented Translation (DOT). In DOT,
we use linked subtree pairs for creating a derivation
of a source sentence. Each linked subtree pair has a
certain probability, and consists of two trees: one
in the source language and one in the target lan-
guage. When a derivation has been formed with
these subtree pairs, we can create a translation from
this derivation. Since there are typically many dif-
ferent derivations of the same sentence in the source
language, there can be as many different translations
for it. The probability of a translation can be calcu-
lated as the total probability of all the derivations
that form this translation. We give the computa-
tional aspects for this model, show that we can con-
vert each subtree pair into a productive rewrite rule,
and that the most probable translation can be com-
puted by means of Monte Carlo disambiguation. Fi-
nally, we discuss some pilot experiments with the
Verbmobil corpus.

1 Introduction

The Data-Oriented Parsing model has been pre-
sented as a promising paradigm for natural language
processing (Scha, 1990; Bod, 1995; Bod, 1998).
It has been shown that DOP has the ability to lo-
cate syntactic and semantic dependencies, both of
which are quite important for machine translation.
We hope that, by basing our model on DOP, we can
inherit these advantages, thus obtaining a new and
interesting way to perform machine translation.

In section 2, we describe this novel model by
identifying its parameters. In section 3, we describe
its computational aspects; in section 4, we discuss
some pilot experiments with this model; and finally,
in section 5, we give some issues open for future
research.

2 The Data-Oriented Translation Model

In this section, we will give the instantiation of a
model that uses DOP for MT purposes, which we
will call Data-Oriented Translation (DOT).1 This
model is largely based on DOP1 (Bod, 1998, chapt.
2).

In DOT, we use linked subtree pairs as combi-
national fragments.2 Each linked subtree pair has
a certain probability, and consists of a tree in the
source language and a tree in the target language.
By combining these fragments to form an an analy-
sis of the source sentence, we automatically gener-
ate a translation, i.e. we form a derivation of both
source sentence and target sentence. Since there
are typically many different derivations which con-
tain the same source sentence, there can be equally
many different translations for it. The probability of
a translation can be calculated as the total probabil-
ity of all the derivations that form this translation.

The model presented here is capable of translat-
ing between two languages only. This limitation is
by no means a property of the model itself, but is
chosen for simplicity and readability reasons only.

The following parameters should be specified for
a DOP-like approach to MT:

1. the representationsof sentences that are as-
sumed,

2. thefragmentsof these representations that can
be used for generating new representations,

3. theoperator that is used to combine the frag-
ments to form a translation, and

1This is actually the second instantiation of such a frame-
work. The original model (Poutsma, 1998; Poutsma, 2000) had
a major flaw, which resulted in translations that were simply in-
correct, as pointed out by Way (1999).

2Links between tree nodes were introduced for TAG trees,
in (Schieber and Schabes, 1990), and put to use for Machine
Translation by Abeillé et al. (1990).
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Figure 1: A linked tree pairhTs;Tti.

4. the model that is used for determining the
probability of a target sentence given a source
sentence.

In the explanation that follows, we will use a sub-
scripts to denote an element of the source language,
and a subscriptt to denote one of the target lan-
guage.

2.1 Representations

In DOT, we basically use the same utterance-
analysis as in DOP1 (i.e. syntactically labeled
phrase structure trees). To allow for translation ca-
pabilities in this model, we will use pairs of trees
that incorporate semantic information. The amount
of semantic information need not be very detailed,
since all we are interested in is semantic equiva-
lence. Two treesT1 andT2 are said to besemantic
equivalents(denoted asT1 ' T2) iff T1 can be re-
placed withT2 without loss of meaning.

We can now introduce the notion oflinks: a link
symbolizes a semantic equivalence between two
trees, or part of trees. It can occur at any level in
the tree structure, except for the terminal level.3

The representation used in DOT is a 3-tuple
hTs;Tt ;φi, whereTs is a tree in the source language,
Tt is a tree in the target language, andφ is a function
that maps between semantic equivalent parts in both
trees. In the rest of this article, we will refer to this
3-tuple as the pairhTs;Tti.

Because of the semantic equivalence, a link must
exist at the top level of the tree pairhTs;Tti. Figure 1
shows an example of two linked trees, the links are
depicted graphically as dashed lines.

3Links cannot occur at the terminal level, since we map
between semantic equivalent parts on the level of syntactic
categories.

2.2 Fragments
Likewise, we will uselinked subtreesas our frag-
ments. Given a pair of linked treeshTs;Tti, a linked
subtree pairof hTs;Tti consists of two connected
and linked subgraphshts; tti of hTs;Tti such that:

1. for every pair of linked nodes inhts; tti, it holds
that:

(a) both nodes inhts; tti have either zero
daughter nodes,
or

(b) both nodes have all the daughter nodes of
the corresponding nodes inhTs;Tti

and

2. every non-linked node in eitherts (or tt ) has all
the daughter nodes of the corresponding node
in Ts (Tt),

and

3. bothts andtt consist of more than one node.

This definition has a number of consequences.
First of all, it is more restrictive than the DOP1 def-
inition for subtrees, thus resulting in a smaller or
equal amount of subtrees per tree. Secondly, it de-
fines apossiblepair of linked subtrees. Typically,
there are many pairs of linked subtrees for each set
of linked trees. Thirdly, the linked tree pair itself
is also a valid linked subtree pair. Finally, accord-
ing to this definition, all the linked subtree pairs are
semantic equivalents, since the semantic daughter
nodes of the original tree are removed or retained si-
multaneously (clause 1). The nodes for which a se-
mantic equivalent does not exist are always retained
(clause 2).

We can now define thebag of linked subtree
pairs, which we will use as a grammar. Given a
corpus of linked treesC, the bag of linked subtree
pairs of C is the bag in which linked subtree pairs
occur exactly as often as they can be identified in
C.4 Figure 2 show the bag of linked subtree pairs
for the linked tree pairhTs;Tti.

2.3 Composition operator
In DOT, we use the leftmost substitution opera-
tor for forming combinations of grammar rules.
The composition of the linked tree pairhts; tti and

4The similarity between Example-based MT (Nagao, 1984)
and DOT is clear: EBMT uses a database of examples to form
a translation, whereas DOT uses a bag of structured trees.
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Figure 2: The bag of linked subtree pairs ofhTs;Tti

hus;uti, written as hts; tti Æ hus;ut i, is defined iff
the label of the leftmost nonterminal linked frontier
node and the label of its linked counterpart are iden-
tical to the labels of the root nodes ofhus;ut i. If this
composition is defined, it yields a copy ofhts; tti, in
which a copy ofus has been substituted onts’s left-
most nonterminal linked frontier node, and a copy
of ut has been substituted on the node’s linked coun-
terpart. The composition operation is illustrated in
figure 3.

Given a bag of linked subtree pairsB, a se-
quence of compositionshts1; tt1i Æ � � � Æ htsN ; ttNi, with
htsi ; tti i 2 B yielding a tree pairhTs;Tti without non-
terminal leaves is called aderivation Dof hTs;Tti.

2.4 Probability calculation

To compute the probability of the target composi-
tion, we make the same statistical assumptions as in
DOP1 with regard to independence and representa-
tion of the subtrees (Bod, 1998, p. 16).

The probability of selecting a subtree pairhts; tti
is calculated by dividing the frequency of the sub-
tree pair in the bag by the number of subtrees that
have the same root node labels in this bag. In other
words, letjhts; ttij be the number of times the sub-

tree pairhts; tti occurs in the bag of subtree pairs,
and r(t) be the root node categories oft, then the
probability assigned tohts; tti is

P(hts; tti) =
jhts; ttij

∑hus;ut i:r(us)=r(ts)^r(ut)=r(tt) jhus;ut ij
(1)

Given the assumptions that all subtree pairs
are independent, the probability of a derivation
hts1; tt1i Æ � � � Æ htsN ; ttNi is equal to the product of the
probabilities of the used subtree pairs.

P(hts1; tt1i Æ � � � Æ htsN ; ttNi) =∏
i

P(htsi ; tti i) (2)

The translation generated by a derivation is equal
to the sentence yielded by the target trees of the
derivation. Typically, a translation can be generated
by a large number of different derivations, each of
which has its own probability. Therefore, the prob-
ability of a translationws ) wt is the sum of the
probabilities of its derivations:

P(ws;wt) =∑P(Dhws;wt i) (3)
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Figure 3: The composition operation

The justification of this last equation is quite triv-
ial. As in any statistical MT system, we wish to
choose the target sentencewt so as to maximize
P(wt jws) (Brown et al., 1990, p. 79). If we take the
sum over all possible derivations that were formed
from ws and derivewt , we can rewrite this as equa-
tion 4, as seen below. Since bothws and wt are
contained inDhws;wt i, we can remove them both and
arrive at equation 5, which—as we maximize over
wt—is equivalent to equation 3 above.

max
wt

P(wt jws) =

= max
wt

∑
Dhws;wt i

P(wt ;Dhws;wt ijws) (4)

= max
wt

∑
Dhws;wt i

P(Dhws;wt i) (5)

3 Computational Aspects
When translating using the DOT model, we can dis-
tinguish between three computational stages:

1. parsing: the formation of a derivation forest,

2. translation: the transfer of the derivation for-
est from the source language to the target lan-
guage,

3. disambiguation: the selection of the most
probable translation from the derivation forest.

3.1 Parsing
In DOT, every subtree pairhts; tti can be seen
as a productive rewrite rule:hroot(ts); root(tt)i !
hfrontier(ts); frontier(tt)i, where all linkage in the
frontier nodes is retained. The linked non-terminals
in the yield constitute the symbol pairs to which new
rules (subtree pairs) are applied. For instance, the
rightmost subtree pair in figure 3 can be rewritten as

hS;Si ! h(Anne; likes;NP);(NP;plaı̂t; à;Anne)i

This rule can then be combined with rules that have
the root pairhNP;NPi, and so on.

If we only consider the left-side part of this rule,
we can use algorithms that exist for context-free
grammars, so that we can parse a sentence ofn
words with a time complexity which is polynomial
in n. These algorithms give as output a chart-like
derivation forest(Sima’an et al., 1994), which con-
tains the tree pairs of all the derivations that can be
formed.

3.2 Translation
Since every tree pair in the derivation forest contains
a tree for the target language, the translation of this
forest is trivial.

3.3 Disambiguation
In order to select the most probable translation, it is
not efficient to compare all translations, since there
can be exponentially many of them. Furthermore,
it has been shown that the Viterbi algorithm cannot
be used to make the most probable selection from a
DOP-like derivation forest (Sima’an, 1996).

Instead, we use arandom selection method
to generate derivations from the target derivation
forest, otherwise known as Monte Carlo sam-
pling (Bod, 1998, p. 46–49). In this method,
the random choices of derivations are based on the
probabilities of the underlying subderivations. If we
generate a large number of samples, we can esti-
mate the most probable translation as the translation
which results most often. The most probable trans-
lation can be estimated as accurately as desired by
making the number of random samples sufficiently
large.

4 Pilot Experiments
In order to test the DOT-model, we did some pi-
lot experiments with a small part of the Verbmo-
bil corpus. This corpus consists of transliterated
spoken appointment dialogues in German, English,



and Japanese. We only used the German and En-
glish datasets, which were aligned at sentence level,
and syntactically annotated using different annota-
tion schemes.5

Naturally, the tree pairs in the corpus did not con-
tain any links, so—in order to make it useful for
DOT—we had to analyze each tree pair, and place
links where necessary. We also corrected tree pairs
that were not aligned correctly. Figure 4 shows an
example of a corrected and linked tree from our cor-
rection of the Verbmobil corpus.

We used a blind testing method, dividing the 266
trees of our corpus into an 85% training set of 226
tree pairs, and a 15% test set of 40 tree pairs. We
carried out three experiments, in both directions,
each using a different split of training and test set.
The 226 training set tree pairs were converted into
fragments (i.e. subtree pairs), and were enriched
with their corpus probabilities. The 40 sentences
from the test set served as input sentences: they
were translated with the fragments from the train-
ing set using a bottom-up chart parser, and disam-
biguated by the Monte Carlo algorithm. The most
probable translations were estimated from probabil-
ity distributions of 1500 sampled derivations, which
accounts for a standard deviationσ � 0:013. Fi-
nally, we compared the resulting translations with
the original translation as given in the test set. We
also fed the test sentences into another MT-system:
AltaVista’s Babelfish, which is based on Systran.6

4.1 Evaluation

In a manner similar to (Brown et al., 1990, p. 83),
we assigned each of the resulting sentences a cate-
gory according to the following criteria. If the pro-
duced sentence was exactly the same as the actual
Verbmobil translation, we assigned it theexactcat-
egory. If it was a legitimate translation of the source
sentence but in different words, we assigned it the
alternatecategory. If it made sense as a sentence,
but could not be interpreted as a valid translation of
the source sentence, we assigned it thewrong cat-
egory. If the translation only yielded a part of the
source sentence, we assigned it thepartial category:
eitherpartial exactif it was a part of the actual Verb-
mobil translation, orpartial alternateif it was part
of an alternate translation. Finally, if no translation

5The Penn Treebank scheme for English; the T¨ubingen
scheme for German.

6This service is available on the Internet viahttp://
babelfish.altavista.com .

Exact
That would be very interesting.

Verbmobil: Das wäre sehr interessant.
Translated as: Das w¨are sehr interessant.

Alternate
I will book the trains.

Verbmobil: Ich buche die Z¨uge.
Translated as: Ich werde die Z¨uge reservieren.

Wrong
Es ist ja keine Beh¨orde.

Verbmobil: It is not an administrative office
you know.

Translated as: There is not an administrative office
you know.

Partial Exact
And as said I think the location of the
branch office is posh.

Verbmobil: Und wie gesagt ich denke die Lage zur
Filiale spricht Bände ist.

Translated as: ich denke die Lage

Partial Alternate
Ich habe Preise vom Parkhotel
Hannover da.

Verbmobil: I have got prices for Hannover
Parkhotel here.

Translated as: for Parkhotel Hannover

Figure 5: Translation and classification examples.

was given, we assigned it thenonecategory. The re-
sults we obtained from Systran were also evaluated
using this procedure. Figure 5 gives some classifi-
cation examples.

The method of evaluation is very strict: even if
our model generated a translation that had a better
quality than the given Verbmobil translation, we still
assigned it the (partial) alternate category. This can
be seen in the second example in figure 5.

4.2 Results

The results that we obtained can be seen in table 1
and 2. In both our experiments, the number of
exact translations was somewhat higher than Sys-
tran’s, but Systran excelled at the number of al-
ternate translations. This can be explained by the
fact that Systran has a much larger lexicon, thus al-
lowing it to form much more alternate translations.
While it is meaningless to compare results obtained
from different corpora, it may be interesting to note
that Brown et al. (1990) report a 5% exact match
in experiments with the Hansard corpus, indicating
that an exact match is very hard to achieve.

The number of ungrammatical translations in our
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Corpus Categorical accuracy
Max. Size Correct Incorrect Partial
Depth Exact Alternate Ungr. Wrong Exact Alternate

1 1263 16.22% 2.70% 18.92% 18.92% 18.92% 24.32%
2 2733 16.22% 2.70% 32.43% 5.41% 27.03% 16.22%
3 8228 18.92% 5.41% 32.43% 5.41% 24.32% 13.51%
4 14192 18.92% 5.41% 32.43% 5.41% 24.32% 13.51%
5 22147 18.92% 5.41% 32.43% 5.41% 24.32% 13.51%
6 27039 18.92% 5.41% 32.43% 5.41% 27.03% 10.81%
∞ 33479 18.92% 5.41% 32.43% 5.41% 24.32% 13.51%

Systran 8.11% 37.84% 18.92% 35.14% 0% 0%

Table 1: Results of English to German translation experiments

English to German experiment were much higher
than Systran’s (32% versus Systran’s 19%); vice-
versa it was much lower (13% versus Systran’s
21%). Since the German grammar is more complex
than the English grammar, this result could be ex-
pected. It is simpler to map a complex grammar to
a simpler than vice-versa.

The partial translations, which are quite useful for
forming the basis of a post-edited, manual trans-
lation, varied around 38% in our English to Ger-
man experiments, and around 55% when translating
from German to English. Systran is incapable of
forming partial translations.

As can be seen from the tables, we experimented
with the maximum depth of the tree pairs used. We
expected that the performance of the model would
increase when we used deeper subtree pairs, since
deeper structures allow for more complex struc-
tures, and therefore better translations. Our exper-
iments showed, however, that there was very little
increase of performance as we increased the maxi-
mum tree depth. A possible explanation is that the
trees in our corpus contained a lot of lexical context
(i.e. terminals) at very small tree depths. Instead
of varying the maximum treedepth, we should ex-
periment with varying the maximum treewidth. We
plan to perform such experiments in the future.

5 Future work
Though the findings presented in this article cover
the most important issues regarding DOT, there are
still some topics open for future research.

As we stated in the previous section, we wish
to see whether DOT’s performance increases as we
vary the maximum width of a tree.

In the experiments it became clear that DOT lacks
a large lexicon, thus resulting in less alternate trans-
lations than Systran. By using an external lexicon,
we can form a part-of-speech sequences from the
source sentence, and use this sequence as input for
DOT. The resulting target part-of-speech sequence
can then be reformed into a target sentence.

The experiments discussed in this article are pilot
experiments, and do not account for much. In order
to find more about DOT and its (dis)abilities, more
experiments on larger corpora are required.

6 Conclusion
In this article, we have presented a new approach to
machine translation: the Data-Oriented Translation
model. This method uses linked subtree pairs for
creating a derivation of a sentence. Each subtree-
pair consists of two trees: one in the source lan-
guage and one in the target language. Using these
subtree pairs, we can form a derivation of a given
source sentence, which can then be used to form a
target sentence. The probability of a translation can



Corpus Categorical accuracy
Max. Size Correct Incorrect Partial
Depth Exact Alternate Ungr. Wrong Exact Alternate

1 1263 15.38% 2.56% 12.82% 12.82% 41.03% 15.38%
2 2733 12.82% 7.69% 12.82% 12.82% 35.90% 17.95%
3 8228 12.82% 10.26% 12.82% 7.69% 38.46% 17.95%
4 14192 15.38% 7.69% 12.82% 10.26% 35.90% 17.95%
5 22147 15.38% 5.13% 12.82% 12.82% 35.90% 17.95%
6 27039 15.38% 5.13% 12.82% 10.26% 38.46% 17.95%
∞ 33479 15.38% 7.69% 12.82% 7.69% 38.46% 17.95%

Systran 12.82% 25.64% 20.51% 41.03% 0% 0%

Table 2: Results of German to English translation experiments

then be calculated as the total probability of all the
derivations that form this translation.

The computational aspects of DOT have been dis-
cussed, where we introduced a way to reform each
subtree pair into a productive rewrite rule so that
well-known parsing algorithms can be used. We de-
termine the best translation by Monte Carlo sam-
pling.

We have discussed the results of some pilot ex-
periments with a part of the Verbmobil corpus, and
showed a method of evaluating them. The evalua-
tion showed that DOT produces less correct trans-
lation than Systran, but also less incorrect transla-
tions. We expected to see an increase in perfor-
mance as we increased the depth of subtree pairs
used, but this was not the case.

Finally, we supplied some topics which are open
for future research.
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