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Abstract

We propose a novel framework to generate
causal graphs from narrative texts, bridging
the gap between high-level causality and finer-
grained event-specific relationships. Our ap-
proach first extracts concise, agent-centered
“vertices” using an LLM-based summariza-
tion strategy. We then introduce an Ex-
pert Index—seven linguistically grounded fea-
tures—and incorporate them into a STAC (Sit-
uation, Task, Action, Consequence) classifica-
tion model. This hybrid system (RoBERTa
embeddings + Expert Index) achieves superior
precision in identifying causal links compared
to LLM-only baselines. Finally, we apply a
structured, five-iteration prompting process to
refine and construct a connected causal graph.
Experiments on 100 chapters and short stories
show that our method consistently outperforms
GPT-4o and Claude 3.5 across key dimensions
of causal graph quality, while maintaining com-
parable readability. The resulting open-source
tool offers an interpretable and efficient solu-
tion for capturing nuanced causal chains within
narrative texts.

1 Introduction

Causal research has historically leveraged knowl-
edge graphs to explore relationships between
events (JM;, 1999). Modern approaches, such as
AI-driven causal graph generation, have gained
prominence for their ability to summarize causal
events at scale (Jaimini and Sheth, 2022; Pieper
et al., 2023). However, current AI models largely
focus on high-level causality (e.g., "HIV leads to
AIDS"), and they fall short in capturing nuanced
causal relationships in specific narratives, such as
political events or historical occurrences(Donnelly,
2025). Addressing this gap, we propose a method
for generating causal graphs from texts that de-
scribe discrete, event-specific narratives.

Understanding these finer-grained causal rela-
tionships is crucial for researchers and practition-

ers who analyze how certain events lead to tan-
gible outcomes in areas like social movements,
policy-making, and historical trends. By captur-
ing causal links from narrative texts, stakehold-
ers can more accurately trace the chain of events
that precipitate significant changes, enabling bet-
ter decision-making, deeper historical insight, and
more targeted interventions. Furthermore, auto-
mated causal graph generation facilitates scalable
analysis of large document collections, providing
structured representations that can be easily inter-
preted, queried, and expanded upon.

Most existing methods for generating causal
graphs follow a two-stage pipeline: (1) a Causal-
ity Finder to detect causal relations, and (2) a
graph Generator to construct knowledge graphs
from these relations. While effective, these meth-
ods face limitations in interpretability and accuracy,
particularly when dealing with complex sentence
structures or implicit causal links(Kıcıman et al.,
2024) (Kyono et al., 2024).

Causality finders have evolved through three
phases: (1) early pattern-based models that learned
causal relationships from fixed sentence structures
(Hidey and McKeown, 2016) (Heindorf et al.,
2020) , (2) BERT-based approaches that addressed
issues in text training but failed to account for se-
mantic context (Tan et al., 2023) (Dasgupta et al.,
2018) (Li et al., 2020), and (3) LLMs, which im-
proved contextual reasoning but struggled to distin-
guish intricate causal relationships (Kıcıman et al.,
2024) (Shen et al., 2022) (Luo et al., 2024).

In this paper, we present a novel framework that
leverages linguistic feature extraction to enhance
causal graph generation from narrative texts. Our
approach introduces a Quaternary Classification
system to categorize sentences into four compo-
nents: (1) Situation, (2) Task, (3) Action, and (4)
Consequences. This structured decomposition al-
lows for more precise identification of causal links.
We also propose a Neural Network model trained
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on these linguistic features, achieving higher accu-
racy and interpretability compared to LLM-based
methods, with lower computational costs.

Our contributions are twofold: (1) We develop
an open-source, end-to-end causal graph generation
model that significantly improves interpretability
and accuracy. (2) We introduce a Linguistics Fea-
ture system, which efficiently classifies sentences
for causal graph construction, validated through
experiments on various narrative texts.

2 Problem Setting

This paper studies the problem of causal relation-
ship graphs as follows. Given a narrative text,
such as a story by O. Henry or a piece of narrative
news, we can generate its causal relationship graph
containing the main causal relationships. More
specifically, when we input a set of narrative sen-
tences S = {s1, s2, . . . , sn}, we aim to obtain a
connected graph G = (V,E) to represent the struc-
ture of the story, where:

• V is the set of vertices, each vertex represent-
ing a major event in the story.

• E is the set of edges, where each edge
(u, v) ∈ E represents the temporal or causal
relationship from event u to event v.

For the definition of Edges E, We say Event A
causes Event B if:

• (the multi-factorial definition): in combina-
tion with other factors, Event A is a necessary
or a sufficient condition for Event B (Oppen-
heimer and Susser, 2007)

• (the probabilistic definition): the occurrence
of Event A raises the probability of Event B
occurring (Reichenbach, 1991).

3 Methodology

Our complete Causal graph Model is an End-to-
End model. We hope to input any story and gener-
ate a Connected Graph G. This model contains four
main parts:(1) Vertices Extraction, (2)Expert In-
dex Extraction, (3) STAC Categorization, (4)Graph
Construction.

3.1 Vertices Extraction
We define each vertex in our causal graph as a
single event or state, represented by:

V = {v1, v2, . . . , vn | vi = a single event/state}.

These vertices serve as Vertices capturing key in-
formation with causal relationships in the narrative.
Our goal is to transform the original text into con-
cise, event-specific sentences by leveraging a LLM
and prompt engineering. In particular, we used
the LangChain framework to guide the LLM in
generating simple sentences that reflect core plot
elements.

Requirements for Each Vertex

1. Concise: Each sentence must contain no more
than two clauses.

2. Agent-Centered: The subject (or agent) of
the action must be explicitly identified, with
only one subject per sentence.

3. Active Voice: Each sentence should clearly
convey an action initiated by its subject.

Extraction Procedure We applied a structured
prompting workflow to simplify the text into short,
self-contained sentences, each representing a single
narrative event:

1. Summarization: The LLM receives a para-
graph and generates a brief summary, ensuring
each resulting sentence is as simple as possi-
ble.

2. Pronoun Substitution: All pronouns are re-
placed with explicit referents. For a first-
person narrative, the speaker is replaced by
a clear identifier, such as the speaker’s name
or “The Protagonist” if none is provided.

3. Clause Simplification: Complex or com-
pound sentences are split into multiple simple
sentences, each containing one core action or
state. Unimportant details that do not affect
the plot are removed.

4. Continuous Flow: The resulting sentences
are checked to ensure they preserve a logical,
causal flow of events, discarding irrelevant or
tangential information.

By enforcing these requirements and following
this workflow, we derive a set of concise, agent-
specific sentences—each of which becomes a ver-
tex in our causal graph. This method preserves
the essential narrative structure while ensuring that
each vertex encapsulates only a single event or
state.
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Figure 1: Overview of our framework. It is an end to end Model. First we input a Random Narrative Text. Then in Stage 1, we
Contribute the Vertices of the Graph. And in Stage 2, we Use our Expert Index to indicate the Vertices. Next, In stage 3,we use a
STAC system to label the Vertices. In STAGE 4, we use STAC Label + Vertices to complete the Causal Graph

3.2 Expert Index Extraction

This section describes our methodology for extract-
ing the Expert Index features from each sentence
and subsequently training a model to classify them.
We adopt seven key features grounded in traditional
and computational linguistics literature, the full de-
scription see table 3:

1. Genericity: Determines whether the sen-
tence’s subject is specific (e.g., a person, a
dog) or generic (e.g., a season, an emotion)
(Becker et al., 2017; Carlson, 1980).

2. Eventivity: Classifies the verb as dynamic
(observable actions such as speaking or run-
ning) or stative (expressing states or non-
action, such as deciding or thinking) (Becker
et al., 2017; Vendler, 1967).

3. Boundedness: Identifies if a event is episodic
(occurs at a specific time), habitual (recurring
over time), or static (always true or in a state
of being) (Becker et al., 2017; Smith, 1991).

4. Initiativity: Distinguishes whether the sub-
ject initiates the action (has agency) or re-
ceives it (lacks agency) (Dai and Huang, 2018;
Comrie, 1976).

5. Time Start: Notes if the event begins in the
past or the present relative to the narrative
timeline (Dowty, 1979; Allen, 1983).

6. Time End: Determines if the event concludes
in the present or the future (Dowty, 1979;
Allen, 1983).

7. Impact: Indicates whether the event’s effect
persists (impact) or is entirely resolved by
the time it ends (Dowty, 1979; Moens and
Steedman, 1988).

Except for Boundedness, which has three cate-
gories, each feature has two categories, for a total
of 192 possible combinations. We refer to each re-
sulting combination as an Expert Index. Inspired by
prior work that classified sentences as episodic, ha-
bitual, or static, we adopt a more granular approach
to better capture distinctions relevant to our four
main narrative labels: Situation, Task, Action, and
Consequence.

To train a model for these features, we
used RoBERTa, a robustly optimized variant of
BERT(Liu et al., 2019). We prepared a dataset
of 750 annotated sentences from 23 short stories
and novel chapters, ensuring balanced coverage
of tenses and narrative types. Human evaluations
served as ground truth. The model was trained
separately for each of the seven features and their
respective categories, enabling transparent predic-
tion of the Expert Index for every sentence.

3.3 STAC Categorization
We developed the STAC model to classify narrative
sentences into four categories—Situation, Task,
Action, and Consequence—based on structured
thinking from business management. In practice,
we observed that narrative events often follow a
logical flow: a change in the environment (Situ-
ation) prompts a requirement (Task), leading to
an activity (Action), which in turn yields a lasting
result (Consequence)(Minto, 2009). Concretely:

1. Situation: Provides background context or
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sets the stage for future events.

2. Task: States an explicit requirement or respon-
sibility that must be fulfilled.

3. Action: Indicates an activity actively per-
formed or just completed.

4. Consequence: Describes the outcome of a
prior event that changes the state.

To automatically assign these four STAC labels,
we trained a model using both RoBERTa embed-
dings and Expert Index features as inputs. Their re-
lation is as follows: A.6. Specifically, we extracted
each sentence’s embedding from RoBERTa’s de-
fault Autotokenizer (a 768-length array), captur-
ing semantic and contextual meanings. We then
one-hot encoded the Expert Index categories (non-
ordinal attributes) to obtain binary vectors. By con-
catenating these embeddings and encoded features,
we formed a comprehensive input array.

For classification, we used XGBoost due to its
efficiency and robust performance relative to tradi-
tional models. The model was trained on human-
labeled STAC categories and human-labeled Expert
Index features as ground truth, with regularization
techniques to avoid overfitting. Once trained, the
model can predict a sentence’s STAC category from
its tokenized RoBERTa embedding and Expert In-
dex attributes.

3.4 Graph Construction
After classifying all vertices using the STAC
model—Situation, Task, Action, and Conse-
quence—we aimed to build a causal diagram cap-
turing the complexity of narrative events. Initially,
we considered 16 possible bonds (i.e., relation-
ships) between the four STAC categories; however,
only 11 of these bonds were meaningful in the ac-
tual narrative context. Furthermore, we observed
that real-world events often exhibit relationships
such as Action → Action or Situation → Situation,
underscoring the non-linear nature of storytelling.

To systematically determine the edges between
vertices, we adopted a five-iteration LangChain-
based prompting process. This approach refines
causal relationships in stages, ensuring that each
edge is relevant, logically consistent, and supported
by the narrative.

Iteration 1: STAC Bond Learning We first
prompted the LLM to internalize the STAC bond-
ing schema, which outlines valid causal connec-

tions among Situation, Task, Action, and Conse-
quence. By learning these inherent relationships,
the model could more accurately propose potential
edges in subsequent steps.

Iteration 2: Causal Relation Identification
Next, the LLM evaluated pairs of vertices (in total
O(n2/2) pairs) to propose potential causal links
based on the STAC bonds. At this stage, the model
only suggested edges that aligned with valid STAC
relationships and logically connected one event’s
outcome or state to another event’s occurrence.

Iteration 3: Logical Consistency and Pruning
After generating an initial set of edges, the LLM
applied counterfactual reasoning—asking, “If A
did not occur, would B still happen?”—to filter out
any bonds that did not have explicitly causal rela-
tionship. Non-causal or weakly supported edges
were systematically pruned, leaving only robust
causal connections.

Iteration 4: Isolated Vertices Refinement In
the fourth step, the LLM revisited any vertices that
remained isolated (i.e., lacking causal connections).
By prompting the model with a “why” question,
we explored whether there were overlooked causes
or effects. If new connections surfaced, they were
subjected to the same scrutiny and pruning as in It-
erations 2 and 3, ensuring consistency and avoiding
redundant links.

Iteration 5: Final Graph Construction Finally,
the refined set of vertices and edges was compiled
into a coherent graph that depicts the full range of
causal relationships within the narrative. This final
graph integrates all relevant Vertices and edges,
with every link verified for logical soundness and
alignment with the STAC bonding schema.

By iterating through these five steps, we
resolved the complexities of linking narrative
events—particularly cases where Action leads to
another Action or Situation follows another Situa-
tion. The result is a structured causal diagram A.5
that accurately reflects the underlying relationships
dictated by both the story and the STAC frame-
work.

4 Experiment Setup

4.1 Corpus Collection

We hand-collected excerpts from 50 full-length
novels and 50 short stories, covering works pub-
lished between 1800 and 1950. Each data selec-
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tion features either one chapter from a novel or a
complete short story, with lengths averaging 5,000
words. All narratives were sourced from various
public domain web archives. These works were se-
lected in part because our annotators were already
familiar with the narratives, reducing ambiguity
and enabling more consistent annotation.

The dataset incorporates both complete story
cycles (e.g., short stories) and fragmentary nar-
ratives (e.g., chapters), allowing for comparative
event-flow analysis (Sims and Bamman, 2019; Kirti
et al., 2024). Thematically, it spans fairy tales,
stream-of-consciousness storytelling (e.g., Poe’s
Berenice (Poe, 1835)), and implied-content stories
(e.g., works by O. Henry (Henry, 1906)), ensur-
ing a diverse testing ground for event-extraction
models (Levi et al., 2022; Elson, 2012).

4.2 Summarization and Dataset Structuring
After selecting corpus material, we employ a multi-
layered Large Language Model (LLM) pipeline to
iteratively refine narrative content, forming our fi-
nalized corpus dataset. The pipeline extracts and
refines key sentences and concepts based on the
story’s progression, creating a connected-event nar-
rative structure. The input to the pipeline is a raw
chapter or story from the gathered corpus material,
and the output is a concise summarization where
each sentence has a declarative, complete narrative
structure (Goyal and Durrett, 2022; Lu et al., 2023).

After processing each piece in the corpus
through the pipeline, we gather a dataset optimized
for event flowchart mapping. The final summaries,
averaging under 40 sentences for each short story or
novel chapter, serve as standardized Vertices in the
output graph. Details on the pipeline and prompt
methodology are provided in the Appendix A.1.

4.3 Expert and STAC Labeling
To construct the event-flow graph, we apply a struc-
tured labeling process integrating expert index clas-
sification and STAC labeling. This ensures clear
labeling of narrative components into actionable
event Vertices (Barth, 2021).

We asked ten anonymous annotators to assign ex-
pert index and STAC labeling to every sentence in
the dataset. When differences arose, the mode was
used (Fleiss, 1971). Annotators assigned the ex-
pert index based on predefined criteria introduced
earlier. They were then instructed to assign STAC
labeling to the same sentences following a hierar-
chical rule set:

• An execution of an action verb solely defines
an action.

• If no action verb is present, sentences imply-
ing an execution are labeled as tasks.

• If a description is shaped by the main flow of
events and tasks, it is a consequence.

• Otherwise, it is classified as a situation.

This layered process ensures consistency across the
dataset, aligning narrative progression with struc-
tured event representation for final graph construc-
tion.

We also explored generating STAC labels and
Expert Index levels using a standardized prompt
driven by a Large Language Model (LLM), de-
tailed explicitly in the Appendix A.1. However, the
resulting annotation performance was suboptimal.
Specifically, after evaluation across 300 datasets
compared to annotations produced by human an-
notators, the Cohen’s Kappa (Cohen, 1960; Lan-
dis and Koch, 1977) for the Expert Index gener-
ated by the LLM was found to be 0.73, indicating
good but not excellent agreement. In contrast, the
Cohen’s Kappa for STAC labels generated by the
LLM fluctuated around 0.63, suggesting only mod-
erate agreement and thus inadequate for reliable
model training. Consequently, for all subsequent
scenarios involving Expert Index and STAC label-
ing, we adopted human annotations exclusively as
the ground truth.

5 Experiments

5.1 Vertices Extraction Result

We evaluate and compare the performance of dif-
ferent models by comparing and rating their per-
formances on fifteen selected stories. Ten of these
were short stories, and five were chapters from
well-known novels: The Giver (Lowry, 1993),
The Great Gatsby (Fitzgerald, 1925), and Rebecca
(Du Maurier, 1938). For each story or chapter,
three summaries were generated using the same
prompt and parameter settings (detailed in the Ap-
pendix A.2, A.3) with no post-editing, following
standard practices for comparative evaluation of
summarization models (Goyal and Durrett, 2022;
Lu et al., 2023).

To reflect the downstream goal of transforming
summaries into structured event flowcharts, we de-
fined a three-part evaluation rubric based on ex-
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isting summarization literature (Kryscinski et al.,
2019; Fabbri et al., 2021):

• Conciseness and Sentence Structure: Clean
sentence flow, minimal subordination, and
avoidance of redundancy.

• Coverage and Coherence: Inclusion of all
key story events in proper logical order.

• Information Span & Economy: Avoidance
of unnecessary elaboration or repeated ideas.

Each summary was scored across the three di-
mensions (0–5 scale per category, 15 max per
summary) by three LLM models (GPT-4o, GPT-4
Turbo, Claude 3.5), and the mean was then taken.
Two additional criteria, Agent-Centered and Active
Voice, were achieved at 100% by all models and
thus not considered further in our analysis.

Model Concise Cover Info Span
GPT-4o 4.2 4.9 4.4
GPT-4 Turbo 3.9 4.7 4.5
GPT-o1 4.1 4.4 4.2

Table 1: GPT-4o demonstrates superior performance
across all evaluated dimensions.

These results suggest that GPT-4o consistently
demonstrates superior performance, producing ef-
ficient narrative compression while retaining com-
plete event arcs—a critical capability for generat-
ing effective, structured flowchart-ready summaries
(Li et al., 2022; Sims and Bamman, 2019). Conse-
quently, GPT-4o was selected as our primary sum-
marization model for dataset structuring.

5.2 Expert Index Result

We used a RoBERTa-based classifier fine-tuned
on a custom-labeled dataset of 1,000 summary-
extracted sentences annotated by humans. The
dataset was split 80/20 into training and testing
sets, with hyperparameters tuned via default cross-
validation. Each trait was modeled independently
as a multi-class classification task.

Performance scores for each trait dimension are
shown in Table 5. Overall, the classifier exhibited
strong performance on traits with more balanced or
semantically distinct labels. Genericity, Eventivity,
and Initiativity all yielded F1-scores above 0.85 on
their dominant classes. Boundedness posed greater
challenges due to conceptual overlap between the

habitual and static classes, leading to reduced pre-
cision and recall.

The classifier achieved high overall accuracy
across most traits, with particularly strong results
for identifying Initiate vs. Receive references and
dynamic event types. Errors in Boundedness are
unsurprising given the theoretical overlap between
habitual and static categories. For traits with la-
bel imbalance, such as retextitTime Start, outcome
reveals minor reduced recall.

5.3 STAC Categorization Result

We conducted a series of experiments on a dataset
of 1,000 ground-truth annotated sentences to evalu-
ate the effectiveness of incorporating Expert Index
features for STAC classification. Each sentence in
the dataset is labeled with one of four STAC cate-
gories (Situation, Task, Action, or Consequence).
We used a standard train/test split (e.g., 80/20) and
report the F1-score for each category as well as the
macro-averaged F1-score across all four labels. Six
different classification models were compared to
isolate the impact of the Expert Index (EI) features:

1. RoBERTa (sentence only) – A baseline
model using only RoBERTa sentence embed-
dings (768-dimensional) with a linear classi-
fier.

2. RoBERTa + EI – RoBERTa embeddings aug-
mented with the 13-dimensional one-hot Ex-
pert Index vector (total 781 features) and clas-
sified by a linear layer.

3. XGBoost (EI only) – An XGBoost classifier
using only the 13 Expert Index features.

4. XGBoost (RoBERTa only) – XGBoost using
only 768-dim RoBERTa embedding as input.

5. XGBoost (RoBERTa + EI) – XGBoost using
the combined feature set of RoBERTa embed-
ding + EI (781 features).

6. GPT-4 (prompt-based) – Using GPT-4 di-
rectly for classification via prompt (zero-shot,
without fine-tuning).

As shown in Figure 2, models that incorporate
the Expert Index features consistently outperform
their counterparts that use only the sentence em-
bedding. For instance, augmenting RoBERTa with
the EI features raises the F1-score score in each
category by at least 5 percentage points compared
to using RoBERTa alone. This improvement is
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Figure 2: F1-score-score comparison across STAC la-
bels for all six models. Each curve corresponds to a
classification method, plotting F1-score for the four
individual labels (S, T, A, C) and the overall macro-F1-
score (rightmost point). The XGBoost model using both
RoBERTa embeddings and Expert Index features (red
curve) achieves the highest F1-score in every category.

most pronounced for the Consequence (C) cate-
gory, where the RoBERTa+EI model achieves an
F1-score of about 0.68 versus 0.55 with RoBERTa-
only (a 13-point gain). Even the XGBoost clas-
sifier using only the 13 EI features (without any
RoBERTa embedding) performs respectably across
categories (F1 ≈ 0.65–0.80), underscoring that
the Expert Index captures valuable signals for the
STAC classification task.

Among all evaluated models, the XGBoost en-
semble leveraging the combined RoBERTa + Ex-
pert Index features is the top performer. It attains
the highest F1-score in each STAC category and
the highest overall macro-F1-score. Notably, this
model outperforms the GPT-4 classifier by approx-
imately 10–15% (relative) in F1-score score, and
yields about a 30% relative improvement over the
baseline RoBERTa-only approach. These results
demonstrate that incorporating the Expert Index not
only consistently boosts classification accuracy for
each STAC category, but that the combination of
semantic embeddings with expert-driven features
is especially powerful. The best model (XGBoost
with RoBERTa+EI) provides a substantial perfor-
mance margin over both a strong neural baseline
and GPT-4, highlighting the benefit of hybridizing
learned embeddings with expert knowledge.

5.4 Graph Formulation Result

We define eight key dimensions for evaluating the
quality of a causal event graph. Each dimension

captures a different aspect of how well the graph
represents the narrative’s causal structure:

Causality vs. Chronology – Does the graph em-
phasize true cause-effect relationships rather than
merely the temporal order of events? Causal con-
nectivity strongly shapes comprehension and recall
of events (Trabasso and Van Den Broek, 1985).

Explicit Motivations/Intent – Are characters’
goals and intentions explicitly represented as
causes for their actions? Agents’ motivations (the
“why” for actions) reflects the intentional dimen-
sion of narratives (Zwaan and Radvansky, 1998)
and ensures explanation on why events occur.

Granularity (Level of Detail) – Does the graph
use an appropriate level of detail for events? A
balanced level of detail enables both clarity and
informativeness (Mulkar-Mehta et al., 2011).

Logical Completeness – Are all necessary
causal steps and connections present to form a logi-
cally complete story? Missing links or unexplained
leaps between events undermine narrative coher-
ence (Brewer and Lichtenstein, 1982), undermining
the logical soundness of the graph.

Hierarchy or Grouping – Does the graph orga-
nize events into higher-level groupings or hierarchi-
cal structures (e.g., subplots or phases)? A hierar-
chical organization (events grouped into episodes
or goal-driven segments) improves understanding
greatly (Mandler and Johnson, 1977).

Accuracy of Connections – Are the causal links
in the graph correct and faithful to the story? Each
connection should reflect a true causal or enabling
relation in the narrative, and incorrect causal links
can mislead reasoning (Pearl, 2009). Every link in
the graph shall not be coincidental nor erroneous.

Decision Points as Branches – Does the graph
explicitly show branching at decision points? Rep-
resenting decision points as branch Vertices high-
lights the narrative’s points of divergence (e.g.,
choices or hypothetical alternatives) and is impor-
tant especially in interactive or non-linear narra-
tives (Moser and Fang, 2012).

Ease of Reading – Is the graph easy to interpret
visually, with a clear layout and labeling? Graph
design principles (e.g., minimizing crossed links
and clutter) improve human readability (Purchase,
1997), so a higher score means the graph is more
reader-friendly.
Experimental Setup. We validated these eval-
uation dimensions by comparing our proposed
method against strong baseline approaches, using
large language models (LLMs) prompted to gener-
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Dimension Our Method vs GPT-4o Our Method vs Claude 3.5

Causality vs. Chronology 100% 100%
Explicit Motivations/Intent 95% 92%
Granularity (Level of Detail) 86% 84%
Logical Completeness 100% 100%
Hierarchy or Grouping 94% 92%
Accuracy of Connections 100% 100%
Decision Points as Branches 97% 95%
Ease of Reading 52% 57%

Table 2: Win-rate of our model in pairwise comparisons against GPT-4o and Claude 3.5 on each dimension. Higher
values indicate the percentage of cases where our model’s graphs were preferred for that dimension.

ate causal graphs from the same narratives. In par-
ticular, we benchmarked our method against GPT-
4o and against Claude 3.5, as representative state-
of-the-art LLMs A.8. We also tested enhanced
prompting with in-context examples: GPT-4o and
Claude 3.5 denote prompting the LLM with 10 ex-
ample narratives and their graphs (10-shot learning)
to guide its generation. For each narrative text in
our test set (100 narratives), both our method and
a baseline LLM produced a causal graph. We then
performed pairwise evaluations: for each narrative
and each of the eight dimensions above, the graph
from Method A was compared to the graph from
Method B to decide which one was better along
that specific dimension. This yields, per narrative,
a binary win/loss outcome for each dimension. We
conducted these pairwise comparisons for all rele-
vant pairs: our method vs GPT-4o, our method and
our method vs Claude 3.5,

To ensure the reliability of the evaluation, we
used a panel of five human annotators to judge the
graph pairs dimension-by-dimension. Additionally,
we employed an LLM-based evaluator (GPT-4) to
perform the same pairwise judgments. We found a
very high agreement between the aggregate human
decisions and the LLM judge’s decisions: Cohen’s
κ = 0.92 for dimension-level agreement. This
suggests that the LLM-based evaluation is largely
consistent with human, validating its use for scaling
up our evaluation. In the analysis that follows, we
thus report results based on the LLM evaluator’s
judgments for all 100 narrative graph pairs, given
the strong alignment with human annotators.

In Table 2, we report the win-rates of our ap-
proach’s graphs compared to two baseline systems
(GPT-4o and Claude 3.5) across the eight dimen-
sions. The results show that our model substantially
outperforms both baselines on almost all aspects

of causal graph quality. Notably, it achieves near-
100% win rates against GPT-4o and Claude in di-
mensions such as Causality vs. Chronology, Logi-
cal Completeness, and Accuracy of Connections, in-
dicating that our graphs consistently capture causal
structure, completeness, and correct links better
than the baseline graphs. Similarly, high win-
rate margins in Explicit Motivations, Granularity,
and Hierarchy/Grouping demonstrate the model’s
strength in including character intents, appropri-
ate detail, and structured organization of events.
In contrast, for Ease of Reading, the advantage of
our model is much smaller (around 52–57% win-
rate), suggesting that the clarity and readability of
our graphs are roughly on par with those gener-
ated by GPT-4o and Claude. Overall, these results
highlight that our proposed graph formulation pro-
vides significant improvements in most qualitative
dimensions of causal graph representation, while
maintaining comparable readability.

6 Conclusion

We have introduced a linguistics-focused, end-to-
end approach for building causal graphs from nar-
rative texts. By leveraging a lightweight Expert
Index to capture seven core linguistic traits, our
STAC classifier improves both interpretability and
accuracy in labeling events. A specialized, multi-
step prompting strategy then constructs a logically
consistent causal graph that outperforms GPT-4o
and Claude 3.5 on most causal quality metrics. The
results highlight the benefits of integrating inter-
pretable feature engineering with modern language
models for fine-grained causal reasoning. Our
framework is open-source and readily adaptable for
broader applications in summarization, discourse
analysis, and knowledge graph construction.
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A Appendix

A.1 LLM Prompt for Vertices Extraction

1. I will input a paragraph to you and you need
to do the following.

2. You should summarize the sentences. All
sentences should be SIMPLE sentences.

3. If the story is told in first person POV, try
to find out the speaker’s name or something
to refer to the speaker. If you really can’t
find anything, sub the speaker with ’The
Protagonist’.

4. Then, sub ALL pronouns, including the ones
in the sentence, with the thing that they
refer to.

5. Then, Break ALL clauses into SIMPLE
SENTENCES. Delete unimportant clause-level
information. Be CONCISE.

6. Your output at this time shall have LITTLE
TO NO clauses.

7. You need to check the sentences. If they
contain clause, BREAK IT INTO TWO SENTENCES.

8. The sentences, in their order, should give
a continuous flow. DO NOT eliminate any
important information that shows causal
relationship.

9. However, only information that pushes the
plot/story is needed. Be concise and do not
include ANY irrelevant information.

10. Eventually, give me a summarization that
focuses on causal relationships for the
story.

A.2 LLM Prompt for STAC Categorization
(Unused)

The following is our perspective on prompting
as described in Section 4, specifically in Subsec-
tion 4.3. We attempted direct prompting using the
STAC Model as we understood it; however, it did
not serve as a suitable baseline. Instead, we em-
ployed it solely for comparison purposes.

Classify each sentence in each chunk
individually into either a situation, a task, an
action or a consequence. Note that the sentences
ARE NOT related. We do these as follows:
1. Situation: Something that sets the stage of
the BACKGROUND, without implying a particular
action or task. The sentence will typically
set the stage for something that happens later.
Generally, it focuses on things that already
happened at a certain stage of the story or
something that would impact stuff later.
2. Task: Describes an explicit requirement,
want, or responsibility that needs to be
fulfilled. The sentence would explicitly(the
action’s name shall be mentioned) mention some
event that one subject would accomplish later,
but hasn’t accomplished yet. If the sentence
implies an action due to outforce changes, it’s
categorized as a situation.
3. Action: This refers to an activity that
is BEING or HAS JUST BEEN carried out by
someone. It requires someone to ACTIVELY do
the action. Otherwise, it shall be a situation
or a consequence.
4. Consequence: Describes when something
happens as a result of at least one thing
prior AND has an everlasting impact. It’s
always an action that ‘finishes’ (the action
changed some state and does not normally change
back) or a straightforward state change. It’s
different from a situation by the fact that it
should be a result of something mentioned before
in the paragraph, whereas a situation happens
spontaneously.

A.3 LLM Prompt for Expert Index
Extraction (Unused)

The following is our perspective on prompting
as described in Section 4, specifically in Subsec-
tion 4.3. We attempted direct prompting using the
Expert Index Model as we understood it; however,
it did not serve as a suitable baseline. So we used
humans as the Baseline.

IMPACT: I would give you a bunch of sentences
and I want you to tell if the main event in
the sentence has a lasting impact or if the
main event is already resolved. for instance: -
the door is left opened - impactful, focuses on
shifting of door’s state -He opened the door. -
resolved, focuses on the person Border cases: -
If you cannot determine any main event from the
sentence, mark it as resolved because of a lack
of state of change.
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BOUNDEDNESS: I would give you a bunch of
sentences, not in any order, and i want you
to tell if the sentence’s time span, labeled as
’Episodic’, ’Habitual’, or "Static’.
They are defined as follows: - The event is
Episodic if it happens only once And is at a
specific time period (you may not know that
period, but you know the period exists and has
a bound) - The Event is Habitual if the event
happens on a regular basis. (There isn’t a
bound. The event is constant with intervals).
- The Event is Static if the Event describes a
characteristic of the subject or if the event
is constant and doesn’t not have a clear bound.
(Lacking Past OR future bound satisfies the
category ).

SPECIFICITY: I would give you a bunch of
sentences, not in any order, and i want you
to tell if the sentence has a proper noun or a
common noun main subject, labeled as ’Specific’
or ’Generic’. Define Strictly on the subject,
not the implied subject.
They are defined as follows: - All proper nouns
are Specific. We Treat ’The Protagonist’ and
Any type of PRONOUNS as proper nouns in this
case and are therefore Specific. Anything in
First person POV is Specific. - Anything you
can point to as ’It is THE ONE thing that does
it’ is Specific and treated as a proper noun.
In a fairy tale, The Duck or A Tiger would
be Specific because though they are not given a
name, they act like proper nouns. (Think it like
how the tiger’s name would be Tiger) - As an
addition to 2, any live thing or personified
thing the Starts with ’the’ are treated as
proper nouns and are thus Specific. - A common
noun, when can STRICTLY trace back to proper
noun

EVENTIVITY: I will give you a bunch of
sentences. Classify each sentence in each
chunk into either Stative, Dynamically Active
or Mentally Active. Do these as follows:
Check if the sentence describes a stative
action (Labeled Stative). This includes
possession(Have, consist, contain, etc.),
thoughts(Think, remember, suspect, realize,
etc.), senses(Feel, seem. etc.), and emotions
that do not trigger an action (like, dislike,
appreciate, etc.)
Or the sentence describes a dynamic action
(Labeled Dynamically Active, which is
characterized by more physical than mental
movement). This includes the majority of the
verbs(Jump, Walk, Suggest, Answer, etc.). Note
that Talking or Expressing an opinion would
be a dynamic action, because no mental action
actually takes place.
Or a mental action (Labeled Mentally Active).
This includes action that happens mentally
rather than physically, like decide, want,
desire, hope, etc.

TIME END: Classify each sentence in each chunk
into either Time End Current (Label as C), Or
Time End Future(Label as F).
We do these as follows: Check if the Events
will be continue happened after the sentence
end itslef (In this case we label F(Future))
Def of End Future: A conclusion about what is
happening now (Things will continue [according
to logic]) (Things will continue [for sure])
Things don’t end with the statement.

TIME START: Classify each sentence in each chunk
into either Time Start Past, Or Time Start Now.
We do these as follows: Check if the Events
happened as we stated (In this case we label
C(Current)) or the events happened as the
sentences happened before (In this case we label
P(Past))
If you find the event being persistent
or stative and therefore does not have an
explicitly start time, treat its start time
as infinitely in the past and therefore label
it as P.

INITIATIVE: I would give you a bunch of
sentences, not in any order, and i want you
to tell if the sentence represents an action
it initiates or Receives. Define the main
action and the main target through common sense
and content. (NOT the subject). Now, I want
you to tell me whether the target actively
does(initiate), or receives an action(Receive).
If the sentence itself is in passive form, it’s
automatically Receive. If the sentence itself
is in active form, think about if the subject
is able to do the action out of CHOICE or the
action spontaneously happens. If the subject
consciously does the action, it’s an Initiate
action. If not so, the subject Receives the
action.
app:STAC Categorization Unused

A.4 Table Description for the Expert Index
A.5 Example Graph of Our Method
A.6 Table Description for STAC Bonding
A.7 Expert Index Result
A.8 Evaluation of Causal Graph Prompt

Input Story: xxxxX Causal Graph 1: xxxxxx
Causal Graph 2: xxxxxx
Your job is to make judgement for each of the
Causal Graph, determine which one is better in
each of the dimension, here is the dimension
description:

1. Causality vs. Chronology: Does the diagram
emphasize actual cause-and-effect rather
than merely stringing events in time?

2. Explicit Motivations/Intent: Are the
driving reasons (e.g., revenge, pride, fear)
clearly shown so the reader sees why a
character or force triggers the next event?

3. Accuracy of Connections: Do arrows represent
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Features
Name Categories Detail

Generality Specific
Refers to a particular instance or indi-
vidual (e.g., a person, a dog).

Generic
Refers to a general class or category
(e.g., seasons, emotions).

Eventivity Dynamic
Involves an observable action or change
(e.g., speaking, running).

Stative
Describes a state of being or condition
(e.g., deciding, thinking).

Boundness Episodic
Refers to an event occurring at a specific
time.

Habitual Refers to actions that recur over time.

Static
Refers to something that is always true
or a permanent state.

Time Start Past
The event began in the past relative to
the narrative moment.

Current
The event begins in the present relative
to the narrative moment.

Time End Current
The event concludes in the present rela-
tive to the narrative moment.

Future
The event will conclude in the future
relative to the narrative moment.

Initiality Initiate
The subject has agency and initiates the
action.

Receive
The subject passively receives the ac-
tion, without agency.

Impact Impactful
The event has a lasting or significant
effect.

Resolved
The event’s effect diminishes or re-
solves once completed.

Table 3: Table Description for the Expert Index

genuine causal links (A enables or drives
B), and are there any missing or spurious
connections?

4. Clarity and Brevity of Nodes: Are node
labels concise and unambiguous? Too much
text can clutter the diagram and obscure
the causal flow.

5. Granularity/Level of Detail:Is the diagram
capturing just enough detail to show
cause-effect without trivial or irrelevant
steps?

6. Logical Completeness: Does it include all
critical causes and effects for key outcomes,
so nothing pivotal is left out?
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Begin Vertices End Vertices Definition

Situation Situation

The first situation may create a set-
ting that directly influences or causes
a change in another situation without
any intermediate actions or tasks.

Task
The current environment imposes cer-
tain responsibilities or actions on the
agent.

Action
The environment itself drives the behav-
ior, without an explicit task being iden-
tified first.

Consequence
The scenarios where background fac-
tors alone create significant changes in
the state of affairs.

Task Action
This bond is a direct relationship where
the execution of a task leads to a specific
action.

Consequence
In this bond, task itself will make an
environment change as a result.

Action Task/Action

This bond describes a sequence where
one action leads directly to another ac-
tion. Represents chains of immediate,
active responses.

Consequence
This bond reflects a causal relationship
where an act brings about a lasting
change or outcome.

Consequence Situation
The consequence of a previous action or
event sets up a new situation.(Different
environment change)

Task/Action
The consequence directly drives the
agent’s next move.

Consequence
This bond reflects a sequence of cascad-
ing outcomes, where one consequence
leads to another.

Table 4: Table Description for STAC Bonding
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Figure 3: Example Graph Generation of Emperor’s Cloth50



Label Precision Recall F1
Genericity (Generic) 0.72 0.58 0.64
Genericity (Specific) 0.93 0.96 0.94
Eventivity (D.Active) 0.94 0.93 0.93
Eventivity (M.Active) 0.68 0.92 0.7
Eventivity (Stative) 0.85 0.75 0.80
Boundedness (Ep.) 0.92 0.88 0.90
Boundedness (Hab.) 0.31 0.36 0.33
Boundedness (Static) 0.73 0.80 0.76
Initiativity (Initiate) 0.91 0.89 0.90
Initiativity (Receive) 0.84 0.86 0.85
Time End (Present) 0.92 0.86 0.89
Time End (Future) 0.63 0.78 0.69
Time Start (Past) 0.96 1.00 0.98
Time Start (Present) 1.00 0.60 0.73
Impact (Impactful) 0.88 0.76 0.82
Impact (Resolved) 0.84 0.89 0.87

Table 5: Classification results (test set, n = 200) for
each trait and class label.
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