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Abstract

In recent years, the use of large language mod-
els (LLMs) to generate music content, partic-
ularly lyrics, has gained in popularity. These
advances provide valuable tools for artists and
enhance their creative processes, but they also
raise concerns about copyright violations, con-
sumer satisfaction, and content spamming. Pre-
vious research has explored content detection
in various domains. However, no work has fo-
cused on the text modality, lyrics, in music. To
address this gap, we curated a diverse dataset
of real and synthetic lyrics from multiple lan-
guages, music genres, and artists. The genera-
tion pipeline was validated using both humans
and automated methods. We performed a thor-
ough evaluation of existing synthetic text de-
tection approaches on lyrics, a previously unex-
plored data type. We also investigated methods
to adapt the best-performing features to lyrics
through unsupervised domain adaptation. Fol-
lowing both music and industrial constraints,
we examined how well these approaches gener-
alize across languages, scale with data availabil-
ity, handle multilingual language content, and
perform on novel genres in few-shot settings.
Our findings show promising results that could
inform policy decisions around AI-generated
music and enhance transparency for users.

1 Introduction

Recent advancements in user-friendly tools, such
as Suno AI1, have significantly impacted the music
field by introducing prompt-based interfaces that
simplify music generation. In parallel, multiple
research works have been exploring audio genera-
tion (Agostinelli et al., 2023; Dhariwal et al., 2020;
Wu et al., 2024) or lyrics generation (Qian et al.,
2023; Nikolov et al., 2020; Tian et al., 2023) with
impressive results. LLMs such as GPT-4 (Ope-
nAI et al., 2024b), Mistral 7B (Jiang et al., 2023),
Gemma (Mesnard et al., 2024), or PaLM (Chowd-
hery et al., 2022) have demonstrated the ability to
generate human-like text without adaptation, being
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able to assist artists in tasks such as poem writ-
ing (Popescu-Belis et al., 2023) and song lyrics
creation (Qian et al., 2023).

Nevertheless, the widespread use of LLMs for
generating artistic content has raised concerns re-
garding authorship infringement (Novelli et al.,
2024; Goetze, 2024), consumer satisfaction (Chris-
syGee et al., 2024), and content spamming. These
concerns outline the need to effectively detect syn-
thetic content to regulate its distribution and pre-
vent misuse. Although many methods for synthetic
text detection have been proposed and explored
(Abburi et al., 2023; Chen et al., 2023; Wu et al.,
2023; Pu et al., 2023; Wang et al., 2024; Dugan
et al., 2024; Li et al., 2024), their effectiveness
in detecting AI-generated lyrics as a form of cre-
ative content remains unclear. Lyrics differ signif-
icantly from other text types due to their unique
semantics, rhythmic structures, and socio-cultural
references (Spanu, 2019). Also, existing detection
benchmarks predominantly focus on English, lim-
iting their applicability across languages, and the
synthetic text used in these evaluations is often not
rigorously validated. To overcome these limita-
tions, we propose the following contributions:

• We carefully design a generation and post-
processing pipeline to produce realistic lyrics,
which we then validate through a human study
and with automatic methods.

• We create and release a dataset of synthetic
lyrics by using multiple generative models,
featuring a wide range of lyrics for 9 lan-
guages and 18 unique music genres inspired
by 1,771 artists from various countries.

• We conduct extensive experiments to bench-
mark existing text detection approaches on
this new type of synthetic text (creative and
multilingual) with minimal adaptation. Our
focus includes a variety of features: metrics
derived from per-token probabilities in lyrics
and stylistic and sentence embeddings. Then,
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we assess LLM2Vec (BehnamGhader et al.,
2024) for the first time in the context of text de-
tection, both with and without lyrics-specific
adaptation, showing that it outperforms all
other features on this data type.

• In contrast to previous works, we evaluate de-
tectors not only for generalization to unseen
generators and content (e.g., new artist style,
new music genres) but also for their robust-
ness and performance with unseen languages
and varying levels of data availability in order
to simulate a more realistic detection scenario.

Data, pre-processing scripts, code, and models
will be publicly accessible on GitHub 2 under the
Apache 2.0 license and in compliance with the con-
tent copyrights.

2 Related Work

The detection of machine-generated content has
emerged as a well-established research domain
(Lavergne et al., 2008; Badaskar et al., 2008; Yang
et al., 2023; Rana et al., 2022; Ahmed et al., 2022;
Zhou and Lim, 2021; Guarnera et al., 2024; Bam-
mey, 2024). Traditionally, efforts have focused on
identifying generated text in areas like news (Bhat
and Parthasarathy, 2020; Schuster et al., 2020), sci-
entific writing (Chen et al., 2021), or voice spoof-
ing in audio (Wu et al., 2017a; Zhang et al., 2021).
However, recent advances in generative models in
terms of quality and creativity have underscored
the need for detectors capable of identifying more
complex forms of machine-generated text, such as
creative content. In music, multiple modalities are
vulnerable to AI-generated content, but current ef-
forts have mainly targeted audio detection (Zang
et al., 2024; Wu et al., 2017b; Afchar et al., 2024).

Detection of machine-generated text is typically
framed as a binary classification task distinguish-
ing between human-written and synthetic content
(Liu et al., 2023; Huang et al., 2024). One way
of solving it relies on supervised learning, where
classifiers are trained based on textual encoders
like RoBERTa or Longformer (Abdelnabi and Fritz,
2021; Chakraborty et al., 2023; Kirchenbauer et al.,
2023; Liu et al., 2023; Wang et al., 2024; Li et al.,
2024) or LLMs (Macko et al., 2023; Antoun et al.,
2024; Chen et al., 2023; Kumarage et al., 2023).
This approach requires a sufficiently large train-
ing corpus, which is not always available, and
may encounter overfitting issues on unseen data,
including new authorial styles or generative mod-
els (Uchendu et al., 2020; Bakhtin et al., 2019).

2https://github.com/deezer/synthetic_lyrics_detection

Another line of research has focused on distin-
guishing between machine-generated and human-
written texts using various metrics derived from
output probabilities of generative models or stylis-
tic features (Mitchell et al., 2023; Su et al., 2023;
Zhu et al., 2023; Sadasivan et al., 2024; Soto et al.,
2024). These methods have been proven effec-
tive, while sometimes shown to yield lower per-
formance than the supervised ones depending on
the generative model and data (Wang et al., 2024;
Li et al., 2024). Parallel research has explored
watermark-based detection methods (Abdelnabi
and Fritz, 2021; Chakraborty et al., 2023; Kirchen-
bauer et al., 2023), but these approaches are limited
by the requirement to access model logits, which
is not feasible for models accessible only via APIs,
such as GPT-4 (OpenAI et al., 2024a).

As discussed above, previous research has ex-
plored content detection across various domains,
yet no work has exclusively focused on the text
modality, lyrics, in music. Moreover, prior bench-
marks have primarily targeted English text and of-
ten lacked a rigorous validation of the synthetic
text used in experiments, raising concerns about
the findings’ reliability and generalization. These
gaps highlight the need for a validated pipeline to
generate and refine lyrics, the release of synthetic
data that is realistic, musically diverse, and multilin-
gual, and more targeted generalization experiments
that explore various factors, including generative
models, languages, and writing styles.

3 Data Creation and Validation

As no prior public studies have addressed the detec-
tion of machine-generated lyrics, there is a lack of
data reflecting the inherent diversity of song lyrics.
To address this gap, we introduce and document
the creation of the first lyrics dataset specifically
designed for synthetic lyrics detection. This data
encompasses a wide variety of artistic styles, music
genres, and languages. For generation, we chose to
focus on textual input only, excluding lyrics gener-
ators that use multiple modalities, such as melody
or audio (Qian et al., 2023; Tian et al., 2023). Like-
wise, we align with the most widely used tools
among content creators, such as Suno and Chat-
GPT, which produce lyrics based entirely on text.

3.1 Human-Written Lyrics Dataset

Given the large diversity of the music catalog with
lyrics from millions of artists across very differ-
ent genres, styles, and languages, with new tracks
being added almost every second (Ingham, 2021),
creating a comprehensive dataset that covers these
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dimensions is necessary but challenging.
For this work, we curated a multilingual dataset

of 3,704 human-written lyrics targeting nine lan-
guages: English (EN), German (DE), Turkish (TR),
French (FR), Portuguese (PT), Spanish (ES), Italian
(IT), Arabic (AR), and Japanese (JA). The inclusion
criterion was based on popularity, specifically from
tracks listed in the most popular editorial playlists
on an international music streaming platform3 as
of June 2024. Also, we ensured that each track was
released within the past year and a half to minimize
the possibility that the models used in the detec-
tors had prior exposure to this content. We evenly
selected lyrics only from top-trending music gen-
res per language, as determined by daily streaming
statistics at extraction time. Appendix A shows
the data distribution, and Appendix B the list of
popular genres per language.

To allow a quality assessment of the generated
lyrics by English-speaking humans from our orga-
nization, we decided to evenly and randomly pick
a sub-sample from this dataset focused on the five
most popular artists from the 2023 Billboard “Top
Artists”4, namely: Drake, Ed Sheeran, Post Mal-
one, Taylor Swift, and The Weeknd. Though lim-
ited in scope, this dataset is a test bed of 625 human-
written lyrics (for the distribution, see Appendix A)
well-suited for assessing artistic style cloning capa-
bilities of our LLM generation pipeline. We also
use this controlled subset to identify the best detec-
tion features before running extensive experiments
on robustness, scalability, and generalization.

3.2 Synthetic Lyrics Dataset
High-quality generated text increases the difficulty
of the task, providing a better evaluation and in-
sights into a system’s ability to generalize to unseen
data. To produce human-like lyrics, we designed a
four-step process that was refined through multiple
iterations, with each step’s output being empiri-
cally evaluated for potential issues or generation
artifacts and improvements made accordingly. The
entire pipeline is validated through a human study
(Section 3.3) and an automatic evaluation focused
on the regurgitation of the models (Section 3.4).

Step 1 - Generation. We opted for a constrained
generation with a carefully designed prompt that
was short and general, including some basic for-
matting instructions and three lyrics examples. The
few-shot examples changed at each generation to
diversify the output (Lu et al., 2022) but were condi-
tioned on the same artist for the Billboard top artists

3deezer.com
4billboard.com/charts/year-end/top-artists

data or the same language/genre pair for the multi-
lingual data. To ensure the generated lyrics closely
resembled real ones, the model was instructed to
follow the same formatting guidelines as the real
lyrics5. Appendix C shows the prompt template
and Appendix D the hyperparameters used.

We selected four LLMs to generate varied con-
tent, ensuring their release preceded the period of
the human-written lyrics. LLaMa 2 13B (Touvron
et al., 2023) and Mistral 7B (Jiang et al., 2023)
were chosen as the foundation models. In particu-
lar, lyrics generated with LLaMa 2 13B were used
only as training data for the Billboard top artist
subset to validate generalization capabilities to new
models. TinyLLaMa 1.1B (Zhang et al., 2024) was
used as a smaller, more compact model with sim-
ilar performance to its corresponding foundation
model. Lastly, we included WizardLM2 7B (Xu
et al., 2024), an instruction-tuned model derived
from Mistral 7B and fine-tuned on a large dataset
using DPO (Rafailov et al., 2023).

Step 2 - Normalization. We normalized gener-
ated lyrics using regular expressions developed it-
eratively with each model’s inclusion to remove
artifacts not found in real lyrics, such as punctua-
tion at the end of verses, quotations, references to
the generation process (e.g., “here’s an example of
a song”), and indications of offensive content.

Step 3 - Initial Filtering. We sampled normal-
ized generated lyrics to match the typical style of
artists or language/genre pairs using statistical met-
rics from real lyrics, such as sentence length, num-
ber of verses, verse size, and word count. Only
lyrics that fell within the interquartile range of these
metrics, represented by box plots created from the
human-written lyrics per artist, were retained.

Step 4 - Semantic Similarity Filtering. We per-
formed a semantic similarity comparison between
generated and human-written lyrics, retaining up
to 150 synthetic lyrics that were most similar
for each generative model and artist or language-
genre pair. For this, we used the Sentence Trans-
formers’s (Reimers and Gurevych, 2019) model
all-MiniLM-L6-v2 from Wang et al. (2021).

3.3 Human Evaluation
The human evaluation aimed to assess how real-
istic the lyrics produced by our generation and
post-processing pipeline were, providing insights
into their validity. We recruited four English-
speaking subjects from our organization to deter-
mine whether 70 English lyrics from the Billboard

5docs.lyricfind.com

526

https://deezer.com
https://www.billboard.com/charts/year-end/top-artists/
https://docs.lyricfind.com/LyricFind_LyricFormattingGuidelines.pdf


top artists data were ’human-written’ or ’machine-
generated’, based on text only. The samples were
evenly split between the two classes and uniformly
distributed across various artists and generative
models, while subjects were unaware of this dis-
tribution to prevent bias. Subjects also rated their
confidence in each annotation on a scale from 1
to 4 (details in Appendix E). Post-annotation, an
unstructured interview was conducted to gather in-
sights into the decision-making process (e.g., cues
used in judgments), familiarity with the lyrics, and
perceived difficulty (transcribed in Appendix G).

Table 1 shows that the differences among sub-
jects are substantial, with a gap of 36.9 points be-
tween the highest (ID 4) and lowest (ID 2) scores.
The recall for the synthetic lyrics is close to or even
worse than a random baseline for all the subjects
except the fourth. The detection of human-written
lyrics appears better, but this might be related to a
tendency to overuse this label in annotation.

Subject ID Synthetic Human-written Overall
1 54.3 97.1 75.7
2 40.0 43.4 41.7
3 57.1 78.5 67.8
4 74.3 82.9 78.6

Table 1: Human subjects’ recall on a sample of 70 lyrics
taken from the Billboard top artists data.

In Appendix F, we show that subjects tended to
assign slightly lower confidence scores to their in-
correct annotations, likely because they anticipated
their mistakes to some extent. Based on subjects’
feedback detailed in Appendix G, only one popular
song by Taylor Swift was recognized. We provide
a supplementary analysis of pair inter-rater agree-
ments in Appendix F. Overall, the results highlight
the task’s difficulty and that the generated lyrics
resemble real ones, thus validating our pipeline.

3.4 Measuring Few-Shot Regurgitation
To ensure that the generative models used for cre-
ating our dataset do not merely reproduce the pro-
vided few-shot examples, we conducted an ad-
ditional evaluation of the generated lyrics apart
from the human one. We indexed all the human-
written lyrics used to condition the models in gen-
eration with the BM25 representation (Trotman
et al., 2014). Then, we queried this corpus by using
synthetic lyrics and checked if the few-shot exam-
ples provided as seeds in the corresponding prompt
during generation scored high in this retrieval task.
Table 2 shows that hit rates are relatively low for
each rank range, indicating a low likelihood of the

generated lyrics being based on the set of lyrics
provided as input to condition their generation.

Rank % Hit rate Cumulated % Hit rate
1 2.28 2.28
2 1.05 3.34
3 0.83 4.17
3 to 5 1.37 5.55
5 to 10 2.57 8.12
10 to 20 3.94 12.06
20 to 50 7.79 19.86

Table 2: Hit rate (%) by rank range when retrieving the
human lyrics used as 3-shot examples during generation
with the corresponding synthetic lyrics.

4 Lyrics Detection Experiments

We approached the detection task as a few-shot pre-
diction using a k-nearest neighbors (k-NN) algo-
rithm on a pre-computed lyrics features space. This
method, which works with a limited set of lyrics,
supports continuous updates as new synthetic con-
tent, including human-flagged material, becomes
available. The vector space is constructed using
both human-written and machine-generated lyrics,
corresponding to our binary classification setup,
incorporating multiple features commonly used in
text detection (as detailed in Section 4.2). Dur-
ing evaluation, we applied a distance-based metric
(Minkowski) to find the k closest points to the input
and assign the most frequent label (with k = 3 in
our experiments). This approach also allowed for
better control and explainability by understanding
the influence of individual features6.

4.1 Data Split and Evaluation Scenarios
Billboard Top Artists Detection. We extended
the 625 human-written lyrics of the Billboard top
artists data with 4,572 synthetic lyrics inspired by
the same artists. To evaluate cross-artist and cross-
model generalization, we reserved the lyrics from
two out of five artists (The Weeknd and Taylor
Swift) exclusively to assess the detector’s ability
to generalize to unseen authorial styles. The lyrics
from the other artists were used for both training
and evaluation splits. For training, we sampled
300 lyrics, evenly split between human-written and
machine-generated (50 lyrics from each artist).
Cross-Artist and Cross-Model Generalization. We
aimed to first assess the generalization capabilities
to unseen generative models (Mistral 7B, TinyL-
LaMa, and WizardLM2) and new artists (Taylor
Swift and The Weeknd, as previously detailed).

6While k-NN is susceptible to feature scaling, this does not
pose a problem since we have full control over the features.

527



Lyrics Generators
Mistral 7B TinyLLaMa WizardLM2 Human-written
S U S U S U S U Avg.

Random 51.3 49.0 50.2 48.7 46.9 53.3 48.0 41.3 47.3

Metrics based on LLaMa 2 7B Per-Tokens Probabilities

Perplexity 79.0 84.0 58.0 45.3 71.9 72.7 57.2 53.6 61.9
Max.Neg Log.Lkl. 75.8 74.3 77.6 72.3 63.2 55.7 83.4 89.4 78.1
Shannon Entropy

Max 88.2 94.0 50.6 58.9 71.6 73.0 77.4 71.2 73.5
Max+Min 88.4 88.7 64.6 60.2 68.6 65.3 80.6 82.8 77.2

Min-K%Prob (K=10) 92.4 93.7 70.5 51.0 93.2 96.7 70.7 88.6 81.3

Semantic and Syntactic Embeddings
SBERT

MiniLMv2 86.9 94.3 54.7 55.2 87.9 91.7 74.8 73.5 76.3
MPNet 86.4 95.7 52.0 51.2 88.5 92.7 82.3 79.7 79.4

LLM2vec
LLaMa3 8B 95.1 96.7 70.0 59.4 78.3 80.0 94.7 95.6 87.5
LLaMa2 7B 77.8 88.0 57.5 45.3 45.1 48.3 97.6 90.8 77.3

Stylistic Embeddings
UAR

CRUD 74.7 81.0 32.8 32.9 44.8 44.7 90.6 89.1 70.8
MUD 84.2 88.0 32.7 37.4 53.2 59.0 95.4 95.7 77.3

Table 3: Recall scores on the Billboard top artists dataset based on various features. S refers to artists seen in the
vector space, and U to the unseen ones. Avg. is the overall micro recall between human-written and synthetic
classes. For each feature category, the best-performing one is in bold, and the second-best is underlined.

Multilingual Lyrics Detection. The dataset con-
sists of 7,262 lyrics, with 3,558 being synthetic
and 3,704 human-written, distributed across 1,771
unique artist styles. For training, we randomly sam-
pled up to 5 lyrics for each class (human-written
and synthetic) and each language/genre pair. The
remaining lyrics were reserved for evaluation. The
distribution across splits is shown in Appendix A.
We now further discuss the evaluation scenarios.
Baseline. The baseline used all languages, genres,
and training data to build the vector space.
Scalability. We varied the amount of data used to
construct the vector space for the detectors, scal-
ing the number of available lyrics from 1 to 5 per
language/genre pair (108 to 540 lyrics in the vector
space) and measuring the impact.
Cross-lingual Generalization. We isolated a lan-
guage at a time when building the vector space to
evaluate how well the detector generalized when
trained on a specific language and then tested on
unseen languages. In particular, we assessed the
detector’s ability to handle unfamiliar lyrics char-
acteristics and language-specific music genres.
Robustness. We combined languages in the vector
space, starting with English and gradually incor-
porating all 9 languages. This evaluated how well
the detector handled multilingual data and main-
tained performance across diverse language inputs.
The language order was defined by their linguistic

characteristics (agglutinative, inflected, etc.) and
language families (Germanic, Latin, Semitic, etc.).

4.2 Detection Features
To build the vector space of human-written and
synthetic lyrics, we focused on a variety of features
commonly found in the literature.

Probabilistic Features: The first group of fea-
tures includes metrics derived from output proba-
bilities of generative models. We took into account
the segmentation of the lyrics and computed most
of the metrics at the verse level, which has been
experimentally proven to be more effective. We
assumed a black-box generative model to produce
synthetic lyrics and relied on other models to es-
timate the per-tokens probabilities of the text. In
practice, we computed those per-tokens probabili-
ties using LLaMa 2 7B for the Billboard top artists
subset. We also tested the impact of this choice by
replacing LLaMa 2 7B with an alternative model,
Gemma 2 9B (Mesnard et al., 2024).

Maximum Negative Log-Likelihood (Mitchell
et al., 2023; Solaiman et al., 2019; Gehrmann et al.,
2019; Ippolito et al., 2020) calculates token-level
negative log-likelihood for lyrics, treating individ-
ual verses separately. We took the max value across
verses and use it as a 1-D feature vector for lyrics.

Perplexity (PPL) (Beresneva, 2016) measures
the overall likelihood of the lyrics based on the
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exponential average of the negative log-likelihood.
In principle, lower PPL suggests the lyrics are less
likely to be human-written as artistic writing could
lead to higher PPL due to its unexpectedness.

Shannon entropy (Shannon, 1948; Lavergne
et al., 2008) measures the diversity or sparsity of
the lyrics vocabulary based on token-level nega-
tive log-likelihood. We pooled the highest entropy
value across all verses as a 1-D feature vector. We
also considered both the highest and lowest entropy
values as a 2-D feature vector to cater to the unique
structure of the lyrics domain.

Min-K% Prob (Shi et al., 2024) selects a sam-
ple of K% of the lowest token-level negative log-
likelihood probabilities from the entire song and
averages them to create a 1-D lyrics-level feature
(K = 10 as shown in Appendix I).

Semantic and Syntactic Embeddings: The sec-
ond feature group for building the vector space
includes semantic and syntactic embeddings, as
differences in these aspects may exist between
human-written and machine-generated lyrics (Jawa-
har et al., 2019; Soto et al., 2024). We use two
models from the Sentence Transformers library
(SBERT) by Reimers and Gurevych (2019): all-
MiniLM-L6-v2 (Wang et al., 2021) and all-mpnet-
base-v2 (Song et al., 2020). In addition, we also use
LLM2Vec (BehnamGhader et al., 2024) for the first
time in detection. LLM2Vec is an unsupervised
method that transforms autoregressive LLMs into
text encoders using a 3-step process: (i) enabling
bidirectional attention by modifying the attention
mask; (ii) masked next-token prediction (MNTP) to
adapt the model to its different attention mask; and
(iii, optional) SimCSE (Gao et al., 2021) learning
to enable stronger sequence representations. The fi-
nal output embedding is derived via mean-pooling.
In our experiments, we used LLM2Vec models that
were only tuned via MNTP since we observed that
they performed the best. In addition, we fine-tune
LLM2Vec on the multilingual lyrics corpus. We
refer to §5.3 for details.

Stylistic Representations: The third feature
group captures the authorial writing style. We used
the Universal Authorship Representation (UAR)
model (Rivera-Soto et al., 2021) with its variants:
MUD and CRUD, trained on data from 1 million
and 5 million different Reddit users, respectively.
Soto et al. (2024) have demonstrated that these fea-
tures are highly effective in distinguishing between
human-written and synthetic content.

5 Results

In the following, we report macro-recall as the pri-
mary metric, following Nakov et al. (2013); Li et al.
(2024). This ensures a realistic evaluation of the
detectors, particularly since black-box models such
as human predictors cannot be evaluated using AU-
ROC. The focus is on minimizing false negatives
for human-written lyrics and maximizing true posi-
tives for synthetic ones to prevent mislabeling.

5.1 Billboard Top Artists Detection
We observe in Table 3 that no single detection fea-
ture excels equally across all generators. However,
the best feature for each group appears to be Max
Negative Log Likelihood, LLM2Vec embeddings
with LLaMa 3 8B, and UAR-MUD embeddings.
For the multilingual experiments, we thus used only
these features. We also observe substantial differ-
ences among features in their ability to correctly
label human-written lyrics. The features outlined
earlier as the best are particularly more accurate for
human-written lyrics, too.

Despite LLM2Vec embeddings built from
LLaMa 2 7B being the most accurate for human-
written lyrics, it is not the overall most effective
embeddings-based method. It is worth noticing that
LLaMa 3 8B outperforms LLaMa 2 7B by an over-
all difference of 10.2 points. These LLM2Vec de-
tectors significantly surpass others, including UAR
embeddings, previously considered in the litera-
ture (Soto et al., 2024) as more effective compared
to earlier methods like probabilistic approaches
or SBERT. For UAR, MUD performs better than
CRUD by 6.5 points, highlighting the benefits of
using embeddings built from more diverse data.

The performance difference during the evalua-
tion between artists seen (S) in the vector space
and those unseen (U ) depends on the generator and
detection features used. Unsurprisingly, artists not
represented in the vector space tend to perform
worse overall than those who are not.

For generators, TinyLLaMa is less frequently
detected. On the other hand, foundation models
like Mistral 7B or the instruction-tuned model are
more frequently detected by both probabilistic and
embeddings-based methods, indicating a worse
generalization than other types of models that are
aimed at human-like interactions.

To identify the bias produced by using a single
model for per-token probabilities, we repeated the
experiments with Gemma 2 9B (c.f. Appendix H).
Trends were similar to LLaMa 2 7B, yet most meth-
ods showed a performance drop. Maximum neg-
ative log-likelihood declined by 9.7 points, while
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Languages
Scenario Setup EN DE TR FR PT ES IT AR JA Avg.
Baseline All 83.3 84.4 73.9 85.8 81.1 82.0 82.1 81.6 67.1 80.2

Scalability

1 77.9 84.1 75.7 86.4 80.7 80.2 78.2 80.6 66.6 78.9
2 81.2 84.5 75.7 85.9 80.1 81.4 79.7 81.6 69.0 79.9
3 82.5 84.3 74.7 85.6 81.2 81.8 79.7 81.8 69.1 80.1
4 83.3 83.8 75.2 85.7 81.2 82.1 80.3 81.1 67.5 80.0
5 83.3 84.4 73.9 85.8 81.1 82.0 82.1 81.6 67.1 80.2

Cross-Lingual

EN 83.8 81.6 74.6 84.7 80.3 77.7 77.3 63.2 62.8 76.2
DE 70.5 85.7 74.5 87.5 81.5 81.1 81.5 81.1 64.8 78.7
TR 56.3 85.1 76.7 85.6 81.2 79.9 76.0 78.6 63.6 75.9
FR 70.5 85.6 71.8 88.6 82.3 80.9 80.7 77.3 64.1 78.0
PT 64.4 69.6 63.2 70.3 81.8 74.8 77.3 55.6 65.6 69.2
ES 68.6 84.8 75.1 85.1 80.7 82.3 79.9 74.9 62.7 77.1
IT 70.1 83.6 67.6 85.9 82.7 80.1 78.8 68.4 65.1 75.8
AR 54.7 81.7 75.7 76.2 73.4 76.1 72.6 82.0 66.7 73.2
JA 69.6 81.5 68.9 80.3 80.5 78.7 74.0 63.7 68.2 73.9

Robustness

EN 83.8 81.6 74.6 84.7 80.3 77.7 77.3 63.2 62.8 76.2
+ DE 84.9 84.3 74.6 86.3 80.6 80.3 81.1 80.1 65.6 79.8
+ TR 85.5 84.3 75.7 86.5 79.9 80.2 81.0 80.1 64.1 79.7
+ FR 84.8 84.6 74.2 87.1 80.6 80.7 81.3 79.9 63.9 79.7
+ PT 83.8 84.2 72.8 86.4 80.6 74.7 79.3 78.8 64.2 78.3
+ ES 83.3 84.8 73.1 85.5 78.6 81.4 81.4 78.4 63.7 78.9
+ IT 83.6 84.8 73.0 85.6 80.0 82.0 81.5 78.6 64.2 79.3
+ AR 83.4 84.7 72.9 85.6 80.7 82.1 81.8 82.2 63.4 79.6
+ JA 83.3 84.4 73.9 85.8 81.1 82.0 82.1 81.6 67.1 80.2

Table 4: Recall of detectors on human-written and machine-generated lyrics in each of the four scenarios. Results
reported in bold are the best ones for the language/scenario pairs, while the second best is underlined.

Min-K% by 27.6 points.
We also replaced k-NN with a fully-supervised

multi-layer perceptron for classification. Slight per-
formance improvements, averaging an increase of
2.02 points, were observed in 7 out of the 8 meth-
ods, as shown in Appendix J. Still, in one instance,
there was a substantial performance drop of 10.8
points, making the prediction nearly random. The
minimal performance improvement does not suffi-
ciently justify the loss of explainability associated
with using a multilayer perceptron for our task.

5.2 Multilingual Lyrics Detection

The baseline’s detection performance varies across
languages, with French performing best, followed
by German (-1.4), English (-2.5), and Italian (-3.7).
More detailed results of each detection feature per
language are shown in Appendix K.

In terms of scalability, overall performance im-
proves with more data points per language/genre
pair, though the impact is modest, with a variance
of 1.3 points between the lowest and highest scores.
Performance slightly decreases with 4 lyrics per
pair or in specific languages during the scalability
evaluation, with Turkish and French which lost 1.8
and 0.6 points, respectively, when moving from 1
to 5 lyrics per pair. Conversely, languages such as
English and Italian see significant improvements,
with increases of 5.4 and 3.9 points, respectively.

In terms of cross-lingual generalization, build-

ing a vector space from a single language tends to
generalize well to the other 8 languages. However,
vector spaces based on Portuguese, Japanese, and
Arabic underperform, showing recall differences of
-9.5, -4.8, and -5.5 points, respectively, compared
to the best-performing language, German. In con-
trast, vector spaces based on German and French
generalize well to other languages, with French
frequently being the second-best source language.

Regarding robustness, including more languages
in the vector space incrementally improves over-
all performance, increasing from 76.2% to 80.2%
with all 9 languages (+4.0). However, specific lan-
guages show decreased performance when added,
like Portuguese (-1.4). Turkish, French, and Arabic
perform better when they are lastly integrated.

For the genre novelty experiment (Table 5), re-
sults show no consistent trend across all languages.
However, lyrics from the new genre in French
are detected the best, while those in Arabic and
Japanese less good. A similar trend is observed
with seen genres, where English performs better
as a source language for linguistically closer lan-
guages like French but not for others. This ob-
servation aligns with previous work (Epure et al.,
2020) showing that the perception of the same
genre varies significantly across cultures.
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Lang Genre Score
Vector Space

EN

pop 86.2
hip-hop 83.4
alternative 82.9
rock 79.6
electronic 84.2
r&b 86.7

Newer Languages

FR

hip-hop 81.6
pop 84.1
french 91.3
rock 86.0
alternative 86.8
r&b 78.4

AR

arabic 65.6
pop 64.4
electronic 65.8
alternative 62.0
hip-hop 61.2
rock 60.1

JA

pop 68.0
asian 61.6
rock 61.6
soundtrack 54.8
electronic 60.6
alternative 70.4

Table 5: Recall when the vector space is built on EN
data and tested on unseen language and genres (in bold).

5.3 Towards Evaluating Domain Adaptation

Since the domain of lyrics highly differs from
other forms of text, we now assess the effect of
domain adaptation. We do so using our overall
best-performing model, LLM2Vec (Llama 3 8B),
in an unsupervised fashion.7 We start from the
MNTP-tuned LLM2Vec model and further fine-
tune it via LoRA (Hu et al., 2022) and continue
tuning it via MNTP (BehnamGhader et al., 2024).
To the best of our knowledge, we are the first to
experiment with MNTP for unsupervised domain
adaptation. The resulting domain-adapted model
can be used instead of any other embeddings-based
model using our existing pipeline, similarly relying
on kNN-based classification. For details regarding
fine-tuning experiments, we refer to Appendix L.

Our initial training dataset, consisting of only
525 songs from diverse genres and languages, is
relatively small for domain adaptation. To address
this, we expand the training dataset by incorpo-
rating additional samples, selected from the same
source as the evaluation dataset but removed from
the test set before inclusion. We use three different
seeds for sampling. Furthermore, we evaluate the
impact of corpus size on adaptation performance
by varying the proportion of added samples (30%,
50%, 70%, respectively). Importantly, we stratify
by genre and language to ensure consistent distri-
bution across all training and evaluation splits. For

7We also experimented with supervised adaptation, opti-
mized end-to-end on the task, but it consistently fell short,
assumably due to insufficient generalization.

30 50 70
Amount of data used for adaptation (%)

88.0

88.5

89.0

89.5

90.0

90.5

91.0

Re
ca

ll

LLM2Vec Variant
No Adaptation
Unsupervised

Figure 1: Effect of domain adaptation using additional
samples from the evaluation set on 3 seeds (solid circles
indicate individual runs), including mean (open circle)
and standard deviation. No adaptation corresponds to
the original LLM2Vec model, whereas Unsupervised
performs MNTP-based adaptation. In each scenario, we
use Llama 3 8B.

building the vector space, we rely exclusively on
samples from the original training dataset, isolating
the impact of domain-adaptive data on kNN-based
classification and adaptation.

As shown in Figure 1, MNTP-based do-
main adaptation appears to outperform the base
LLM2Vec model with no adaptation to the lyrics
domain, with the gap seeming to increase with the
size of the training dataset. The difference is partic-
ularly stark in some languages, such as Japanese,
as shown in Appendix P.

6 Conclusion

In this work, we presented a diverse dataset of
lyrics to evaluate detectors’ generalization capa-
bilities. We then conducted a quantitative evalu-
ation over various scenarios to assess detectors’
robustness, capabilities to scale, and generalizabil-
ity across languages and new genres. The results
show that our generation pipeline produces lyrics
that are very difficult to distinguish by humans
from real ones, thus validating it. Using automated
methods, the detection performance varies greatly
depending on the LLM used for lyrics generation as
well as the type of feature and artistic styles used
when building the embedding space. Increasing
the amount of training data only marginally im-
proves detection performance, whereas expanding
the number of languages has a more potent impact;
cross-lingual performance of detectors is highly
dependent on the source language. We adapted
the best-performing features, based on LLM2Vec,
to the distinct features of the lyrics domain via
novel unsupervised means, indicating that MNTP-
based unsupervised domain adaptation improves
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detection performance. Overall, our dataset and de-
tection experiments pave the way for more robust
detection of AI-generated music, thereby enabling
improved fairness in the music industry.

7 Ethical Considerations

Revealing the weaknesses of systems (challenging
languages or music genres) can enable malicious
actors to exploit these vulnerabilities further and
create content that capitalizes on these flaws, such
as generating and publishing machine-generated
content that is harder to detect on music streaming
platforms. However, exposing these limitations
to the scientific community is crucial for a better
understanding of the methods and for enhancing
them in future iterations.

Regarding the human study, the subjects were
recruited from our organization and performed the
annotation during their regular paid hours. The
participation in the study was on a voluntarily basis.

8 Limitations

Our study has several limitations. Firstly, the rapid
evolution of models poses a challenge, as future
LLMa might generate highly diverse and unpre-
dictable human-like lyrics, potentially outdating
our detectors. Secondly, our choice of languages
is limited. We do not know how our systems and
lyrics generators will perform with sparse or under-
represented languages or specific dialects. Addi-
tionally, we have not tested how these systems han-
dle typos, grammatical, or semantic errors. Other
factors, such as the impact of genre, tenses, or the
source of the lyrics, are also still underexplored.

Moreover, we have not tested the effect of scal-
ing data for unsupervised adaptation to millions of
songs due to limited availability.

Lastly, conducting the human validation step
on a larger dataset, incorporating a broader range
of languages and participants from diverse socio-
economic backgrounds, would provide valuable
insights into the quality of the synthetic data used
for generalization assessment. However, due to the
limited number of subjects and the restricted lan-
guage diversity within the group, we were unable
to carry out this additional evaluation for now.
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A Data Distribution

The source of the lyrics is mentioned as either H
for human-written or G for generated. The explicit
genre names associated with denominations G1
to G6 are listed in Appendix B. The backslash
character separating both figures from the same
Language/Source/Genre triplet refers to the number
of lyrics available in the vector space ("train") and
test subsets, respectively.

Genre
Lang Source G1 G2 G3 G4 G5 G6 All

EN H 5 / 75 5 / 75 5 / 75 5 / 75 5 / 75 5 / 75 30 / 450
G 5 / 75 5 / 75 5 / 75 5 / 75 4 / 75 4 / 75 28 / 450

DE H 5 / 75 5 / 48 5 / 44 5 / 75 5 / 75 5 / 75 30 / 392
G 5 / 75 5 / 75 5 / 75 5 / 75 5 / 75 5 / 75 30 / 450

TR H 5 / 75 5 / 12 5 / 27 5 / 75 5 / 75 5 / 75 30 / 339
G 4 / 38 2 / 8 1 / 2 5 / 75 5 / 60 5 / 58 22 / 241

FR H 5 / 75 5 / 75 5 / 75 5 / 75 5 / 75 5 / 75 30 / 450
G 5 / 75 5 / 75 5 / 75 5 / 75 5 / 75 5 / 75 30 / 450

PT H 5 / 75 5 / 75 5 / 75 5 / 75 5 / 75 5 / 75 30 / 450
G 5 / 75 5 / 75 5 / 75 5 / 75 4 / 75 5 / 75 29 / 450

ES H 5 / 75 5 / 75 5 / 75 5 / 75 5 / 75 5 / 75 30 / 450
G 5 / 75 5 / 75 5 / 75 5 / 75 5 / 75 5 / 75 30 / 450

IT H 5 / 8 5 / 5 5 / 75 5 / 10 5 / 75 5 / 38 30 / 211
G 5 / 3 5 / 4 4 / 39 3 / 1 5 / 75 5 / 28 27 / 150

AR H 5 / 58 5 / 75 5 / 68 5 / 46 5 / 75 5 / 32 30 / 354
G 5 / 73 5 / 75 5 / 75 5 / 75 5 / 75 5 / 34 30 / 407

JA H 5 / 18 5 / 75 5 / 40 5 / 75 5 / 75 5 / 55 30 / 338
G 4 / 6 5 / 75 5 / 22 5 / 54 5 / 75 5 / 23 29 / 255

Total 525 / 6,737

Table 6: Distribution of the multilingual data across
languages.

Considering the billboard top artists subset, the
distribution is as follows:

Artists Generated Human-written
Vector Space ("Train")

Seen (S)
Drake 50† 50

Post Malone 50† 50
Ed Sheeran 50† 50

Evaluation ("Test")

Seen (S)
Drake 931 128

Post Malone 769 42
Ed Sheeran 902 84

Unseen (U ) Taylor Swift 922 153
The Weeknd 898 68

Total 4,572 625

Table 7: Distribution of the billboard top artists subset.

B Music Genres Per Language

The language-specific genre acronyms refer to the
following genres (each according to its language):

Lang G1 G2 G3 G4 G5 G6
FR alternative french hip-hop pop r&b rock
IT alternative electronic hip-hop jazz pop rock
ES alternative electronic hip-hop latin-american pop rock
TR alternative electronic folk hip-hop pop rock
EN alternative electronic hip-hop pop r&b rock
DE alternative edm electronic hip-hop pop rock
PT christian hip-hop mpb pop samba-pagode sertanejo
JA alternative asian electronic pop rock soundtrack
AR alternative arabic electronic hip-hop pop rock

Table 8: Genres selected for each of the nine languages,
where "mpb" refers to “Música popular brasileira”.

C Prompt Template

Figure 2 displays the prompt template used to gen-
erate lyrics with 3-shot in-context learning based
on human-written lyrics:

3-shot Lyrics Generation Template

Example 1:
{{lyrics 1}}

Example 2:
{{lyrics 2}}

Example 3:
{{lyrics 3}}

Lyrics rules:
- The lyrics should be structure in optional stanzas like “Verse”,
“Chorus” and “Bridge”
- The beginning of each line should start with a capital letter.
- Do not use repeat tags to signify if a line or stanza is repeated.
Instead, write each line or stanza however many times it is said.
- Do not write out any sounds that are heard in the song, like “gun-
shot”, “clap”, “horn”, etc.
- Remove all labels such as [Talking], Speaking, or (Whispering).
- Any word cut short should have one apostrophe in place of the
missing letters. For example: givin’, livin’.
- Slang is acceptable but the artist must pronounce it that way. Slang
should only be used if the word sounds differently than the gram-
matically correct word. For example, “for shizzle” can be used but
“becuz” should be spelled “because”.
- Exaggerations should be cut down to the original word or punctua-
tion. For example, “ohhhh” should be “oh” and “bang!!!!!” should
be “bang!”
- Background vocals should be placed on the same line they’re said
but in parentheses. For example, “I’m a survivor (What, what)”
- Prevent using too much background vocals
Generate a new lyrics based on the style of what “{{artist name}}”
is doing and don’t mention me the fact that the lyrics is offensive:

Figure 2: 3-shot lyrics generation template.

D Lyrics Generation Hyperparameters

Table 9 lists all the hyperparameters used during
the lyrics generation process to ensure reproducibil-
ity. All models were quantized in GGUF Q4 to
run with a reasonable inference time on consumer-
grade hardware to replicate real-world usages. We
used 3 NVIDIA RTX A5000 24GB GPUs for all
our experiments.
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Parameter Value
temperature 0.8
top_k 40
top_p 0.9
num_predict 2048
quantization Q4_0
seed 42

Table 9: Hyperparameters for the lyrics generator
LLMs.

E Confidence Score in Human Study

Figure 3 lists confidence score options and their
descriptions provided to the subjects during the
annotation task.

Confidence scores options

1 = Willing to defend my annotation, but it is fairly likely that I
missed some details.

2 = Pretty sure, but there’s a chance I missed something. Although I
have a good feel for this area in general, I did not carefully check the
lyrics details.

3 = Quite sure. I tried to check the important points carefully. It’s
unlikely, though conceivable, that I missed something that should
affect my annotation.

4 = Positive that my annotation is correct. I read the lyrics very
carefully.

Figure 3: List of confidence scores options and their
descriptions.

F Human Evaluation

Table 10 highlights that subjects tended to assign
slightly lower confidence scores to their incorrect
annotations, likely because they anticipated their
mistakes to some extent. This is most noticeable in
Subject 3, who exhibits a 31.5% gap in confidence.

Subject ID 1 2 3 4
Incorrect 3.3 2.1 1.9 2.4
Correct 3.4 2.2 2.5 2.4

Table 10: Confidence scores, averaged for incorrect and
correct annotations for each subject.

Table 11 shows that subjects fully agreed 28.57%
of the time, while in 71.43% of cases, at least one
disagreed. This led to lower Cohen’s Kappa and
Gwet’s AC1 values, reflecting the task’s difficulty
and participant divergence. Kappa scores involving
Subject 2 were near or worse than random, with
negative Kappa and Gwet’s AC1 values.

Subject Pair κ G Agreement
1 & 2 3.53 15.47 54.29
1 & 3 29.81 43.75 68.57
1 & 4 35.46 41.04 68.57
2 & 3 17.85 22.28 60.00
2 & 4 -9.29 -7.78 45.71
3 & 4 30.52 32.80 65.71

Table 11: Inter-participants agreement statistics. κ is
referring to Cohen’s Kappa and G to Gwet’s AC1.

G Transcribed Human Interviews

We requested the participants to answer three ques-
tions after completing the annotation of the 70
lyrics to gather their feedback on the task they per-
formed. All the transcribed interviews are listed in
Figure 4:

Participant’s Feedback

Q1: Can you write me a short explanation of what do you refer
to when you were labeling the lyrics ? Which characteristics
have motivated your choices ?
Answer P1: I was looking to multiple characteristics, such as if
the refrain is every time the same or not, the rhythms at the end of
the sentences, the sparsity of the words used at the beginning of the
sentences or the overall structure of the lyrics.

Answer P2: I expected lyrics to be generated if there was too much
repetition, excessive punctuation (particularly too many commas
within the verses), very few rhymes, or if the length of the lyrics was
excessively long.

Answer P3: Generally, I started by looking at the structure of the
lyrics. Which paragraph corresponds to the choruses, whether the
verses are of similar length or not, and whether there is a visible
structure that stands out. If no particular structure stood out, I focused
on the coherence of the lyrics. If there was a noticeable structure, I
also looked at the rhymes and the progression of the story verse by
verse. If the rhymes were poorly done/strange or of uneven quality,
if the verses were too unbalanced, if lyrics from the verses were
repeated in the choruses, or if there was not much difference between
a verse and a chorus, I tended to consider it as machine-generated.

Answer P4: The main point for me is the song’s structure. Machine-
generated lyrics often have a more poetic than lyrical structure. The
variations of the chorus were another key indicator, in particular,
machine-generated lyrics tend to create many different versions.
Another hint for me was the use of counterpoints (usually in paren-
theses), which machine-generated lyrics tend to overuse. Finally,
whenever the topic of the lyrics was explicit, it was definitely a
human-written lyric, since machine are not conditioned to generate
such content.

Q2: Have you been able to recognize one or more songs during
the annotation ?
Answer P1: Yes, one song "Red" by Taylor Swift.

Answer P2: 1 song from Taylor Swift

Answer P3: I had the feeling that I recognized two other songs. In
those cases, I gave a rating of maximum confidence.

Answer P4: Yes, two.

Q3: Do you consider it as difficult task and why ? (short answer
only)
Answer P1: Yes, it is difficult to get confident on some lyrics since I
am not used to focusing on the lyrics when listening to a song.

Answer P2: Yes, especially the rap and hip hop songs. The lyrics
were very convincing and often I felt like guessing the answer with
no real idea of what to choose.

Answer P3: I found this task relatively difficult (as shown by my
confidence score), so yes.

Answer P4: Yes. Most of the topics are coherent and follow a natural
story telling. Rhymes are also nice. So I needed to focus on other
aspects.

Figure 4: Transcribed interview in the human study.
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Lyrics Generators
Mistral 7B TinyLLaMa WizardLM2 Human-written
S U S U S U S U Avg.

Perplexity 46.2 57.0 50.2 41.1 47.8 48.3 57.1 53.7 52.2
Max. Neg. Log-Likelihood 57.3 53.3 61.9 56.0 54.5 50.7 49.4 52.4 53.0
Shannon Entropy

Max 82.4 88.0 53.1 57.7 66.0 73.7 74.8 62.3 70.4
Min+Max 84.0 88.0 64.2 63.9 61.3 72.0 83.2 72.8 76.3

Min-K% Prob (k=10) 47.8 52.0 51.5 61.7 47.1 43.7 58.0 50.0 53.7

Table 12: Recall scores on the billboard top artists subset for detectors based on probabilistic features computed
using Gemma 2 9B rather than LLaMa 2 7B. S refers to the artists seen in the vector space and U to the unseen
ones. Avg. is the overall micro recall score between human-written and machine-generated classes.

H Gemma-Based Per-Token Probabilities

To check the potential impact on the results when
using another model to compute per-token proba-
bilities, we conducted the same experiments with
the Gemma 2 9B model. Similar patterns to those
seen with LLaMa 2 7B were observed, though most
features showed a performance decline as shown
in Table 12. In particular, the maximum negative
log-likelihood and Min-K% probabilities methods
were significantly impacted, with a 9.7 and 27.6
points drop, respectively, due to the model’s re-
duced ability to distinguish between human-written
and machine-generated content.

I Min-K % Prob - Impact of K

In order to understand the impact of the K value on
the detection performance, we decided to perform
an exhaustive search over the values of K as seen
in Table 13. In the case of our specific data, we
observe an optimal K value at 10.

Min-K% (%) Recall
5 77.0
10 79.2
20 73.5
30 64.3
40 59.0
50 57.0
60 53.4
70 52.7
80 52.9

Table 13: Overall recall on the test set for the Min-K%
Prob detector according to the selected K value.

J Results for the Multi-layer Perceptron
Classifier

An average performance gain of 2.02 points was
seen in 7 of the 8 methods (limited sub-sample of
methods) when replacing k-NN with a multilayer
perceptron, as shown in Table 14. However, the

perplexity-based method experienced a 10.8 points
drop, making predictions almost random.

Method k-NN MLP Diff.
Max. Neg. Log-Likelihood 82.4 84.1 +1.7
Shannon Entropy

Max 75.4 77.1 +1.7
Min+Max 80.1 81.9 +1.8

Perplexity 60.8 50.0 -10.8
Min-K% Prob (k=10) 79.2 80.5 +1.3
LUAR

CRUD 74.8 77.0 +2.2
MUD 79.2 81.7 +2.5

SBERT MiniLMv2 76.1 79.1 +3.0

Table 14: Same experimental setup as Table 3 except
that we used a multi-layer perceptron rather than a k-NN
algorithm. The reported results show the overall scores
(last column of the Table 3).

K Featured-based Detection Results on
the Multilingual Lyrics

Methods
Langs LLM2Vec Max Neg Log Like. UAR

EN 90.6 59.3 100.0
DE 97.4 56.7 99.2
TR 82.7 56.5 82.4
FR 97.7 62.1 97.6
PT 89.2 54.8 99.3
ES 92.3 54.7 99.0
IT 83.0 63.3 100.0
AR 92.1 58.9 93.6
JA 71.5 55.3 74.6

Avg. 88.5 58.0 94.0

Table 15: Per feature performances over all languages
for the baseline scenario, for the best-performing detec-
tion methods. The maximum negative log likelihood is
computed using LLaMa 3 8B (AI@Meta, 2024).

Table 15 presents performances of the baseline
scenario for the best-performing features in each
category, namely LLM2Vec LLaMa 3 8B, Maxi-
mum Negative Log Likelihood, and UAR MUD.
We can observe that they exhibit significantly dif-
ferent behavior across languages. Both LLM2Vec
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and LUAR experience minimal performance degra-
dation across most languages except for Arabic,
Turkish, and Japanese. Conversely, the Maximum
Negative Log Likelihood features consistently un-
derperform compared to the other two features.

L Experiment Details for Domain
Adaptation

For unsupervised adaptation of LLM2Vec, we em-
ploy LoRA-based fine-tuning and employ the same
LoRA config as BehnamGhader et al. (2024) using
a rank of 16, alpha of 16. and LoRA dropout of
0.05. We use a learning rate of 5e-5, a batch size
of 32, and a maximum of 512 tokens and train for
500 steps, masking out 20 % of tokens.

M Effect of k in kNN

We have chosen the best K experimentally on a
smaller validation set from the Billboard, English
only data. In Table 16, we show results on the
multilingual test corpus when using the LLM2Vec
embeddings (we could notice a similar trend for the
other detection features). Similar to the behaviour
on the English-only dataset, increasing the K higher
than 3 does not increase the scores much.

Langs k=1 k=3 k=5 k=10 k=20
EN 90.97 89.55 89.75 89.41 72.49
DE 97.46 97.61 98.07 98.14 98.17
TR 82.54 82.76 82.76 82.76 82.54
FR 96.84 97.71 98.14 98.14 98.15
PT 89.28 89.46 89.22 90.76 90.72
ES 94.11 92.33 92.22 92.00 92.11
IT 80.53 83.09 82.79 82.58 80.91
AR 92.01 92.03 92.62 92.81 91.43
JA 70.43 70.85 71.23 69.34 70.47
Avg. 88.24 88.38 88.53 88.44 86.33

Table 16: Results on the multilingual dataset with
LLM2Vec + Llama3 8B when varying k in kNN.

N Results with AUROC

Language LLM2Vec LUAR Entropy PPL
EN 96.5 100.0 99.1 63.3
DE 98.0 99.5 97.4 61.0
TR 92.9 92.9 68.4 58.7
FR 99.4 99.0 98.2 66.1
PT 97.1 99.6 99.6 60.2
ES 95.1 99.6 96.9 55.4
IT 90.4 100.0 95.2 60.8
AR 93.7 95.9 68.9 62.1
JA 80.7 94.1 87.4 59.4
Avg. 93.7 97.8 90.1 60.8

Table 17: Results on the multilingual dataset with AU-
ROC using four different classifiers.

The AUROC analysis reveals distinct patterns
across detection methods and languages. LUAR

demonstrates superior performance (97.8% aver-
age), particularly excelling in Indo-European lan-
guages with perfect or near-perfect scores. While
LLM2Vec (93.7% average) and the Entropy-based
classifier (90.1%) perform well on Indo-European
languages, they struggle significantly with morpho-
logically rich languages like Turkish and Arabic
(around 68% for Entropy) and different writing sys-
tems like Japanese (80.7% for LLM2Vec). The
Perplexity-based approach’s consistent underper-
formance (60.8% average) across all languages sug-
gests fundamental limitations in using raw proba-
bility scores for detection.

O Results with Majority Voting Classifier

LLM2Vec Max NLL UAR Entropy Maj.
EN 90.6 59.3 100.0 96.6 100.0
DE 97.4 56.7 99.2 97.2 99.0
TR 82.7 56.5 82.4 65.0 82.5
FR 97.7 62.1 97.6 97.8 97.9
PT 89.2 54.8 99.3 99.1 99.4
ES 92.3 54.7 99.0 95.0 97.3
IT 83.0 63.3 100.0 95.9 98.0
AR 92.1 58.9 93.6 65.8 93.8
JA 71.5 55.3 74.6 86.2 78.7
Avg. 88.5 58.0 94.0 88.7 94.1

Table 18: Per feature performances over all languages
for the baseline scenario with a majority voting classifier,
combining votes from the 4 best-performing classifiers,
which are also shown for clarity.

The majority voting approach (Maj.) achieves
the highest average performance at 94.1%, showing
only marginal improvement over UAR at 94.0%.
This minimal gain suggests that combining mul-
tiple classifiers through majority voting does not
provide substantial benefits over the best individual
classifier (UAR). The similar performance between
majority voting and UAR also suggests that the dif-
ferent detection methods might be capturing similar
features or making correlated errors, limiting the
potential benefits of ensemble approaches.

P Per-language Domain Adaptation
Results

Figure 5 shows results for unsupervised domain
adaptation of LLM2Vec using MNTP. In some lan-
guages, such as Italian, French, or Arabic, both
models perform similarly. Moreover, we observe a
slight difference in Spanish and Portuguese, and a
substantial improvement in English and Japanese
when using unsupervised MNTP-based domain
adaptation.
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Figure 5: Effect of domain adaptation on per-language performance using additional samples from the evaluation
set on 3 seeds (solid circles indicate individual runs), including mean (open circle) and standard deviation. Note that
the vector space is built using songs from all languages. No adaptation corresponds to the original LLM2Vec model,
whereas Unsupervised performs MNTP-based adaptation. In each scenario, we use Llama 3 8B.
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