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Abstract

Language models, potentially augmented with
tool usage such as retrieval, are becom-
ing the go-to means of answering questions.
Understanding and answering questions in
real-world settings often requires retrieving in-
formation from different sources, processing
and aggregating data to extract insights, and
presenting complex findings in form of struc-
tured artifacts such as novel tables, charts,
or infographics. In this paper, we introduce
TANQ,1 the first open-domain question an-
swering dataset where the answers require
building tables from information across mul-
tiple sources. We release the full source
attribution for every cell in the resulting table
and benchmark state-of-the-art language mod-
els in open, oracle, and closed book setups.
Our best-performing baseline, Gemini Flash,
reaches an overall F1 score of 60.7, lagging
behind human performance by 12.3 points. We
analyze baselines’ performance across differ-
ent dataset attributes such as different skills
required for this task, including multi-hop
reasoning, math operations, and unit conver-
sions. We further discuss common failures
in model-generated answers, suggesting that
TANQ is a complex task with many challenges
ahead.

1 Introduction

Understanding and solving problems in real-world
scenarios often requires reasoning across multi-
ple documents and data modalities. This includes
(i) retrieving information from different sources,
(ii) processing and aggregating data to extract
insights, and (iii) presenting complex findings
in a structured format, for example a table or
infographics, to communicate them to readers.

∗Equal contributions.
‡Work done during Google DeepMind internship.
1Dataset available at github.com/google-deepmind

/tanq.

Previous studies show that knowledge workers
across domains, e.g., finance, science, and eco-
nomics, spend around 20% of their time searching
and gathering information from different files into
one document to extract insights and consequently
answer information-seeking questions (Chui et al.,
2012). As a result, one of most challenging tasks
for workers is to aggregate data and turn it into
insights. Tables as a structured representation of
data are ubiquitous in real-world sources and are
commonly used to communicate complex infor-
mation. Hence, they can be the perfect modality
to answer complex questions.

Large language models (LLMs), often en-
hanced with external tools, have become a primary
method for various application such as answer-
ing questions. State-of-the-art question-answering
(QA) systems integrate LLMs in various ways,
from decomposing complex queries to retrieving
documents using external tools or generating con-
text data from knowledge acquired during model
training. However, their evaluation is mostly lim-
ited to simple datasets, e.g., TabFact (Chen et al.,
2020a) or HotpotQA (Yang et al., 2018), whose
questions can be answered by reasoning over a sin-
gle table or text document and generating a short
text sequence as answer. This limits the applicabil-
ity of such systems to perform complex multi-step
research explorations. Moreover, it differs from
real-world needs where relevant information can
be spread across documents and represented in
different forms (e.g., text or tables). More of-
ten than not, generating a short text as answer
is not sufficient for complex information-seeking
questions.

In this paper, we investigate LLMs’ capabili-
ties in reasoning over multiple data sources and
formats (i.e., text, tables, infoboxes) to answer
entity-centric questions and generate table an-
swers as structured artifacts. To address these
challenges, we introduce TANQ, an open-domain,
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Dataset Open Domain Multi Doc Answer Type Document Type

Text Table Infobox

InfoTabs (Gupta et al., 2020) short text ✓

FeTAQA (Nan et al., 2022) free form text ✓

FinQA (Chen et al., 2021b) short text ✓ ✓

TATQA (Zhu et al., 2021) short text ✓ ✓

MultiHiertt (Zhao et al., 2022) numeric ✓ ✓

OTTQA (Chen et al., 2021a) ✓ short text ✓

NQ-TABLES (Herzig et al., 2021) ✓ short text ✓

HybridQA (Chen et al., 2020b) ✓ short text ✓ ✓

MultiTabQA (Pal et al., 2023) ✓ table ✓

TANQ ✓ ✓ table ✓ ✓ ✓

Table 1: Comparison of TANQ to related (table) question-answering datasets.

multi-hop QA dataset. TANQ requires retrieving
and aggregating data from multiple documents to
compile and communicate answers as tables. To
solve TANQ, models require different skills in
addition to data retrieval such as filtering, maths,
and name normalization. We create TANQ apply-
ing a five-step, automated data collection process.
We use QAMPARI (Amouyal et al., 2022) as seed
dataset and Wikidata as well as the Wikipedia cor-
pus as data sources. For automated evaluation of
different data collection and processing substeps,
we use PaLM-2 (Anil et al., 2023b).

We evaluate several state-of-the-art LLMs
on TANQ, including close, oracle and open
book evaluation settings. Finally, we study
model-generated answer tables and discuss com-
mon failure cases and challenges related to
TANQ. Our evaluation of models across skills
can further inform future tools and evaluation se-
tups for LLMs to improve models for complex,
information-seeking questions.

Our contributions are as follows:

(a) We introduce TANQ, the first open-domain
question-answering benchmark that requires
building answers in form of tables from
multiple information sources.

(b) We benchmark state-of-the-art language
models in oracle, open, and closed book se-
tups, reaching an overall F1 score of 60.7
with our best-performing (oracle) baseline.

(c) We evaluate model performance across dif-
ferent dataset characteristics, and discuss
challenges and common failure types.

2 Related Work

Various benchmarks for QA have been released
in recent years. Each one addresses different chal-
lenges related to the task. Table 1 provides an
overview and comparison of benchmarks.

QA with Text and/or Table Input. A number
of datasets use text and one or multiple tables
for QA. While both text and tables have been
considered as input modalities, the output of the
datasets is mostly limited to short textual answers.
HybridQA (Chen et al., 2020b), for example, is a
multi-hop QA dataset that requires reasoning over
one table and multiple Wikipedia passages re-
lated to entities occurring in the table. HybridQA
answers are short texts with location names be-
ing the most common answer types, followed
by numbers, dates, and person names. Moreover,
many QA benchmarks for reasoning over text
and tabular context concentrate on the finance do-
main. For example, the MultiHiertt (Zhao et al.,
2022) benchmark is created from financial re-
ports. Questions require reasoning over texts and
multiple tables. The answers are short numerical
values with a focus on numerical reasoning. Other
financial QA benchmarks are FinQA (Chen et al.,
2021b) and TATQA (Zhu et al., 2021) where
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the context is one table and minimum two para-
graphs related to the table. TATQA answers are
short texts consisting of either one or multiple
text spans from context paragraphs/tables or are
free-form answers. MultimodalQA is a multi-hop,
open-domain QA dataset that takes one table and
related images and text paragraphs as input with
answers similar to previously described datasets.

Open-domain Benchmarks. Most of the ear-
lier described datasets have context provided in
form of text and/or tables, whereas open-domain
QA datasets first require extracting the relevant
context, before answering the given question. The
majority of open-domain QA datasets, such as
WikiQA (Yang et al., 2015), TriviaQA (Joshi
et al., 2017), and RobustQA (Han et al., 2023),
are limited to textual context. NQ Tables (Herzig
et al., 2021) extends table-QA to an open-domain
setting where first top-k tables are retrieved from
a given corpus. These tables are processed by
a reader component for generating the correct
short-text answer. Built on HybridQA, the Open
Table-and-Text Question Answering (OTT-QA)
benchmark (Chen et al., 2021a) extends this set-
ting by requiring to extract both tables and texts
given multi-hop questions.

QA with Table Answers. The work closest to
ours with respect to input and output modalities
is MultiTabQA (Pal et al., 2023). MultiTabQA
seeds on the Spider dataset, a text-to-SQL dataset
containing SQL queries, database tables, and nat-
ural language translations of the queries. Pal
et al. (2023) use table names occurring in SQL
queries to extract the input tables and query Spi-
der databases for answer table generation. While
the datas et also generates answers as tables, it
has certain limitations: (i) the benchmark input is
limited to tables; (ii) the input and output tables
are highly structured database tables which differ
from real-world scenarios where tables occur in
documents and websites in various formats; (iii)
the questions are limited to SQL-based queries.

3 Building the TANQ Benchmark

TANQ evaluates the capability to answer open
domain, multi-hop questions by aggregating data
and generating answer tables.

Figure 1: An example question in TANQ and its cor-
responding table answer. Supporting evidence from
multiple pages in a Wikipedia snapshot is provided for
each data point inside the table. We highlight the ratio-
nale inside each snippet in yellow. LLMs are evaluated
with or without access to the evidence.

3.1 Task Definition

A TANQ dataset instance is a triple (q, t,D),
consisting of an entity-centric question q, a table
answer t, and a document set D (see Figure 1).
To answer the multi-hop question q, first multi-
ple sub-answers are extracted from the document
set D. The answer is generated in table form
t = {ti,j |i ≤ n, j ≤ m} consisting of n rows
(i.e., one per extracted entities) and m columns.
The documents in D provide supporting evi-
dence for each cell of the answer table ti,j . D
is either provided as input to models (oracle set-
ting) or retrieved from the Wikipedia corpus as
D′ (open book) and can consist of texts, tables,
and infoboxes.

3.2 Preliminaries

QAMPARI. We use QAMPARI, which is an
open-domain QA dataset with lists of entities as
answers (Amouyal et al., 2022), as seed dataset.
QAMPARI further includes Wikipedia text as sup-
porting evidence for each entry of the answer list.
Different from prior QA datasets with short tex-
tual answers, they align to natural questions which
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Figure 2: TANQ creation pipeline consisting of five steps: 1. Extending QAMPARI questions with additional
relations based on Wikidata; 2. Evidence extraction (text, tables, infoboxes) from Wikipedia articles; 3. Evidence
evaluation and (gold) answer table generation; 4. Rephrasing of question from first step; 5. Augmentation with
additional skills to generate complex. We include a running example at the bottom.

require a list of answers extracted from multiple
sources. The dataset is semi-automatically created
with Wikidata and Wikipedia as data sources and
evaluated by human annotators.

WikiData. Following Amouyal et al. (2022),
we use Wikidata (WD) as a source for ques-
tion generation. Wikidata (Erxleben et al., 2014)
is a collaborative knowledge graph consisting of
triples of entities and relations, i.e., (e1, r, e2).
Entities ei are values (e.g., 1990) or items
that represent a real-world concept, object, or
a topic.2 Relations are edges connecting en-
tities, e.g., (DonaldTrump, instanceOf,
human), where Donald Trump is the head en-
tity and human the tail entity (Krishna et al.,
2022). We follow the notion for formal queries
over Wikidata introduced by Amouyal et al.
(2022) for QAMPARI. Applying a relation r as
query over WD items ei results in a set of (tail)
entities: [[r(e)]] = {ei|(ei, r, e) ∈ WD}.

Wikipedia. We extract supporting evidence in
the form of sentences, tables and infoboxes
(entity-tables at the top right corner of Wikipedia
articles) from Wikipedia (WP).

3.3 TANQ Benchmark Pipeline

Figure 2 provides an overview of the TANQ
pipeline outlining all steps for data collection,
processing, and evaluation. We use QAMPARI,
Wikidata, and Wikipedia, as well as PaLM-2 (Anil
et al., 2023b) for paraphrasing and validation.3

2https://en.wikipedia.org/wiki/Wikidata.
3Prompts provided in the appendix (Figures 4 and 6).

Step 1. Extending QAMPARI Questions
Starting with the QAMPARI questions and
answer lists of entities, we extend each question
q with additional WD relations using the answer
entities ea. QAMPARI questions are classified in
either simple, composition (e.g., ‘‘Who directed
movies screen-written by Steven Spielberg?’’)
or intersection (e.g., the example in Figure 1).
We first query the WD knowledge graph to
extract additional relations rext linked to ea, i.e.,
r[ea] = {eext|(ea, rext, eext) ∈ WD}. Hence,
each extension is a WD triple linking the
QAMPARI answer ea (e.g., Hey Ram in Figure 1)
through the relation rext (i.e., composer) to a
new extended entity eext, i.e., Ilaiyaraaja for
relation composer and answer entity Hey Ram in
Figure 1. We only select a relation which fulfils
two conditions. First, it is part of a predefined
relation set R, i.e., rext ∈ R. We manually
specify R based on the WD relation used to create
QAMPARI questions. Second, the relation exists
for all answers ea of question q. Given n extension
relations, which fulfil these conditions, we extend
the question q in a template-style fashion: ‘‘[q]
and what is their [rext1], [rext2], [...] and [rextn].’’
For example, the question in Figure 1, was
generated based on the initial question ‘‘Which
Indian movies were both directed and written
by Kamal Haasan?’’ through extending with
the WD relations composer and release year.
Additionally, we extract all extension entities eext
of the extension triple.

Step 2. Evidence Extraction from Wikipedia
Next, we collect for each extension triple (ea,
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Question Type Example Question

1. Simple Which Belgian Grand Prix did Michael Schumacher win, and when did that happen?

2. Intersection For which movie did Chris Columbus receive credits as both director and writer and
what was their composer, publication year, duration, and genre?

3. Composition Who choregraphed a work that was produced by the Royal Ballet? What was their
date of birth, place of birth, occupation, and which awards did they receive?

Skill

1. No skill What filmmaker directed a movie written by Val Guest and what is their place of birth,
date of birth, occupation, date of death, and place of death?

2. Filtering numeric Which film was directed and produced by Mel Brooks and what was their composer
and duration? Filter the answer table for duration equal to or larger than 88 minutes.

3. Filtering time Which Italian footballer transferred to Pro Sesto in summer of 2020 and what is their
date of birth, place of birth? Filter the answer table for date of birth equal to
or after 1985.

4. Filtering entity What pieces of writing did Gregory Benford edit? What were their publication dates
and publishers? Filter the answer table for publisher equal to Bantam Books.

5. Date-to-year conversion Who were the members of Black Sabbath and what was their year of birth, genre,
instrument, and occupation?

6. Quantity conversion What work did Michael Mann write and direct and what was their publication date,
duration in hours, genre, director of photography?

7. Time calculation Which governor of Connecticut died while in office? What was their place of birth,
occupation, date of death, date of birth, political party and how many years did they live?

8. Approximation What are the townships in Harper County, Kansas and what is their population
rounded to the nearest ten?

Table 2: An overview of TANQ question types and skills we use for augmenting the questions for more
complex reasoning in the final step of the TANQ pipeline in Figure 2.

rext, eext) supporting evidence using Wikipedia
as an evidence source. Hereby, we search for
supporting text, tables and infoboxes in the WP
articles of ea and eext. We apply simple heuristics
and search for mentions of ea in the eext article
and vice versa. Moreover, we extend our queries
with additional (heuristic-based) query words, for
example, considering different formats of how
numbers and dates are represented in queries.

Step 3. Evidence Evaluation & Answer Table
Generation To evaluate the correctness of the
previously collected evidence texts, tables, and
infoboxes, we employ PaLM-2 as an evidence
evaluator. We prompt the LLM to evaluate the
extracted evidence in a natural language infer-
ence setting. For each extension triple (ea, rext,
eext), we construct template-based sentences s:
‘‘〈ea〉〈rext〉〈eext〉’’, e.g., ‘‘Hey Ram composer
Ilaiyaraaja’’ for row 2 in Figure 1. We query
the LLM to label the sentence s as ‘‘supported’’,
‘‘refuted’’, ‘‘not enough information’’ based on
the provided evidence in form of a sentence, table

or infobox entry. We then only consider the triples
supported by at least one piece of evidence.4

Answer Table. Each extended relation corre-
sponds to a column in the answer table (e.g.,
column ‘‘Composer’’ in Figure 1). Since the ques-
tion in Figure 1 is extended with two additional
relations (i.e., composer and release year), the
resulting answer table has three columns. Hence,
each cell in the answer table corresponds to a WD
triple. For example, (Hey Ram, composer,
Ilaiyaraaja) for cell ‘‘Ilaiyaraaja’’. Some
generated answer tables contained multiple en-
tries in a single cell, as seen in the genre column
of Table 7. To generate realistic tables, we filtered
out samples with more than five entries in any
single cell, resulting in a test set of 1,074 TANQ
samples for evaluation.

Step 4. Question Rephrasing This step in-
creases the naturalness of template-based exten-
sion questions generated in Step 1. Similarly to

4See Figure 4 for the exact prompt we used.
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Type # % Type # %
WD Item 57.6k 79.1 Numeric 3.2k 4.4
Time 11.9k 16.4 Text 46 0.1

Table 3: Types of Wikidata entities we use in
the first pipeline step (see Figure 2) to extend
QAMPARI and generate TANQ questions. We
mostly use Wikidata (WD) items.

the earlier step, we prompt a PaLM-2 model in a
few-shot setting. To ensure the question meaning
is preserved during rephrasing, we add structured
annotations in parenthesis to questions with the
name of each relation (e.g., ‘‘Which Indian movies
were both directed (directed by) and written by
(written by) Kamal Haasan?’’). We run up to 5
iterations of rephrasing and stop if all relations are
present, or discard the question otherwise.5

Step 5. Augmenting with Skills Finally, to
generate more challenging questions requiring
further reasoning capabilities beyond retrieval,
we extend TANQ questions by asking for real-
istic post-processing steps. Overall, we augment
questions with the following additional skills: (i)
Filtering of answer table given a numeric, time,
or attribute condition (rows 2–4 in Table 2); (ii)
Conversion of numbers, dates, locations and cor-
responding units (rows 5–7 in Table 2); (iii)
Calculation and introduction of an additional
table column based on time attributes (e.g., ‘‘lifes-
pan’’ in row 8 in Table 2). (iv) Approximating
numbers to the nearest ten, hundred, etc. (see
last row of Table 2). We use up to three distinct
skills for augmenting TANQ questions. Table 4
provides a breakdown of TANQ dataset samples
across skills.

3.4 Dataset Statistics and Analysis

Overall, the generated TANQ dataset has 1395
entries, 36.1% of question type simple, 40.9%
intersection, and 22.9% composition questions.
We further plan to release a TANQ training set
with approximately 42k samples. Approximately
72.4% dataset instances (i.e., 1,010) require at
least one additional skill to answer the question.
See Table 4 for a breakdown of skills and question
types in TANQ. TANQ questions have an aver-
age a length of 21 tokens and require extracting
information about three relations on average. On
average, TANQ answer tables have 6.7 rows and

5See Figure 6 for the exact prompt we used.

Question Type Count Freq (%)

1. Simple 428 39.9
2. Composition 164 15.3
3. Intersection 482 44.9

Skill

1. No skill 160 14.9
2. Filtering numeric 66 6.1
3. Filtering time 190 17.7
4. Filtering entity 268 25.0
5. Date-to-year conversion 230 21.4
6. Quantity conversion 64 6.0
7. Time calculation 23 2.1
8. Approximation 73 6.8

Skills per question

1. No skill 300 27.9
2. One skill 657 61.2
3. Two skills 94 8.8
4. Three skills 23 2.1

Table 4: Question types and skills in TANQ.
Simple denotes questions which require neither
composition nor intersection. See Table 2 for
exemplary questions.

4 columns. See Table 3 for WD entity types used
for extending QAMPARI questions.

3.5 Manual Evaluation of the Pipeline

We manually evaluated 100 TANQ samples to
assess if noise is introduced through the dataset’s
automated generation pipeline. The focus of the
analysis was twofold. First, examining the initial
questions sourced from the QAMPARI dataset
and, second, evaluating the generation of TANQ
questions over the different pipeline steps. We
identified five issues which are discussed below.

Propagation of QAMPARI Issues. While oc-
curring only for a small subset of questions,
one observation was that some errors present in
the initial QAMPARI questions were propagated
through the pipeline without being corrected. In
2 out of the 100 samples, the original QAM-
PARI questions contained issues, one was carried
into TANQ while the other was fixed. Exam-
ples include: ‘‘Robert Benton is the screenwriter
and director of which software?’’ This question
confuses a film with software as we see by con-
sidering the requested attributes, i.e., screenwriter
and director.

While these logical errors were carried for-
ward into TANQ grammatical errors, for example,
were fixed during rephrasing with LLMs: ‘‘Black
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Figure 3: Prompts for baseline evaluation on TANQ: closed book, oracle, and open book with augmented tools.

Sabbath had who as a member?’’—issues phras-
ing that was later improved to ‘‘Who were the
members of Black Sabbath [...]?’’.

Partially Revealed Answers. In 3 out of 100
evaluted questions, the question itself partially
contained the answer, rendering the query less
meaningful: ‘‘Eon Productions and Harry Saltz-
man produced what series and what was their
genre, director of photography, duration in sec-
ond, producer, country of origin, composer,
publication date, narrative location, screenwriter,
and director?’’—in this case, the ‘‘producer’’ is
already mentioned in the question.

Grammar and Expression Errors. Minor
grammatical issues introduced through the TANQ
pipeline were found in 2 out of the 100 samples.
In one cases, this was fixed during the rephras-
ing process, while other remained unresolved. For
example, ‘‘+89 minute’’ was rephrased to ‘‘89
minutes’’ in the sentence, ‘‘Which film was di-
rected and produced by Mel Brooks and what
was their composer, genre, duration? Filter the
answer table for duration equal to or larger than
+89 minute.’’ However, ‘‘Larger than 89 min-
utes’’ remained, but ‘‘longer than 89 minutes’’
would be more appropriate for this sentence.

Ordering of Relations. While our evaluation
metrics is not sensitive to the ordering of columns
within the answer table, the order of relation
appeared confusing for some questions. This oc-
curred for 7 out of the evaluated 100 examples as

shown here: ‘‘What filmmaker directed a movie
written by Val Guest and what was their date of
birth, place of death, date of death, and place
of birth?’’—the order of personal attributes (i.e.,
date and place of birth, date and place of death)
seems unnatural as date of birth would naturally
be followed by place of birth.

Ambiguous or Unclear Relations. In 4 out of
the 100 samples, certain relations were ambiguous
or unclear, causing confusion about what exactly
the question was asking for. Such as, ‘‘Who di-
rected the movie which had the screenwriting
done by Marc Norman and what was their date of
birth, language spoken, written or signed, place of
birth, sex or gender, country of citizenship, occu-
pation?’’—here, the attribute ‘‘language spoken,
written or signed’’ is not clearly related to the
director in question.

While we observed five different issues during
the manual evaluation of the TANQ pipeline, these
occurred only in a limited number of samples out
of 100 evaluated ones. Thus, while these errors
are present, they are not widespread enough to
strongly impact the overall quality and utility of
the TANQ dataset.

4 Baselines & Evaluation

We evaluate TANQ in (i) closed book, (ii) oracle,
and (iii) open book setups. We give an overview
of the different approaches in Figure 3.
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Closed Book. The closed book setup evalu-
ates LLMs’ capabilities in extracting relevant
information acquired during training to answer
TANQ questions. For all experiments, we use
the PaLM-2 Unicorn model (Anil et al., 2023b),
GPT4o (Brown et al., 2020), Gemini Pro and
Flash (Anil et al., 2023a), as well as Gemma 9B
(Rivière et al., 2024). We evaluate all baselines in
a few-shot setting with three examples provided
in the prompt (see top left prompt in Figure 3).

Oracle. In the oracle setup, we provide models’
source attribution for every cell of the answer
table in form of oracle documents (i.e., text, ta-
bles, and infoboxes). Hence, the prompt consists
of the TANQ question and multiple evidence sen-
tences, infobox entries and/or tables (see bottom
left prompt in Figure 3). To provide further con-
text, we include the Wikipedia page title (for text
evidence also sub-/section titles) where the evi-
dence was extracted. Moreover, we add randomly
selected oracle documents from other questions
with similar attributes. This makes the oracle set-
ting more challenging and requires models to filter
the correct evidence from all provided ones first.
We exclude models with a context length of less
than 4k from the oracle evaluation. The evidence
samples require a longer context to be fully dis-
played. Otherwise, performance may decrease due
to the input being cut off.

Open Book. For the open book baseline,
we extend the PaLM-2 Unicorn model with
external tools for search and calculation. The
Wikipedia-based search tools aim to mimic the
human search approach on Wikipedia similar to
Yao et al. (2023). The agent model can access
Wikipedia information through three tools: (1)
WikiSearch(keywords): a keyword based
Wikipedia search that returns the Wikipedia arti-
cle most relevant to the provided keywords; (2)
FindEvidence(article, keywords):
an article-specific search that returns matched
sentences, tables and infobox entries given
keywords and a Wikipedia article; (3) Get-
Intro(article): returns the introduction
section of a Wikipedia article. For calculations,
we provide the model a Python engine as an
external tool, (4) Python(calculation).
We design the agent model to decompose and
solve the TANQ task in multiple sub-tasks,
consisting of (i) retrieving requested entities in

an iterative manner (e.g., movies in Figure 1),
(ii) searching for entity-related information (e.g.,
release year), (iii) post-processing information
(filtering, calculation, etc.), and finally (iv)
aggregating the information in form of a table.
For some sub-tasks (e.g., entity retrieval), a
separate sub-agent augmented with the required
tools (e.g., WikiSearch) is spawned.

Human Baseline. We compare model perfor-
mance against human performance based on 100
answer tables generated by annotators. We pro-
vided the annotators the same input prompt as the
models in the oracle setting (i.e., TANQ questions
and evidence for each answer table cell).

Evaluation Metrics. To evaluate answer tables,
we adopted a version of the relative mapping
similarity (RMS) metrics introduced by Liu et al.
(2023). RMS views tables as unordered collections
of mappings from row/colum headers to values.
Hence, the metric is invariant to transpositions and
column/row permutations. It allows small errors
between tables keys/values of target and reference
tables using the Normalized Levenstein Distance
(Biten et al., 2019). The metrics returns both
precision and recall scores.

To evaluate the generated answer tables, we
first converted table entries into a list of triplets.
Each triplet consists of (i) the entity name (given
in the first column of the answer table), (ii) the
relation names (i.e., column names), and (iii)
the content of a table cell. If a table cell contains
multiple values, such as in column Genre in
Table 7, the cell content is split into multiple
triplets with the same entity name and attribute
name, but with different values extracted from
the cell. For example, given Table 7, the resulting
splitted triplets contains multiple triplets for
genre: {(Evita, duration, 129 min),
(Evita, genre, biographical film)
(Evita, genre, musical), ...}.

After generating triplet lists for the gold table
and the model-generated answer table, we cal-
culate the similarity between them using relative
distance for numbers and Normalized Levenshtein
Distance for text across each field in the triplet.
Each triplet in the target is matched with its clos-
est triplet in the prediction greedily and thus we
can compute weighted precision and recall, in the
same manner as Liu et al. (2023). The evaluation
code will be released.
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Model simple composition intersection all
P R F1 P R F1 P R F1 P R F1

Oracle setting
Gemini Pro 41.5 38.1 37.6 39.8 36.7 36.6 42.4 40.6 40.0 41.5 38.9 38.4
Gemini Flash 66.4 59.0 60.4 67.4 58.4 60.4 66.8 59.3 61.1 66.8 59.0 60.7
GPT4o 58.2 47.0 49.1 50.7 45.8 44.5 53.1 42.9 44.2 54.3 44.9 45.9
Human 81.2 74.0 73.0

Closed book setting
PaLM-2 55.5 48.1 49.6 50.6 45.7 46.6 52.1 45.5 46.6 52.9 46.4 47.6
Gemma 38.9 26.7 27.9 37.4 25.8 26.6 39.3 26.2 27.7 38.8 26.3 27.5
Gemini Pro 46.9 30.3 31.1 43.8 29.5 30.4 47.8 32.0 33.5 46.6 30.9 32.0
Gemini Flash 37.4 29.0 31.3 36.2 27.2 29.6 36.6 28.8 30.7 36.8 28.5 30.7
GPT4o 46.8 26.6 29.1 28.1 16.0 18.1 35.9 22.3 24.4 37.9 22.4 24.6

Open book setting
Tool LM 24.2 20.3 18.4 43.6 33.0 36.8 50.8 44.2 46.6 39.7 33.4 34.5

Table 5: Baseline performance by question type. For all question types, we observe Gemini Flash (60.7
F1) and PaLM-2 (47.6 F1) to outperform other baselines in oracle and closed book setting respectively,
lagging 12.3 and 25.4 points behind the human baseline of 73.0.

5 Results & Discussion

In this section, we address key research ques-
tions: (1) Is TANQ a challenging dataset for
state-of-the-art models? (2) How do models
perform in a closed book setting compared to
using external context (oracle)? (3) How ef-
fective are tool-augmented models on TANQ?
(4) What challenges arise from different TANQ
specifications—question types, reasoning skills,
etc.? (5) What are the common failure cases of the
evaluated models?

5.1 Question Types

In Table 5, we compare the performance of all or-
acle, close, and open book baselines. In the oracle
setting, we find Gemini Flash consistently outper-
forming other models with an overall F1 score of
60.7, followed by GPT4o. However, still, a con-
siderable gap remains to the human baseline of
73.0. Both models experience a significant drop in
performance in the closed book setting, falling be-
hind the smaller, best-performing PaLM-2 model.
Notably, PaLM-2 achieves higher recall scores,
indicating that while the other models can gen-
erate some rows of the answer tables, they are
slightly less accurate than PaLM-2, and their
resulting tables are shorter, containing fewer en-
tities. Different to Gemini Flash/Pro and Gemma,
GPT4o and PaLM-2 struggle with more complex
questions types, i.e., composition and intersection

questions. Moreover, the 9B-sized Gemma model
demonstrates performance comparable to much
larger models in closed book evaluation.

5.2 Evaluation with Diverse Prompts
In addition to the evaluations discussed in
Section 5, we further assessed the baselines to
examine the impact of (i) instruction tuning
and (ii) demonstration selection on the models’
performance on TANQ. Table 15 compares the
performance of baselines across different num-
bers of demonstrations in the input prompt (i.e.,
1-, 3-, and 5-shot), while Table 16 provides an
overview of how different instruction styles affect
the performance of Gemini Flash.

For almost all baselines, performance improves
slightly when the number of input examples is
increased from 1 to 3 in the prompt. However,
no further improvements are observed with an
increase to five examples, supporting our decision
to evaluate models in a 3-shot setting. Except for
Gemini Pro and GPT4o, manually selecting input
examples does not yield enhanced performance.

When comparing the performance of the
top-performing oracle baseline, Gemini Flash,
across different instruction styles, we find that
the detailed (B), step-by-step (C), and simple (D)
instruction styles yield similar performance (see
Figure 6). In contrast, using an empty instruc-
tion (A)—where we provide only input examples
without additional details—results naturally in
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Model Filter num Filter time Filter entity Date2Year Quantity conv Time calc Approx
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Oracle setting

Gemini Pro 32.8 28.9 29.0 40.7 38.6 38.1 42.7 39.9 39.0 39.5 36.2 36.3 43.5 38.1 39.0 40.8 41.5 39.3 48.8 45.4 45.2

Gemini Flash 60.6 53.9 55.3 68.6 60.8 62.6 68.3 59.4 61.6 66.0 58.5 60.1 71.6 60.8 63.5 68.1 58.2 59.6 69.3 65.2 65.5
GPT4o 56.0 47.0 45.8 53.6 45.7 47.7 55.9 46.0 47.2 42.1 35.5 35.3 47.5 41.1 43.2 81.6 65.8 71.8 34.2 35.3 34.3

Closed book setting

PaLM-2 50.5 46.3 46.9 53.9 47.1 48.0 54.9 48.5 49.7 51.4 44.7 46.1 51.5 45.2 46.8 53.1 48.3 50.1 52.3 43.4 45.7
Gemma 37.4 26.5 27.8 37.1 26.4 27.3 40.3 26.2 27.6 40.4 27.4 28.7 37.4 23.8 25.2 39.2 27.4 29.3 40.8 27.5 29.6
Gemini Pro 50.2 28.3 29.3 48.5 31.4 32.4 46.3 31.2 32.4 46.1 30.6 31.9 48.0 31.4 33.5 51.4 33.9 35.3 42.8 30.2 31.4
Gemini Flash 38.7 29.5 32.1 35.8 26.7 29.1 36.2 27.7 29.9 35.9 27.8 29.7 36.6 28.0 29.1 34.8 27.5 30.1 37.1 27.1 30.0

GPT4o 30.7 21.8 24.5 37.8 24.0 24.9 46.5 25.6 28.7 31.2 18.9 20.6 25.5 12.7 16.1 48.3 25.3 26.6 24.0 17.6 19.6

Open book setting

Tool LM 48.7 39.1 43.1 36.1 29.7 30.3 37.6 33.0 34.2 53.1 37.8 41.9 33.8 28.4 30.2 25.8 18.2 21.1 48.3 44.0 45.9

Table 6: Baseline performance by skills required to answer the question: Filtering with
numerical/datetime/entity conditions, date-to-year (Date2Year), quantity conversion, time calculation,
and approximation. In the oracle setting Gemini Flash performs best across all skills, while PaLM-2
performs better in the closed book evaluation.

decreased performance (see Table 16). For our
evaluation in Section 5, we used the simple
instruction style, as additional details as per
instruction B and C did not contribute to observ-
able performance improvements on the evaluated
models.

5.3 Reasoning Skills
Table 6 presents the performance of models on
more challenging questions requiring further skills
such as filtering and time conversion.

Gemini. Overall, questions requiring filtering
with numerical conditions pose the biggest
challenge for Gemini models resulting in a perfor-
mance drop compared to other skills. For example,
Gemini Flash’s performance drops from 60.7 F1
(overall) to 55.3 in oracle evaluation.

PaLM-2. For PaLM-2, we observe that the
model struggles particularly with questions requir-
ing numeracy, i.e., approximation of numerical
values, quantity conversion, calculations based on
datetime attributes, and filtering with numerical
conditions. This challenge does not persist in the
open book baseline where PaLM-2 is augmented
with a calculator tool. Despite these limitations,
the PaLM-2 model outperforms all other baselines
across all skills in the closed book setting.

GPT4o. For GPT-4o, no clear patterns are
observed regarding its limitations in specific rea-
soning skills. In both the oracle and closed book
scenarios, the model struggles with date-to-year

Film Duration Genre Publication

Evita 129 min biographical film,musical 1996

Table 7: Example TANQ answer table with multi-
ple entries in a single cell, i.e., ‘‘biographical film,
musical’’.

Model One skill Two skills Three skills
P R F1 P R F1 P R F1

Oracle setting
Gemini Pro 42.3 39.9 39.3 36.3 32.4 32.4 46.5 41.0 41.3
Gemini Flash 66.8 58.6 60.6 67.4 59.4 60.8 74.5 68.8 70.1
GPT4o 51.5 42.4 43.3 50.7 46.4 47.6 51.0 39.7 44.7

Closed book setting
PaLM-2 52.8 46.2 47.4 52.0 46.9 47.9 57.0 47.1 50.5
Gemma 37.9 25.8 26.9 42.4 28.9 30.3 42.5 26.2 29.5
Gemini Pro 46.9 30.4 31.5 46.4 32.8 34.4 50.1 30.2 31.0
Gemini Flash 35.6 27.8 29.9 37.4 28.3 30.6 39.5 23.2 25.9
GPT4o 39.4 24.7 26.5 32.5 14.5 17.6 9.4 1.8 3.0

Open book setting

Tool LM 40.7 33.5 35.0 46.4 35.6 39.8 − − −

Table 8: Baseline performance by number of
skills required to successfully answer the TANQ
questions.

conversions and the approximation of numerical
values. However, it outperforms other closed book
baselines in time calculations.

Number of Skills. Table 8 shows baseline per-
formance by the number of skills required to
generate the correct answer table. We observe
across baselines a stable performance as the num-
ber of skills increases and questions become more
complex. Except GPT4o, which shows significant
performance decreases as the number of skills
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Model One Relation Three Relations Five Relations Ten Relations

P R F1 P R F1 P R F1 P R F1

Oracle setting

Gemini Pro 41.6 39.2 38.6 42.2 40.7 39.5 38.5 36.2 35.0 35.8 36.0 35.8

Gemini Flash 67.0 59.5 61.1 68.5 59.2 61.8 64.7 58.6 59.5 64.7 58.4 60.5
GPT4o 55.1 44.7 45.8 63.2 53.6 53.5 74.9 43.3 50.2 23.8 19.4 20.5

Closed book setting

PaLM-2 53.7 47.4 48.4 51.8 45.2 46.0 54.2 47.7 48.8 62.4 47.7 48.9
Gemma 38.5 26.3 27.6 35.6 25.6 26.5 47.6 30.5 31.1 42.0 35.8 37.8

Gemini Pro 45.6 32.6 33.5 47.7 30.8 31.4 51.1 29.4 29.9 43.9 39.2 40.9

Gemini Flash 36.6 28.6 30.7 37.7 28.4 31.0 35.3 26.9 28.6 36.1 26.1 29.4

GPT4o 37.5 21.9 24.4 33.6 25.1 27.8 55.6 15.4 18.2 34.3 21.3 23.2

Open book setting

Tool LM 31.6 32.0 30.2 42.4 33.7 36.7 34.0 32.9 33.0 18.4 17.8 18.1

Table 9: Baseline performance by number of relations in TANQ questions (i.e., corresponds to number
of columns in the answer table). Most baselines demonstrate a stable performance as relations increase.

increases in the close book setting, e.g., from 26.5
(one skill) to 17.6 (two skills).

5.4 Relations in TANQ Questions

Table 9 demonstrates baselines’ performance
across the number of relations in the given ques-
tion. For example, in Figure 1 two relations, i.e.,
composer and release year, are requested for the
movies specified in the question. While multi-
ple models show a performance decrease with an
increasing number of relations, this gap is partic-
ularly significant for the tool augmented model
where the F1 score decrease by almost twelve
points comparing questions requiring 1 relations
vs. 10. Moreover, we observe for most base-
lines (oracle/close/open book) little performance
drops comparing questions with 1 relation to those
with 3—indicating that up to a certain limit mod-
els can successfully retrieve information for an
increasing number of relations. However, the per-
formance gaps increase for GPT4o (close) and the
tool-augmented model as the number of relations
increases further, i.e., from 3 to 5 and from 5 to 10.

5.5 Answer Table Length

Table 10 gives an overview of model performance
across different answer table lengths: short answer
tables (up to 3 rows), medium (up to 6 and long
tables (7 or more rows). Models that perform
well on longer tables are GPT-4o, Gemini Flash,
and PaLM-2. As table size increases, so does
the number of rows the models can correctly

Model Short Medium Long
P R F1 P R F1 P R F1

Oracle setting

Gemini Pro 47.0 41.2 39.9 42.3 38.1 37.8 41.1 39.3 38.8
Gemini Flash 68.6 56.6 58.3 66.2 56.0 58.0 67.2 60.6 62.2
GPT4o 62.9 31.6 36.3 53.1 37.4 39.5 55.0 49.7 50.0

Closed book setting

PaLM-2 56.4 43.9 43.7 54.5 45.0 45.9 51.9 47.3 48.5
Gemma 35.8 25.8 25.6 37.6 25.1 25.9 39.4 27.0 28.4
Gemini Pro 47.8 29.6 29.7 45.9 31.5 32.7 47.0 30.5 31.6
Gemini Flash 32.9 25.7 25.6 36.3 27.9 29.4 37.1 28.9 31.4
GPT4o 30.6 13.0 14.9 35.3 17.8 20.2 39.6 25.4 27.5

Open book setting

Tool LM 23.2 29.2 23.0 33.3 31.7 30.9 43.3 34.3 36.5

Table 10: Baseline performance by length of an-
swer tables. Short tables have <3 rows, medium
tables up to six, and long tables >7 rows. Most
baselines show little performance variation across
table sizes.

retrieve, resulting in higher recall scores, while
precision slightly drops for most oracle baselines
models. It is apparent that the model struggles with
extracting correct information from the growing
list of provided oracle documents as the table size
increases. This is obviously not the case for close
book evaluation as no oracle documents are given
as input.

5.6 Failures Types

Hence, we further study common failures cases
of oracle baselines (see Table 11). The aim is
to understand challenges related to TANQ when
the model has access to necessary information, in
form of oracle documents.
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Failure Type Gemini PaLM-2 GPT4o Tool LM

Rel missing 37.3 33.3 0 3.9
No header 27.5 3.9 0 5.9
Filter issues 15.7 15.8 4.0 5.9
Halluc. relations 5.9 9.8 5.9 2.0
Halluc. other 0 15.7 0 7.8
Missing entity 80.4 58.8 27.5 78.4
Non-table 31.4 21.6 0 15.7
Partial answers 3.9 23.5 2.0 0
Wrong answer 14.9 7.8 9.8 13.7

Table 11: Common failure types: relations miss-
ing in answer table, no column header, filter
issues (e.g., filter condition ignored), hallucinated
relations, other types of hallucinations, missing
entity (i.e., row), output not in table format, par-
tial answers in one or multiple table cells, wrong
answer given in one or multiple cells. Scores
given as % of all annotated samples.

We manually evaluate a subset of model predic-
tions to identify common failure cases, categorized
as follows: 1.) Relation missing: At least one
expected relation (column) is missing; 2.) No ta-
ble header generated; 3.) Filtering: Conditions
(attribute, numeric, dates) ignored or incorrectly
applied; 4.) Hallucinated relations: Unrequested
columns are added; 5.) Other hallucinations;
6.) Missing entity: Expected rows are missing;
7.) Non-table answers: Text or non-table format
returned; 8.) Partial answers: Incomplete infor-
mation for a given entity or attribute; 9.) Wrong
answer (cell): Incorrect cell content.

Comparing open and oracle baselines, our ob-
servations show that the best performing model,
w.r.t least failures, is GPT4o (oracle). The only
significant failure category we identify for GPT4o
are missing entities in generated answer tables.
The most present issue we observe for Gemini
Pro (oracle) are missing entities, missing rela-
tions, resulting in answer tables with a subset of
columns, non-table outputs, and missing headers
of generated tables. Similarly, multiple aspects
pose a challenge for PaLM-2 (oracle), including
hallucinations, missing entities/relations, and ap-
plying filtering conditions correctly. For the tool
augmented model, missingentities is a frequentissue.

5.7 Detailed Evaluation of the
Open Book Model

It is noteworthy that the open book, ReAct-based,
baseline performed worse than other baselines,
also the closed book ones. To better understand

name located in
building Old Main at the University of Arkansas Arkansas

Table 12: Example issue related to formatting
answer tables: The first column is redundant.

the limitations of the open book baseline, we man-
ually evaluated the reasoning chains generated by
the model for 50 TANQ samples. These chains
outline the verbal reasoning processes and actions
taken by the model in an interleaved manner. Our
evaluation identified six different areas where the
open book model struggles.

Retrieval of a Complete Entity List. The most
prevalent issue, found in 19 out of 50 samples,
was that the answer list did not contain all entities
of the target table. Our review of the ReAct chain
logs showed that the model often terminated the
search for further entities after finding a list of
entities. For example, it might start searching in
the introduction section of a Wikipedia article
and identify some movies directed by a particular
director, but then fail to continue searching the
rest of the page, missing additional films.

Generation of Correctly Formatted Answer
Tables. We also found issues related to an-
swer table formatting in 7 out of 50 samples. For
instance, in one case, the name column was incor-
rectly replicated into a table row (i.e., ‘‘Building’’
below in Table 12).

Retrieval of Attributes. In six out of fifty sam-
ples, the model retrieved entities but failed to find
attributes for all entities, resulting in partly empty
rows (see Table 14).

Answering Intersection Questions. A similar
issue arises with intersection questions, which ask
for entities that fulfill multiple conditions. For
example, ‘‘What science fiction films were both
written and directed by Steven Spielberg? What
is their genre, publication date, and duration?’’
The open book model often produced tables that
fulfilled only one of these conditions, such as
listing films written by Steven Spielberg without
considering if he also directed them. This problem
occurred in 5 out of the 50 evaluated examples.

Answering Composition Questions. As the
name suggests, composition questions require the
model to first retrieve a list of intermediate entities,
which are then used to compile the final entity list
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needed for the answer table. For example, consider
the question: ‘‘Who directed the film that Jules
Feiffer wrote? What is their occupation, date of
death, date of birth, country of citizenship, place
of birth, and award received?’’ The model should
first retrieve the films as intermediate entities to
identify the requested directors. However, in four
out of the fifty evaluated samples, the model gen-
erated answer tables that included intermediate
entities only instead of the requested entities. For
instance, the answer table for the above question
looked as demonstrated in Table 13. The first row
correctly shows the directors, but the second and
third rows contain the names of movies written by
Jules Feiffer rather than their directors.

Applying Filters to the Generated Table. Fi-
nally, the model commonly ignored filtering
conditions specified in the input question. We
observed this in 10 out of 50 samples. For exam-
ple, in the question: ‘‘Who was a mayor of Saint
Paul, MN, and what was their occupation, position
held, and date of birth? Filter the answer table
for date of birth equal to or before 1829,’’ the
resulting table included mayors born after 1829,
failing to apply the requested filter.

6 Future Work

Our results on TANQ highlight the need for
qualitative benchmarks, metrics, and modeling
approaches to address current limitations.

We initially used the RMS metrics from Liu
et al. (2023) to evaluate table generation. How-
ever, RMS was developed for the chart-to-table
conversion task, which involves mostly numer-
ical tables. In contrast, TANQ tables contain
significant text content, leading to variations
such as expressing ‘‘USA’’ as ‘‘United States.’’
Another difference is the more diverse table struc-
ture, where cells often contain lists of values.
We adapted the RMS metrics for TANQ (see
Section 5). Our experiments indicate that this ver-
sion of RMS strikes a good balance of providing
signal, being simple to explain and implement,
and being fast to execute. However, further re-
search on table evaluation is necessary to consider
a broader range of formats.

Interestingly, we found that smaller models like
Gemma (9B parameters) performed surprisingly
well. While Gemma was not among the top models
for any specific skill or question type in the closed

book setting, it did not fall far behind models that
are significantly larger, such as PaLM-2, Gemini
Pro, and GPT-4o. This suggests that, despite its
smaller size, models like Gemma and Gemini
Flash offer promising results, though there is still
room for improvement. While the size of Gemini
Flash is undisclosed, it is known to be smaller
than Gemini Pro, further highlighting that scale
alone does not guarantee better performance on
complex reasoning tasks. This raises an important
question for future research: How can we further
enhance the performance of smaller models?

Additionally, while tool-based LMs are pop-
ular, our results suggest that they may not be
the optimal choice in domains where up-to-date
knowledge is not required, especially for an-
swering simple questions. For more complex
questions involving intersecting information,
tool-augmented LMs perform comparably to other
baselines, but for simpler questions, they lag
behind both oracle and closed book baselines.

Numeracy remains a challenge for state-of-
the-art models. Despite advancements in numer-
ical reasoning with LLMs, many models still
struggle with questions requiring simple numeri-
cal skills such as filtering the content of a based on
a numerical condition. While progress has been
made in recent years (Imani et al., 2023; Akhtar
et al., 2023; Chen et al., 2022), challenges remain.

Another challenge is that all evaluated models
tend to generate incomplete answer tables, of-
ten missing some entities (rows) and relations
(columns) from the target table. Future work
should focus on developing methods to address
these limitations and generate answer tables that
capture the entire requested information. Address-
ing these issues and improving table evaluation
metrics are important areas for future research.

7 Conclusion

This paper introduces TANQ, the first open
domain question answering dataset where the an-
swers require building tables from information
across multiple sources. To create TANQ, we de-
sign and apply an automated dataset pipeline using
large language models and Wikipedia and Wiki-
data as knowledge sources. We further release
for each cell of the answer tables source attribu-
tion in form of text, tabulation, or infobox proofs.
We evaluate our dataset on state-of-the-art models

473



in three different setting: oracle documents pro-
vided, closed, and open book setting. Our results
and analysis suggest that TANQ is a complex task
with many challenges ahead.
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A Modeling Details

For our experiments, we use the following
GPT4o model available over the OpenAI API:
gpt-4o-2024-08-06.6 The PaLM-2 model
we used for the pipeline and evaluation purposes
was the model variant with 340B parameters.

B Prompt Templates

Figures 5 and 6 show the prompts used for
evaluating the extracted evidence and rephrasing
the TANQ questions to increase the naturalness of
template-based questions. Figure 7 shows prompts
for the four instruction variants we evaluated:
empty, simple, detailed, and step-by-step.

6https://platform.openai.com/docs
/models/gpt-4o.
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Figure 4: Prompt used for evidence evaluation. We prompt a language model to evaluate the extracted evidence
in a natural language inference setting. The LLM labels the input statements as ‘‘verifiable’’ or ‘‘not verifiable’’
based on evidence provided in form of a sentence, table, or infobox.

Figure 5: Rephrasing questions increases the naturalness of template-based extension questions. To ensure the
question meaning is preserved during rephrasing, we add structured annotations in parenthesis to questions with
the name of each relation.
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Name Occupation Date of Death Date of Birth Citizenship Place of Birth Award Received
Mike Nichols director, producer November 19, 2014 November 6, 1931 United States Berlin, Germany Academy Award [...]
Popeye Sailor January 17, 1929
Munro

Table 13: Example table for issues related to composition questions in open book baseline. While the
question asks for directors, the second and third row contain movies.

Director Producer Dir. of Photography Composer Genre Publication

The Life and Death of Colonel Blimp Michael Powell E. Pressburger Georges Périnal Allan Gray Drama, War 1943

A Canterbury Tale Michael Powell E. Pressburger Erwin Hillier Allan Gray Drama, Romance 1944

A Matter of Life and Death Jack Cardiff Allan Gray Fantasy, War 1946

The Tales of Hoffmann Jacques Offenbach

Table 14: Example table for issues related to missing attributes in answer tables. For the last row no
relation other than director could be retrieved.

Model One Shot Three Random Shots Three Manual Shots Five Shots
P R F1 P R F1 P R F1 P R F1

Oracle setting

Gemini Pro 41.8 38.2 37.8 41.5 38.9 38.4 50.8 40.0 39.0 41.8 38.2 37.8

Gemini Flash 54.7 56.8 50.8 66.8 59.0 60.7 67.1 57.7 59.4 54.7 58.2 53.3

GPT4o 55.4 44.9 46.6 54.3 44.9 45.9 39.9 34.8 35.4 48.8 40.1 40.7

Closed book setting

PaLM-2 46.4 42.9 43.2 52.9 46.4 47.6 52.3 45.8 47.0 52.1 45.8 47.0

Gemma 28.0 18.2 19.2 38.8 26.3 27.5 40.9 30.6 31.8 38.5 33.1 34.6

Gemini Pro 37.9 33.6 34.3 46.6 30.9 32.0 44.9 26.8 30.5 39.2 28.7 29.9

Gemini Flash 21.3 25.9 18.6 36.8 28.5 30.7 33.5 30.2 30.1 29.9 28.6 23.9

GPT4o 37.2 23.6 26.3 37.9 22.4 24.6 66.1 15.7 16.2 38.1 18.9 20.4

Table 15: Evaluation results of models with different prompt settings. For most baselines the 3-shot
setting yields the best results.

Model Empty Instruction Detailed Instruction Step-by-Step Instruction Simple Instruction
P R F1 P R F1 P R F1 P R F1

Oracle Setting 61.8 55.4 56.4 66.8 60.2 61.8 67.2 60.3 61.6 66.8 59.0 60.7

Closed Book Seeting 34.2 25.7 28.5 37.5 27.0 29.6 36.1 29.1 31.2 36.8 28.5 30.7

Table 16: Evaluation results of three-random-shots prompt with different instruction styles on Gemini
Flash. We observe clear difference with/without instruction but almost the same result on different
instruction styles. Figure 6 shows the text for the different instruction variants.
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Figure 6: Four instruction variants we evaluated: empty, simple, detailed, and step-by-step.

Figure 7: Json schema description of a TANQ dataset entry outlining all components of a single dataset entry.
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