
From Robustness to Improved Generalization and Calibration in
Pre-trained Language Models

Josip Jukić Jan Šnajder
TakeLab, Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

{josip.jukic,jan.snajder}@fer.hr

Abstract
Enforcing representation smoothness in
pre-trained language models (PLMs) through
Jacobian and Hessian regularization provides
an effective approach for enhancing both
robustness and generalization. Although such
regularization methods have proven effective
in computer vision, their application in natural
language processing, where PLM inputs
are derived from a discrete domain, poses
unique challenges. We introduce JACHESS, a
regularization approach for PLMs that mini-
mizes the norms of the Jacobian and Hessian
matrices in intermediate representations,
using embeddings as substitutes for discrete
token inputs. JACHESS supports dual-mode
regularization, alternating between fine-tuning
with labeled data and regularization with
unlabeled data. We evaluate JACHESS on
the GLUE benchmark and demonstrate that
it consistently and significantly improves
in-distribution generalization and enhances
performance under domain shift. Across di-
verse PLMs, JACHESS outperforms comparable
representation-based regularization methods
and unregularized fine-tuning, while also
improving model calibration. Our findings,
coupled with a computationally efficient
estimator for the Jacobian and Hessian norms,
position JACHESS as a robust and widely
applicable solution for enhancing PLM
performance.

1 Introduction

Effective generalization, broadly understood as
the capability to transfer learned representations,
knowledge, and strategies from familiar contexts
to new ones (Hupkes et al., 2023), stands out as
a key goal for models in natural language pro-
cessing (NLP) and extends to the broader domain
of machine learning. At the heart of machine
learning optimization is the principle of minimiz-
ing empirical risk, which acts as a surrogate for
the true risk. This approach inevitably leads to a

generalization gap—the discrepancy between the
empirical and true risks. The size of this gap can be
gauged by considering certain model properties.
Notably, robustness, defined as the amount that
the loss can vary with respect to changes in the
inputs, offers an effective lens for understanding
generalization (Vapnik, 1995; Deng et al., 2021;
Zhang et al., 2021). Recently, Kawaguchi et al.
(2022) provided tighter generalization bounds for
robustness, a challenge that has persisted since
robustness was first proposed as a tool for analyz-
ing learning algorithms (Xu and Mannor, 2012).
However, their bounds are data-dependent and
thus remain undetermined until the training data
is specified, leaving room for further exploration.

Robustness in neural networks is intrinsically
linked to the concept of representation smoothness
(Bubeck and Sellke, 2021). When representations
are smooth, the outputs of the network vary
minimally in response to small input changes,
thereby maintaining a stable loss by controlling
the network’s geometric complexity (Dherin et al.,
2022). Promoting representation smoothness not
only aids in better generalization but also supports
more reliable uncertainty quantification in the
model’s predictions (Rosca et al., 2020), a critical
area where neural networks often fail. Typically,
this failure manifests as overconfidence in the
model’s predictions, resulting in poor calibration
with predicted probabilities misaligned with actual
outcomes (Guo et al., 2017). Promoting represen-
tation smoothness thus emerges as a promising
strategy for boosting generalization through ro-
bustness and improving uncertainty quantification
in neural networks.

While traditional regularization methods such
as weight decay (Loshchilov and Hutter, 2018)
and dropout (Srivastava et al., 2014) enhance neu-
ral network generalization by promoting model
simplicity and preventing overfitting, they do
not ensure robustness against input variations.
In contrast, more specialized approaches focus on

264

Transactions of the Association for Computational Linguistics, vol. 13, pp. 264–280, 2025. https://doi.org/10.1162/tacl a 00739
Action Editor: Dani Yogatama. Submission batch: 5/2024; Revision batch: 11/2024; Published 3/2025.

c© 2025 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:josip.jukic@fer.hr
mailto:jan.snajder@fer.hr
https://doi.org/10.1162/tacl_a_00739


manipulating the network’s input-output Jacobian
and Hessian matrices, involving first-order and
second-order partial derivatives. Minimizing the
norms of these matrices increases robustness by
promoting representation smoothness. This effect
can be understood by interpreting a neural net-
work as a function. The concept of Lipschitz
continuity reflects the smoothness of a function
against input variations, representing the max-
imum rate of change in the function’s output
relative to a change in the input (Khromov and
Singh, 2024). Reducing the network’s Lipschitz
constant thus reduces its sensitivity to input per-
turbation. While computing the exact Lipschitz
constant is an NP-hard problem (Virmaux and
Scaman, 2018), leveraging Jacobian and Hessian
norms as proxies offers a practical way to emulate
these effects. The norm-based regularization ap-
proach has proven highly successful in the field of
computer vision, as evidenced by several studies
(Czarnecki et al., 2017; Varga et al., 2018; Sokolić
et al., 2017; Mustafa et al., 2020).

While regularization methods directly targeting
robustness have effectively enhanced generaliza-
tion in computer vision, none have been used
in NLP, revealing a significant research gap. In
particular, given the pivotal role of pre-trained
language models (PLMs) in advancing NLP,
there exists an untapped potential to leverage
representation-based regularization methods to
improve PLMs’ generalization capabilities. How-
ever—unlike in computer vision—the discrete
nature of the tokens processed by PLMs poses
a significant barrier to this research direction in
NLP. This issue echoes previous challenges en-
countered when methods proven effective in com-
puter vision did not seamlessly transfer to NLP
(e.g., the idea of generative adversarial networks
[Goodfellow et al., 2020] that operate by applying
slight continuous modifications to inputs).

In this paper, we adapt and expand upon
the representation-based regularization techniques
used in computer vision and apply them to NLP.
The discrete nature of data in PLMs makes it
challenging to enhance robustness to input vari-
ations, but we find a workaround by leveraging
the continuous embedding space as an effective
alternative. We introduce JACHESS, a novel regu-
larization approach that minimizes the norms of
the Jacobian and Hessian matrices within PLM
representations relative to their inputs. By target-
ing both Jacobian and Hessian norms, JACHESS

doubly enhances model robustness by reducing
sensitivity to input changes and smoothing the
curvature of representations. Typically, calculat-
ing these norms in high-dimensional spaces is
compute-intensive, but we address this using a
computationally efficient estimator. Our method
applies regularization across the network’s layers,
promoting smoothness in intermediate represen-
tations. Moreover, JACHESS employs a dual-mode
strategy, cycling between iterative fine-tuning us-
ing labeled data and regularization with additional
unlabeled data. While employing JACHESS with
training data significantly improves generalization
in most cases, utilizing a separate set of unlabeled
data for regularization—which is typically more
readily available than labeled data—enhances the
model’s generalization capabilities even further.
Additionally, we demonstrate that JACHESS proves
highly beneficial under domain shift, where mod-
els need to generalize across different domains
while performing the same underlying task.

Given their growing importance, our evaluation
concentrates on decoder-based models, including
the OPT family and Llama 2, where we fine-tune
the PLMs and evaluate them on the GLUE
benchmark (Wang et al., 2018). We validate
JACHESS by examining PLM robustness against
the perturbations in embedding space and its
impact on handling corrupted token inputs. Sub-
sequently, we assess the effectiveness of JACHESS

in improving models’ predictive accuracy and cal-
ibration. Our results reveal that JACHESS markedly
outperforms standard unregularized fine-tuning
and other Jacobian- and Hessian-based methods,
achieving a 2% to 4.5% absolute increase in av-
erage GLUE scores across various PLMs. This
enhancement in generalization is complemented
by improved calibration of model predictions.

In summary, our work presents two significant
contributions: (1) we empirically evaluate the en-
forcement of representation smoothness on PLMs
through Jacobian- and Hessian-based regulariza-
tion, an aspect that has thus far been overlooked in
NLP, and (2) we introduce JACHESS, a novel regu-
larization approach that not only improves model
generalization beyond the capabilities of standard
fine-tuning and other regularization methods in the
representation space but also offers more reliable
uncertainty quantification through improved cali-
bration and enhanced robustness to domain shift.
Taken together, this work sets a new standard for

265



improving the generalization and calibration of
PLMs in the evolving NLP landscape.1

2 Related Work

Generalization Enhancers. Applying regular-
ization to PLMs is a common practice during
training to improve generalization (Liu et al.,
2023). Although increasing the amount of labeled
data can straightforwardly improve generaliza-
tion, the challenge lies in efficiently utilizing
existing data or capitalizing on the plentiful sup-
ply of unlabeled data. Various strategies aim to
address this challenge. Notably, Gururangan et al.
(2020) proposed task-adaptive pre-training, which
involves additionally training the model on the
task-specific unlabeled set via the language mod-
eling task. In a different approach, Yu et al. (2021)
leveraged unlabeled data for generalization en-
hancement through weak supervision. Moreover,
beyond the utilization of unlabeled data, the field
has seen advancements in generalization through
data augmentation methods (Okimura et al., 2022;
Zhou et al., 2022; Wu et al., 2022).

Representation Smoothness. Examining the
impact of input changes on a function’s out-
put is essential for enhancing the generalization
capabilities of neural networks. Rosca et al.
(2020) explored the concept of model smooth-
ness, or representation smoothness in the context
of deep neural networks. They advocate for im-
plementing smoothness constraints with respect
to inputs to improve generalization and provide
reliable uncertainty quantification. While numer-
ous theoretical approaches predominantly focus
on Lipschitz-bounds to assess model sensitivity
(Bartlett et al., 2017; Bubeck and Sellke, 2021;
Wang and Manchester, 2023), it has been demon-
strated that Lipschitz continuity can be effectively
leveraged for regularization purposes (Gouk et al.,
2021).

Representation-based Regularization. Drucker
and Le Cun (1992) were the first to explore the
effects of the input-output Jacobian matrix of
neural networks. Since then, several iterations of
this technique have been proposed (Sokolić et al.,
2017; Ororbia II et al., 2017), primarily aimed

1Our code is available at https://github.com
/josipjukic/jachess.

at enhancing robustness against adversarial ex-
amples (Schmidt et al., 2018; Li et al., 2022).
Extending this work, Varga et al. (2018) sug-
gested that such robustness could also improve
in-distribution generalization. Further develop-
ments by Hoffman et al. (2019) introduced an
estimator for the Frobenius norm of the Jacobian
matrix of logits with respect to inputs, avoiding
the need to compute the entire Jacobian and
significantly reducing resource demands. Extend-
ing the scope of regularization, Mustafa et al.
(2020) proposed regularizing the Frobenius norm
of the Hessian matrix, focusing on the scalar
outputs of binary classification, a technique they
termed Cross-Hölder regularization. In a related
approach, Aghajanyan et al. (2021) introduced
an adversarial-style method by adding noise di-
rectly to the inputs during fine-tuning. Known
as robust fine-tuning with regularized representa-
tions (R3F), this approach draws on earlier works
(Zhu et al., 2020; Jiang et al., 2020) and leverages
trust-region theory to enhance model stability. By
reducing the divergence between outputs gener-
ated from noisy and clean inputs, R3F promotes
smoothness within the representation space.

Sharpness-aware Minimization. The pro-
posed JACHESS method improves generalization by
enhancing smoothness within the representation
space of a PLM, which is similar in spirit to
sharpness-aware minimization (SAM; Foret
et al., 2021). SAM is an optimization technique
designed to enhance model generalization by
locating parameters that reside in flatter regions of
the loss landscape. Bahri et al. (2022) showed that
SAM improves PLM generalization, particularly
in transfer learning scenarios. Extending this
concept, Sherborne et al. (2024) leveraged SAM
for cross-lingual tasks, improving the transfer of
pre-trained representations across languages.

In our work, we focus on promoting smoothness
with respect to inputs by applying regulariza-
tion directly within the representation spaces
of PLMs. Specifically, we leverage Jacobian-
and Hessian-based regularization techniques to
enforce smoothness across intermediate repre-
sentations at all PLM layers, as opposed to
restricting regularization to the model’s final out-
puts or logits. Furthermore, we push beyond
traditional regularization techniques by explor-
ing the application of regularization on separate,
unlabeled data.

266

https://github.com/josipjukic/jachess
https://github.com/josipjukic/jachess


3 Representation-based Regularization

In this section, we outline our approach, starting
with the theoretical background of Lipschitz con-
tinuity, a useful tool for assessing the stability and
smoothness of neural networks. Next, we address
computational challenges and propose strategies
to mitigate them. Finally, we introduce our regu-
larization technique, JACHESS, which leverages the
continuous embedding space of PLMs to employ
representation-based regularization with respect
to the inputs.

3.1 Lipschitz Continuity
Neural networks are commonly understood as
functions that map inputs from an n-dimensional
space to an m-dimensional space, formally rep-
resented as f : Rn → R

m. The characteristics
of these functions are closely linked to the net-
work’s reliability and generalization capabilities.
One way to characterize the stability of such
functions is through Lipschitz continuity, which
provides a formal framework for assessing how
sensitive a function’s output is to small changes in
the input (Rudin, 1964). Intuitively, when a neural
network exhibits large variations in output due to
minor changes in input, it risks overfitting or pro-
ducing unstable predictions. Lipschitz continuity
quantifies the bound of how much the output can
change in response to input variations, offering
a measure of the network’s robustness (Khromov
and Singh, 2024).

Definition 1 (L-Lipschitz continuity). A function
f : Rn → R

m is termed L-Lipschitz continuous if
there is a real constant L ≥ 0 such that:

‖f(x)− f(x′)‖ ≤ L‖x− x′‖, ∀x,x′ ∈ R
n.

Importantly, there is a link between the Lips-
chitz constant and the Jacobian matrix, which is
often exploited when estimating the smoothness
of functions implemented by neural networks. Let
Jf (x) ∈ R

m×n denote the Jacobian matrix of
f(x), whose elements are:

[Jf (x)]i,j =
∂

∂xj
fi(x).

The spectral norm2 of the Jacobian matrix Jf (x),
denoted by ‖Jf (x)‖2, serves as a lower bound for

2The spectral norm of a matrix A is defined as ‖A‖2 =

maxx 
=0
‖Ax‖2
‖x‖2 . This norm is equivalent to the largest singular

value of A.

the Lipschitz constant L Nesterov, 2014; Dherin
et al., 2022:

‖Jf (x)‖2 ≤ L, ∀x ∈ R
n. (1)

If we consider the relationship between matrix
norms, specifically for any matrix A of rank r
over a field of real or complex numbers, we have:

‖A‖2 ≤ ‖A‖F ≤
√
r‖A‖2, (2)

where ‖ · ‖F is the Frobenius norm. This rela-
tionship implies that lowering the Frobenius norm
below the initial spectral norm will also reduce the
spectral norm. The constrained initial gap between
these norms ensures that reductions in the Frobe-
nius norm often coincide with decreases in the
spectral norm. Such reductions are associated with
a lower Lipschitz constant, supported by evidence
showing that the Lipschitz constant of neural net-
works closely aligns with the lower bound defined
by (1) (Latorre et al., 2020; Khromov and Singh,
2024).
Definition 2 (L-Lipschitz smoothness). A func-
tion f : R

n → R is L-Lipschitz smooth if its
gradient is L-Lipschitz continuous:

‖∇f(x)−∇f(x′)‖ ≤ L‖x− x′‖, ∀x,x′ ∈ R
n.

An L-Lipschitz continuous function limits how
rapidly its output can change with respect to
changes in the input. By applying this constraint
to the function’s gradients, we can establish that
they cannot vary sharply and must be bound by
a specific value. Put another way, L-Lipschitz
smoothness is the upper limit on the curvature
of the function, which is inherently linked to the
Hessian matrix Hf (x). The Hessian matrix con-
sists of second-order derivatives and is defined
for twice-differentiable scalar functions. In the
case of a vector-valued function, we can decom-
pose the vector output into scalars where each
scalar output has its corresponding Hessian ma-
trix. Generally, the Hessian matrix is a square
matrix Hf (x) ∈ R

n×n, whose elements are:

[Hf (x)]i,j =
∂2f(x)

∂xi∂xj
.

L-Lipschitz smoothness is equivalent to the con-
dition that the eigenvalues of the Hessian matrix
are smaller than L, with the spectral norm as the
lower bound of L. Based on (2), we can again use
the Frobbenius norm as a proxy, which we can
estimate in a computationally efficient manner.

267



3.2 Hutchinson’s Estimator

Computing the norms of Jacobian and Hessian ma-
trices is computationally demanding as it requires
materializing the whole matrix, which is often in-
feasible for large neural networks. Hutchinson’s
estimator (Hutchinson, 1989) offers a practical al-
ternative, allowing the estimation of these norms
without needing to compute the entire matri-
ces, thereby achieving feasible computation times.
The estimator provides an efficient way to esti-
mate the trace and, consequently, the Frobenius
norm of a matrix A, exploiting the relationship
Tr(AA) = ‖A‖2F , where Tr(·) is the matrix
trace. The original formulation uses random nor-
mal vectors to estimate the trace of an arbitrary
square matrix B:

E[vBv] = Tr(B), (3)

where v ∼ N (0, I). With J as a shorthand for
J(x), we can substitute B = JJ, which yields:

E
[
v (

JJ)v] = Tr(JJ) = ‖J‖2F
= E

[(
vJ

) (
vJ

)]

= E

[∥∥vJ
∥∥2] ,

(4)

where the standard 2-norm ‖ · ‖ is implied for vec-
tors.3 By leveraging the relationship in (4), Varga
et al. (2018) and Hoffman et al. (2019) employed
random projections to compute a Monte Carlo
estimate of the Frobenius norm of the Jacobian
matrix:

‖J‖F ≈

√√√√1

p

p∑
i=1

∥∥∥∥
∂(v(i)z)

∂x

∥∥∥∥
2

, (5)

where x is the input, z = f(x) is the output of a
particular network layer, v(i) is a random vector
sampled from the standard normal distribution
in the i-th projection, and p is the number of
projections. Estimating the norm of the Hessian
matrix for the j-th output dimension zj boils
down to:

‖Hj‖F ≈

√√√√1

p

p∑
i=1

∥∥∥∥∥
∂(v(i) ∂zj

∂x )

∂x

∥∥∥∥∥
2

. (6)

3We omit the subscript for the vector 2-norm to prevent
confusion with the matrix spectral norm.

3.3 JACHESS

Our regularization method, JACHESS, is designed to
minimize the norms of the input-output Jacobian
and Hessian matrices to promote robustness
through Lipschitz continuity and smooth repre-
sentations. Here, the embedded tokens serve as
inputs, and the outputs are the representations of
subsequent layers. JACHESS adopts Hutchinson’s
estimator to compute these norms effectively via
(5) and (6), maintaining computational efficiency.
To circumvent the problem of discrete input space
of PLMs, we turn to the continuous embedding
space by embedding the tokens and then using
the embeddings as inputs. Unlike similar methods
from the literature, JACHESS goes beyond the scope
of logits and applies regularization on interme-
diate representations across network layers (i.e.,
the penultimate layer’s outputs).

Dimension Sampling. JACHESS considers the
high-dimensional nature of intermediate repre-
sentations. While Mustafa et al. (2020) focus on
low-dimensional label spaces constrained by the
number of classes—requiring only a few norm
estimates—JACHESS utilizes the high-dimensional
space of intermediate layers. Recognizing that
computing the Frobenius norms of Hessian ma-
trices across all dimensions is computationally
prohibitive, we integrate a dimension sampling
strategy. For a network with K layers, let D(k)

denote the random subset of indices for the out-
put dimensions in the k-th layer. We define the
regularization term as:

K∑
k=1

⎛
⎝λ

(k)
1 ‖J(k)‖F + λ

(k)
2

∑
d∈D(k)

‖H(k)
d ‖F

⎞
⎠ ,

(7)
where λ

(k)
1 and λ

(k)
2 are the regularization factors.

By selecting a random subset of representa-
tion dimensions, we reconcile the need for
comprehensive regularization with the limits of
computational feasibility.

Regularization Dynamics. In addition to ap-
plying our method to the training set inputs
(JACHESStrain) by adding the regularization term
to the original loss function, we also explore using
a separate unlabeled dataset (JACHESSunlab). In this
case, we minimize the regularization term on its
own, following a dual-mode approach: We first
minimize the training loss and then switch to pure

268



regularization on the unlabeled data, alternating
between these two modes.

Regularization Factors. In our empirical anal-
ysis, detailed in Section 7, we explore different
strategies for selecting the Jacobian and Hessian
regularization factors, λ

(k)
1 and λ

(k)
2 , from (7).

Let λi = [λ
(1)
i , . . . , λ

(K)
i ], i ∈ {1, 2}, represent

the vectors of Jacobian and Hessian regulariza-
tion factors across all PLM layers. We experiment
with three approaches to applying regularization:
uniformly across all layers, in proportion to the
smoothness of the base PLM before fine-tuning,
and inversely relative to that smoothness. We first
compute the norms of the Jacobian matrices for
each layer of the PLM, represented as:

j =
[
‖J(1)‖F , ‖J(2)‖F , . . . , ‖J(K)‖F

]
,

where J(k) is the Jacobian matrix of the k-th
layer. We then derive the vector of regularization
factors, λi, using j to achieve inverse propor-
tionality to smoothness, so that smoother layers
are assigned lower factors, while using −j for
direct proportionality. Our empirical evaluation
in Section 7 demonstrates that scaling the regu-
larization factors proportional to the base PLM
smoothness is the most effective among the three
approaches. We also tested different methods
for scaling, including standard normalization and
softmax. The results show that softmax slightly
outperforms plain normalization, potentially due
to its ability to assign greater importance to the
smoothest layers, enhancing their influence on
the overall performance. We consistently apply
the same regularization factors to both the Ja-
cobian and Hessian terms, finding that setting
λ1 = λ2 (henceforth λ) is the optimal strategy
based on our experiments.

Application to Transformer Models. The
JACHESS estimators introduced in Section 3.2 were
originally formulated for general multilayer neural
networks with fixed-dimensional inputs and out-
puts. In this work, we focus on PLMs based on the
transformer architecture (Vaswani et al., 2017),
which is more complex than a multilayer net-
work with fixed-dimensional inputs and outputs.
While transformers process token embeddings of
a fixed dimension (e.g., R

d), the length of the
token sequences they handle can vary. To adapt
JACHESS to transformer-based PLMs, we extend

its application to accommodate variable-length
token sequences, thereby combining the computa-
tional efficiency of JACHESS with the architectural
complexity of PLMs. In this adaptation, we work
directly with continuous token embeddings rather
than discrete token identifiers, allowing us to le-
verage Lipschitz continuity and apply regulariza-
tion techniques effectively. In particular, we treat
each transformer block as a distinct layer, with
the embedded tokens serving as inputs and the
block’s representations as outputs. While the es-
timators proposed in Section 3.3 focus on the
contribution of individual tokens, we capture the
cumulative effect by summing the norms over
all tokens in a sequence. These norms are com-
puted for each token’s representation at each layer
and aggregated across both tokens and layers.
By summing the layer-wise Frobenius norms of
the Jacobian and Hessian matrices, we account
for each layer’s additive contributions to the
network’s overall smoothness, ensuring uniform
regularization across all layers.

4 Experimental Setup

This section describes the experimental frame-
work, including the models, methods, and
datasets used.

4.1 Models

In our empirical analysis, we evaluate the set
of decoder-based OPT models (Zhang et al.,
2022) at three different scales: 125M, 1.3B, and
6.7B parameters. Additionally, we include the
Llama 2 model with 7B parameters (Llama-2-7B;
Touvron et al., 2023). We additionally evaluate
the encoder-based BERT (Devlin et al., 2019) as
a baseline.

4.2 Regularization Methods

We focus on similar representation-based reg-
ularization methods, incorporating two of the
methods described in the related work. The first is
Jacobian regularization (Hoffman et al., 2019),
which targets the minimization of the Jacobian
norm of the model’s logits with respect to the
inputs. The second method, Cross-Hölder regular-
ization (Mustafa et al., 2020), builds on Jacobian
regularization by additionally aiming to reduce the
norm of the input-logit Hessian matrix. We eval-
uate both of these methods, along with JACHESS,

269



using standard regularization on the training data
and the dual-mode approach with separate unla-
beled data (cf. Section 3.3), which we refer to as
methodtrain and methodunlab, respectively.

In addition, we include standard L2 regu-
larization as a baseline. We further compare
our method against task-adaptive pre-training
(TAPT; Gururangan et al., 2020), which lever-
ages unlabeled data for better generalization, and
sharpness-aware minimization (SAM; Foret et al.,
2021), where we set the neighborhood size param-
eter ρ to 0.05. Models trained without any of the
mentioned regularization techniques are denoted
by BASE.

4.3 Datasets

We evaluate the regularization techniques on the
GLUE benchmark (Wang et al., 2018). Aligning
with standard practices in assessing in-distribution
generalization, we include eight tasks consist-
ing of four binary classification tasks for single
sequences (CoLA, SST-2, RTE), three binary
classification tasks for sequence pairs (MRPC,
QQP, QNLI), one multi-class classification task
for sequence pairs (MNLI), and one regression
task (STS-B). We evaluate model performance on
development sets of the GLUE benchmark. For ap-
proaches that leverage unlabeled data, we sample
1000 unlabeled instances from a set not used for
testing. When evaluating generalization, we use
Matthew’s correlation for CoLA, F1 for MRPC
and QQP, Spearman’s correlation for STS-B, and
accuracy for the remaining datasets. In several ex-
periments, we calculate the average GLUE score
across all eight selected tasks, a metric com-
monly employed in seminal works (Devlin et al.,
2019; Houlsby et al., 2019) to capture overarching
trends or patterns in model behavior under various
regularization strategies.

When evaluating generalization under domain
shifts, we use the IMDb sentiment classification
dataset (Maas et al., 2011) alongside datasets from
the GLUE benchmark. The datasets are paired
to match similar tasks across different domains:
IMDb is paired with SST-2 for sentiment classifi-
cation, MRPC and QQP are paired for paraphrase
detection, and RTE and QNLI are paired for nat-
ural language inference. This setup allows us to
assess how well models generalize across domains
while performing the same underlying task.

4.4 Fine-Tuning

We fine-tune each language model on GLUE
tasks, capping the training set at 10,000 instances
for SST-2, MNLI, QNLI, QQP, and IMDb, ensur-
ing computational feasibility for many different
experimental setups. With encoder models, we
employ the [CLS] token’s representation, while
for decoders, we rely on the representation of the
layer’s last token. We stack a linear head on top
of the final layer and fine-tune the entire model.
An exception is made for larger models, namely,
OPT-6.7B and Llama 2, where we employ LoRA
(Hu et al., 2021) to improve parameter efficiency,
setting the rank of decomposition matrices to 8
and α to 16, thus mitigating memory limitations
on commodity GPUs.

We run each experiment five times using five
different random seeds and report the averages.
We use 2 · 10−5 as the learning rate for standard
fine-tuning and 1 · 10−4 for tuning with LoRA.

5 Enhancing Generalization
through Robustness

The goal of our experiments is to evaluate how
well JACHESS improves robustness. We begin by
testing our method against perturbations in the
embedding space, followed by testing its impact
on generalization for both in-distribution data and
data under domain shift.

5.1 Embedding Perturbation

Our initial experiment aims to assess the ro-
bustness of intermediate PLM representations to
continuous perturbations in the embedding space,
verifying whether JACHESS promotes smooth
representations capable of effectively handling
changes within that space. We introduce these
perturbations by adding noise to the embeddings,
specifically by augmenting the token embeddings
e with a noise vector scaled by a factor δ ≥ 0. We
define the perturbed embedding e′ as:

e′ = e+ δv, v ∼ N (0, I),

where v is a normally distributed random vector.
The degree of perturbation is controlled by δ,
providing a quantitative measure of robustness in
embedding space.

270



Figure 1: Predictive accuracy with respect to the de-
gree of perturbation δ for Llama 2, averaged across
GLUE development datasets. To avoid clutter, we plot
the results for the base model without regularization,
the Cross-Hölderunlab method, and JACHESSval. Refer to
Figure 4 for results concerning other models.

Figure 1 shows the predictive accuracies under
embedding perturbation for JACHESS together with
Cross-Hölder and BASE. Notably, even as the de-
gree of perturbation increases, JACHESS maintains
an advantage in predictive accuracy.

5.2 Token Corruption

While the literature elaborates on the link between
robustness and generalization in neural networks
(Khromov and Singh, 2024), it remains unclear
whether and to what extent robustness in the
embedding space correlates with robustness in
the discrete input space in the case of PLMs.
To investigate this, we test how models that are
regularized in the continuous embedding space
respond to discrete token corruption.

We simulate token corruption by replacing a
proportion of tokens with the special ‘‘unknown’’
token [UNK]. This corruption is applied after
fine-tuning at rates of 5%, 10%, 15%, and 20%,
and we then evaluate the impact on predictive
accuracy. Table 1 shows the results for token
corruption. JACHESS maintains the best predictive
accuracies across different levels of token corrup-
tion. The most notable differences become more
pronounced at more extreme levels of token cor-
ruption, specifically at 15% and 20%. JACHESSunlab

appears to be more resilient to token corruption
than its counterpart JACHESStrain.

5.3 In-Distribution Generalization

We now focus on evaluating the effect of
JACHESS on in-distribution generalization. This

Token corruption [%]

5 10 15 20

B
E

R
T

BASE .736 .721 .703 .671
L2 .730 .724 .715 .677
Jacobianunlab .744 .729 .710 .680
Cross-Hölderunlab .749 .734 .717 .684
JACHESStrain .754 .746 .728 .702
JACHESSunlab .759 .751 .742 .729

O
PT

-1
25

m

BASE .687 .681 .654 .613
L2 .694 .685 .672 .639
Jacobianunlab .699 .694 .667 .642
Cross-Hölderunlab .709 .693 .679 .648
JACHESStrain .719 .710 .702 .689
JACHESSunlab .735 .731 .723 .704

O
PT

-6
.7

B

BASE .839 .831 .809 .787
L2 .846 .830 .805 .792
Jacobianunlab .845 .834 .819 .799
Cross-Hölderunlab .842 .834 .817 .796
JACHESStrain .847 .836 .821 .804
JACHESSunlab .862 .851 .839 .813

L
la

m
a-

2-
7B

BASE .852 .831 .813 .786
L2 .857 .835 .816 .793
Jacobianunlab .848 .837 .822 .804
Cross-Hölderunlab .854 .832 .811 .796
JACHESStrain .860 .849 .827 .808
JACHESSunlab .883 .869 .853 .829

Table 1: Average predictive accuracy with token
corruption. We adjust the percentage of token cor-
ruption to 10%, 15%, and 20%. For each dataset,
we conduct experiments five times using different
seeds and report the average score on the GLUE
benchmark. Best scores within the same model
and token corruption setup are shown in bold.

analysis provides a baseline for understand-
ing how enhancements in robustness influence
performance.

Table 2 shows the predictive accuracies across
models, datasets, and regularization methods. We
observe that JACHESS consistently outperforms
both standard unregularized fine-tuning (BASE)
and other regularization baselines, with absolute
improvements in the average GLUE score rang-
ing from 2% to 4.5% compared to unregularized
fine-tuning. Moreover, JACHESS demonstrates con-
sistent gains as the scale of the models increases.
The relative improvement is notably pronounced
in the larger models, namely OPT-6.7B and
Llama 2. Furthermore, JACHESSunlab generally
outperforms JACHESStrain, a trend also observed
for Jacobian and Cross-Hölder methods where
using a separate set for regularization proves
advantageous over using the training set.

271



CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE avg.
B

E
R

T
BASE .466 .894 .852 .855 .810 .700 .832 .610 .752
L2 .470 .892 .861 .859 .816 .711 .843 .608 .758
TAPT .510 .905 .857 .860 .821 .714 .835 .624 .766
SAM .483 .889 .849 .851 .809 .708 .822 .619 .754
Jacobiantrain .471 .883 .850 .847 .806 .704 .821 .607 .749
Jacobianunlab .475 .892 .854 .845 .812 .710 .823 .613 .753
Cross-Höldertrain .498 .901 .842 .839 .824 .707 .830 .605 .756
Cross-Hölderunlab .504 .905 .852 .836 .829 .712 .838 .616 .762
JACHESStrain .514† .912† .848 .862 .816 .710 .836 .621† .765
JACHESSunlab .557† .906 .864† .891† .828† .723† .854† .643† .783

O
PT

-1
25

M

BASE .452 .883 .760 .824 .693 .614 .742 .582 .694
L2 .458 .889 .804 .819 .727 .624 .744 .586 .706
TAPT .461 .891 .812 .832 .773 .653 .759 .596 .722
SAM .454 .890 .814 .829 .752 .644 .748 .592 .715
Jacobiantrain .450 .872 .779 .813 .704 .629 .738 .590 .697
Jacobianunlab .454 .869 .784 .818 .709 .639 .747 .608 .704
Cross-Höldertrain .461 .881 .758 .830 .722 .661 .744 .614 .709
Cross-Hölderunlab .470 .880 .771 .839 .731 .657 .751 .620 .715
JACHESStrain .474† .896† .819† .825 .736† .672† .757† .610† .724
JACHESSunlab .470† .884 .835† .848† .768† .691† .787† .628† .739

O
PT

-1
.3

B

BASE .601 .945 .905 .913 .847 .755 .903 .742 .826
L2 .596 .948 .910 .907 .872 .785 .911 .739 .834
TAPT .612 .941 .908 .918 .874 .801 .914 .749 .840
SAM .607 .956 .909 .911 .867 .795 .918 .744 .838
Jacobiantrain .589 .940 .911 .908 .851 .770 .892 .731 .824
Jacobianunlab .598 .943 .909 .916 .857 .779 .894 .742 .830
Cross-Höldertrain .612 .939 .910 .902 .879 .773 .924 .747 .836
Cross-Hölderunlab .608 .949 .909 .907 .884 .771 .921 .750 .837
JACHESStrain .610 .948 .913 .903 .863† .803† .918† .745 .838
JACHESSunlab .614† .955† .919† .908 .892† .811† .921† .751† .846

O
PT

-6
.7

B

BASE .652 .951 .908 .916 .869 .797 .907 .750 .844
L2 .650 .953 .905 .911 .872 .808 .903 .733 .842
TAPT .662 .948 .921 .914 .903 .834 .930 .754 .858
SAM .654 .948 .910 .896 .866 .803 .905 .741 .840
Jacobiantrain .649 .940 .912 .909 .873 .822 .913 .747 .846
Jacobianunlab .652 .944 .914 .907 .879 .831 .917 .752 .850
Cross-Höldertrain .654 .949 .914 .903 .881 .814 .901 .741 .845
Cross-Hölderunlab .650 .959 .920 .907 .887 .821 .907 .745 .850
JACHESStrain .651 .953 .919† .911 .889† .827† .918† .750 .852
JACHESSunlab .688† .959 .928† .922 .907† .852† .929† .776† .870

L
la

m
a-

2-
7B

BASE .691 .957 .912 .924 .910 .843 .925 .781 .868
L2 .686 .950 .904 .915 .908 .846 .923 .792 .866
TAPT .722 .953 .919 .920 .916 .848 .922 .803 .875
SAM .682 .961 .914 .920 .911 .846 .925 .794 .869
Jacobiantrain .681 .940 .893 .903 .882 .837 .912 .764 .852
Jacobianunlab .693 .955 .915 .913 .890 .844 .923 .769 .863
Cross-Höldertrain .688 .951 .909 .915 .914 .832 .927 .759 .862
Cross-Hölderunlab .691 .949 .913 .917 .909 .838 .931 .779 .866
JACHESStrain .712† .962 .908 .921 .919† .851† .933 .798† .876
JACHESSunlab .746† .973† .951† .934† .929† .872† .940† .813† .895

Table 2: In-distribution generalization scores on the GLUE development sets averaged across five
different seeds for each dataset. The last column shows the average score across datasets. The
highest score for each dataset is in bold, while the second-highest scores are underlined. The symbol
‘‘†’’ indicates significant differences between JACHESS variants and the BASE model, as determined
by two-sided Mann-Whitney U tests with p < .05, corrected for multiple comparisons using the
Holm-Bonferroni method.

272



IMDb→SST-2 SST-2→IMDb RTE→QNLI QNLI→RTE MRPC→QQP QQP→MRPC
O

PT
-6

.7
B BASE .832 .789 .742 .794 .693 .764

Jacobianunlab .865 .798 .772 .804 .707 .772
Cross-Hölderunlab .853 .809 .779 .809 .713 .776
JACHESSunlab .879 .804 .795 .815 .729 .810

L
la

m
a-

2 BASE .892 .824 .768 .832 .741 .790
Jacobianunlab .904 .832 .776 .842 .761 .799
Cross-Hölderunlab .901 .846 .780 .848 .754 .812
JACHESSunlab .915 .838 .796 .852 .787 .861

Table 3: Generalization scores for target datasets under domain shifts for different ‘‘source → target’’
dataset pairs. The highest score for each pair is shown in bold.

5.4 Generalization Under Domain Shift
To evaluate how well JACHESS handles
domain-shift scenarios, we conduct experiments
where we simulate these shifts by pairing the
datasets that represent the same task but are
drawn from different domains. Table 3 shows the
generalization scores under domain shifts. We
fine-tune the model using unlabeled data only
from the source dataset and then evaluate the
model on the target dataset. JACHESS demonstrates
improvements in generalization under domain
shifts. In particular, JACHESSunlab consistently
outperforms the BASE models across all dataset
pairs, showing especially notable gains in
paraphrase detection, with absolute increases of
4.6% and 7.1% for MRPC → QQP and QQP
→ MRPC, respectively. Moreover, JACHESSunlab

outperforms other methods on five out of six
dataset pairs (all but SST-2 → IMDb) for both
OPT-6.7B and Llama 2.

The performance improvements suggest that
the smoothness constraints imposed by JACHESS

help maintain robustness even under domain
shifts. These improvements align with the gains
observed for in-distribution generalization, under-
scoring the broader applicability and robustness
of JACHESS.

6 Calibration

Uncertainty quantification in NLP models has
garnered significant attention lately, given its im-
portance in various applications (Abdar et al.,
2021; Xiao and Wang, 2019; Xiao et al., 2022).
Motivated by research indicating a connection
between smoothness in model representations
and more reliable uncertainty quantification
(Lakshminarayanan et al., 2017; Van Amersfoort
et al., 2020), we explore the effect of JACHESS

on out-of-the-box calibration, using the PLM’s

BASE Cross-Hölder JACHESS

Model Brier/ECE Brier/ECE Brier/ECE
BERT .213/.042 .202/.039 .184/.035
OPT-125M .256/.057 .233/.045 .204/.040
OPT-1.3B .184/.038 .193/.042 .157/.029
OPT-6.7B .189/.037 .157/.032 .094/.024
Llama-2-7B .167/.034 .163/.031 .089/.017

Table 4: Average Brier scores and ECE on the de-
velopment sets across binary classification tasks
in the GLUE benchmark (CoLA, SST-2, MRPC,
RTE, QQP, and QNLI). Regularization methods
are applied on a separate, unlabeled set. Lower
Brier scores and ECE indicate better perfor-
mance. ECE was calculated using eight bins to
ensure detailed calibration analysis. Best scores
are highlighted in bold.

softmax outputs as confidence scores (Desai and
Durrett, 2020). We utilize the Brier score, which
quantifies uncertainty by measuring the mean
squared distance between predicted probabilities
and actual outcomes.4 A lower Brier score indi-
cates better calibration. In addition to Brier scores,
we report the expected calibration errors (ECEs)
and provide corresponding calibration plots.

Table 4 shows the Brier scores for different
models and regularization methods. Besides en-
hancing generalization, JACHESS also contributes
to better uncertainty estimation, manifested in
a lower Brier score. We observe that JACHESS

surpasses baseline methods, offering improved
calibration with lower Brier scores and ECEs,
underscoring its effectiveness in producing re-
liable uncertainty estimates. Further illustrating

4The Brier score can be decomposed into two components:
calibration, which reflects how well predicted probabilities
align with observed frequencies, and refinement, which mea-
sures how spread out the confidence scores are (DeGroot
and Fienberg, 1983).

273



Figure 2: Calibration plots for six binary classification datasets from the GLUE benchmark for the Llama 2 model.
Results are accumulated in five seeds with eight bins for calculating mean predicted probability. Refer to Figure 5
in the Appendix for the results of other binary classification tasks.

these enhancements, Figure 2 shows the calibra-
tion plots for binary classification tasks from the
GLUE benchmark. Here, JACHESS closely aligns
the PLM’s calibration curve with the ideal curve,
outperforming both Cross-Hölder regularization
and BASE.

7 Analysis

Several design choices behind JACHESS may
impact its efficacy. We next analyze these factors.

7.1 Scope and Degree of Regularization

We begin by analyzing how the scope of regular-
ization affects model performance—specifically,
by applying JACHESS to the logits versus across
multiple network layers. Additionally, we evalu-
ate the impact of the degree of regularization on
different layers by controlling the regularization
factors λ. Table 5 compares these design choices,
previously laid out in Section 3.3. We observe that
initializing the regularization factors in propor-
tion to the base PLM smoothness across layers
proves to be the most effective approach. Applying
uniform regularization across all layers surpasses
the scope of only regularizing the logits. In con-
trast, initializing the regularization coefficients to
be inversely proportional to the base smoothness
for each layer detrimentally affects performance.

7.2 Dimension Sampling

We investigate the impact on model performance
by regularizing varying numbers of Frobenius
norms of Hessian matrices, each corresponding
to specific dimensions of a layer’s representation.
Due to the computational intensity of estimating
the norms for Hessian matrices, we sample up to
50 different dimensions for regularization.

Strategy

Model Logits Uni Inv Norm Soft
BERT .743 .775 .733 .778 .783
OPT-125M .709 .726 .692 .735 .739
OPT-1.3B .832 .845 .803 .848 .846
OPT-6.7B .851 .868 .811 .865 .870
Llama-2-7B .874 .883 .819 .892 .895

Table 5: Comparison of strategies for JACHESSunlab

regularization at different application points eval-
uated on the GLUE development sets. Average
predictive accuracy for each model is reported
across datasets, based on five runs per dataset us-
ing different seeds. Log regularizes only the norms
corresponding to the Hessian matrices of logits of
the penultimate layer. Uni applies regularization
uniformly across all layers. Inv sets λ inversely
proportional to the base model’s smoothness, and
Norm aligns λ directly with the base PLM’s
smoothness, while Soft applies softmax instead
of standard normalization. The highest score for
each model is shown in bold.

Table 6 shows the impact of adjusting the num-
ber of dimensions involved in the Hessian part
of JACHESS regularization on model performance.
Predictive accuracy peaks at 10 dimensions,
with diminishing returns as dimensions increase.
Expanding to 20 dimensions offers no further im-
provement, while using 50 dimensions degrades
performance, likely due to excessive smoothing.

7.3 Number of Unlabeled Instances
Lastly, we examine the impact of varying the num-
ber of unlabeled instances used by JACHESSunlab on
model performance. Figure 3 shows the average
scores on the GLUE datasets for both Llama 2 and
OPT-6.7B models as the amount of unlabeled data

274



Number of sampled dimensions

Model 0 5 10 20 50
BERT .764 .771 .783 .781 .754
OPT-125M .698 .721 .739 .737 .713
OPT-1.3B .821 .839 .846 .850 .831
OPT-6.7B .849 .854 .868 .870 .857
Llama-2-7B .873 .886 .895 .892 .880

Table 6: Comparison of predictive accuracies of
JACHESSunlab using different numbers of dimension
for the Hessian part of regularization. Each num-
ber corresponds to the dimensions sampled from
a specific layer’s output. Average scores for the
GLUE benchmark development sets are reported
based on five runs per dataset. The highest scores
for each model are highlighted in bold.

Figure 3: Average scores on the GLUE datasets for
Llama 2 and OPT-6.7B models with respect to the
number of unlabeled instances used in JACHESSunlab.
Error bars represent standard deviations over five runs.

increases. Without any unlabeled data, the setup
corresponds to the BASE model. Using 500 unla-
beled instances for the JACHESS estimator already
yields a large improvement in generalization as
well as a slight reduction in standard deviation.
The generalization scores increase sharply when
the number of unlabeled examples rises from 500
to 1000, with only marginal gains beyond this
point. However, the standard deviation continues
to decrease as more unlabeled data is added, re-
flecting greater stability across runs. This pattern
suggests that incorporating more than 1000 un-
labeled instances contributes significantly to the
robustness of PLMs on the GLUE datasets, though
the primary benefits are realized within the initial
increase to 1000 examples.

While including more unlabeled instances can
enhance performance and stability, it also affects

the runtime of JACHESS. Based on runtimes av-
eraged over 10 runs of Llama 2 on the GLUE
datasets, the dual mode approach increases train-
ing time by an average factor of 3.2 when the
unlabeled set matches the training set size.5 In our
experiments in Sections 5 and 6, we used 1000
unlabeled instances by default, which is typically
one-tenth the size of the training set of the GLUE
datasets. Since the runtime scales linearly with
the number of unlabeled instances, this results in
a more manageable runtime increase of approxi-
mately 1 + 3.2−1

10 = 1.22 times, making it feasible
for real-world applications.

8 Conclusion

The success of PLMs depends significantly on
their robustness and ability to generalize. In
this work, we examined how enforcing repre-
sentation smoothness affects these properties in
transformer-based PLMs by leveraging Jacobian
and Hessian norm minimization. We introduced
JACHESS, a regularization method that enforces
smooth representations with respect to the in-
put embeddings, which serve as an alternative to
discrete tokens. Leveraging computationally ef-
ficient estimators for the Jacobian and Hessian
norms, JACHESS is practical and effective, con-
sistently surpassing unregularized fine-tuning and
similar regularization approaches by improving
both in-distribution and cross-domain generaliza-
tion. Across diverse PLMs and GLUE benchmark
tasks, JACHESS enhances predictive accuracy and
model calibration, leading to more reliable un-
certainty quantification. These results highlight
the importance of representation smoothness for
model robustness, setting JACHESS as the new
reference for improving the generalization and
calibration of PLMs.

Acknowledgments

We sincerely thank Dani Yogatama, our TACL ac-
tion editor, and the anonymous reviewers for their
insightful feedback and constructive suggestions.

References

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain,
Dana Rezazadegan, Li Liu, Mohammad

5Runtime estimates are based on 1000 instances each for
the training and unlabeled sets.

275



Ghavamzadeh, Paul Fieguth, Xiaochun Cao,
Abbas Khosravi, U. Rajendra Acharya, et al.
2021. A review of uncertainty quantification
in deep learning: Techniques, applications and
challenges. Information Fusion, 76:243–297.
https://doi.org/10.1016/j.inffus
.2021.05.008

Armen Aghajanyan, Akshat Shrivastava, Anchit
Gupta, Naman Goyal, Luke Zettlemoyer, and
Sonal Gupta. 2021. Better fine-tuning by reduc-
ing representational collapse. In International
Conference on Learning Representations.

Dara Bahri, Hossein Mobahi, and Yi Tay.
2022. Sharpness-aware minimization improves
language model generalization. In Proceed-
ings of the 60th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 7360–7371,
Dublin, Ireland. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/2022.acl-long.508

Peter L. Bartlett, Dylan J. Foster, and Matus
Telgarsky. 2017. Spectrally-normalized mar-
gin bounds for neural networks. In Advances
in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Sébastien Bubeck and Mark Sellke. 2021. A
universal law of robustness via isoperimetry.
Advances in Neural Information Processing
Systems, 34:28811–28822.

Wojciech M. Czarnecki, Simon Osindero, Max
Jaderberg, Grzegorz Swirszcz, and Razvan
Pascanu. 2017. Sobolev training for neural
networks. Advances in Neural Information
Processing Systems, 30.

Morris H. DeGroot and Stephen E. Fienberg. 1983.
The comparison and evaluation of forecast-
ers. Journal of the Royal Statistical Society:
Series D (The Statistician), 32(1–2):12–22.
https://doi.org/10.2307/2987588

Zhun Deng, Hangfeng He, and Weijie Su.
2021. Toward better generalization bounds with
locally elastic stability. In International Confer-
ence on Machine Learning, pages 2590–2600.
PMLR.

Shrey Desai and Greg Durrett. 2020. Calibration
of pre-trained transformers. In Proceedings of
the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP),

pages 295–302, Online. Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/2020.emnlp-main.21

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter
of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Benoit Dherin, Michael Munn, Mihaela Rosca,
and David Barrett. 2022. Why neural networks
find simple solutions: The many regularizers of
geometric complexity. Advances in Neural In-
formation Processing Systems, 35:2333–2349.

Harris Drucker and Yann Le Cun. 1992. Improv-
ing generalization performance using double
backpropagation. IEEE Transactions on Neu-
ral Networks, 3(6):991–997. https://doi
.org/10.1109/72.165600, PubMed:
18276495

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and
Behnam Neyshabur. 2021. Sharpness-aware
minimization for efficiently improving gen-
eralization. In International Conference on
Learning Representations.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio.
2020. Generative adversarial networks. Com-
munications of the ACM, 63(11):139–144.
https://doi.org/10.1145/3422622

Henry Gouk, Eibe Frank, Bernhard Pfahringer,
and Michael J. Cree. 2021. Regularisation
of neural networks by enforcing Lipschitz
continuity. Machine Learning, 110:393–416.
https://doi.org/10.1007/s10994
-020-05929-w

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q.
Weinberger. 2017. On calibration of modern
neural networks. In International Confer-
ence on Machine Learning, pages 1321–1330.
PMLR.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug
Downey, and Noah A. Smith. 2020. Don’t

276

https://doi.org/10.1016/j.inffus.2021.05.008
https://doi.org/10.1016/j.inffus.2021.05.008
https://doi.org/10.18653/v1/2022.acl-long.508
https://doi.org/10.18653/v1/2022.acl-long.508
https://doi.org/10.2307/2987588
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.1109/72.165600
https://doi.org/10.1109/72.165600
https://pubmed.ncbi.nlm.nih.gov/18276495
https://doi.org/10.1145/3422622
https://doi.org/10.1007/s10994-020-05929-w
https://doi.org/10.1007/s10994-020-05929-w


stop pretraining: Adapt language models to
domains and tasks. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pages 8342–8360,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.acl-main.740

Judy Hoffman, Daniel A. Roberts, and Sho Yaida.
2019. Robust learning with Jacobian regular-
ization. arXiv preprint arXiv:1908.02729v1.

Neil Houlsby, Andrei Giurgiu, Stanislaw
Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP.
In International Conference on Machine
Learning, pages 2790–2799. PMLR.

Edward J. Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. 2021. LoRA: Low-rank adapta-
tion of large language models. In International
Conference on Learning Representations.

Dieuwke Hupkes, Mario Giulianelli, Verna
Dankers, Mikel Artetxe, Yanai Elazar,
Tiago Pimentel, Christos Christodoulopoulos,
Karim Lasri, Naomi Saphra, Arabella
Sinclair, Dennis Ulmer, Florian Schottmann,
Khuyagbaatar Batsuren, Kaiser Sun, Koustuv
Sinha, Leila Khalatbari, Maria Ryskina, Rita
Frieske, Ryan Cotterell, and Zhijing Jin. 2023.
A taxonomy and review of generalization re-
search in NLP. Nature Machine Intelligence,
5(10):1161–1174. https://doi.org/10
.1038/s42256-023-00729-y

Michael F. Hutchinson. 1989. A stochastic es-
timator of the trace of the influence matrix
for Laplacian smoothing splines. Communica-
tions in Statistics-Simulation and Computation,
18(3):1059–1076. https://doi.org/10
.1080/03610918908812806

Haoming Jiang, Pengcheng He, Weizhu Chen,
Xiaodong Liu, Jianfeng Gao, and Tuo
Zhao. 2020. SMART: Robust and efficient
fine-tuning for pre-trained natural language
models through principled regularized opti-
mization. In Proceedings of the 58th Annual
Meeting of the Association for Computa-
tional Linguistics, pages 2177–2190, Online.

Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.acl-main.197

Kenji Kawaguchi, Zhun Deng, Kyle Luh, and
Jiaoyang Huang. 2022. Robustness implies
generalization via data-dependent generaliza-
tion bounds. In International Conference
on Machine Learning, pages 10866–10894.
PMLR.

Grigory Khromov and Sidak Pal Singh. 2024.
Some intriguing aspects about Lipschitz con-
tinuity of neural networks. In International
Conference on Learning Representations.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable
predictive uncertainty estimation using deep
ensembles. Advances in Neural Information
Processing Systems, 30.

Fabian Latorre, Paul Rolland, and Volkan Cevher.
2020. Lipschitz constant estimation of neural
networks via sparse polynomial optimiza-
tion. In International Conference on Learning
Representations.

Binghui Li, Jikai Jin, Han Zhong, John Hopcroft,
and Liwei Wang. 2022. Why robust general-
ization in deep learning is difficult: Perspective
of expressive power. Advances in Neural Infor-
mation Processing Systems, 35:4370–4384.

Guangliang Liu, Zhiyu Xue, Xitong Zhang,
Kristen Johnson, and Rongrong Wang. 2023.
PAC-tuning: Fine-tuning pre-trained language
models with PAC-driven perturbed gradient
descent. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language
Processing, pages 12178–12189, Singapore.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/2023
.emnlp-main.748

Ilya Loshchilov and Frank Hutter. 2018.
Decoupled weight decay regularization.
In International Conference on Learning
Representations.

Andrew L. Maas, Raymond E. Daly, Peter T.
Pham, Dan Huang, Andrew Y. Ng, and
Christopher Potts. 2011. Learning word vec-
tors for sentiment analysis. In Proceedings of
the 49th Annual Meeting of the Association
for Computational Linguistics: Human Lan-
guage Technologies, pages 142–150, Portland,

277

https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.1038/s42256-023-00729-y
https://doi.org/10.1038/s42256-023-00729-y
https://doi.org/10.1080/03610918908812806
https://doi.org/10.1080/03610918908812806
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2023.emnlp-main.748
https://doi.org/10.18653/v1/2023.emnlp-main.748


Oregon, USA. Association for Computational
Linguistics.

Waleed Mustafa, Robert A. Vandermeulen, and
Marius Kloft. 2020. Input Hessian regular-
ization of neural networks. In Workshop on
‘‘Beyond first-order methods in ML systems’’ at
the 37th International Conference on Machine
Learning.

Yurii Nesterov. 2014. Introductory Lectures on
Convex Optimization: A Basic Course, 1 edition.
Springer Publishing Company, Incorporated.

Itsuki Okimura, Machel Reid, Makoto Kawano,
and Yutaka Matsuo. 2022. On the impact
of data augmentation on downstream per-
formance in natural language processing. In
Proceedings of the Third Workshop on Insights
from Negative Results in NLP, pages 88–93,
Dublin, Ireland. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/2022.insights-1.12

Alexander G. Ororbia II, Daniel Kifer, and
C. Lee Giles. 2017. Unifying adversarial
training algorithms with data gradient regular-
ization. Neural Computation, 29(4):867–887.
https://doi.org/10.1162/NECO a
00928, PubMed: 28095194

Mihaela Rosca, Theophane Weber, Arthur
Gretton, and Shakir Mohamed. 2020. A case for
new neural network smoothness constraints. In
Proceedings on ‘‘I Can’t Believe It’s Not Bet-
ter!’’ at NeurIPS Workshops, volume 137 of
Proceedings of Machine Learning Research,
pages 21–32. PMLR.

Walter Rudin. 1964. Principles of Mathematical
Analysis, volume 3. McGraw-Hill New York.

Ludwig Schmidt, Shibani Santurkar, Dimitris
Tsipras, Kunal Talwar, and Aleksander Madry.
2018. Adversarially robust generalization re-
quires more data. Advances in Neural Informa-
tion Processing Systems, 31.

Tom Sherborne, Naomi Saphra, Pradeep Dasigi,
and Hao Peng. 2024. TRAM: Bridging trust
regions and sharpness aware minimization.
In International Conference on Learning
Representations.

Jure Sokolić, Raja Giryes, Guillermo Sapiro, and
Miguel R. D. Rodrigues. 2017. Robust large
margin deep neural networks. IEEE Transac-
tions on Signal Processing, 65(16):4265–4280.

https://doi.org/10.1109/TSP.2017
.2708039

Nitish Srivastava, Geoffrey Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A simple way
to prevent neural networks from overfitting.
The Journal of Machine Learning Research,
15(1):1929–1958.

Hugo Touvron, Louis Martin, Kevin Stone,
Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra,
Prajjwal Bhargava, Shruti Bhosale, Dan Bikel,
Lukas Blecher, Cristian Canton Ferrer, Moya
Chen, Guillem Cucurull, David Esiobu, Jude
Fernandes, Jeremy Fu, Wenyin Fu, Brian
Fuller, Cynthia Gao, Vedanuj Goswami, Naman
Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Ann
e Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams,
Jian Xiang Kuan, Puxin Xu, Zheng Yan,
Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288v2.

Joost Van Amersfoort, Lewis Smith, Yee Whye
Teh, and Yarin Gal. 2020. Uncertainty es-
timation using a single deep deterministic
neural network. In International Conference on
Machine Learning, pages 9690–9700. PMLR.

Vladimir N. Vapnik. 1995. The Nature of Statis-
tical Learning Theory. New York. Springer.
https://doi.org/10.1007/978-1-4757
-2440-0

Dániel Varga, Adrián Csiszárik, and Zsolt
Zombori. 2018. Gradient regularization im-
proves accuracy of discriminative models.
Schedae Informaticae, 27:31–45. https://
doi.org/10.4467/20838476SI.18.003
.10408

278

https://doi.org/10.18653/v1/2022.insights-1.12
https://doi.org/10.18653/v1/2022.insights-1.12
https://doi.org/10.1162/NECO_a_00928
https://doi.org/10.1162/NECO_a_00928
https://pubmed.ncbi.nlm.nih.gov/28095194
https://doi.org/10.1109/TSP.2017.2708039
https://doi.org/10.1109/TSP.2017.2708039
https://doi.org/10.1007/978-1-4757-2440-0
https://doi.org/10.1007/978-1-4757-2440-0
https://doi.org/10.4467/20838476SI.18.003.10408
https://doi.org/10.4467/20838476SI.18.003.10408
https://doi.org/10.4467/20838476SI.18.003.10408


Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in Neural
Information Processing Systems, volume 30.
Curran Associates, Inc.

Aladin Virmaux and Kevin Scaman. 2018. Lip-
schitz regularity of deep neural networks:
Analysis and efficient estimation. Advances in
Neural Information Processing Systems, 31.

Alex Wang, Amanpreet Singh, Julian Michael,
Felix Hill, Omer Levy, and Samuel Bowman.
2018. GLUE: A multi-task benchmark and
analysis platform for natural language un-
derstanding. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP,
pages 353–355, Brussels, Belgium. Associa-
tion for Computational Linguistics. https://
doi.org/10.18653/v1/W18-5446

Ruigang Wang and Ian Manchester. 2023. Direct
parameterization of Lipschitz-bounded deep
networks. In International Conference on Ma-
chine Learning, pages 36093–36110. PMLR.

Xing Wu, Chaochen Gao, Meng Lin, Liangjun
Zang, and Songlin Hu. 2022. Text smoothing:
Enhance various data augmentation methods
on text classification tasks. In Proceedings
of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2:
Short Papers), pages 871–875, Dublin, Ireland.
Association for Computational Linguistics.

Yuxin Xiao, Paul Pu Liang, Umang Bhatt,
Willie Neiswanger, Ruslan Salakhutdinov, and
Louis-Philippe Morency. 2022. Uncertainty
quantification with pre-trained language mod-
els: A large-scale empirical analysis. In Find-
ings of the Association for Computational
Linguistics: EMNLP 2022, pages 7273–7284.
https://doi.org/10.18653/v1/2022
.findings-emnlp.538, PubMed: 35674204

Yijun Xiao and William Yang Wang. 2019.
Quantifying uncertainties in natural language
processing tasks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33,

pages 7322–7329. https://doi.org/10
.1609/aaai.v33i01.33017322

Huan Xu and Shie Mannor. 2012. Robustness and
generalization. Machine Learning, 86:391–423.
https://doi.org/10.1007/s10994
-011-5268-1

Yue Yu, Simiao Zuo, Haoming Jiang, Wendi
Ren, Tuo Zhao, and Chao Zhang. 2021.
Fine-tuning pre-trained language model with
weak supervision: A contrastive-regularized
self-training approach. In Proceedings of the
2021 Conference of the North American Chap-
ter of the Association for Computational
Linguistics: Human Language Technologies,
pages 1063–1077. https://doi.org/10
.18653/v1/2021.naacl-main.84

Chiyuan Zhang, Samy Bengio, Moritz Hardt,
Benjamin Recht, and Oriol Vinyals. 2021.
Understanding deep learning (still) requires re-
thinking generalization. Communications of the
ACM, 64(3):107–115. https://doi.org
/10.1145/3446776

Susan Zhang, Stephen Roller, Naman Goyal,
Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li,
Xi Victoria Lin, Todor Mihaylov, Myle Ott,
Sam Shleifer, Kurt Shuster, Daniel Simig,
Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. OPT: Open
pre-trained transformer language models. arXiv
preprint arXiv:2205.01068v4.

Jing Zhou, Yanan Zheng, Jie Tang, Li Jian, and
Zhilin Yang. 2022. FlipDA: Effective and ro-
bust data augmentation for few-shot learning.
In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8646–8665,
Dublin, Ireland. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/2022.acl-long.592

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom
Goldstein, and Jingjing Liu. 2020. FreeLB: En-
hanced adversarial training for natural language
understanding. In International Conference on
Learning Representations.

279

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://pubmed.ncbi.nlm.nih.gov/35674204
https://doi.org/10.1609/aaai.v33i01.33017322
https://doi.org/10.1609/aaai.v33i01.33017322
https://doi.org/10.1007/s10994-011-5268-1
https://doi.org/10.1007/s10994-011-5268-1
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.1145/3446776
https://doi.org/10.1145/3446776
https://doi.org/10.18653/v1/2022.acl-long.592
https://doi.org/10.18653/v1/2022.acl-long.592


A Complementary Results

Figure 4: Perturbation in the embedding space.
Complementary to Figure 1.

Figure 5: Calibration plots for binary classification
datasets for LLaMA-2. Complementary to Figure 2.

280


	Introduction
	Related Work
	Representation-based Regularization
	Lipschitz Continuity
	Hutchinson's Estimator
	JacHess

	Experimental Setup
	Models
	Regularization Methods
	Datasets
	Fine-Tuning

	Enhancing Generalization through Robustness
	Embedding Perturbation
	Token Corruption
	In-Distribution Generalization
	Generalization Under Domain Shift

	Calibration
	Analysis
	Scope and Degree of Regularization
	Dimension Sampling
	Number of Unlabeled Instances

	Conclusion
	Complementary Results

