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Preface

The third workshop on resources and representations for under-resourced languages and domains was
held in Tallinn, Estonia, on March 2nd, 2025. The workshop was conducted in person but also provided
an option for online participation. In alignment with the goals of the previous two workshops in 2020 and
2023, RESOURCEFUL-2025 explored the role of resource type and quality available to computational
linguists, as well as the challenges and directions for constructing new resources in light of the latest
trends in natural language processing, computational linguistics, and artificial intelligence. The work-
shop provided a forum for discussions between the two communities involved in building data-driven
and annotation-driven resources.

The call for papers for RESOURCEFUL-2025 requested work on the following topics:

• The types of linguistic knowledge that should be captured by models across different contexts and
tasks

• Practical methods for sampling and extracting knowledge

• The relevance of traditional NLP resources for use in data-driven approaches

• The use of data-driven approaches to enhance expert-driven annotation processes

• Current challenges faced in expert-based annotation

• Crowdsourcing and citizen science initiatives to build and enrich linguistic resources

• Methods for evaluating and mitigating unwanted biases in linguistic models and data

• Creating anonymized and pseudonymized datasets and models

• Evaluating the role of modern LLMs in the creation of new linguistic resources

We invited both archival (long and short papers) and non-archival submissions. In total, 33 submissions
were received, of which 23 were archival. The program committee (PC) consisted of 33 members (exclu-
ding 13 Program Chairs), who served as reviewers. Based on the PC assessments regarding the content
and quality of the submissions, the program chairs decided to accept 26 submissions for presentation
and publication. Together with the 4 non-archival submissions, we devised a program consisting of 7
talks and 17 posters. The accepted submissions covered topics related to working with specific lingui-
stic characteristics, investigating and analyzing specific aspects of languages or contexts, and exploiting
methods for analyzing, exploring, and improving the quality and quantity of low-resourced and medium-
resourced languages, domains, and applications. The topics presented in the accepted submissions led to
the emergence of the following themes and questions for the panel discussion:

1. Analysis and Exploration of Linguistic Characteristics and Features in Specific Languages.
This line of presented work focused on the linguistic characteristics and features of various lan-
guages, including Uzbek, Korean, Haitian Creole, Central Australian languages, Faroese, Spani-
sh, Icelandic, Ottoman Turkish, Brazilian Indigenous languages, Latvian, Niger-Congo languages,
Swedish, Finnish, Armenian, German, Slovene, Luxembourgish dialects, Kirundi, Komi-Permyak,
Komi-Zyrian, Polish, and English.

• What are the current challenges in expert-based annotation, and how can data-driven approa-
ches facilitate this process?

• Which resources and corpora, and in which modalities (text, image, video, audio), are mis-
sing for the computational modeling of the aforementioned languages?
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• What are the real-world problem domains where these corpora and models can be applied,
such as healthcare or cultural preservation?

2. Development and Evaluation of Datasets and Models for Linguistic Analysis and NLP Ta-
sks. Questions regarding datasets include, but are not limited to, the creation of UD treeban-
ks, phonotactic corpora, and various annotation tools for speakers of Indigenous languages. Ta-
sks encompass part-of-speech tagging, linguistic variation, code-switching, OCR error correction,
question-answering, noun classification, annotation of political attitudes, text generation, personal
information detection, and benchmarking with large language models.

• What strategies can be implemented to improve specific tasks with no available training data?

• How can we ensure fairness and inclusivity in NLP models and datasets?

• How can we assess biases in created datasets and inform users about them?

3. Challenges in Expert-Based Annotation vs. Data-Driven Approaches.

• What are the current bottlenecks in expert-based annotation, and where do data-driven, semi-
supervised, or active learning methods offer improvements?

• Can hybrid approaches be developed to leverage the strengths of both human expertise and
automated techniques?

• How can we standardize annotation practices to improve cross-dataset compatibility and ove-
rall quality?

Completing the program were three invited keynote speakers: Beáta Megyesi from Stockholm Universi-
ty, Jussi Karlgren from Silo AI and Joshua Wilbur from University of Tartu.

Words of appreciation and acknowledgment are due to the program committee, the local NoDaLiDa/Baltic-
HLT 2025 organisers, and OpenReview.

The RESOURCEFUL 2025 Program Chairs
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Universal Dependencies Treebank for Uzbek

Arofat Akhundjanova and Luigi Talamo
Saarland University / Saarbrücken, Germany

arak00001@stud.uni-saarland.de, luigi.talamo@uni-saarland.de

Abstract

We present the first Universal Dependen-
cies treebank for Uzbek, a low-resource
language from the Turkic family. The tree-
bank contains 500 sentences (5850 tokens)
sourced from the news and fiction gen-
res and it is annotated for lemmas, part-
of-speech (POS) tags, morphological fea-
tures, and dependency relations. We de-
scribe our methodology for building the
treebank, which consists of a mix of man-
ual and automatic annotation and discuss
some constructions of the Uzbek language
that pose challenges to the UD framework.

1 Introduction

Although Uzbek ranks as the second Turkic
language in terms of speakers after Turkish
(Boeschoten, 2021a), computational resources for
this language are scarce. We aim to partially fill
this gap by introducing the first fully annotated
Universal Dependencies (UD) treebank for Uzbek
- Uzbek-UT (Uzbek Universal Treebank)1.

The UD framework facilitates consistent
morpho-syntactic annotation across different lan-
guages (de Marneffe et al., 2021) and represents
an open community initiative aimed at creating
annotated corpora for numerous languages. As of
v.2.15, UD includes 296 treebanks covering 168
languages2. Nowadays treebanks are essential for
the development of Natural Language Processing
(NLP) tools and are also increasingly used in
linguistic research.

The present paper is organized as follows. In
Section 2, we provide a brief sketch of the Uzbek
language and in Section 3, we review the exist-
ing computational resources for Uzbek. Section 4

1The treebank is available online at https:
//github.com/UniversalDependencies/UD_
Uzbek-UT.

2https://universaldependencies.org/

forms the core of the paper, describing the steps in-
volved in the treebank development, including au-
tomatic annotation and manual correction. In Sec-
tion 5, we analyze some constructions that pose
challenges to the UD framework. Section 6 sum-
marizes our work and proposes directions for fu-
ture research.

2 The Uzbek Language

Uzbek is a member of the Karluk branch of the
Turkic language family and has the status of offi-
cial language in Uzbekistan. With over 40 million
speakers, it is primarily used in Uzbekistan and
surrounding Central Asian countries, and consid-
ered as the second-most widely spoken Turkic lan-
guage after Turkish (Boeschoten, 2021a).

The official script of the language is Latin, but
the old Cyrillic script is still in use (Boeschoten,
2021b, 390). The treebank described in this work
only contains Uzbek sentences written in the Latin
script.

Uzbek grammar shares similarities with other
Turkic languages, but computational resources de-
veloped for cognate languages cannot be directly
applied. From a typological perspective, Uzbek is
a null-subject, highly agglutinative language and
lacks gender distinctions and articles. Like other
Turkic languages, Uzbek has a basic SOV word
order, which is quite flexible and can be easily
altered for information structure by fronting the
topic (Boeschoten, 2021b, 401-407). Its morphol-
ogy is highly regular and the standard orthogra-
phy does not indicate vowel harmony or consonant
assimilation. Modifiers precede the head noun
and are generally follow the pronoun-quantifier-
adjective order. Number agreement in the nom-
inal phrase is not obligatory, and nouns modi-
fied by quantifiers are often unmarked for plural.
(Boeschoten, 2021b, 392-393)
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O’zbekistonda yil boshidan beri soliq tushumlari qanday o’zgargani tahlil qilindi .
PROPN NOUN NOUN ADP NOUN NOUN PRON VERB NOUN VERB PUNCT

Uzbekistan.LOC year start.POSS.ABL since tax revenue.PL.POSS how change.PART.3SG analysis make.PASS.PST

obl

nmod

obl

case nmod
nsubj

advmod
csubj

compound

root

punct

‘How tax revenues have changed in Uzbekistan since the beginning of the year was analyzed.’

Figure 1: UD annotation of an Uzbek sentence

3 Related Work

Early computational resources for Uzbek included
a morphological parser written in Prolog (Mat-
latipov and Vetulani, 2009), which however lacked
support for complex words. Sharipov et al. (2022)
introduced an expanded tagset through deeper
morphological and syntactic analysis. This was
followed by the creation of UzbekTagger, a rule-
based POS tagger (Sharipov et al., 2023), which
was based on 12 POS tags and tested on the man-
ually annotated data.

The development of stemmers and lemmatizers
(Sharipov and Yuldashov, 2022; Sharipov and So-
birov, 2022) has been another important contri-
bution. UzMorphAnalyzer, introduced by Salaev
(2023), represents a more comprehensive tool, in-
tegrating a stemmer, lemmatizer, and POS tag-
ger. Additionally, a robust finite-state trans-
ducer (FST)-based morphological analyzer, in-
cluded in the Apertium monolingual package, sup-
ports Uzbek text processing3.

Significant efforts have also been directed to-
ward dataset creation, including WordNet-type
synsets (Agostini et al., 2021; Madatov et al.,
2022), sentiment analysis datasets (Kuriyozov
et al., 2019; Matlatipov et al., 2022), semantic
evaluation dataset (Salaev et al., 2022) and text
classification datasets (Rabbimov and Kobilov,
2020; Kuriyozov et al., 2023). However, there
remains a lack of a fully annotated gold-standard
dataset for training automatic taggers and parsers.

In recent years, neural transformer-based lan-
guage models like UzBERT (Mansurov and
Mansurov, 2021) and BERTbek (Kuriyozov et al.,
2024) have emerged. These models were pre-
trained and evaluated against multilingual BERT
(Devlin et al., 2019), showing promising results in

3https://github.com/apertium/
apertium-uzb

masked language modeling and other downstream
tasks.

4 Treebank Development

4.1 Overview and Data Selection

The treebank building consists of the following
steps: (i) word segmentation and lemmatization,
(ii) morphological and Universal Parts-of-Speech
(UPOS) tagging and (iii) dependency parsing. We
cover all the annotation fields in the CoNLL-U
format4, except for the language-specific part-of-
speech tagset (XPOS) and the enhanced depen-
dency graph (DEPS). Figure 1 shows an Uzbek
sentence to exemplify different UD annotation
fields.

Our methodology combines automated process-
ing with manual annotation and revision. When-
ever possible, processing tasks were performed
automatically using existing tools, and then re-
vised manually by a native Uzbek-speaking author
with a background in Uzbek linguistics. The entire
treebank underwent manual verification and cor-
rection to resolve ambiguities, eliminate errors and
ensure consistency. Ambiguous cases were solved
through extensive discussions with other linguists
and UD experts.

The treebank contains 500 sentences (5,850 to-
kens), 250 of which are collected from news arti-
cles and 250 from fiction books. The news sen-
tences are taken from the UzCrawl dataset (Ma-
masaidov and Shopulatov, 2023), which collected
data from major news sites5 covering diverse top-
ics and representing modern Uzbek language us-
age. The fiction sentences are selected from the
publicly available 20th- and 21st-century Uzbek
literary works found online. To ensure data qual-

4https://universaldependencies.org/
format.html

5https://kun.uz/ and https://daryo.uz/

2

https://github.com/apertium/apertium-uzb
https://github.com/apertium/apertium-uzb
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://kun.uz/
https://daryo.uz/


Sentences Tokens Unique words POS tags Features Dependencies
No. 500 5850 3523 17 42 32

Table 1: Basic statistics for the UT treebank.

Model run No. No. of sentences Tokenizer Lemmatizer UPOS Tagger Parser
train test dev

1st run 100 - 50 99.86 86.78 69.39 46.26
2nd run 240 30 30 96.72 86.88 68.22 48.98
3nd run 400 50 50 98.30 92.11 73.08 52.43

Table 2: Model evaluation with F1 score for the three runs.

ity, all sentences were manually selected. The in-
clusion of both news and fiction ensures cover-
age of different domains, levels of formality, and
stylistic variations. The two genres are distin-
guishable by sentence IDs: the first half of the
treebank corresponds to news, while the second
half belongs to fiction. Table 1 provides basic
statistics for the treebank.

4.2 Word Segmentation and Lemmatization

The segmentation of sentences into words was per-
formed automatically with the NLTK tokenizer6

(Loper and Bird, 2002). The tokenized data
amounts to 5,850 tokens. Currently, UD does
not permit words containing spaces. Although
multiword expressions (MWEs) are conceptually
treated as single words, they are annotated us-
ing specific dependency relations rather than be-
ing merged into a single token. For exam-
ple, the proper noun Tog‘li Qorabog‘ ’Nagorno-
Karabakh’ is segmented into two tokens and anno-
tated with flat relation. Punctuation marks that
are attached to a word are tokenized as separate
words; exceptions are full stop marking an abbre-
viation, which are tokenized together, e.g. mln.
‘million’, A. Navoiy ‘A. Navoi’.

Lemmatization was performed automatically
with the UzMorphAnalyzer tool (Salaev, 2023).
However, since UzMorphAnalyzer does not dis-
ambiguate between identical tokens with different
lemmas, manual disambiguation was required.

4.3 UPOS and Morphological Tagging

UPOS tagging is notably a tedious and time-
consuming task. In order to speed up the an-
notation process, we tagged the tokens with the
UzMorpAnalyser. Before starting the tagging

6http://www.nltk.org/api/nltk.
tokenize.html

process, we first mapped traditional Uzbek word
classes (Rahmatullayev, 2006) to 17 UPOS tags,
adhering to the UD guidelines7.UPOS-tagged to-
kens were then manually checked and corrected,
as the tagger did not reach a satisfactory level of
accuracy.

For morphological features, which are referred
to as ‘Universal features’8 in the UD framework,
we first selected 42 Universal features and anno-
tated 150 sentences manually. We then used these
sentences as training data to build a parser for au-
tomatically tagging the remaining sentences. For
this task, we used Stanford Stanza 9 (Qi et al.,
2020), a Python-based NLP library with neural
network components. This significantly reduced
manual work, as some Universal features were
predicted with near-perfect accuracy. As the fi-
nal step of this task, we manually revised and cor-
rected the annotations for 350 sentences.

4.4 Dependency Parsing

To train a dependency parser, Stanford Stanza re-
quires a pipeline with three interconnected pro-
cessors: a tokenizer, lemmatizer and POS tagger.
Therefore, we left dependency parsing as the last
step in building the treebank. We first selected
32 UD syntactic relations and manually annotated
150 sentences with the help of Grew tools (Guil-
laume, 2021). Together with Uzbek word vectors
from the fastText collection (Grave et al., 2018),
we used these sentences to train an initial Stanza
dependency parsing model (1st run). This model
was then used to parse an additional 200 sen-
tences, which were manually corrected for depen-
dency relations and used to train a second model

7https://universaldependencies.org/u/
pos/index.html

8https://universaldependencies.org/u/
feat/index.html

9https://stanfordnlp.github.io/stanza/
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Ammo hamkorlik bu bilan to‘xtab qolmaydi .
CCONJ NOUN PRON ADP VERB VERB PUNCT

but cooperation this with stop.CONV stay.NEG.PRES.3SG

cc
nsubj

obl
case compound

root

punct

‘But the cooperation does not end with this.’

Figure 2: Annotation for the postverbial construction to’xtab qol.

(2nd run) Finally, we re-iterated the training and
correction process with the remaining sentences to
train a final model (3rd run). Table 2 shows the
performance improvements over the three runs.

5 Challenging Constructions

In this section, we address some of the challenges
we have encountered in building the UT treebank
for different annotation fields: UPOS, Universal
Features and syntactic relations.

As for UPOS tagging, the Particle + Verb
pattern used in verbal multi-word expressions
(MWEs) is particularly challenging, as the Parti-
cle does not have a standalone meaning and does
not occur outside of a verbal MWE. For example,
tashkil in the MWE tashkil qil ‘establish’ does not
belong to any POS in Uzbek and the whole phrase
is considered a verb in traditional Uzbek grammar.
However, UD requires to analyze this phrase as
two tokens tagged PART and VERB, respectively.
The main challenge is the lack of a comprehensive
list of such MWEs, requiring frequent dictionary
lookups to verify if the first element of the verb
phrase belongs to a different POS category.

With regard to Universal Features, Uzbek verbs
can be morphologically marked for the Voice cat-
egory by more than one value. In such cases,
the actual value is determined by the most ex-
ternal voice suffix. For instance, ko’ch-ir-il-ish-i
‘relocate-CAU-PASS-VNOUN-3SG’ has a causative
and a passive morpheme, but the verb is ultimately
considered as having a passive voice. This ambi-
guity should be resolved manually, as the parser
has no representation for the order of the mor-
phemes.

As for syntactic relations, postverbial construc-
tions with auxiliary verbs, which are defined by
Johanson (2021, 36-37) as “converb[s] of a lexical
verb and a second auxiliary verb form[ing] a ver-
bal phrase with strong semantic fusion”, are noto-
riously challenging to analyze. There are about 27

verbs in Uzbek that can be used as auxiliaries to
form such constructions, e.g. to‘xtab ‘stop’ as in
to‘xtab qol (‘lit.: stopping stay) ’end, finish’ (see
Figure 2) (Boeschoten, 2021b, 396).

Postverbial constructions are common in the
Turkic family, but their annotation lacks consis-
tency across the UD treebanks for Turkic lan-
guages. In the Uyghur treebank, auxiliaries are
analyzed as the head of an open clausal comple-
ment relation (xcomp)10, although this does not
fully align with the UD guidelines. In the Kyrgyz
treebank, converbs are treated as the head of the
relation, with the postverbial element assigned an
auxiliary relation (aux)11. However, this seems
inaccurate, as verbal features like person, tense
and mood are marked on the postverbial element.
In Uzbek, words used as auxiliaries also have non-
auxiliary uses, and aux is only assigned to modal
and copular verbs. This inconsistency across lan-
guages highlights the need for a standardized ap-
proach. One potential solution is to introduce a
new subtype for compound relations, pending dis-
cussion among Turkic UD contributors and ap-
proval by the UD coordinators. In the meantime,
we analyze such Uzbek verb constructions with a
compound relation, in which the postverbial ele-
ment serves as the head.

6 Conclusion

In this work, we presented the first UD treebank
for Uzbek – Uzbek-UT. The annotation methodol-
ogy was semi-automatic, starting from manual an-
notation of training data to automatic parsing with
freely available tools, followed by human post-
editing. Additionally, we analyzed constructions
that are particularly challenging in the UD frame-
work. Despite its small size, the treebank serves

10https://universaldependencies.org/ug/
index.html

11https://github.com/
UniversalDependencies/UD_Kyrgyz-TueCL
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as a quality resource for linguistic research and
model training in several NLP tasks, which we in-
tend to conduct in future work. In the future, this
treebank can be extended in size, covering more
registers and enriched with additional tags and im-
proved solutions for MWEs.
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Abstract

Code-switching (CS) involves speakers switch-
ing between two (or potentially more) lan-
guages during conversation and is a common
phenomenon in bilingual communities. The
majority of NLP research has been devoted to
mono-lingual language modelling. Consequen-
tially, most models perform poorly on code-
switched data. This paper investigates the ef-
fectiveness of Cross-Lingual Large Language
Models on the task of POS (Part-of-Speech)
tagging in code-switched contexts, once they
have undergone a fine-tuning process. The
models are trained on code-switched combi-
nations of Indian languages and English. This
paper also seeks to investigate whether fine-
tuned models are able to generalise and POS
tag code-switched combinations that were not
a part of the fine-tuning dataset.

Additionally, this paper presents a new metric,
the S-index (Switching-Index), for measuring
the level of code-switching within an utterance.

1 Introduction

1.1 Background

At present, approximately half of the world’s popu-
lation is bilingual and increased globalisation and
migration is creating more multilingual commu-
nities. (Stavans and Porat, 2019). Consequently,
code-switching is becoming an increasingly com-
mon form of communication, especially in online
media.

Code-switching in digital and face-to-face com-
munication can arise for a multitude of reasons
including quoting someone, excluding a particular
person or group from a conversation and emphasis-
ing group identity (Grosjean, 1997).

1.2 Code Switching

Code Switching is not simply alternating between
two languages. Instead, it involves the fusion of
two different languages which gives rise to unique

grammatical constructs that are not present in ei-
ther of the original languages (Attia and Elkahky,
2019). This means that mono-lingual models can-
not simply be combined to produce models that
are capable of dealing with CS. Additionally, CS
can occur at the level of individual morphemes
within a single word. This can result in frequent
out-of-vocabulary words.

Often in CS, asymmetry arises (Joshi, 1982)
whereby one language is more dominant compared
to the other. The dominant language is referred to
as the Matrix Language (ML) and the other as the
Embedded Language (EL). It has been proposed
(Joshi, 1982) that CS can be modelled with two
grammars representing the ML and EL where a
mechanism can be used to shift control from the
ML to EL but not vice-versa (Martinez, 2020).

Alternatively, CS between two specific lan-
guages can be modelled as its own language
(Çetinoğlu et al., 2016). For inter-sentential CS, the
model can be trained on mono-lingual data from
both languages. For intra-sentential CS, specific
CS datasets must be obtained as the language of
tokens may change within a sentence.

1.3 POS Tagging

POS (Part-of-Speech) Tagging is the task of predict-
ing the part-of-speech of a word given its context.
Complexity arises due to the fact that the same to-
ken can have different meanings and different parts
of speech when used in different contexts.

This paper uses the base version of XLM-
RoBERTa (Conneau et al., 2020), a cross-lingual
language model trained on data from 100 different
languages. The model was fine-tuned to predict
part-of-speech tags. Previous attempts at this idea
(Maksutov et al., 2021) involve modelling the task
as a sequence-to-sequence task to generate a tag
for each word in the input sequence. It is impor-
tant to note here that the output vocabulary for the
transformer is incredibly small compared to the

7



input vocabulary. The output vocabulary is the set
of possible part of speech tags, whereas the input
vocabulary is the set of all words that appear in the
training dataset.

The BERT architecture (Devlin et al., 2019) is
highly appropriate for this as the Masked Language
Model objective used during pre-training, allows
the model to learn bi-directional context. This
should enable the model to more easily understand
the sequences passed to it.

2 Measuring Code-Switching

2.1 Current Metrics

As previously mentioned, the Matrix Language is
the dominant language in a code-switched text.

Lmatrix(s) = argmax
Li∈L

{tLi}(s) (1)

(Li ∈ L iterates through each language in the
corpus, {tLi}(s) returns the number of tokens of
language Li in sequence s, Lmatrix is the matrix
language)

The Code-Mixing Index metric (Gambäck and
Das, 2016) can be used to measure the level of code
switching in a sequence s-

CMI(s) =
λ(N(s)− {tLmatrix}(s)) + µP (s)

N(s)
(2)

(N(s) is the number of tokens in the sequence,
{tLmatrix}(s) is the number of tokens in the matrix
language, P (s) is the number of code alteration
points and λ and µ are weights that sum to 1)

If a sequence has a high number of tokens not in
the matrix language, it has a high amount of code-
switching. The sequence also has a high amount
of code-switching if there are a large number of
alteration points. This measurement manages to
capture both of these metrics.

This metric can exaggerate the level of code-
switching in short sequences since it divides by the
length of the sequence. This is particularly promi-
nent in sequences with a single word followed by
punctuation. This arises since punctuation is often
listed as a language of its own (e.g. ‘universal’).
Therefore a sequence such as ‘What?’ is calculated
as having a high-level of code-switching since there
is one alteration point and one token not in the ma-
trix language in a sequence with only two tokens.

2.2 Proposed New Metric

To solve this problem, this paper introduces the
S-index measure (S) using the same two metrics as
the CMI.

S(s) = λ tanh(µP (s))× log

(
N(s)

{tLmatrix}(s)

)

(3)
(λ and µ are arbitrary constants. The values in

this paper use λ = 1 and µ = 0.5)
Since this metric does not divide by the number

of tokens in the sequence and a logarithm is ap-
plied to the ratio of tokens to tokens in the matrix
language, the exaggeration for short sequences is
prevented. The use of the hyperbolic tangent, limits
the influence of P (s) for very long sequences (pre-
venting the opposite form of exaggeration), since it
naturally saturates for large values. The constants
λ and µ can be used to adjust when and to what
value the P (s) term saturates.

Token Language
Matlab Hindi
? Universal
Translation Meaning?
N(s) 2
{tLmax}(s) 1
P (s) 1
CMI(s) 0.5
S(s) 0.32

Table 1: CMI exaggerates the level of code-switching
here.

It is clear that the sequence in Table 2 has a
higher level of code-switching than the sequence in
Table 1. However, the CMI metric fails to capture
this but the S-index does.

3 Training

3.1 Dataset

We utilise a dataset consisting of code-switched so-
cial media posts and messages in three different lan-
guage combinations (Jamatia et al., 2015) that was
used for the ICON 2016 shared NLP task. Table
3 details the make-up of the dataset and the Code-
Mixing Index and S-Index for each language pair.
For the entire dataset, Pearson’s Correlation Co-
efficient (r) (Lee Rodgers and Nicewander, 1988)
between the CM-Index and S-Index was 0.85. This
indicates that there is a generally strong positive
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Token Language
I English
mean English
. Universal
Ye Hindi
bol Hindi
ri Hindi
thi Hindi
ki Hindi
unki Hindi
pics English
do Hindi
Translation I mean. She was saying

to give her pictures.
N(s) 11
{tLmax}(s) 7
P (s) 3
CMI(s) 0.36
S(s) 0.41

Table 2: CMI undervalues the level of code-switching
here.

correlation between the two measures, yet also
shows that there is significant cases where they
differ and where we believe the S-index resolves
some of the flaws of the CM-Index.

3.2 POS-Tagging with BERT models

The tokenizers used by BERT models (and many
other Large Language Models) often produce multi-
ple tokens per word (Schuster and Nakajima, 2012).
This means that when assigning POS-tags, com-
plexity arises, as each POS-tag can be associated
with multiple tokens. Some simple solutions to this
problem (Saidi et al., 2021) include assigning the
POS tag to the first sub-word token of each word
and assigning the same POS tag to each sub-word
token. The solution implemented here is to pass
each sub-word token into the model, producing a
context-aware embedding for each sub-word token.
These are then re-aligned to the word level by tak-
ing the average embedding for words that consist
of more than one token (Lauren, 2022).

The use of sub-word tokenizers can be viewed
as a benefit in the case of code-switching as it en-
ables the model to more effectively deal with out-
of-vocabulary words (Nayak et al., 2020).

Here, the POS-tagging task is modelled as a
sequence-to-sequence task. Upon passing a se-
quence to the model, a tag is generated for each

Figure 1: Model Architecture

token in the input sequence.

3.3 Model

The sequences are tokenized using the XLM-
RoBERTa tokenizer and then passed into XLM-
RoBERTa which produces a high-dimensional em-
bedding of each token in the input sequence. This
embedding passes through a linear layer and fi-
nally, a softmax operation to transform it into a
low-dimensional probability distribution, indicat-
ing the likelihood of each token belonging to dif-
ferent part-of-speech tags.

We utilise dropout layers between the output of
XLM-RoBERTa and the linear layer to reduce the
effects of overfitting during training.

3.4 Fine-Tuning

We fine-tuned four XLM-RoBERTa models on dif-
ferent language pair combinations: (1) HI-EN, TE-
EN, and BE-EN; (2) HI-EN and TE-EN; (3) HI-EN
and BE-EN; and (4) TE-EN and BE-EN. The pur-
pose of this was to investigate whether the models
were capable of generalising the POS-tagging pro-
cess to language combinations that were not present
in the dataset used for fine-tuning. Previous studies
(Blum, 2022) have evaluated the effectiveness of
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Languages Mean CM-Index Mean S-Index Count
English-Hindi 0.405 0.583 1867
English-Bengali 0.507 0.776 625
English-Telugu 0.503 0.792 1487
Overall 0.458 0.692 3979

Table 3: Statistics for each language combination in the dataset.

fine-tuned multilingual language models for POS
tagging in languages that were absent from the
fine-tuning dataset, specifically in contexts without
code-switching.

We employ the use of a learning rate scheduler
and the AdamW (Loshchilov and Hutter, 2019)
optimiser during the fine-tuning process.

3.5 Performance on Unseen Combinations
during Fine-Tuning

Figure 3 shows the performance of the models on
the hidden language combination during training.
Despite the fine-tuning dataset containing no data
from the respective languages, it is clear that the
performance improves significantly during the fine-
tuning process.

One cause of this property is the overlap between
the subword tokens found in the training dataset
and the hidden language datasets. Therefore, the
model is still indirectly exposed to some of the
same tokens, improving its performance. Exper-
iments (Pires et al., 2019) show that when tested
in this way, fine-tuned multilingual models do not
solely rely on an overlap between tokens (which
would indicate learning through simple vocabulary
memorisation) and that the pretraining process has
enabled more robust multilingual representations.

However, the loss values for the hidden lan-
guages do not reach as low as the validation loss
(only containing the language combinations visible
in the fine-tuning process) as shown in Figure 2.
It is unclear whether this is due to the small size
of the model and the lack of data (Kaplan et al.,
2020) or if there is a hypothetical limit on the per-
formance on hidden languages when models are
fine-tuned in this way.

A cause of this limit could be catastrophic for-
getting (McCloskey and Cohen, 1989) whereby the
model loses some of its ability to understand the
languages that appeared during pre-training when
fine-tuned on the other languages.

Figure 2: The performance of the model on the vali-
dation dataset (containing data from the languages the
model is fine-tuned on) during the fine-tuning process.

Figure 3: The performance of the model on the data
from the language that is not contained in the fine-tuning
dataset.

4 Results

The fine-tuned models were tested on a portion of
the dataset. The results are shown in Table 4. The
testing shows that the models were able to predict
POS-tags with a reasonable degree of accuracy. We
feel that the performance of the models is highly
promising given that the language model used only
has 279 million trainable parameters and only a
small dataset was used.

4.1 Performance on Unseen Code-Switched
Combinations

The testing shows that the models are capable of
predicting POS-tags in unseen language combi-
nations to a similar level of accuracy as to when
these combinations are included in the fine-tuning
dataset.

The fact that Bengali, Hindi, and Telugu are all
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% of tokens correctly predicted
Combinations Trained On HI-EN TE-EN BE-EN Overall
HI-EN, TE-EN, BE-EN 76.54 71.86 73.75 74.53
HI-EN, TE-EN 78.67 74.32 67.68 70.28
HI-EN, BE-EN 77.80 67.90 75.32 69.60
TE-EN, BE-EN 72.14 73.15 77.90 72.40

Table 4: The % of tokens in the test dataset that each model correctly predicted.

Indian languages with shared grammatical features
likely contributes to this ability. Moreover, the
consistent subject-object-verb (SOV) word order
across these languages helps in POS tagging by
providing a similar syntactic structure.

However, Telugu belongs to a different language
family (Dravidian) than Bengali and Hindi (Indo-
European) which introduces some variance. This
would suggest that the models are capable of learn-
ing more general syntactic patterns that appear
across different languages. To determine whether
this ability persists in other code-switched language
combinations would require further experiments.
Unfortunately, the current lack of suitable datasets
presents a challenge to conducting such investiga-
tions.

When the HI-EN data is removed, the perfor-
mance on this language combination improves sig-
nificantly compared to when other language pairs
are removed. This is likely because Hindi, being
the most widely spoken language in India, is often
mixed into other language pairs. This pattern was
observed by the creators of the dataset1.

5 Conclusion and Future Work

Although the performance of the models trained
here is not comparable to those of today’s state-of-
the-art POS taggers, we feel that our models are
highly promising.

The ability of models to POS-tag in unseen
code-switched combinations is evident and more
research needs to be performed to analyse whether
this property extends to other code-switched lan-
guage combinations that are not so closely related.

Additionally, the ability of multilingual models
to be fine-tuned to perform other NLP tasks such as
Sentiment Analysis and Named Entity Recognition
is also an area that needs to be researched.

1https://amitavadas.com/Code-Mixing.html

Limitations

This study was limited to a small number of code-
switched combinations between English and three
Indian languages, due to a lack of widely available
datasets.

Furthermore, we noted a small yet significant dis-
crepancy between the performance of the models
on code-switched combinations that were included
in the fine-tuning dataset and those that were not.
We feel that more research needs to be done on
the causes of this discrepancy and how they can be
limited.
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Abstract

We expand the second language (L2) Ko-
rean Universal Dependencies (UD) tree-
bank with 5,454 manually annotated sen-
tences. The annotation guidelines are also
revised to better align with the UD frame-
work. Using this enhanced treebank, we
fine-tune three Korean language mod-
els—Stanza, spaCy, and Trankit—and eval-
uate their performance on in-domain and
out-of-domain L2-Korean datasets. The re-
sults show that fine-tuning significantly
improves their performance across vari-
ous metrics, thus highlighting the impor-
tance of using well-tailored L2 datasets for
fine-tuning first-language-based, general-
purpose language models for the mor-
phosyntactic analysis of L2 data.

1 Introduction

The Universal Dependencies (UD) framework, de-
signed to facilitate accessible morphosyntactic an-
notations (de Marneffe et al., 2021), has been ap-
plied increasingly in linguistics, particularly to
annotate learner corpora. This approach supports
tasks such as modeling the trajectories of second
language (L2) acquisition, which often require tree-
banks for fine-tuning language models or evaluat-
ing their performance on L2 data. Such data are
typically characterized by simpler and/or nontarget-
like lexico-grammatical usages compared to those
produced by first-language speakers, although
these characteristics vary across L2 proficiency.
Previous research has increasingly adopted the UD
framework to automatically handle learner corpora
in various languages, including English (Berzak
et al., 2016; Kyle et al., 2022; Lyashevskaya and
Panteleeva, 2017; Huang et al., 2018), Chinese (Lee
et al., 2017), Italian (Di Nuovo et al., 2019, 2022),
Russian (Rozovskaya, 2024), and Swedish (Mas-

ciolini et al., 2024; Masciolini, 2023; Masciolini
et al., 2023), demonstrating its utility in L2 studies.

Among these efforts, recent studies in Korean
have developed L2-Korean UD treebanks with
language-specific morphemes and dependency tags
(Sung and Shin, 2023a,b, 2024). However, two
research gaps remain. First, while continuing to
expand the amount of data, annotation guidelines
should be iteratively updated to balance cross-
linguistic standardization with the preservation
of language-specific features (de Marneffe et al.,
2021; Manning, 2011). Second, the effectiveness of
L2-Korean-optimized models should be assessed
using out-of-domain data to improve their reliabil-
ity in broader contexts for which they are designed
(Plank, 2016; Joshi et al., 2018).

The present study addresses these gaps with
three key contributions: (1) augmenting the existing
L2-Korean UD treebank (v1.1, 7,530 sentences) by
adding 5,454 manually annotated sentences with
Korean-specific morphemes and UD annotations;
(2) revising dependency annotation guidelines ex-
tensively to better align with the language-general
UD framework, while implementing minor adjust-
ments to the guidelines to better reflect the linguis-
tic properties of Korean; and (3) fine-tuning and
evaluating three Korean language models in both
in-domain and out-of-domain contexts using the
updated L2-Korean UD treebank (v1.2, 12,984 sen-
tences, see Appendix for XPOS and DEPREL tag
distributions).

2 Related works

A line of studies have established approaches for
morpheme and dependency annotations in L2 Ko-
rean. Sung and Shin (2023b) provided preliminary
guidelines for Korean morpheme annotations, ad-
dressing the need to parse morphemes taking into
account the agglutinative nature of Korean mor-
phosyntax, where a single word often combines
lexical morphemes (e.g., noun, verb) and func-
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tional morphemes (e.g., postpositions, tense-aspect-
modality markers). Expanding this work, Sung and
Shin (2024) introduced detailed UD annotation
guidelines to handle Korean-specific dependency
cases such as particles and coordination.

Sung and Shin (2023a) fine-tuned morpheme
parsers optimized for L2 Korean and evaluated
them on in-domain and out-of-domain datasets,
demonstrating the importance of high-quality in-
put for fine-tuning L2-Korean language models.
However, those studies did not include training
or evaluating dependency tags. Additionally, their
fine-tuning strategy was relatively simple, relying
solely on one Korean pre-trained model.

3 Dataset

Building upon the previous L2-Korean UD anno-
tation projects (Sung and Shin, 2023b, 2024), we
continued annotating L2-Korean sentences using
a subset of data from the same source (Park and
Lee, 2016).1 For the out-of-domain testing, we an-
notated additional data from the KoLLA dataset
(Lee, 2022), which was designed to analyze Ko-
rean learner language with a focus on particle error
annotations.2

Along with the annotations, we refined the anno-
tation guidelines, implementing major revisions to
better align with the language-general UD annota-
tion scheme and minor adjustments to morpheme
annotations. Together, the updated L2-Korean UD
treebank (v1.2) comprises (# sents = 12,984): (1)
additional data augmented and annotated using the
revised scheme (# sents = 4,532); (2) revised data
from the previous project (Sung and Shin, 2024),
updated with the new annotation scheme (# sents =
7,530); (3) data sourced from the KoLLA dataset
(Lee, 2022), annotated with the revised scheme for
the out-of-domain testing (# sents = 922).

3.1 Refining annotation guidelines
Carefully curated linguistic annotations balance
two key challenges: maintaining consistency and
ensuring accuracy. Manning (2011) highlighted the
challenges involving POS labeling, noting the in-
herent ambiguities and unclear boundaries between
word classes, which complicate the definitive as-
signment of labels. Such intrinsic ambiguities can
degrade the performance of taggers when training

1The source data became unavailable as of September
2024.

2The dataset is publicly available at: https://cl.
indiana.edu/~kolla/

language models. Therefore, systematic checks and
guideline refinements are essential for achieving
optimal annotations.

For L2-Korean annotations, Sung and Shin
(2024) emphasized dependency annotations
grounded in language-specific justifications, build-
ing upon earlier studies of Korean dependency
annotations (Lee et al., 2019; Kim et al., 2018; Seo
et al., 2019). However, the previous annotation
scheme did not fully conform to the language-
general UD framework and exhibited notable
mismatches between tags, particularly conj, flat,
and aux. To address these issues, we revised
the previous dependency annotation guidelines
to better align with the language-general UD
conventions, thus enhancing global applicability.
Below, we outline two key areas of major changes
implemented.

3.1.1 Following the left-to-right rule
The UD framework enforces a strict left-to-right
rule for coordination to ensure consistency and
cross-linguistic applicability in morphosyntactic
annotations (Nivre et al., 2016; de Marneffe et al.,
2021). This approach originates from the Stanford-
typed dependencies for English (de Marneffe et al.,
2006), which serve as the foundation for the uni-
versal dependency representation (McDonald et al.,
2013).

Coordination Coordination (conj) is handled by
consistently attaching the coordinating conjunction
to the head of the first conjunct. The leftmost con-
junct is designated as the head, with subsequent
conjuncts and the coordinating conjunction depend-
ing on it.3

Initially, Sung and Shin (2024) assigned the head
to the right-headed structure in complex clauses or
noun phrase conjunctions. For instance, in complex
clauses, the head was assigned to the predicate,
often resulting in a right-headed structure. This
approach was driven by the nature of the Korean
connective marker (e.g., -고 [-ko]), which signi-
fies conjunction and is logically tagged as conj (p.
3748). However, in line with the current UD guide-
lines, we revised the previous approach to strictly
follow the left-to-right head structure, consistent
with the UD’s left-headed coordination. Now, the
connective marker -고 (-ko) is tagged as root, and

3This approach, while widely adopted, has raised some
questions, as noted by Gerdes and Kahane (2016), where the
selection of the first conjunct as the head is made without
extensive justifications (p. 7).
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저는 구경을 했고 음식도 먹었어요
ce-nun kwukyeng-ul hay-ss-ko umsik-to mek-ess-eyo
I-TOP sightseeing-ACC do-PST-CONN food-PAR eat-PST-DECL

nsubj

obj

root

conj

obj

Figure 1: Coordination (Left-headed)
‘I looked around and ate some foods.’

the final predicate receives the conj tag (Figure
1).4

Flat Flat (flat) is used when no single element
in an expression can be clearly identified as the
head. Similar to the case of coordination, in this
structure, the leftmost element is treated as the
head, with all subsequent components attached to
it as equals. This applies to expressions such as
"John Smith" or "San Francisco," where no one
part dominates the meaning of the whole.

In the previous L2-Korean UD annotation
scheme, the core principle for assigning the head
was based on the presence of particles, reflecting
how they function in determining the grammatical
roles of nouns in Korean—core arguments (subject,
object) or non-core arguments (obliques) within a
clause (Sohn, 1999). However, to conform to the
UD framework’s left-to-right rule, we rigorously
revised all flat relations to follow this directional-
ity. This revision affected the majority of naming
conventions and combinations of names with titles
in our annotated data, as described in Figure 2.

영수 씨는 테니스를 잘 합니다
Yengswu ssi-nun theynisu-lul cal hap-nita
Yengswu Mr.-TOP tennis-ACC well do-DECL

nsubj

flat

obj

advmod

root

Figure 2: Flat (Left-headed)
‘Youngsoo is good at tennis.’

3.1.2 Treatment of auxiliary verbs
The revised annotation scheme strictly adheres to
the UD guidelines for Korean, limiting the anno-
tation of auxiliary verbs to five specific forms.5

4We also revised noun phrase conjunctions, as in exam-
ples such as 사과와 바나나 (sakwa-wa panana, "apple and
banana"), where사과 (sakwa, "apple") is the head and바나
나 (panana, "banana") depends on it, with the coordinating
conjunction -와 (-wa, "and") linking the two.

5https://universaldependencies.org/ko/index.
html

These forms include (1) the affirmative copula이-
(i-, "to be"), which is treated as a separate auxil-
iary even when it functions as a suffix to a nominal
predicate;6 (2) the negative copula 않- (anh-, "to
not be"), annotated as AUX in negative clauses; (3)
the affirmative auxiliary 있- (iss-, "to be"), used
as an auxiliary in affirmative clauses or to indicate
progressive aspect; (4) the necessitative modal하-
(ha-, "must, should"), which functions as a modal
auxiliary expressing necessity; and (5) the desidera-
tive modal싶- (sip-, "will, want"), which serves as
a modal auxiliary expressing a desire or intention.
Verbs with auxiliary-like meanings outside this set
were tagged as adverbial clause modifiers (advcl).

3.2 Annotation process

The annotation was conducted by five native Ko-
rean speakers, each holding at least an undergrad-
uate degree in Korean linguistics. To manage the
workload and ensure comprehensive coverage, the
annotators were divided into two groups, with each
sentence independently annotated by a pair from
one group. The annotators worked independently to
minimize bias and preserve the integrity of their in-
dividual assessments, without interim adjudication
meetings to resolve disagreements. When discrep-
ancies arose between the initial pair of annotators,
a third annotator, and if necessary, a fourth, were in-
volved sequentially. Inter-annotator reliability was
assessed for the initial annotation pairs (before the
adjudication process) using the augmented dataset
(# sents = 4,532, Table 1).

Annotation Cohen’s Kappa
LEMMA 0.964
XPOS 0.908
HEAD 0.892
DEPREL 0.927

Table 1: Inter-annotator reliability

4 Experiment

4.1 Model training

We evaluated four language models against L2-
Korean morphosyntactic annotation tasks, drawing
upon user-friendly NLP toolkits designed for mul-
tilingual applications in fundamental NLP tasks:

6When이- follows a noun and precedes a sentence-final
functional morpheme (e.g., -다 -ta, as in친구이다 chinkwu-i-
ta, "is a friend"), we assigned it the root tag, simplifying the
earlier practice of using a special root:cop tag.
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(1) Baseline: Stanza-Korean (GSD package) (Qi
et al., 2020) was used as a benchmark without fine-
tuning. It aligns with both the Sejong tag set and the
UD framework; (2) Stanza: We fine-tuned Stanza-
Korean (GSD), which employs a biLSTM architec-
ture (Huang et al., 2015) to model sequential de-
pendencies. Fine-tuning allows the model to better
capture localized morphosyntactic patterns in L2-
Korean data by leveraging the tagging scheme and
linguistic patterns encoded in the pre-existing GSD
package; (3) spaCy: We fine-tuned spaCy (Honni-
bal et al., 2020), which uses its tok2vec layer to
generate token-level embeddings from sub-word
features. Fine-tuning in spaCy benefits from pre-
trained word vectors and built-in lexical resources,
making it well-suited for modeling specific lexico-
grammatical nuances; (4) Trankit: We fine-tuned
Trankit (Van Nguyen et al., 2021), which uses a
transformer-based architecture (XLM-RoBERTa,
Conneau et al., 2020) pre-trained on 100 languages.
Fine-tuning a custom pipeline in Trankit using the
TPipeline class enables the model to capture long-
range dependencies and complex syntactic struc-
tures. All models were trained using their default
hyperparameter settings to ensure a fair compari-
son.

4.2 Dataset split
The updated L2-Korean UD treebank (v1.2) was di-
vided into subsets for training and evaluation. The
training set contained 9,649 sentences, while the
development set, comprising 1,208 sentences, was
used for fine-tuning and model optimization. The
test set, which included 1,205 sentences, was used
to evaluate in-domain performance. Additionally,
an out-of-domain test set comprising 922 sentences
was designated to assess the models’ robustness
and generalizability to data beyond the training
space.

4.3 Evaluation Metrics
To evaluate these models, we measured F1 scores
across the following metrics: XPOS, LEMMA,
UAS (Unlabeled Attachment Score), and LAS (La-
beled Attachment Score).

4.4 Results
The fine-tuned models effectively improved their
performance across various metrics for both in-
domain and out-of-domain datasets. For the in-
domain L2K-UD-test set, Trankit outperformed
other models in XPOS, UAS, and LAS, while

Dataset Metric Baseline Stanza spaCy Trankit

L2K-UD-test
(in-domain)

XPOS 82.44 89.72 83.15 91.81
LEMMA 89.61 95.64 87.97 88.84

UAS 76.72 85.53 82.21 92.28
LAS 60.69 80.36 75.21 89.13

KoLLA
(out-of-domain)

XPOS 77.79 81.87 71.21 84.51
LEMMA 88.03 91.01 79.64 86.90

UAS 72.30 81.17 74.48 88.93
LAS 58.53 75.14 63.56 85.45

Table 2: Evaluation metrics

Stanza achieved the best LEMMA score despite
trailing overall. In the out-of-domain KoLLA tree-
bank, Trankit again excelled in XPOS, UAS, and
LAS, demonstrating its generalizability beyond the
traning space. Stanza consistently performed best
in the LEMMA metric, indicating its strong lexical
capabilities even with domain shifts.

5 Discussion and future directions

We expanded the L2-Korean UD treebank with re-
fined annotation schemes to improve model per-
formance after fine-tuning. Using this treebank,
we fine-tuned three models—Stanza, spaCy, and
Trankit—and evaluated their performance in both
in-domain and out-of-domain contexts. The eval-
uation results showed significant performance im-
provements across various metrics, underscoring
the value of using an L2 dataset for fine-tuning.
Among the models, Trankit’s transformer-based ar-
chitecture outperformed the others in XPOS, UAS,
and LAS across both test datasets, demonstrating
its effectiveness of capturing morphosyntactic fea-
tures in L2-Korean data. The fine-tuned models and
relevant documentations are available at https:
//github.com/NLPxL2Korean/UD-KSL. The tree-
bank will be updated at https://github.com/
UniversalDependencies/UD_Korean-KSL.

Although both Trankit and Stanza employ a
character-based seq2seq model (Van Nguyen et al.,
2021), Stanza’s superior lemmatization perfor-
mance compared to Trankit can be attributed to two
primary factors. First, Stanza includes a dictionary-
based lemmatizer (Qi et al., 2020), which may have
strengthened its ability to handle a wide variety of
morphological patterns. Second, as noted earlier,
Stanza uniquely leverages a model that was pre-
trained on L1 data (UD-Korean GSD) before being
fine-tuned on the current L2 data, which appears
to enable it to capitalize on prior lemmatization
knowledge for more accurate predictions.

To fully harness the potential of transformer-
based architectures in fine-tuning L2-Korean mod-
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els, future L2-Korean UD treebanks could adopt
two complementary strategies. One approach in-
volves combining L2-Korean data drawn from var-
ious genres or diverse learner backgrounds. The
other centers on refining the match between univer-
sal UPOS tags and language-specific XPOS tags
through expert revisions to enhance UPOS to boost
their effectiveness for lemmatization within the
seq2seq framework.
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Appendix

XPOS v1.1 v1.2 DEPREL v1.1 v1.2
NNG 25338 40001 nsubj 8767 13781
VV 10219 16714 punct 8287 14066
EC 8600 13282 obl 7332 12034
EF 7541 12994 root 6866 12989
SF 7525 12948 obj 5572 9203
ETM 6694 9831 advmod 4995 7829
JKB 6366 10450 advcl 4703 8425
JX 5406 8656 acl 4501 6400
NNB 4748 7454 nmod 2059 3882
JKO 4735 7717 aux 1963 2312
MAG 4312 6774 conj 1860 2782
JKS 4136 6668 amod 1413 2176
VA 3380 5905 cc 1306 2154
XSV 3278 4761 nmod:poss 1299 1877
VX 3237 4555 det 933 1373
EP 2850 5215 case 894 1477
NNP 2847 4810 flat 854 1172
NP 2145 3548 ccomp 642 897
VCP 2083 3098 dislocated 576 1035
MM 1672 2689 mark 509 838
XSN 1467 2179 list 303 444
JKG 1329 1921 goeswith 203 235
NF 1312 2208 nummod 179 342
XSA 1199 1815 appos 128 95
MAJ 1160 1921 compound 52 112
SN 1017 1475 vocative 46 49
ETN 830 1213 parataxis 37 39
NA 818 1215 csubj 22 22
JC 685 1269 discourse 6 6
SP 607 864 fixed 6 24
XR 424 684 dep 3 5
SS 266 378
NV 262 516
VCN 174 251
XPN 167 208
NR 157 228
SL 133 268
JKC 122 177
JKQ 58 86

Table 3: Comparison of XPOS and DEPREL tag
distributions in L2-Korean UD v.1.1 and v.1.2
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Abstract

Haitian Creole, spoken by millions in
Haiti and its diaspora, remains under-
represented in Natural Language Process-
ing (NLP) research, limiting the availabil-
ity of effective translation tools. In Mi-
ami, a significant Haitian Creole-speaking
population faces healthcare disparities ex-
acerbated by language barriers. Exist-
ing translation systems fail to address
key challenges such as linguistic varia-
tion within the Creole language, frequent
code-switching, and the lack of standard-
ized medical terminology. This work pro-
poses a structured methodology for the
development of an AI-assisted translation
and interpretation tool tailored for patient-
provider communication in a medical set-
ting. To achieve this, we propose a hy-
brid NLP approach that integrates fine-
tuned Large Language Models (LLMs)
with traditional machine translation meth-
ods. This combination ensures accurate,
context-sensitive translation that adapts to
both formal medical discourse and conver-
sational registers while maintaining lin-
guistic consistency. Additionally, we dis-
cuss data collection strategies, annotation
challenges, and evaluation metrics neces-
sary for building an ethically designed,
scalable NLP system. By addressing these
issues, this research provides a foundation
for improving healthcare accessibility and
linguistic equity for Haitian Creole speak-
ers.

Keywords: Haitian Creole, NLP, Health-
care, Low-resource Languages, LLM,
Code-switching, Variation

1 Introduction

Creole languages have historically been under-
represented—and often outright ignored—in Nat-
ural Language Processing (NLP) research (Joshi
et al., 2020; Lent et al., 2021). Many are classi-
fied as low-resource languages due to the scarcity
of annotated datasets and corpora. This is largely
attributed to several factors: the limited avail-
ability of speakers for endangered Creole lan-
guages, pervasive negative attitudes and stigma-
tization that discourage research investment, and
the overall lack of theoretical and applied linguis-
tic engagement with these languages (Mompelat,
2023). This neglect is particularly striking given
that Creole languages, as a group, are spoken by
millions of people worldwide. Their exclusion
from NLP research increases linguistic inequali-
ties and can limit access to crucial technologies,
including healthcare-related applications.

Despite these challenges, there has been a grow-
ing effort to develop NLP solutions for Creole
languages, leading to advancements in part-of-
speech tagging, syntactic parsing, named-entity
recognition, and machine translation (Cortegoso
and Viktor, 2021; Ramsurrun et al., 2024; Robin-
son et al., 2024; Schieferstein, 2018; Dabre and
Sukhoo, 2022; Lent et al., 2021; Macaire et al.,
2022). Researchers have increasingly adopted
hybrid approaches that combine traditional ma-
chine learning with more data-intensive neural and
large language model (LLM) techniques to ad-
dress data scarcity (Fekete et al., 2024; Smart
et al., 2024). This hybrid approach has proven
crucial for advancing NLP capabilities in low-
resource contexts like Creole languages. How-
ever, most existing models fail to account for lin-
guistic variation within Creoles, code-switching
patterns, and domain-specific terminology—three
key issues critical for real-world deployment, par-
ticularly in healthcare.
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Due to the rapid expansion of NLP and AI
research, Creole researchers face a race against
time and technological advances. This urgency
often leads to an overemphasis on dominant vari-
eties within specific Creoles, while linguistic vari-
ation—present in all natural languages, includ-
ing Creoles—receives insufficient attention. Vari-
ation, whether diatopic, diachronic, diastratic, or
diaphasic, is frequently overlooked, resulting in
general LLMs and machine translation systems
failing to account for this diversity (Joshi et al.,
2024). This issue, described as translationese
by Volansky et al. (2015), can negatively impact
the very language communities these technologies
aim to serve.

A unique challenge shared by most Creole lan-
guages stems from their origins and ongoing lan-
guage contact situations. Creole-speaking com-
munities often exist in environments of constant
interaction with another language. This contact
leads to significant linguistic interference, man-
ifesting as diglossia in some contexts or bilin-
gualism in others. The propensity for inter-
lingual interference results in phenomena like
code-switching, borrowing, and other forms of
multilingual restructuring. These dynamics high-
light the critical need to incorporate linguistic vari-
ation into NLP research for Creole languages, en-
suring that technologies reflect their rich diversity
and complex sociolinguistic realities.

One domain where language access is critical is
healthcare. Haitian Creole, the most widely spo-
ken Creole language, is vastly underrepresented in
NLP, contributing to severe healthcare disparities
for Haitian Creole-speaking communities in mul-
tilingual environments like Miami. In these set-
tings, patients frequently switch between Haitian
Creole, French, English, and Spanish, a phe-
nomenon that existing translation systems fail to
handle effectively. Additionally, formal medical
discourse differs significantly from everyday con-
versational Haitian Creole, further complicating
automatic translation efforts.

The lack of medical translation tools tailored
to Haitian Creole leads to miscommunication be-
tween healthcare providers and patients, which
has been linked to misdiagnoses, non-compliance
with treatment plans, and preventable health com-
plications. Addressing this issue requires NLP
models that accurately capture Creole linguistic
variation, handle multilingual and code-switched

text, and integrate standardized medical terminol-
ogy—none of which are adequately covered by
current Haitian Creole language models.

This work proposes a structured methodology
for developing an AI-assisted translation and inter-
pretation tool specifically designed for healthcare
communication. Our approach prioritizes linguis-
tic variation, code-switching, and domain-specific
adaptation to create a culturally and context-
sensitive NLP system.

To achieve this, we:

1. Develop strategies to collect domain-specific
data, leveraging community engagement,
partnerships with local organizations, and
web scraping while adhering to ethical and
legal guidelines for medical data.

2. Design advanced annotation methods, in-
volving linguists, medical professionals, and
native speakers to ensure accurate and cultur-
ally appropriate translations.

3. Adopt a hybrid NLP approach, integrating
fine-tuned Large Language Models (LLMs)
with traditional machine translation methods
and Retrieval-Augmented Generation (RAG)
to handle complex sentence structures and
specialized medical language.

4. Define evaluation metrics that assess linguis-
tic variety, code-switching accuracy, and do-
main adaptation performance while incor-
porating human evaluation to measure real-
world usability.

By addressing these linguistic and computa-
tional challenges, this project contributes to both
NLP research and healthcare equity. It also pro-
vides a scalable framework for other low-resource
languages facing similar issues in medical trans-
lation, multilingual communication, and linguistic
variation.

2 Background and Related Work

Haitian Creole exhibits significant linguistic vari-
ation, including basilectal and mesolectal varieties
influenced by French and other languages. The
basilect-mesolect-acrolect continuum in Creole-
speaking territories describes the range of lan-
guage varieties, from the most Creole-like vari-
ety (the basilect) to the variety most closely re-
sembling the European lexifier language (in this

21



case, French), referred to as the acrolect. The
mesolect, or mesolectal zone, serves as an inter-
mediary area encompassing a blend of phonolog-
ical, lexical, morphosyntactic, and semantic fea-
tures from both the basilect and acrolect (Bernabé,
1982).

In this context, linguists have characterized the
mesolect as containing a Creole-based variety in-
fluenced by the acrolect, sometimes described as
a “Frenchified Creole.” In Haiti, this variety is
known as Kréyòl swa (Tezil, 2022). Conversely,
the continuum also includes a local French vari-
ety influenced by the basilect, often termed “Cre-
olized French.” Of particular interest to this work
is the relationship between the basilectal variety,
known as Krèyòl rèk, and Kréyòl swa within the
linguistic continuum.

Krèyòl rèk is predominantly spoken by mono-
lingual Haitian Creole speakers in Haiti and pos-
sesses distinctive features that set it apart from
Kréyòl swa, which is primarily used by bilingual
Haitian Creole-French speakers in Haiti and its di-
aspora. Due to their numerous structural differ-
ences, these two varieties need to be treated as two
distinct linguistic units. Krèyòl rèk is often associ-
ated with lower prestige and is viewed as the most
authentic representation of the basilectal variety,
while Kréyòl swa carries higher prestige due to
its proximity to French. These dynamics reflect
deeper sociolinguistic patterns tied to language,
identity, and power in Haitian society (Tezil, 2022;
Tézil, 2024).

Among NLP initiatives and LLM developments
for Haitian Creole and other Creole languages,
several notable contributions stand out. Lent
et al. (2024) introduced Creoleval, a multilingual
benchmark for Creole languages and Lent et al.
(2022) proposed guidelines for developing NLP
technologies for Creole languages. Older but
equally important initiatives include the Haitian
Creole language data by Carnegie Mellon 1, which
contains medical domain phrases and sentences;
the Universal Dependencies (UD) Haitian Creole
Autogramm Treebank (Jagodzińska et al.)2, with
sentences sourced from the Bible, novels, and
newspapers; and the Leipzig Corpora Collection3

1http://www.speech.cs.cmu.edu/haitian/
2https://github.com/

UniversalDependencies/UD_Haitian_
Creole-Autogramm - Accessed:2024-12-07

3https://corpora.uni-leipzig.de?
corpusId=hat_community_2017 - Accessed:2024-

a scraped Haitian Creole corpus primarily com-
posed of Wikipedia articles. Additionally, main-
stream multilingual LLMs, such as mBERT (De-
vlin et al., 2018), XLM-R (Conneau et al., 2019),
mT5 (Xue et al., 2020), and M2M-100 (Fan et al.,
2020), include Haitian Creole as part of their train-
ing data.

Despite these contributions, no existing model
sufficiently addresses the specific challenges of
our task. Variation is a critical component of NLP
tasks for Haitian Creole due to the complexity of
its linguistic landscape, which spans multiple vari-
eties and contact languages. Current models often
fail to encompass the linguistic diversity of Haitian
Creole, whether within Haiti or the broader dias-
pora. While linguistic variation can theoretically
be “learned” by systems through extensive data,
the scarcity of annotated resources for underrepre-
sented languages like Haitian Creole renders this
approach ineffective.

Another significant limitation of existing mod-
els is their lack of robust accuracy in han-
dling code-switching effectively for language
pairs containing low-resource languages in partic-
ular (Çetinoğlu et al., 2016; Sitaram et al., 2019;
Winata et al., 2022). This issue is also partic-
ularly pronounced in multilingual environments
like Miami, where Haitian Creole speakers fre-
quently switch between Haitian Creole, French,
English, and Spanish.

Finally, there is a lack of resources and mod-
els specifically designed for Haitian Creole in
domain-specific contexts, such as healthcare. This
gap is compounded by broader challenges in ex-
tending Creole languages beyond their tradition-
ally established functions, particularly in scientific
and technical domains. A notable effort in this
regard is the MIT-Ayiti lab’s initiative to create
new vocabulary for STEM materials4. However,
this project faced criticism from linguists for its
reliance on the lexifier language (French) to gen-
erate new Haitian Creole terms, which sparked de-
bates about linguistic authenticity and community
acceptance5.

This project therefore requires a series of tar-
geted steps to address the multifaceted challenges
of developing an accurate and culturally sensi-
tive machine translation (MT) model for Haitian
Creole speakers in Miami’s healthcare context.

12-07
4https://haiti.mit.edu/glossaryglose/
5https://rezonodwes.com/?p=314768
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By leveraging existing research and creating new
task-specific NLP resources, we aim to tackle the
following critical issues:

1. Addressing linguistic variation in Haitian
Creole to ensure the model can encode and
decode language reflective of the target com-
munity’s usage. This includes accurately rep-
resenting Kreyòl swa and Kreyòl rèk vari-
eties.

2. Managing code-switching in this multilin-
gual environment. The model must handle (a)
frequent switching between Haitian Creole
and French, and (b) more complex switching
among Haitian Creole, English, and Spanish,
which is common in Miami’s diverse linguis-
tic landscape.

3. Translating specialized medical terminology
accurately, which is crucial to facilitating ef-
fective communication between patients and
healthcare providers. This requires not only
linguistic precision but also cultural sensitiv-
ity.

4. Involving Haitian Creole-speaking commu-
nities in Miami throughout the development
process is key to ensuring cultural relevance
and linguistic authenticity. This includes col-
laboration with healthcare professionals, lin-
guists, and native speakers to guide resource
creation, annotation, and evaluation.

5. At a later stage, prioritizing ethical issues,
such as ensuring patient confidentiality and
addressing potential biases in the MT model.
Additionally, practical concerns, such as de-
ploying the model in real-time healthcare set-
tings, should be addressed to ensure usability.

To achieve these objectives, we propose evalu-
ating existing and new models across the follow-
ing tasks:

• Task 1: Classification and identification of
Kreyòl swa and Kreyòl rèk varieties.

• Task 2: Accuracy in producing texts in
Kreyòl swa and Kreyòl rèk.

• Task 3: Language identification for code-
switched texts, specifically Haitian Creole-
French and Haitian Creole-English-Spanish.

• Task 4: Domain-specific machine transla-
tion for Haitian Creole-English and Haitian
Creole-Spanish.

• Task 5 : Context-aware evaluation to ensure
that translations align with cultural norms
and healthcare-specific needs in real-world
situations.

By integrating these steps, the project aims to
address linguistic, cultural, and practical chal-
lenges, ensuring the resulting MT model is not
only accurate but also relevant and beneficial to the
Haitian Creole-speaking community in Miami’s
healthcare system.

3 Methodology and Guidelines

3.1 Linguistic Variation and Code-Switching

Addressing linguistic variation requires collecting
data that represent the diverse varieties of Haitian
Creole for classification tasks. Table 1 outlines ex-
isting corpora that form the basis of our investiga-
tion.

Corpora Genre Quantity
(Munro, 2010) SMS 80k mes-

sages
CMU (1997-1998) multi 2k sen-

tences,
33k to-
kens, 1.2m.
words

UD-HC multi 144 sen-
tences, 3k
tokens

Leipzig Wikipedia 23k sen-
tences, 32k
tokens,
290k words

Table 1: Corpora for Haitian Creole

While these corpora represent valuable re-
sources, they provide limited coverage of Haitian
Creole’s linguistic diversity. For example, Munro
(2010) compiled an 80k SMS corpus translated
into English, offering insights into informal, ca-
sual Creole. However, its spelling has been nor-
malized by the authors, diverging from Haiti’s
standard orthographic norms. For instance, Lewis
(2010) noted the alternation between the personal
pronouns mwen and m as reflecting high and low
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registers, respectively. The corpus homogenized
this feature by replacing all instances of m with
mwen, thereby prioritizing the high register. How-
ever,Valdman (2015) attributes this variation to
phonological processes or free variation rather
than solely register distinctions. This demon-
strates the need to include linguistics research and
developments in NLP.

The CMU corpus encompasses multiple gen-
res, including novels, political speeches, and train-
ing manuals, and provides parallel Haitian Creole-
English texts, including a medical domain sub-
set. It also includes audio recordings of 150
Haitian Creole speakers from diverse locations
(Pittsburgh, New York City, and Paris) recorded
in 1997-1998 while reading various texts. How-
ever, it does not offer authentic oral data that can
adequately represent diaphasic and diastratic vari-
ation.

The UD-HC treebank contains annotated data
from literature and newspapers, providing part-
of-speech, lemma, and dependency information.
However, its limited size —144 sentences and 3k
tokens—limits its scalability to more genres or ev-
eryday language use.

Lastly, the Leipzig corpus consists of 290k
words scraped from Haitian Creole Wikipedia ar-
ticles. While useful for understanding formal and
encyclopedic language, it lacks representation of
informal or spoken varieties.

Overall, the existing freely available corpora
each have their strengths and limitations, but
none explicitly represent the distinctions between
Kréyòl rèk and Kréyòl swa—whether in written
or spoken form—or include instances of code-
switching. Despite these limitations, these corpora
will provide a valuable and foundational base-
line for training and fine-tuning multilingual lan-
guage models to account for linguistic variation
and code-switching in Haitian Creole.

Now looking specifically at the medical field,
we collected pedagogical and instructional mate-
rials meant to facilitate patient-provider commu-
nication and information sharing (see examples in
Figures 1 and 2 from EMSC (2023) and USSAAC
(2023)). These documents provide, most of the
time, a medical term in English and its equivalent
in Haitian Creole, with or without the support of
pictures. These resources have clear limitations
as they show very limited and simplified medical
terminology and therefore fail to represent the vast

diversity of communicative situations a patient and
a provider might find themselves in.

3.2 Data Collection and Augmentation
Methods

Due to the limitations of the existing corpora of
Haitian Creole, data collection and augmentation
will be a necessary step to this project. For this, we
will engage linguists, educators, healthcare pro-
fessionals, and community leaders to help with
data collection, ensuring ethical representation,
and aligning linguistic standardization efforts with
community needs. Their expertise may also help
distinguish Kréyòl rèk from Kréyòl swa and re-
fine domain-specific terminology. To address the
specific needs of this project, we outline four key
strategies for augmenting the existing corpora.

3.2.1 Community Engagement
Engaging with the Haitian Creole-speaking com-
munity and the linguistics community is essential
for ensuring the cultural relevance and linguistic
authenticity of the collected data. Community-
driven initiatives such as focus groups, surveys,
and storytelling workshops can help capture lin-
guistic nuances that might otherwise go undoc-
umented. For instance, via oral interviews, we
propose collecting data on regional phonological
and syntactic variations and documenting infor-
mal language use and code-switching patterns in
real-life scenarios. Via crowdsourcing, we aim to
draw on successful methods like those from Abra-
ham et al. (2020), where mobile applications and
community events can be employed to gather di-
verse speech samples, particularly from underrep-
resented speakers. Collaborating with the commu-
nity also fosters trust and ensures that the data col-
lected reflect the use of the language in the real
world.

3.2.2 Web Scraping
Web scraping serves as a complementary strategy
to gather written data from online sources such as
blogs, forums, social media, and news websites.
The newly collected data shall update language
use as of today to augment the data collected 10
to over 20 years ago. Platforms popular within
the Haitian diaspora, especially those catering to
Miami’s multilingual community, are particularly
valuable. These sources can provide insights into
both formal registers, such as news articles, and in-
formal registers, such as casual online discussions.
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This will allow us to develop a model that is sen-
sitive to spelling variations in everyday communi-
cations.

3.2.3 Collaborations with Local
Organizations

Partnering with local organizations offers a prac-
tical and impactful avenue for gathering and eval-
uating domain-specific data. To train our model,
rather than using direct patient-provider interac-
tions, we will rely on publicly available health
resources, including patient education materi-
als, public health campaign documents, and in-
structional content developed specifically for the
Haitian Creole-speaking community. We will
collaborate with medical professionals and in-
terpreters to validate terminology, ensuring that
translated materials reflect the nuances of real-
world medical discourse. This expert-validated
data will also serve as feedback for reinforcement
learning, allowing us to fine-tune Large Language
Models (LLMs) by iteratively improving transla-
tions based on linguistic accuracy and domain rel-
evance.

Beyond medical content, linguistic diversity
will be reinforced by incorporating educational
materials, children’s literature, and oral narratives
from schools and cultural institutions. These ad-
ditional sources will provide valuable insights into
age-specific language use, different speech regis-
ters, and regional variations within Haitian Creole.

3.2.4 Machine Learning Methods for
Augmentation

The UD-HC treebank provides valuable syntac-
tic insights into Haitian Creole and is a key re-
source for improving NLP models. However, its
small size limits the ability of language models
to generalize effectively, making data augmen-
tation necessary for robust parsing. One effec-
tive method is to leverage structurally similar lan-
guages with larger datasets to enhance the parsing
performance of a Creole-specific syntactic parser.
This method was previously explored in Mom-
pelat et al. (2022) for parsing Martinican Cre-
ole (MC), another French-based Creole closely re-
lated to Haitian Creole. The approach involved us-
ing UD-French treebanks in Fine-tuning and Mul-
titask Learning methods to compensate for the
lack of annotated Martinican Creole data, result-
ing in promising improvements in parsing perfor-
mance.

For Haitian Creole, we propose a similar strat-
egy, combining the UD-HC treebank with our
UD-formatted Martinican Creole treebank while
also leveraging existing UD-French treebanks. By
applying multitask learning and fine-tuning tech-
niques, we aim to enhance syntactic parsing accu-
racy, ensuring that models trained on Haitian Cre-
ole can generalize more effectively across diverse
linguistic structures.

3.3 Annotation and Data Curation

Accurate and consistent annotation is fundamental
for training effective NLP models, especially for
low-resource languages like Haitian Creole. Given
Haitian Creole’s linguistic complexity—including
its regional variations, code-switching phenom-
ena, and diverse registers, careful curation and
processing of available corpora are essential. This
process involves cleaning, annotating, and stan-
dardizing data to ensure it can be effectively used
for both training and evaluation tasks.

3.3.1 Annotation Process
Capturing linguistic nuances such as phonologi-
cal variation, syntactic structures, and lexical dis-
tinctions requires the involvement of both linguists
and native speakers for both written and spoken
forms of Haitian Creole. To ensure consistency
and reliability across datasets, we will develop an-
notation guidelines tailored specifically to Haitian
Creole. These guidelines will integrate feedback
from linguistic experts, native speakers, and com-
munity stakeholders to address the diversity and
sociolinguistic dynamics of the language.

3.3.2 Data Cleaning and Preprocessing
To prepare the data for model training and fine-
tuning, we will implement a multi-step clean-
ing and preprocessing pipeline that will include
a normalization stage to resolve inconsistencies
in spelling, punctuation, and capitalization across
datasets. This step is particularly important for
reconciling informal and formal as well as inter-
lectal variations in the language. Data will also
be annotated for Part-of-Speech (POS) and de-
pendency Parsing. This will help leverage exist-
ing tools in performing tasks that require detailed
syntactic understanding, such as those involved in
code-switching decoding and domain-specific ut-
terance decoding and encoding.

With the current datasets available, this will in-
clude the augmentation of the UD treebank cor-
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pus, the normalization of the parallel text corpus
Haitian-English by the CMU, and the transcrip-
tion of the oral corpus to be collected within the
community.

To ensure the reliability and utility of the pre-
processed data, annotators will undergo rigorous
training to minimize errors and adhere to standard-
ized annotation guidelines. We will regularly use
calculated metrics to assess consistency among
annotators and identify areas needing further clar-
ification or refinement. Finally, a continuous feed-
back system between linguists and annotators will
address ambiguities in the data and refine annota-
tion practices over time.

4 Modeling Approach

The modeling approach for this project builds
upon recommendations from Zampieri et al.
(2020), combining traditional machine learning
methods with modern transformer-based tech-
niques. They point out that traditional classi-
fiers, such as support vector machines (SVMs),
have proven effective in distinguishing closely re-
lated languages but that advancements in contex-
tual embedding models, particularly BERT, have
outperformed traditional methods in tasks requir-
ing nuanced language understanding.

For Haitian Creole, multilingual transformer-
based models (e.g., mBERT, XLM-R) offer sig-
nificant potential to handle linguistic complexity
and code-switching. This section outlines strate-
gies to adapt and fine-tune these models to the
unique challenges of Haitian Creole in healthcare
contexts.

4.1 Leveraging Large Language Models

LLMs based on architectures like GPT have
proven particularly effective for language gener-
ation tasks driven by a given query or prompt.
These models, trained on vast datasets, excel
in language understanding, generation, and even
reasoning and have been used to create syn-
thetic data used to fine tune models (Long et al.,
2024). Advances in Retrieval-Augmented Gener-
ation (RAG) have further enhanced their utility, al-
lowing general-purpose models to be specialized
for specific tasks and domains, such as those en-
countered in the medical sphere (Amugongo et al.,
2024; Yu et al., 2024; Anandavally, 2024). For in-
stance, Wang et al. (2023) propose a framework
to align LLMs with conversational patterns char-

acteristic of medical consultations, enabling mod-
els to generate domain-specific, context-aware re-
sponses. This strategy provides a pathway for de-
signing models that are not only accurate in their
domain knowledge but also culturally sensitive in
their output.

The goal of the Haitian Creole transla-
tor/interpreter model is to deliver contextually ap-
propriate and linguistically accurate responses to
queries, particularly when bridging Haitian Cre-
ole and other languages like English and Spanish
in healthcare communication scenarios. This re-
quires a model capable of translating and inter-
preting domain-specific content accurately while
addressing linguistic nuances and sociolinguistic
dynamics.

The application of LLMs in medical contexts
has already demonstrated promising results across
various use cases. For example, models have
been employed to assist in diagnostics and pro-
vide clinical decision support, yielding improved
outcomes in patient care (Nazary et al., 2024).
LLMs have also been fine-tuned to offer med-
ical diagnostic advice and personalized patient
information (Panagoulias et al., 2024). Finally,
frameworks aligning LLMs with medical consul-
tation scenarios have successfully captured the nu-
ances of patient-provider interactions, enhancing
the relevance and accuracy of generated responses
(Wang et al., 2023).

While these advancements lay a strong foun-
dation, the specific linguistic and sociolinguistic
characteristics of Haitian Creole require special-
ized adaptations of LLMs. Pre-trained multilin-
gual models such as BERT, GPT, XLM-R, and
mT5 will be fine-tuned on Haitian Creole cor-
pora. This adaptation allows the models to capture
unique linguistic features, including morphosyn-
tactic patterns, phonological distinctions, and lex-
ical variations inherent to Haitian Creole. By com-
bining the generative capabilities of LLMs with
retrieval mechanisms, the model will integrate ex-
ternal domain-specific knowledge. This includes
medical terminology, patient-provider communi-
cation conventions, and sociolinguistic context,
ensuring responses are both accurate and cul-
turally appropriate. To address the challenges
of healthcare communication, the model will be
trained on authentic and synthetically generated
scenarios requiring high precision in translation
between Haitian Creole and English or Span-
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ish. This includes translating specialized med-
ical terms and interpreting patient narratives or
provider instructions.

4.2 Handling Code-Switching

Handling code-switching effectively is essential
for building a translator and interpreter model that
aligns with the linguistic realities of Haitian Cre-
ole speakers. This capability is particularly im-
portant in multilingual healthcare settings, where
accurate understanding and translation of mixed-
language input can directly impact patient out-
comes.

By addressing code-switching through tailored
datasets and fine-tuned multilingual architectures,
this project not only advances NLP for Haitian
Creole but also contributes to the broader field of
multilingual NLP by providing scalable solutions
for similar low-resource languages and mixed-
language contexts. Strategies involve incorporat-
ing loss functions that emphasize language bound-
ary detection and coherence, ensuring that the em-
beddings capture the relationships between lan-
guages, particularly between Haitian Creole and
French, and including examples from healthcare
and other formal domains to improve the model’s
performance in professional contexts.

5 Evaluation and Mitigation of Bias in
Domain-Specific Tasks

Ensuring fairness and accuracy in NLP models tai-
lored for Haitian Creole, particularly in domain-
specific tasks like healthcare communication, re-
quires a comprehensive evaluation framework.
This framework must address linguistic varia-
tion, code-switching, and the unique demands of
domain-specific applications. By carefully design-
ing evaluation criteria and incorporating iterative
improvements, this section outlines a strategy to
assess model performance while identifying and
mitigating biases that may affect the utility and in-
clusivity of the system.

5.1 Evaluation Metrics

To evaluate linguistic variety, the dataset must
include basilectal forms such as Kréyòl rèk and
mesolectal forms like Kréyòl swa. Evaluation
metrics in this context should assess the model’s
ability to accurately recognize and process these
distinct varieties. Precision and recall metrics
should be employed to determine how well the

model identifies key linguistic features unique to
each variety, while qualitative assessments should
gauge the naturalness and cultural appropriateness
of outputs.

For code-switching contexts, the dataset must
incorporate authentic instances of language
switching between Haitian Creole and other lan-
guages, particularly French, English, and Spanish,
as these are the most commonly intertwined in
multilingual settings like Miami. Evaluation
metrics here should measure the coherence and
fluency of the model’s outputs when processing
mixed-language inputs. BLEU and METEOR
scores can quantify translation quality in these
contexts, while human evaluators can provide
insights into the semantic and syntactic coherence
of the outputs.

In addressing registers, the dataset should span
a range of formal and informal language uses.
Formal registers may include medical documents
or professional communications, while informal
registers could consist of conversational Haitian
Creole found in social interactions or casual set-
tings. The evaluation for registers should mea-
sure the model’s ability to align outputs with the
expected level of formality or informality. Met-
rics like domain-specific accuracy and register ap-
propriateness scores can help quantify the model’s
adaptability across varying communication styles.

5.2 Mitigation bias

Haitian Creole speakers, particularly those from
diverse sociolinguistic backgrounds, will play a
central role in the evaluation process. Regu-
lar consultations with community members will
help identify biases that may not be apparent
through automated metrics alone. For example,
the model’s treatment of linguistic variation, such
as its handling of Kréyòl rèk versus Kréyòl swa,
will be closely examined for equitable representa-
tion. Healthcare professionals, linguists, and cul-
tural experts will provide critical insights to ensure
that the model aligns with real-world usage pat-
terns, particularly in sensitive contexts like medi-
cal communication. Their feedback will help re-
fine the system to avoid potentially harmful inac-
curacies or cultural missteps.
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6 Scalability and Generalization to NLP
Field

To ensure the scalability and adaptability of the
methodologies developed, the model must be
tested with Haitian Creole-speaking populations
in various contexts, including Haiti, the wider
Caribbean, and diaspora communities across
North America and beyond.

Testing across these diverse linguistic and cul-
tural environments will help validate the tool’s
flexibility in capturing regional and sociolinguis-
tic nuances. The outcomes of this testing will
also provide valuable insights into the scalability
of the framework to other under-resourced lan-
guages. Many such languages share challenges
similar to those faced by Haitian Creole, such as
limited availability of annotated datasets, signif-
icant regional variation, and a lack of domain-
specific corpora.

7 Conclusion

7.1 Contributions to NLP

By demonstrating the effectiveness of these ap-
proaches for Haitian Creole, this research shows
the blueprints for a replicable framework for ad-
dressing these issues in other low-resource lan-
guages. This generalization is particularly impor-
tant for the global NLP field, as it paves the way
for scalable solutions that can address linguistic
diversity and underrepresentation on a larger scale.
By prioritizing inclusivity and contextual accu-
racy, this project seeks to inspire advancements
in multilingual NLP, empowering researchers and
communities worldwide.

7.2 Future Work

To achieve the large-scale objectives of this
project, the next phases will focus on parallel pri-
orities: (1) expanding data collection and (2) de-
veloping hybrid NLP experiments to determine the
most effective methods given the available data.
Running these two priorities simultaneously will
allow for progressive model refinement and scal-
able dataset expansion, ensuring that each itera-
tion improves both real-world and synthetic data
quality. Our proposed timeline is as follows:

1. Short-term (0-12 months):

• Collect additional data through commu-
nity engagement, web-based sources,

and expert annotation to increase lin-
guistic coverage across Haitian Creole
varieties.

• Develop and evaluate hybrid NLP
models, comparing traditional machine
learning approaches with fine-tuned
LLMs

• Generate initial synthetic data to aug-
ment low-resource datasets, using real-
world data to fine-tune LLMs and miti-
gate biases in synthetic outputs.

2. Mid-term (12-24 months):

• Scale up the dataset by integrating val-
idated synthetic data and iteratively im-
prove data augmentation pipelines

• Conduct user studies with Haitian Cre-
ole speakers and healthcare profession-
als to assess usability, cultural appropri-
ateness, and translation accuracy.

3. Long-term (24+ months)

• Deploy the AI-assisted translation tool
in clinical settings, community health
programs, and mobile applications.

• Refine real-time translation capabili-
ties, integrating adaptive learning mech-
anisms to continuously improve model
accuracy based on new data and real-
world usage.

• Expand research to other Creole lan-
guages, applying the methodology to
support low-resource language NLP be-
yond Haitian Creole.

To foster open research and collaboration, all
datasets, fine-tuned models, and evaluation frame-
works will be made publicly available, supporting
ongoing advancements in NLP for Haitian Creole
and other under-resourced languages.

Acknowledgments

I would like to express my sincere gratitude to Dr.
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A Appendix A: Example Patient-Provider Communication Cards

To illustrate the challenges of medical translation and register adaptation in Haitian Creole, we provide
sample patient-provider communication cards below.

Haitian Creole General needs – 12+ target – photos & text

SUCTION WHAT’S MY STATUS? CALL MY FAMILY LIGHTS ON/OFF

TROUBLE BREATHING PAIN MEDICINE HOT       COLD

BATHROOM REPOSITION MOUTH CARE LETTER BOARD

MAYBE - PETÈT DON’T KNOW – PA KONNEN LATER - PITA 

ASPIRASYON 

TWOUB 
RESPIRASYON 

TWALÈT

KISA ETA MWEN 
YE? RELE FANMI M 

LIMYÈ YO 
LIMEN/ETENN 

DOULÈ MEDIKAMAN CHO / FRÈT 

REPOZISYONE 
SWEN POU 

BOUCH TABLO LÈT YO 

Figure 1: Example patient-provider communication cards in Haitian Creole and English for Adults.

For a more comprehensive set of Haitian-English medical communication cards, see USSAAC (2023).

Figure 2: Example patient-provider communication cards in Haitian Creole and English for Children and
Families.

For a more comprehensive set of Haitian-English medical communication cards, see EMSC (2023).
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Abstract

Linguistic datasets are essential across
fields: computational linguists use them
for NLP development, theoretical linguists
for statistical arguments supporting hy-
potheses about language, and documen-
tary linguists for preserving examples and
aiding grammatical descriptions. Trans-
forming raw data (e.g., recordings or dic-
tionaries) into structured forms (e.g., ta-
bles) requires non-trivial decisions within
processing pipelines. This paper high-
lights the importance of these processes
in understanding linguistic systems. Our
contributions include: (1) an interactive
dashboard for four central Australian lan-
guages with custom filters, and (2) demon-
strating how data processing decisions in-
fluence measured outcomes.

1 Introduction

With ubiquitous use of advanced NLP systems
for language technology and linguistics (often by
proxy), linguistic corpora and the processing it en-
tails are often treated as a means to an end.

In this paper, we show that the process is vital
in enhancing our understanding of linguistic sys-
tems. Each step in the processing pipeline embod-
ies a linguistic decision that can be non-trivial. For
example, when building a phonotactic corpus, we
want each entry to be a root. But how do we judge
what constitutes a root? Should the decision be
structural or semantic? The definition of how to
classify a root has been a subject of numerous lit-
erature (Harley, 2014; Embick, 2021; Gouskova,
2023). To help guide this decision making we
present an interactive web interface, to highlight
the flow-on effects of analysis decisions.

This system was designed with the following
questions in mind: (1) Are vowels distributed

Figure 1: First Languages map of Australia with
indicative locations for speakers of Kaytetye, Pit-
jantjatjara, Warlpiri and Warumungu. Image
adapted from Gambay.

evenly across syllable positions? (2) Does the
vowel distribution by syllable position change
across different parts of speech (POS)? (3) Do
some vowels occur more frequently in the root fi-
nal position? (4) Does the characteristic of the fol-
lowing consonant affect the distribution of vow-
els? (5) If the initial vowel is /a/, then what is the
distribution of vowels in syllable 2; if the initial
vowel is /i/, then what is the distribution of vowels
in syllable 2; if the initial vowel is /u/, then what
is the distribution of vowels in syllable 2?

Our contributions are two-fold; first, we present
an interactive dashboard for four central Aus-
tralian languages with custom filter functions; sec-
ond, we show that the processing of raw data into
a desired format is embedded with decisions that
alter the measured outcomes.
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Figure 2: Interface and system design. The left-aligned side bar entails a settings control panel, starting
with upload options, followed by options for language and filtering function to be applied. In the bottom
half of the side bar, two analysis settings are presented: the vowel positions for vowel harmony, and the
level of detail required for place of articulation distribution. The center console entails two tabs: ‘Tabular
View’ shows an interactive table of the data uploaded post-filtering, ‘Bar Plot’ shows the distribution of
words with respect to word length (see Figure 3). Depicted beneath the console are four distributions
calculated from the dataset: vowel distribution per syllable, root final vowel distribution, vowel harmony,
and place of articulation distributions. (Note: examples shown are made-up, for demonstration purposes
only).

2 Related Work

Anthony (2022) outlines the differences between
online, offline and DIY corpus tools. Online tools
are hosted on a cloud and accessible via the inter-
net (such as english-corpora.org, sketchengine.eu.
Offline are tools such as AntConc, WordSmith
Tool or LancsBox (Brezina and Platt, 2023) which
run on a local device. Finally, Do-It-Yourself
(DIY) describes scripts developed by researchers.
The major drawback of DIY tools is the program-
ming skills needed, but are otherwise largely suc-
cessful in providing tailored, innovative solutions
for niche, language-specific concerns.

The majority of corpus tools are built to exam-
ine word-level statistics, such as frequency or con-
cordance. While it is possible to adapt these to
analyse intra-word components, it can be intricate.
Addressing these concerns are often not possible
with standard tools (Anthony, 2012). Biber (1988)
advocates for DIY tools, given their adaptability
and efficiency to phenomena and corpus size. Fur-
ther, DIY circumnavigate propriety software. In
our design, we propose a local web-based inter-

face to ensure data privacy and longevity.
Previous studies have presented online calcula-

tors for phonotactic distributions: English (Vite-
vitch and Luce, 2004; Storkel and Hoover, 2010),
Modern Standard Arabic (Aljasser and Vitevitch,
2018) and Czech (Čechová et al., 2023). Most
of these resources appear to be hosted on external
servers and some are no longer available.

Phonotactic structures in Australian languages
have been studied through the lenses of histori-
cal linguistics and typology (Macklin-Cordes and
Round, 2020, 2022), and it is advantageous for re-
searchers to be able to bring insights from histor-
ical, areal and typological phenomena to inform
analyses at different stages of the workflow.

3 Languages

Australian languages are characterised by small
vowel inventories – often three distinctions in
place and quality (Fletcher, 2014; Baker, 2014).
Over three quarters of Australian languages have
a vowel inventory between three and six vowels
(Round, 2023a). Consonant inventories exhibit
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elaborate place contrasts, but comparatively few
manners of articulation (Fletcher, 2014; Round,
2023b). Vowel harmony is observed more than
50% of the time across adjacent syllables in sev-
eral Australian languages (Round, 2023b).

The phonetic inventories of the languages con-
sidered here are listed in Table 1.

Kaytetye Kaytetye (ISO 639-3: gbb) is part of
the Arandic branch of the Pama-Nyungan family.
It is primarily spoken in Kaytetye country, which
is approximately 300km north of Alice Springs
(see figure 1 for approximate geographic region)
(Turpin, 2000). Vowel inventory in Kaytetye has
been a subject of discussion, with accounts vary-
ing from two (/a/ and /@/) and four ([i], [a], [@], [u])
(Harvey et al., 2023). In this paper we follow the
four vowel analysis as we utilised the root corpus
developed by (Panther, 2021)1.

Pitjantjatjara Pitjantjatjara (ISO639-3: pjt) is
a dialect of the Western Desert Language (Dou-
glas et al., 1964) and is a part of the Pama-
Nyungan family. In 2016, over 3,000 speakers
were recorded (Wilmoth, 2022). It is closely
related to the Yankunytjatjara dialect (Goddard,
1983, 2001). It follows the norm for Australian
languages, with a three vowel system and a con-
sonant inventory that spans many places of artic-
ulation but fewer manners of articulation (Tabain
et al., 2014; Tabain and Butcher, 2014).

Warlpiri Warlpiri (ISO 639-3: wbp) is spoken
in the northwest of Alice Springs by a few thou-
sand people. It is a Pama-Nyungan language. It
has one of the largest speaker populations of the
Australian languages (Nash, 1980). It aligns with
the typical inventory of Australian languages, fea-
turing a three-vowel system and a consonant in-
ventory with diverse articulation points but few ar-
ticulation manners (Loakes et al., 2008). Warlpiri
has been a subject of extensive study, particularly
in the domain of syntax, given its free word order
(Nash, 1980; Simpson, 1983, 2012).

Warumungu Warumungu (ISO 639-3: wrm) is
spoken by a few hundred people in the central part
of the Northern Territory of Australia around Ten-
nant Creek. It is a member of the Desert Nyungic
branch of the Pama-Nyungan family. It is closely

1For an overview of Kaytetye phonetics and phonology
see Harvey et al. (2015); Turpin and Ross (2012); Panther
(2021).

related to Warlpiri (Simpson, 2017). The Waru-
mungu sound system is typical of Australian lan-
guages. A three-way vowel system, five places of
articulation and eight different possible manners
of articulation. Warumungu differs by having a
second stop series.

Language Consonant Inventory Vowel Inventory

Pitjantjatjara {c, j, k, l, m, n, p, r, t, w, N, í, ñ, ï, õ, ú, L} {a, i, u}
Warlpiri {c, k, l, m, n, p, r, t, w, y, N, í, íú, ñ, ñc, ï, ïú, ó, R, ú, L, Lc} {a, i, u}
Warumungu {c, k, l, m, n, p, r, t, w, y, N, í, ñ, ï, R, ú, L} {a, i, u}
Kaytetye {c, cñ, k, l, l”, m, n, n”, p, r, t, t”, t”n”, w, y, î, N, í, ï, ñ, R, ú, úï, L} {a, i, u, @}

Table 1: Vowel and consonant inventories of the
four languages included in the analysis.

4 System

A key consideration for this project is flexibility in
working with the various forms of available data
and different approaches to encoding similar phe-
nomena. For example, one linguist might choose
to encode a gloss field with additional notes, while
another does not. Corollary to this, custom filters
and calculations can be added to the system.

An additional consideration is privacy, given the
non-public nature of some of these databases. For
this reason, the system is designed to be run lo-
cally via a Jupyter notebook on the operators com-
puter.

We use Plotly dash module (Albini et al., 2022;
Schroeder et al., 2022) to generate an interactive
dashboard2 .

4.1 Pre-processing

The system we present consists of two sections.
The first, a preprocessing step that involves trans-
forming hierarchical dictionary data into a tabu-
lar form. While the transformation can be ex-
tended to extract additional fields, for the pur-
poses of building a root database this step extracts
the headword, POS and gloss. Limiting to these
three fields also allows for flexibility across vari-
ous legacy sources and documentation styles.

An additional step is needed for the Warumungu
data, since the pos and gloss fields in the dictio-
nary file contained additional notes. It is language-
and linguist-specific, but can be taken as an exam-
ple for other such considerations.

2All code is available at https://github.com/
smuradoglu/phc
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4.2 Dashboard design

4.2.1 Tabular View

Once the tabular data consisting of the headword,
POS and gloss triplet is uploaded into the system,
six additional columns are added.

The headword is mapped to IPA based on
language-specific vowel and consonant invento-
ries. To allow for traceability, we have kept the
headword entry as it is found in the original file
(dictionary). The ‘OS’ column reflects the oper-
ational string that is used for consequent calcu-
lations. This field becomes more relevant as the
filter options are added. Syllable count is calcu-
lated by counting the vowels in each word. This is
meant as an independent operation from the adja-
cent syllable column, to validate the predictions.

The syllable column reflects predictions of syl-
lable structure based on the NLTK legality princi-
ple module (Bird, 2006). This module is imple-
mented using the Legality Principle, which states
that syllable onsets and codas are only legal if
they are found as word onsets or codas in the lan-
guage. Since onsets are most likely maximised,
the longest legal onset is prioritized.

The last two columns show the constituents of
the headword entry separated by hyphens (‘-’).
This column is later used for filtering reduplica-
tions and verb compounds.

4.2.2 Bar Plot

Figure 3: Bar plot showing distribution of words
with respect to word length (syllables).

Using the syllable count from the table, a bar
plot is produced (shown in Figure 3). This is
a quick way to examine the distribution of word
length (in syllables) with respect to number of
words.

4.2.3 Filter options
String removal This is a straightforward func-
tion that filters the string sequence inputted by
the user. It is motivated by the occurrence of
‘(pa)’ in Warlpiri and Warumungu dictionary en-
tries. ‘(pa)’ is a semantically meaningless element
which is sometimes added word finally to avoid il-
licit phonotactic consonant final words. As such,
the default value is set to ‘(pa)’. However, it can
be used to be a filter for any other string.

Reduplication This filter utilises the ‘-’ marking
out different sections of the word (separated out as
const 1 and const 2 as shown in 2). It compares
these two columns. If they match it only considers
the first column for the subsequent calculations of
syllable count and syllable structure. We remove
the second occurrence to avoid a bias in the data
towards those sound combinations.

Verb Compound In a similar manner to the
reduplication filter, this option utilises const 1 and
const 2 . It checks whether the second constituent
is an entry in it’s own right. If it is, it is not con-
sidered for the following calculations.

Verbal Morphology This filter is language-
specific and as the name suggests, deals with the
verbal morphology. In effect it strips verbs of their
inflection. In the languages considered here, only
suffixes are applicable.

Independent Word When checked, this option
removed dependent words like clitics. These are
typically marked as beginning with ‘-’ in dictio-
naries. As such this function simply filters out
words beginning with ‘-’.

Drop duplicates This option removes dupli-
cates based on the proposed syllable structure. It is
mainly useful after other filters have been applied
(although it can be used to deal with duplicates in
the uploaded file as well).

Drop English Loans This is only applicable to
Pitjantjatjara for the languages we consider. It fil-
ters entries which can readily be identified as En-
glish loan words by the presence of “From En-
glish” in the gloss field.

Light Verbs This option is similar to the ‘Verb
Compound’ option but because some of these con-
structions are not separated by space or hyphen,
we list out the available constructions in Pitjant-
jatjara to filter them out.
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Verb Analysis This option only pertains to Pit-
jantjatjara. The reason for this is that the con-
stituents are not marked like Warlpiri and Waru-
mungu, and striping verbs of the suffixes yields
some questionable analyses for the root. Given
that it requires further input by linguists, we have
instead introduced this option to provide a hypoth-
esis that can be verified by a linguist/language ex-
pert.

4.3 Analysis

Vowel Distribution The modelled syllables are
taken as the input for this function. The syllable
length is calculated3. The syllables are sorted ac-
cording to position. Vowels are counted for each
syllable position (i.e., for Pitjantjatjara, Warlpiri
and Warumungu {a,i,u} is enumerated, for Kayte-
tye {a,i,u,@}).

This function is aimed to address the question
of how vowels are distributed across different syl-
lable positions.

Root Final Vowel Distribution This is similar
to the Vowel Distribution function, except instead
of sorting based on syllable position, we sort based
on on word length. Here the input is both the mod-
elled syllables and their respective lengths.

Vowel Harmony The list of predicted syllables
is taken as an input for this operation. A ‘syllable
matrix’ is constructed where each word is consid-
ered in a new row and each column represents a
syllable. For example, the sound sequence kitji4

would be two columns [ki] and [tji]. This extends
to the maximum syllable length observed in the
corpus. For shorter words, the remaining columns
are left empty. Vowels are counted across each
column.

For this analysis, our interface provides the op-
tion of choosing the transition between vowel one
and two (V1V2), vowel two and three (V2V3) and
so on.

Place of Articulation For this calculation, the
language selected (to determine the possible con-
sonants) and the ‘OS’ column is taken as input.
Each vowel and consonant is converted to a ‘V’ or
‘C’ to construct a word template. From the word
template, all VC structures are pooled together and
sorted based on placement (i.e., coda or onset).

3This can be cross-checked with the syllable counts pro-
vided by counting the number of vowels.

4Part of the Pitjantjatjara word for tickle: kitji-kitjini.

Once we collect all VCs and their syllable posi-
tion, we labelled the consonant according to the
place of articulation. We consider five places of
articulation (labial, alvelor, retroflex, palatal and
velar).

Here the dashboard provides several options: to
provide an aggregate count across vowel and place
of articulation, a more detailed view by accounting
for placement. Lastly, a frequency table of vowel
and consonant combinations in all extracted VCs.

5 Conclusion

We introduce a local web-based interactive dash-
board designed for targeted analysis of phonotac-
tic patterns, and illustrate its application to four
Central Australian languages. This is a customiz-
able tool which can be adapted for a variety of
search and data conditioning tasks in a wide range
of linguistic data, supporting interactive analyses
of morpho-phonological phenomena. The toolkit
works on the principle that an iterative interac-
tive approach is required for robust linguistically-
informed processing and analysis of complex and
potentially inconsistent lexical datasets, especially
in corpus composition decisions.
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Abstract
Optical Character Recognition (OCR) sys-
tems often introduce errors when transcrib-
ing historical documents, leaving room
for post-correction to improve text qual-
ity. This study evaluates the use of open-
weight LLMs for OCR error correction in
historical English and Finnish datasets. We
explore various strategies, including param-
eter optimization, quantization, segment
length effects, and text continuation meth-
ods. Our results demonstrate that while
modern LLMs show promise in reducing
character error rates (CER) in English, a
practically useful performance for Finnish
was not reached. Our findings highlight
the potential and limitations of LLMs in
scaling OCR post-correction for large his-
torical corpora.

1 Introduction

Digitizing and transcribing historical documents
and literature is vital for preserving our cultural
heritage and making it accessible for modern digi-
tal research methods. The transcription process re-
lies on OCR, which naturally introduces noise into
the output. The noise varies in severity depending
on the quality of the source material and the OCR
technology used, impacting the research usage of
the data (Chiron et al., 2017b). The OCR output at
two noise levels is illustrated in Figure 1. Although
modern OCR systems are becoming increasingly
accurate (Li et al., 2023), reprocessing large collec-
tions of historical literature remains a significant
challenge, as the resources available to the insti-
tutions maintaining these collections are often in-
sufficient for such an undertaking. Consequently,
OCR error post-correction has been suggested as
means of improving the historical collections with-
out the need to repeat the whole transcription pro-
cess (Nguyen et al., 2021).

Mild noise (0.04 CER):

A work of art, (be it what it may, house,
pi&ure, book, or garden,) however
beautiful in it's underparts, loses half
it's value, if the gneralfcope
of it be not obvio',s to conception.

Severe noise (0.19 CER):

bke up at Sx in the Mo.r aig. ll the
eauing Withr he went from Cbaud to Cbhh
every Suday, «d from Play. bote~PIOoaB
cu evi Niuht m the Week, but vd

Figure 1: Example extracts of texts at two different
OCR noise levels from the ECCO dataset of 18th
century literature.

Recent studies (Boros et al., 2024; Bourne, 2024)
have proposed the application of LLMs to the task,
with varying degrees of success. Currently, there is
no clear consensus as to how LLMs can be applied
to the task and how to deal with the various method-
ological challenges it poses. Our objective is to
address some of these challenges as well as to as-
sess several open LLMs to correct OCR-generated
text when prompted to. We study hyperparame-
ter optimization, quantization levels, input lengths,
output post-processing and several novel correction
methods so as to benchmark and improve the LLM
performance on this task.

As our long-term goal is to post-correct two large
historical datasets, one in English and the other in
Finnish, we focus on these two languages as well as
open-weight LLMs, since post-correction of large
datasets with commercial models is infeasible cost-
wise.

2 Related work

Despite decades of active research, post-correction
of historical documents remains a challenge. The
ICDAR 2017 and 2019 shared tasks (Chiron et al.,
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2017a; Rigaud et al., 2019) addressed the lack of
adequate benchmarks for evaluating OCR perfor-
mance across several languages, introducing two
tracks: detecting OCR errors, and correcting pre-
viously detected errors. This setting has naturally
guided the development towards two-stage systems,
and the best performing models in the ICDAR
2019 edition were based on the BERT model fine-
tuned separately for each task (Rigaud et al., 2019).
Such two-step approaches are still actively pursued,
with e.g. Beshirov et al. (2024) applying a BERT
classifier for error detection, and an LSTM-based
seq2seq model for error correction in Bulgarian.

Recently, LLMs have been effectively applied
to text correction problems, for example, Penteado
and Perez (2023) and Östling et al. (2024) demon-
strated that LLMs perform well in grammatical
error correction. Naturally, LLMs have been pro-
posed also to the OCR post-correction task, in
line with the two broad paradigms of LLM use:
fine-tuning for the post-correction task and purely
prompt-based zero-shot generation. Fine-tuning
was applied e.g. by Soper et al. (2021) who fine-
tune the BART model on the English subset of the
ICDAR 2017 data and apply it to English Newspa-
per text. Veninga (2024) fine-tunes the character-
based ByT5 model on the ICDAR 2019 data, with a
prompt-based Llama model as a baseline. Similarly,
Madarász et al. (2024) apply the mT5 model to his-
torical Hungarian scientific literature, and Dereza
et al. (2024) applies the BART model to historical
Irish–English bilingual data.

In the zero-shot, prompt-based line of work,
Boros et al. (2024) evaluated a variety of mod-
els and prompts on several multilingual historical
datasets. Interestingly, the results of the study were
mostly negative, concluding that LLMs (including
the commercial GPT-4 model) are not effective at
correcting transcriptions of historical documents,
in many cases the LLM actually decreasing the
quality instead of improving it. Bourne (2024) con-
ducted a similar study on three historical English
datasets, arriving at the opposite conclusion. They
achieved over 60% reduction of character error rate
at best, with most of the evaluated models improv-
ing the data quality.

Finally, several studies also pursue approaches
that include the original image as an input, together
with the OCR output to be post-corrected. Here, e.g.
Chen and Ströbel (2024) combine a state-of-the-art
transformer-based OCR system with the character-

based CharBERT model for handwritten text recog-
nition, and Fahandari et al. (2024) propose a model
iterating between OCR and post-correction steps
for Farsi. Such image-text approaches are, never-
theless, beyond the scope of the present study.

3 Data

In our study, we utilize manually corrected samples
of two large historical datasets, one for English and
the other for Finnish.

3.1 English ECCO-TCP

Eighteenth Century Collections Online (ECCO)
(Gale) is a dataset of over 180,000 digitized publi-
cations (books and pamphlets) originally printed in
the 18th century Britain and its overseas colonies,
Ireland, as well as the United States. While mainly
in English, some texts appear in other languages.
The collection was created by the software and ed-
ucation company Gale by scanning and OCRing
the publications. ECCO has significantly impacted
18th-century historical research despite its known
limitations (Gregg, 2021; Tolonen et al., 2021).

While ECCO contains only OCR engine output,
the ECCO-TCP initiative1 provides highly accurate,
human-made text versions for 2,473 publications
from the original collection (Gregg, 2022). In this
study, we use a dataset from the Helsinki Compu-
tational History Group2, where clean ECCO-TCP
texts are paired with their corresponding ECCO
OCR publications, creating an OCR ground truth
dataset (Hill and Hengchen, 2019). The data is
paired on page level, resulting in a dataset of 338K
pages.

To prepare data for post-correction evaluation,
we applied several filtering steps. First, we ex-
cluded 1,436 pages (0.4%) marked as blank in
ECCO-TCP, ECCO OCR, or both. We also re-
moved 5,782 pages (1.7%) containing fewer than
150 non-whitespace characters in either collection.
Further filtering was necessary in cases of substan-
tial mismatch between OCR and GT pages, typ-
ically with large chunks of text missing in either
OCR or GT, or otherwise an obvious lack of cor-
respondence. A brief manual analysis identified
as typical causes (1) very noisy OCR output with
a large amount of non-alphanumerical characters,
likely from OCR engine transcribing an image; (2)

1https://textcreationpartnership.org/tcp-texts/
ecco-tcp-eighteenth-century-collections-online/

2https://github.com/COMHIS
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Dataset Language Pages OCR words GT words OCR w./pg. CER WER
ECCO-TCP English 301,937 67,549,822 64,519,266 223.72 0.07 0.22
NLF GT Finnish 449 449,088 461,305 1000.20 0.09 0.28

Table 1: Dataset statistics after preprocessing in terms of whitespace delimited words. OCR w./pg. denotes
for mean OCR words per page, and CER and WER are average page-level character and word error rates
in the data, weighted by the page length. For details about the metrics, see Section 4.1.

OCR and GT containing approximately the same
text, but in different order due to misidentified read-
ing order or column layout; and (3) significant
length differences between pages, possibly from
errors in automated page alignments, unrecognized
regions left out in the OCR process, or omissions
in the ECCO-TCP data.

To identify such instances, we align each OCR
and GT page pair on their non-whitespace char-
acters3 and slide a 100-character window across
the alignment. If in any window less than 10% of
characters were aligned as a match, the page was
discarded from the dataset. In total, 28,907 (8.6%)
pages were removed by this process.

Our filtering produced a dataset of 301,937 well-
aligned pages (89.3% of the initial ECCO-TCP
pages). While we do not filter by language, nearly
all the data is in English, with other languages
appearing only very rarely.

3.2 Finnish NLF Ground Truth Data

For Finnish, we use the National Library of Fin-
land (NLF) OCR ground truth dataset4 of Kettunen
et al. (2018, 2020), specifically intended for OCR
quality evaluation. The data draws from the Na-
tional Library’s collection of digitized newspapers,
and consists of 479 pages randomly chosen from
188 different Finnish newspapers and journals pub-
lished between 1836–1918, all printed in the Frak-
tur font.

The ground truth was created by manually cor-
recting the OCR system output with reference
to the original scans. The dataset contains texts
produced by three different OCR software (AB-
BYY FineReader 7/8, ABBYY FineReader 11, and
Tesseract) along with the ground truth. In this work,
we use output produced by ABBYY FineReader
7/8, which is the OCR engine that has been used
to digitize the majority of the NLF collection and
therefore gives most useful information for a possi-

3Using global string alignment as implemented in the Pair-
wiseAligner module in biopython.

4http://digi.nationallibrary.fi

ble future post-correction effort targeting it.
We applied the same filtering procedure as for

the ECCO-TCP data, resulting in the removal of 29
pages (6%), and we further removed one page writ-
ten in Swedish. The final dataset consists of 449
pages, with 449,088 OCR words, and 461,305 GT
words of text. The key statistics for both datasets
are shown in Table 1.

4 Experiments

First, we set out to evaluate the basic performance
of different LLMs on the OCR error correction task
and establish how the generation and model hyper-
parameters (e.g. sampling parameters and quanti-
zation) affect the results.

The page lengths in our data vary, with the
ECCO-TCP pages on average at 200 words, and the
Finnish newspaper pages at about 1,000 words. To
improve comparability of the results, we split the
pages to segments of 200 OCR words for English
and 100 OCR words for Finnish, both correspond-
ing to roughly 300 sub-words in OpenAI’s GPT-
4 tokenization for the language in question. The
length of roughly 300 sub-words was established
as suitable in our initial experiments, however, we
will carry out a more detailed evaluation of segment
lengths as a separate experiment in Section 6.

Since the Finnish data is originally word-aligned,
obtaining these shorter-than-page segments is triv-
ial. For the English data, which is only page-
aligned, we utilize the character-level OCR-GT
alignments produced during data filtering (de-
scribed in Section 3.1), allowing us to find cor-
responding points. In cases where the segment
boundary falls within a region of poor alignment,
we shift the boundary to the next reliable word (the
word starting the next aligned region). Therefore,
the exact segment length may vary depending on
how well the OCR and GT strings could be aligned.

Given the substantial volume of our data, and
the number of LLM runs necessary in our exper-
iments, we randomly sample for each language a
development and a test set, each containing 200
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examples (i.e. segments of about 300 sub-words in
length). These constitute 244K+243K GT charac-
ters for English, and 162K+165K GT characters
for Finnish. The development set is used to set the
generation parameters and the test set is used to
report all results, unless otherwise stated.

4.1 Evaluation Metric

As a primary evaluation metric, we use Charac-
ter Error Rate (CER) defined as the sum of char-
acter substitutions, deletions and insertions, di-
vided by the length of the ground truth string.
In line with the common practice in OCR post-
correction literature, we mainly report relative CER
reduction defined for one examples as CER% =
(CERorig − CERpost)/CERorig × 100 where orig
and post refer to before and after correction, re-
spectively. The overall CER% is calculated as an
average of example-wise CER% weighted by exam-
ple lengths in terms of OCR character count. The
example-wise CER% values are further clipped
not to go below -100% to prevent extremely large
negative scores in cases where most of the text is
omitted. The CER% therefore works on a range
between -100% and 100%.

Many downstream applications utilizing histor-
ical corpora, such as various literature search in-
terfaces, operate at the level of words rather than
characters. Therefore, the main results are reported
also in terms of Word Error Rate (WER) and its rel-
ative improvement (WER%). This metric is much
like CER, but on the level of words.5

Finally, we apply few normalization steps before
the evaluation. First, all unicode whitespace char-
acters (\s+) are normalized into a single whites-
pace. Secondly, in line with similar works (Duong
et al., 2021; Kettunen and Pääkkönen, 2016), we
apply two normalization steps to address system-
atic differences between historical and modern
spellings. In the English ECCO-TCP ground truth
data, the long-s character ſ appears in places
where modern English would use s . Similarly,
in older Finnish historical texts w is often used
where modern Finnish uses v . These spelling
variations do not alter meaning, and we choose to
disregard them by applying Unicode NFKC nor-
malization, which handles both canonically equiv-
alent and compatible transformations (including
converting ſ to s ) for both languages. Addition-

5We use the HuggingFace evaluate package implementa-
tion of both CER and WER.

ally, for Finnish, we replace all occurrences of w
with v before evaluation, as modern Finnish does
not use w except in loanwords or proper names,
which occur only very rarely, making the difference
negligible.

4.2 Models and Generation Parameters

We evaluate several top-tier open-weight models
as well as OpenAI’s GPT-4o (v. 2024-08-06). The
latter is included mostly for comparison, since
it would not be cost-wise feasible to apply it to
post-correction at a large scale, unlike open-weight
models which can be applied on academic super-
computing infrastructure. The evaluated open
models are: Llama-3-8B-Instruct, Llama-3.1-8B-
Instruct, and Llama-3.1-70B-Instruct from Meta
(AI@Meta, 2024a,b), Mixtral-8x7B-Instruct-v0.1
from MistralAI (Jiang et al., 2024), and Gemma-2-
9B-it and Gemma-2-27B-it from Google (Mesnard
et al., 2024). It is noteworthy that while several of
the open models are multilingual, none officially
report supporting Finnish.

All models are run on the Ollama framework6

(v. 0.3.8) for fast inference, using the default 4-bit
quantization unless otherwise stated. Other quanti-
zation levels are experimented separately, and re-
ported in Section 5.2. All parameters of the frame-
work and models are set to default except for the
ones explored in Section 4.4. Note that we will not
repeat the "Instruct" in model names in tables and
figures for space considerations.

4.3 LLM Overgeneration Removal

LLM outputs often include undesired content in
addition to the requested output. In most cases, the
undesired text appears either before the corrected
text (e.g. "Here is your corrected text:"), or after
the corrected text has been provided (e.g. halluci-
nated continuation, or an additional commentary).
This was noted also by Boros et al. (2024), who ap-
plied simple heuristics for removing any unwanted
text, such as removal of whitespace, parts of the
prompt, and specific phrases commonly appearing
in the model’s output, together with trimming the
predicted text if it exceeded 1.5 times the original.

Therefore, we base our overgeneration removal
on automatically aligning the generated output
against the original input on character level, and
filtering out leading and trailing texts which do not
align well to the input. For this purpose, we utilize

6https://ollama.com/
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English Finnish
CER WER CER WER

Model % % % %
Llama-3-8B 7.3 31.4 -68.8 -28.2
Llama-3.1-8B 19.5 37.7 -65.7 -30.1
Llama-3.1-70B 38.7 46.3 -47.0 -8.9
Mixtral-8x7B -14.9 19.1 -76.5 -40.5
Gemma-2-9B 28.2 38.4 -24.0 -4.1
Gemma-2-27B 35.6 37.8 -19.1 0.0
GPT-4o 58.1 59.1 11.9 33.5

Table 2: Overall CER and WER relative improve-
ment.

character-level local sequence alignment7 of the
model’s output and the OCR text, and recover the
region between the first and the last aligned charac-
ters. The alignment is configured to ignore whites-
pace and the ’-’ character, to avoid text formatting
discrepancies having an impact on the outcome of
the alignment.

4.4 Parameter Optimization
The model generation parameters naturally affect
the quality of the output and we therefore optimize
the most critical parameters of the open-weight
model generation on a held-out development set.
As discussed earlier, this set is not used in any
subsequent experiments.

Using the Optuna hyperparameter optimization
library (Akiba et al., 2019), we set the tempera-
ture, top_k and top_p parameters. For each model
and each language, we test 100 runs with differ-
ent parameter combinations. Subsequently, the 10
best runs in terms of CER were selected, creating
a range of possible best parameters. These ranges
generally overlap across models but not across lan-
guages, therefore we pick a set of parameters for
each language. The final parameters are chosen
as the median value of the 10 best runs of every
model. For English, the parameters are temperature
0.26, top_k 65, and top_p 0.66. For Finnish, the
final parameters are temperature 0.14, top_k 30,
and top_p 0.60.

5 Results

The main results are shown in Table 2. For English,
six out of seven models achieve positive improve-

7Unlike global sequence alignment, its local counterpart
does not penalize leading and trailing misalignments. We use
the implementation in the biopython package, with open-gap-
score -1 and extend-gap-score -0.5

Figure 2: CER before and after correction on En-
glish test data (Llama-3.1-70B).

ment, ranging from 7.3% (Llama-3-8B) to 58.1%
(GPT-4o) in terms of CER%. GPT-4o outperforms
all open models by a large margin, the next best
model (Llama-3.1-70B) being almost 20pp worse.
However, the Llama-3.1-70B still shows a notable
improvement of 38.7%. In Figure 2 we illustrate
the CER values for English test examples before
and after the Llama-3.1-70B correction. Most ex-
amples demonstrate improved CER scores, regard-
less of whether they initially had mild or severe
noise levels.

In terms of WER%, all models show positive im-
provement on English, the two best models achiev-
ing an improvement of 59.1% (GPT-4o) and 46.3%
(Llama-3.1-70B). The relative order of the models
seems to mostly follow the number of model param-
eters, bigger models generally performing better,
expect for Mixtral which is clearly worse than the
others, and the two Gemma models performing
almost equally in terms of WER%, although the
Gemma-2-27B version clearly outperforms the 8B
model in terms of CER%.

For Finnish, on the other hand, GPT-4o is the
only model achieving a positive improvement in
either metric, albeit considerably smaller in abso-
lute terms than for English with 11.9 CER% and
33.5 WER%. Seeing these entirely negative re-
sults for Finnish, we are forced to conclude that
prompt-based OCR post-correction is presently in-
feasible for this language using any of the tested
open-weight models. This is disappointing, but
not surprising since none of the models officially
support Finnish.8

8We made also preliminary experiments with the well-
known Finnish Poro model of Luukkonen et al. (2024), but
the results were considerably worse than the models in our
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Figure 3: An example in both languages illustrating historical language artifacts alongside the correspond-
ing GPT-4o generated output.

Overg. removal
Model w/o with
Llama-3-8B -74.1 7.3
Llama-3.1-8B -57.4 19.5
Llama-3.1-70B -53.6 38.7
Gemma-2-9B 28.1 28.2
Gemma-2-27B 35.3 35.6
GPT-4o 53.7 58.1

Table 3: The CER improvement on English test
data with and w/o the overgeneration removal step.

The striking effect of a common but meaning-
preserving difference between historical and mod-
ern language becomes apparent when measuring
the effect of modern spelling produced by the
LLMs such as the ſ vs. s and w vs. v varia-
tion discussed in Section 4.1. A typical example for
both languages is illustrated in Figure 3. Without
the applied normalization, the results of GPT-4o
would have been 34.9 CER% and 35.5 WER%
(compared to 58.1% and 59.1% with normaliza-
tion) for English, and -10.1 CER% and -4.8 WER%
(compared to 11.9% and 33.5%) for Finnish. This
demonstrates a substantial impact on the reported
scores, and while the relative model ranking is un-
likely to change, we can see that the conclusion
w.r.t. this model’s performance on Finnish would
have been the opposite, and the improvements seen
in English would have been lot smaller.

Given the entirely negative results for Finnish
with the open-weight models, we carry out all fur-
ther analyses on English only. Furthermore, we
also remove the Mixtral-8x7B from follow-up ex-
periments as it performs notably worse than the
other models.

5.1 LLM Overgeneration Removal

Next we measure the effect of the alignment-based
overgeneration removal method described in Sec-

study, and we did not pursue it any further.

tion 4.3, i.e. we evaluate the raw model-generated
output against the post-processed version of the
generated output. The results are shown in Ta-
ble 3. For the Llama family models, the results
without this post-processing step are highly nega-
tive, whereas all Llama models achieve positive
improvements when this step is applied. This
highlights the necessity of post-processing for the
Llama models, which very systematically gener-
ate an additional explanation together with the re-
quested output. An example of a typical Llama
generation is:
Here is the corrected text: {{answer}}
I corrected the following errors:
* "pi\&ure" -> "picture"
* "it's" -> "its" (multiple instances)
* "gneralfcope" -> "general scope"
...

On the other hand, Gemma models seem to be
largely unaffected, as they generally tend to not
produce any additional text. For the GPT-4o model,
we also notice a small gain when applying the post-
processing, as it occasionally generates explanatory
phrases like "Here is the corrected text:".

5.2 Quantization and Performance
Since the historical text collections to which post-
correction would potentially be applied comprise
millions of pages of text, it is necessary to strike
balance between accuracy and computational re-
sources. Among the most important factors here
is model quantization, i.e. real number representa-
tion with fewer bits. High degrees of quantization
substantially reduce model memory footprint and
increase inference speed, but can be assumed to po-
tentially degrade model performance. We therefore
evaluate the models at the 4 bit Q4_0 quantization
(default setting in Ollama), and at the standard 16
bit fp16 floating point representation.

The results are reported in Table 4. As expected,
the fp16 quantization performs better for all the
evaluated models, with a gain of 2.5-4.7pp, except
for Llama-3.1-8B where we do not experience a
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CER% Memory (Gb)
Model q4 fp16 q4 fp16
Llama-3-8B 7.3 12.0 6.3 16.1
Llama-3.1-8B 19.5 19.4 6.3 16.1
Llama-3.1-70B 38.7 42.6 43.6 132.1*
Gemma-2-9B 28.2 30.7 8.9 20.9
Gemma-2-27B 35.6 38.1 19.2 58.9

Table 4: CER improvement on English test data us-
ing 4bit quantized (q4) and fp16 models, alongside
peak memory usage. * in the memory consumption
indicates the number was obtained using the Hug-
gingFace library, as we were not able to run the
Llama-3.1-70B model with fp16 through Ollama.

significant difference between 4bit and fp16 mod-
els. The relative ranking of the selected models
is preserved regardless the quantization level, and
using fp16 does not help less performing models to
outrank any of the originally best performing 4bit
quantized models. The improvement comes at a
high cost in terms of memory footprint. As seen in
the table, the best improvement is unsurprisingly
achieved by the largest model, where the memory
requirement increases from 43Gb to 132Gb. It is
of consideration that even with 4bit quantization,
using the largest Llama-3.1-70B model would ne-
cessitate 2 GPUs (assuming 32GB GPU memory),
instantly doubling the GPU hours required to com-
plete the task compared to other models which can
fit on one GPU.

6 Segment Length and Continuation

The results in the previous sections were reported
for text segments about 300 sub-words in length.
The actual texts in the historical collections are
naturally substantially longer, necessitating split-
ting the input into segments of appropriate length.
This raises two related questions: (1) how long the
input segments should optimally be for best post-
correction accuracy, and (2) how should the outputs
be combined to minimize degradation on segment
boundaries.

Our English data is on the level of pages, which
we cannot simply naively concatenate, we need
other means to obtain sufficiently long documents.
For this experiment, we sample long pages of
at least 600 whitespace delimited OCR words in
length from the development data, taking at maxi-
mum two pages from any one book. This resulted
in a sample of 53 development set pages.

Figure 4: CER% improvement for English when
using different segment lengths.

These sampled pages are then divided into non-
overlapping segments of 50, 100, 200, and 300
words, using the same alignment-based splitting
strategy as described in Section 4. The segments
are corrected individually and the CER% improve-
ment over the segments is calculated. The results
are shown in Figure 4. Shorter segments (50–100
words) get notably worse CER% score for all mod-
els, with the gains diminishing past about 200–300
words, but our page-level data does not have long-
enough examples to allow us to reach the point
where the performance would start consistently de-
creasing as the segments become too long. In the
future, we plan to develop a book-level version of
the data, and study the correction performance on
even longer segments.

6.1 Post-correction on Segment Boundaries

Presently, post-correction studies either do not ad-
dress segment-wise correction of longer texts as it
is not necessary for the datasets they study, or split
the input into non-overlapping segments, whose
corrections are simply concatenated. This may po-
tentially disrupt text continuity since neither word
nor sentence boundaries can be reliably adhered to
in the noisy OCR input. Furthermore, it also means
that no left context is available for the correction
of the beginning of each segment. This may poten-
tially have a negative effect on the correction in the
region around segment boundary. Here we quan-
tify this effect and explore several straightforward
methods for its mitigation.

For the prompt optimization, we use the same
sample of 53 pages as in the previous section, and
the final results are reported on a similar sample of
50 pages from the test data. In order to maximize
the number of examples of segment boundaries for
evaluation, we generate—from each page—pairs of
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segments 200+200 words long, with stride of 100
words. With this method, each page of at least 600
words produces a minimum of 3 examples of neigh-
boring segment pairs. The final development and
test samples include 194 and 208 such examples,
respectively.

On these examples, we evaluate the following
methods of post-correction on segment bound-
aries: (1) Baseline: Each segment is corrected in-
dependently with the same prompt and the outputs
are concatenated; (2) Left-corrected-concatenate
(LCC): The left segment is corrected first and
given as prior context for the correction of the
right segment, the model is instructed to only cor-
rect the right segment; and (3) Left-uncorrected-
concatenate (LUC): The uncorrected left segment
is provided for context in the correction of the right
segment. The primary advantage of this method
is that correcting the right segment does not need
the left segment to be corrected first, making paral-
lelization of the process much simpler technically.

The overall results across these strategies are
shown in Table 5 and suggest that at present only
the two largest models are able to follow the more
complex prompts necessitated when merging neigh-
boring segment corrections. The smaller models
occasionally suffer from omitting part of the text to
correct, which did not seem to occur if only one text
was given at a time. For the two models improving
on performance, we inspect the boundary effect
more closely in Table 6 where we report CER%
calculated on ±10 words around the boundary of
the two segments.9 Here we see that both methods
effectively incorporate the provided additional con-
text, substantially improving the post-correction
of the right segment at the boundary, whereas the
baseline system’s performance on the right side is
notably worse compared to its performance on the
left side.

7 Conclusion

We set out to establish the ability of recent open-
weight models to post-correct OCR errors in a zero-
shot, prompt-based setting. In the first set of ex-
periments, we established that for historical En-
glish these models achieved notable improvements
(Llama-3.1-70B-Instruct reaching a CER improve-
ment of 38.7%), even though still far behind the

9The ±10 word boundaries were human-verified to ensure
that the evaluation occurred at the same boundary, even in
more complex examples where words were omitted and/or
added.

Method
Model Bas. LCC LUC
Llama-3-8B -0.2 -2.9 -2.8
Llama-3.1-8B 13.7 8.4 10.6
Llama-3.1-70B 33.2 36.0 34.6
Gemma-2-9B 29.2 27.9 28.3
Gemma-2-27B 38.1 39.9 39.7

Table 5: CER improvement on English test data
with different correction methods.

Method
Baseline LCC LUC

Model L R R R
Llama-3.1-70B 29.1 9.8 21.4 21.7
gemma-2-27b 34.5 18.7 29.7 33.7

Table 6: CER% around segment boundaries with
different correction methods. L and R stand for left
and right of the boundary.

commercial GPT-4o model (58.1 CER%). We also
demonstrate the necessity of post-processing to re-
move any additional, model generated text, and
present an effective string alignment technique to
address this. We also highlight the effect of seg-
ment length, which may have a substantial negative
impact on the outcome if set too short.

Unlike for English, for Finnish we find poor
performance across the board and need to conclude
that zero-shot post-correction with open-weight
models remains currently out of reach for historical
Finnish.

In a separate set of experiments we examine how
segment-wise correction of long documents should
be approached. We devise and evaluate a number
of methods to incorporate additional context for
the correction of individual segments. We find that
some of these methods have a strong positive effect
in the immediate proximity of segment boundaries,
however, for smaller models the more complicated
prompt may cause unexpected degradation in per-
formance when the whole text is considered. Fur-
ther work will be necessary to resolve these issues.

As future work, we will pursue a large cor-
rection run of the ECCO collection as well as a
fine-tuned model for Finnish post-correction. All
datasets and evaluation scripts used in this study
are available at https://github.com/TurkuNLP/
ocr-postcorrection-lm to support result repli-
cation and comparability.
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Limitations

Our work includes certain limitations, which we
will discuss next. First, during data preprocessing,
we discarded a proportion of documents (~10%
for English, ~6% for Finnish) that our correction
methods may not be able to address. These docu-
ments include cases with severe alignment issues
between OCR output and ground truth. We ac-
knowledge that our post-correction method, which
relies entirely on the OCR system’s output, cannot
recover text where significant portions are missing,
therefore setting an upper-boundary for the method.
Further analysis is needed to investigate the causes
of these gaps and to determine how much, if any,
of this missing information could potentially be
addressed through post-correction.

We also find that OCR post-correction evalua-
tion suffers from various dataset and metric issues,
some of which we have already discussed (e.g. nor-
malization). In related work (including our own
study conducted directly on our long-term target
corpora), results are reported on varying datasets
and evaluations metrics. These challenges make it
difficult to achieve comparable results across stud-
ies and languages, potentially contributing to some
of the contradictory conclusions reported in prior
work. Clearly, more work will be needed to estab-
lish a set of standard benchmarks that resolve most
of the data and evaluation issues.

Finally, reporting pure numeric improvements
does not address all aspects of downstream data
usability. While an improved word error rate has a
direct, positive effect on certain applications (e.g.
lexical search), its impact on others (e.g. close read-
ing) may be less straightforward or proportional.
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Abstract

We present FoQA, a Faroese extrac-
tive question-answering (QA) dataset with
2,000 samples, created using a semi-
automated approach combining Large
Language Models (LLMs) and human val-
idation. The dataset was generated from
Faroese Wikipedia articles using GPT-4-
turbo for initial QA generation, followed
by question rephrasing to increase com-
plexity and native speaker validation to
ensure quality. We provide baseline per-
formance metrics for FoQA across mul-
tiple models, including LLMs and BERT,
demonstrating its effectiveness in evaluat-
ing Faroese QA performance. The dataset
is released in three versions: a validated
set of 2,000 samples, a complete set of
all 10,001 generated samples, and a set of
2,395 rejected samples for error analysis.

1 Introduction

Recent NLP advancements, driven by the trans-
former architecture (Vaswani et al., 2017), have
led to large-scale models that excel in understand-
ing (Devlin et al., 2018) and generating (Brown
et al., 2020) human language. While many mod-
els are “massively multilingual” (Conneau et al.,
2019; He et al., 2021a; Brown et al., 2020)
they often perform better on high-resource lan-
guages, leaving low-resource languages under-
supported. Furthermore, low-resource languages
typically have limited access to native speakers
who can serve as data annotators, making it dif-
ficult to create high-quality evaluation datasets.
High-quality evaluation datasets are crucial for as-
sessing and improving models for these languages,
helping to measure performance and guide lan-
guage technology development.

Extractive QA datasets (Srivastava and Memon,

2024) are especially useful, as they simulate real-
world applications like retrieval-augmented gen-
eration (Gao et al., 2023). Creating these datasets
traditionally requires substantial human effort, of-
ten involving multiple annotators for question
generation and answer validation. Standardising
methods for creating these datasets can signifi-
cantly advance technology for low-resource lan-
guages.

Our research addresses these challenges and
makes the following key contributions:

• An efficient, single-annotator methodology
for producing high-quality extractive QA
datasets using a semi-automated approach
that significantly reduces the human effort re-
quired for dataset creation, provided as an
open-source Python codebase1

• The first extractive QA dataset for Faroese
using this method2.

2 Related Work

QA systems are divided into extractive and ab-
stractive types (Fan et al., 2019). This work fo-
cuses on extractive QA, also known as reading
comprehension, where text passages are paired
with questions, and answers are directly ex-
tracted from the text. A well-known exam-
ple of an extractive QA dataset is the Stanford
Question Answering Dataset (SQuAD), which in-
cludes over 100,000 QA pairs from Wikipedia
articles (Rajpurkar et al., 2016). In the case
of Icelandic, a language closely related to
Faroese, several QA datasets have been devel-
oped. Snæbjarnarson and Einarsson (2022a) in-
troduced a cross-lingual open-domain QA sys-
tem using machine-translated data, and the Nat-
ural Questions in Icelandic, an extractive QA

1https://github.com/alexandrainst/foqa
2https://huggingface.co/datasets/

alexandrainst/foqa
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dataset, which demonstrates approaches appli-
cable to other low-resource languages such as
Faroese (Snæbjarnarson and Einarsson, 2022b).
Similarly, Skarphedinsson et al. (2023) developed
a method to gamify QA dataset creation. However,
both approaches relied heavily on human question
generation, which bottlenecked the dataset cre-
ation process.

At the time of writing, few benchmark datasets
exist for Faroese. Snæbjarnarson et al. (2023) in-
troduced named entity recognition3 and seman-
tic text similarity datasets4. The FLORES-200
dataset (Costa-Jussà et al., 2022) is another sig-
nificant contribution to Faroese benchmarks, be-
ing a multilingual parallel corpus covering over
200 languages, including Faroese. Additionally,
Nielsen (2023) introduced ScaLA-Fo, a linguis-
tic acceptability dataset for Faroese. Despite these
resources, a dedicated Faroese QA dataset is still
lacking, which this work aims to address.

3 Methodology

3.1 Generation of Tentative Dataset

The process of generating an extractive question-
answering dataset begins with several key compo-
nents: a vocabulary, a text corpus, a generative
model, and specialised functions for generating
questions and answers and for question reformu-
lation. Using these components, we create a tenta-
tive dataset through a two-step process. First, we
apply a QA generation function to our text corpus
to create initial QA pairs. Then, we refine these
pairs by rewriting the questions while keeping the
answers unchanged.

The QA generation function operates by utilis-
ing our generative model to create multiple ques-
tions for each document in the corpus, along with
corresponding answers that must be found verba-
tim within the source document. To ensure con-
sistency and maintainability, we implement strict
formatting requirements for the model’s output.
Specifically, we require the model to generate
responses in a structured JSON format, follow-
ing the approach described by Willard and Louf
(2023). Each output must be a dictionary contain-
ing a “results” key, which maps to a list of dic-
tionaries. These inner dictionaries must contain

3https://huggingface.co/datasets/
vesteinn/sosialurin-faroese-ner

4https://huggingface.co/datasets/
vesteinn/faroese-sts

exactly two keys: “question” and “answer.” Any
outputs that deviate from this precise format are
automatically filtered out of the dataset.

A significant limitation of the initially gener-
ated questions lies in their close adherence to the
source documents’ original phrasing. These ques-
tions often merely restructure existing statements
from the text into interrogative forms, diminish-
ing their effectiveness as evaluation tools. Con-
sider a document containing the statement “Jane
Smith is an executive and her bike is red.” The
initial generation might produce “What colour is
Jane Smith’s bike?”—a question that could be an-
swered through simple text matching algorithms,
requiring minimal linguistic or reasoning capabil-
ities. To address this limitation, we employ a ques-
tion reformation process that introduces additional
complexity. By transforming the previous exam-
ple to “What colour is the executive’s bicycle?”,
we create questions that demand more sophisti-
cated comprehension abilities, including synonym
recognition and multi-hop reasoning in this exam-
ple. This reformulation process is implemented
through our question-rewriting function, which
utilises the generative model to produce modified
questions.

We release our code base implementing this
generation process open-source5.

3.2 Manual Filtering of Tentative Dataset

To ensure high-quality dataset creation, we im-
plemented a human validation phase using a cus-
tom annotation interface built with Gradio (Abid
et al., 2019), a Python library for web-based in-
terfaces. The tool presents annotators with each
generated question and its answer, offering three
classification options: CORRECT (both question
and answer are grammatically and contextually
appropriate), INCORRECT (question is grammat-
ically incorrect or contextually inappropriate), and
INCORRECT ANSWER (answer is irrelevant, inac-
curate, or grammatically incorrect). An annotator
reviews each QA pair and assigns the appropriate
classification, ensuring linguistic quality and fil-
tering out inadequate samples. The annotation tool
is available open-source6.

5https://github.com/alexandrainst/foqa
6https://huggingface.co/spaces/

saattrupdan/foqa-validation
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Input Documents Generate Questions
and Answers Initial QA Pairs

Rephrase QuestionsValidation Final Dataset

Model creates
questions and extracts

answers from text

Model improves
question clarity

while preserving
original answers

Example Output Format:

{
‘‘results’’: [

{
‘‘question’’: ‘‘What role did

Alan
Turing play in the development
of computer science?’’,
‘‘answer’’: ‘‘Alan Turing laid

the
theoretical foundation for
computer science through his
work on computability.’’

},
{

‘‘question’’: ‘‘What was the
Turing machine?’’,
‘‘answer’’: ‘‘A mathematical

model
of computation that manipulates
symbols on a tape.’’

}
]
}

Figure 1: Overview of the QA dataset generation pipeline. The system processes input documents to
generate initial QA pairs, followed by a question rewriting phase that improves clarity while maintaining
the original answers. All outputs follow a structured JSON format to ensure consistency. Note that while
the outputs are in Faroese, the example shown in this figure uses an English example for illustrative
purposes.

3.3 Annotation Guidelines
This section outlines the complete annotation
guidelines for evaluating QA pairs in Faroese. The
annotator will follow a three-tier classification sys-
tem when analysing each sample.

Tier 1: Grammatical Assessment The anno-
tator should begin by evaluating the grammati-
cal correctness of both the question and answer
in Faroese. The annotator must check for proper
agreement between subjects and verbs, correct
case marking on nouns and pronouns, standard
Faroese word order, accurate spelling and so on.
If any grammatical errors are found in the ques-
tion, the annotator should mark the entire sample
as INCORRECT. If the grammatical errors only ap-
pear in the answer, the sample should be marked
as INCORRECT ANSWER.

Tier 2: Semantic and Contextual Assessment
After confirming grammatical correctness, the an-
notator should examine the relationship between
the question and answer, as well as their connec-
tion to the source text. The answer must directly
address the question being asked. Additionally,
the annotator should ensure the answer demon-
strates logical consistency within its context. If
any issues with relevance, accuracy, or consistency
are found, the sample should be marked as IN-
CORRECT ANSWER.

Tier 3: Final Classification When a sample
passes both the grammatical and semantic assess-

ments, the annotator should mark it as CORRECT.
The annotator will also be asked to correct a selec-
tion of questions marked as INCORRECT. When
performing these corrections, the annotator should
focus only on samples where the question itself
contains errors, not the answer. This is crucial be-
cause modifying answers would compromise the
extractive nature of the QA task, as answers should
appear verbatim in the source text.

Quality Control Process All samples marked
as CORRECT can undergo a secondary review by
another annotator who is also a native Faroese
speaker. This second annotator will apply
the same three-tier evaluation process described
above.

4 Faroese Setup

We applied our methodology (Section 3) to
the Faroese Wikipedia7 as the text source and
gpt-4-turbo-2024-04-09 (OpenAI, 2023)
as the generative model, selected for its top perfor-
mance on Faroese tasks in the ScandEval bench-
mark (Nielsen, 2023; Nielsen et al., 2024). To en-
sure non-trivial contexts, only articles with over
1,000 characters were included, i.e., 1675 arti-
cles in total and 655 articles used for the vali-
dated dataset. We set the model temperature to 1.0
and generated a maximum of 1,024 tokens, with
a consistent random seed (4242) to maintain re-

7This dump: https://hf.co/datasets/
alexandrainst/scandi-wiki.
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producibility. The system prompt we use is the
following:

You are a helpful Faroese question answering
dataset generator. The only language you know
is Faroese.

While we did not explore Faroese-language
prompting or prompt variations in this study, such
modifications could potentially improve the effec-
tiveness of our approach. As our primary focus
was developing a question-answering dataset for
Faroese, we leave prompt optimisation for future
work. The following prompt was used for gener-
ating QA pairs:

The following is a Wikipedia article in Faroese.

¡article¿
{article}
¡/article¿

Generate 2 to 10 questions about the article, de-
pending on the length of the article, all of which
answered in the article.

You also have to supply answers to the questions,
and the answers have to appear exactly as written
in the article (including same casing).

The answers should only contain the answers
themselves, and not the surrounding sentence -
keep the answers as short as possible.

The answers have to be different from each other.

All your questions and answers must be in
Faroese.

Your answer must be a JSON dictionary with the
key “results”, with the value being a list of dic-
tionaries having keys “question” and “answer”.

Lastly, we use the following prompt to re-write
the questions:

The following is a Faroese question.

¡question¿
{question}
¡/question¿

Re-write the question, preserving the meaning,
using synonyms or a different (valid) word order.

Your question must be in Faroese.

Your answer must be a JSON dictionary with the
key “question”.

In both prompts, we replace {article} and
{question} with the actual Wikipedia article and
the generated question, respectively.

5 The Dataset

5.1 Format
The validated QA pairs are stored in a structured
format, with each entry containing a unique iden-
tifier (id), the source article’s URL (url), the ar-
ticle title (title), the full text (context), the

generated and rephrased question (question),
and an answers dictionary (answers) that in-
cludes the answer text and its character index
(answer start) within the context. This struc-
ture ensures compatibility with standard extractive
QA formats like SQuAD (Rajpurkar et al., 2016),
enabling seamless integration with existing NLP
frameworks and models.

5.2 Statistics

The tentative dataset in our Faroese case consisted
of 10,001 samples, which were randomly selected
from the Wikipedia articles meeting our length
criteria (¿1,000 characters). From these samples,
4,130 were annotated by a human annotator. Out
of the annotated samples, 1,759 were annotated
as CORRECT, 1,908 were INCORRECT8 and 222
had an INCORRECT ANSWER. While the initial
validation was performed by a single annotator,
we conducted a second validation phase specifi-
cally for the samples marked as CORRECT, where
these samples were evenly split between two anno-
tators: the original annotator and a second native
Faroese speaker. During this step, 41 out of the
1,759 CORRECT samples were found to have been
incorrectly labelled as CORRECT by the annotator,
which was then corrected. Additionally, 241 sam-
ples have the label CORRECTED where the origi-
nal question has been corrected by the human an-
notator (this includes the 41 incorrectly labelled
samples which were corrected). These corrected
samples are intended to both measure and mitigate
potential biases introduced by GPT-4-turbo during
the initial sample creation. By comparing model
performance on the corrected versus uncorrected
samples of the dataset, we can assess whether the
model exhibits any bias toward its own generated
questions.

5.3 Dataset Versions

We are releasing three versions of the FoQA
dataset on the Hugging Face Hub9. The format
of the dataset is compatible with standard ex-
tractive QA formats like SQuAD. The primary
version, default, contains 2,000 validated exam-
ples (comprising 1,759 initially correct examples
and 241 examples that were corrected during re-

8While more than half of all generated question/answer
pairs were marked as incorrect, we release the full dataset to
enable researchers to study GPT-4’s error patterns in Faroese.

9Available at https://huggingface.co/
datasets/alexandrainst/foqa.
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view), including 848 for training, 128 for valida-
tion, and 1,024 for testing, with shortened contexts
for improved usability. The second version, all-
samples, includes all 10,001 examples from the
initial dataset, retaining full, unshortened contexts,
even those that were rejected or not validated. The
final version, incorrect-samples, comprises 2,395
examples that were rejected during the manual re-
view process.

5.3.1 Question Types
We used the gpt-4o-2024-05-13model from
OpenAI to annotate the questions into categories
and we used the following system prompt:

Categorize the question (written in Faroese)
based on the type of question it is. The ques-
tion types are “time” for questions that ask about
the time of something, “place” if they ask for a
place, “people” if they ask about a person, “ob-
ject” if they ask about an object or a non-person
entity. If the question does not fit any of these
categories, respond with “other”.

Most questions received the people label (679,
33.95%), followed by object (516, 25.80%), time
(367, 18.35%), place (290, 14.50%) and other
(148, 7.40%).

To assess the quality of the automatic ques-
tion categorisation, the annotator manually vali-
dated 200 randomly sampled questions from the
dataset. The validation methodology included as-
signing binary scores: 1 for correct categoriza-
tion and 0 for incorrect categorisation. The vali-
dation followed an inclusive approach, accepting
multiple valid category assignments where appli-
cable. For instance, questions about a person’s
birthplace (e.g., “Where was Turi Sigurardóttir
born?”) were considered correctly categorised if
labelled as either “person” or “place,” as both
categories are contextually relevant to the ques-
tion’s intent. This flexible validation framework
acknowledges the inherent ambiguity in question
categorisation, where multiple interpretations may
be equally valid.

The manual validation revealed an error rate of
7.5% (15 incorrect categorisations out of 200 val-
idated samples), suggesting that the GPT-4o cate-
gorisation system achieved 92.5% accuracy on the
validated subset.

The annotator also conducted a qualitative er-
ror type analysis. Here it was found that com-
mon error types in the QA dataset include gram-
matical gender mistakes, such as using neuter in-
stead of masculine forms in questions about pool

Model Name F1 Score Exact Match

GPT-4-turbo10 77.6 ± 1.0 55.6 ± 1.8
GPT-4o11 77.1 ± 1.0 54.1 ± 1.6
GPT-4o-mini12 75.2 ± 1.0 51.2 ± 1.5
Llama-3.1-8B13 73.6 ± 1.2 51.9 ± 1.5
GPT-SW3-6.7B14 63.4 ± 2.2 45.2 ± 2.1
Mistral-7B15 62.4 ± 1.7 45.0 ± 1.6
FoBERT16 36.0 ± 1.7 26.8 ± 1.5
mDeBERTa-v317 30.6 ± 1.6 21.0 ± 1.2
ScandiBERT18 30.9 ± 2.7 21.9 ± 2.3

Table 1: Evaluation results on FoQA according to
F1 scores and exact match.

length (e.g., “Hvussu langur er svimjihyli.NEUT
ı́ kappingunum”). Incorrect phrasing surround-
ing years, like omitting the preposition “ı́” (in)
when asking about dates (e.g., “Hvørjum ári doyi
Stephen Hawking?”), is also prevalent. Ice-
landicisms appear as words that are partially or
fully Icelandic (e.g., the use of “hrai” (speed) in-
flected as a Faroese noun in “Hvør er hrain á
jørini ı́ kilometrum hvønn tı́ma?”). The ques-
tions and answers also contained errors in punc-
tuation, spelling, and capitalization, as seen in
the improper capitalization of “Smyril” (merlin)
when referring to the bird rather than the ferry
(e.g., “Hvat ger Smyril?”). Lastly, some incor-
rect terms are used consistently (e.g., “høvusbýur”
(main city) used instead of “høvusstaur” (capital)
when asking about capital cities).

6 Evaluation

We evaluated several models on the dataset. Since
we ensured that all answers appear exactly as in
the documents, this allows us to evaluate both en-
coder models and decoder models on the dataset.
We evaluate both Faroese and massively multilin-
gual models on FoQA, the results of which can be
found in Table 1.

We also evaluated the model used to generate
the dataset, gpt-4-turbo-2024-04-09, on

10Full OpenAI model ID: gpt-4-1106-preview
11Full OpenAI model ID: gpt-4o-2024-05-13
12Full OpenAI model ID:

gpt-4o-mini-2024-07-18
13https://hf.co/meta-llama/Llama-3.1-8B
14https://hf.co/AI-Sweden-Models/

gpt-sw3-6.7b-v2
15https://hf.co/mistralai/

Mistral-7B-v0.3
16https://hf.co/vesteinn/FoBERT
17https://hf.co/microsoft/

mdeberta-v3-base
18https://hf.co/vesteinn/

ScandiBERT-no-faroese
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the corrected samples, before and after the correc-
tion. This was to test whether the model is biased
towards its own generated questions, or whether it
generalises to the corrected ones as well. Surpris-
ingly, the model ended up performing significantly
better19 on the corrected samples, rather than the
samples it had generated itself.

7 Discussion and Future Work

Our evaluation of the FoQA dataset reveals in-
sights into the performance of various language
models on Faroese QA tasks. GPT-4-turbo and
GPT-4o achieved the highest performance scores
in our evaluation, though further research would
be needed to understand whether this indicates
genuine Faroese language comprehension or other
factors like strong general question-answering ca-
pabilities. This finding suggests promising direc-
tions for low-resource language processing, while
highlighting the need for more detailed investiga-
tion into how these models handle Faroese specif-
ically.

An important observation from our annotator
indicates that most errors in the generated ques-
tions were grammatical in nature rather than con-
textual. This suggests a need for dedicated bench-
marks specifically measuring grammatical cor-
rectness of LLMs in Faroese, which would com-
plement FoQA’s focus on QA capabilities.

Early question answering datasets like SQuAD
faced criticism that their questions were too sim-
plistic, often directly mirroring the source text
structure. Later datasets like TyDi QA (Clark
et al., 2020) and Natural Questions in Ice-
landic (Snæbjarnarson and Einarsson, 2022b) ad-
dressed this by having annotators create natural
questions first, which were later matched to source
material. This approach prevented the tight cou-
pling between question phrasing and source text
that can make questions artificially easy. Follow-
ing this insight, we implemented question rephras-
ing in our methodology. However, we acknowl-
edge that we did not specifically measure perfor-
mance differences between original and rephrased
questions, which would require separate evalua-
tion sets.

We found that encoder models like mDeBERTa-
v3 (He et al., 2021a,b), FoBERT and ScandiB-
ERT (Snæbjarnarson and Einarsson, 2022a) per-

19p = 0.0007 for F1-score and p = 0.0185 for exact
match, using a two-tailed t-test.

form significantly worse than the decoder mod-
els, but that could simply be explained by the fact
that these models differ in sizes by several or-
ders of magnitude. A controlled experiment will
need to reveal whether architectural choices are
the real cause for difference in performance or
whether it is due to other reasons such as param-
eter count. A performance gap has been observed
between encoder-type models and decoder-type
models across other languages and (Nielsen et al.,
2024) suggests that certain architectures may be
inherently better suited for specific language pro-
cessing tasks.

For future work, we propose evaluating larger
open models, such as 70B parameter models and
even larger ones like Llama 3.1 405B (Dubey
et al., 2024). Additionally, assessing the perfor-
mance of Claude 3.5 Sonnet (Anthropic, 2024)
would be valuable, given its strong performance
on Icelandic NLP tasks20 since Icelandic is a lan-
guage closely related to Faroese.

8 Conclusion

We introduced FoQA, the first Faroese extrac-
tive question-answering dataset, containing 2,000
QA pairs. All samples underwent initial vali-
dation by one annotator, followed by a second
validation phase where the correct samples were
split equally between the original annotator and
a second annotator. Our evaluation reveals sig-
nificant performance gaps between decoder-based
LLMs and encoder models, with GPT-4-turbo
achieving the highest F1 score of 77.6, while en-
coder models like mDeBERTa-v3 and ScandiB-
ERT scored around 30. Notably, our analysis of
question types shows a diverse distribution across
categories, with people-related questions compris-
ing the largest portion at 33.95%. The dataset’s
manual validation process identified common er-
ror patterns, including grammatical gender mis-
takes and Icelandicisms, providing valuable in-
sights for future Faroese language model devel-
opment. The FoQA dataset serves as valuable
benchmark for evaluating Faroese language under-
standing. Additionally, our contributions include a
semi-automated methodology for creating extrac-
tive QA datasets for low-resource languages.

20https://huggingface.co/spaces/
mideind/icelandic-llm-leaderboard
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Limitations

A significant limitation of our dataset is that our
current annotation process does not differentiate
between grammatical errors and contextual errors
in the generated questions. This granular error
categorisation would provide valuable insights for
improving model performance and understanding
specific challenges in Faroese language genera-
tion.

The use of GPT-4-turbo for dataset genera-
tion introduces potential biases in the linguistic
patterns of the generated text. Despite native
speaker validation, there remains a risk that the
generated questions may not fully capture natural
Faroese language patterns and could subtly reflect
machine-generated language characteristics.

Our methodology relied on a single annota-
tor for the initial validation phase, which means
we could not perform traditional inter-annotator
agreement measurements. While this limitation
was intentional, as our approach aimed to demon-
strate the feasibility of creating useful datasets
with minimal human resources, it does impact our
ability to measure annotation consistency quanti-
tatively. Another limitation is our lack of evalua-
tion on the non-rephrased questions. This missing
comparison makes it difficult to quantify the im-
pact of our question rephrasing strategy and deter-
mine whether it actually increased question diffi-
culty as intended.

Furthermore, Faroese Wikipedia, while a valu-
able resource, is relatively small and occasion-
ally contains ungrammatical content due to a lim-
ited pool of contributors. This occasionally led to
incorrect-answer errors, since the answers are ex-
tracted directly from the source text. And lastly,
the current size of 2,000 validated QA pairs, while
a solid starting point, is relatively small compared
to QA datasets for high-resource languages, which
may limit its capacity to train or fine-tune LLMs
effectively.

Ethical Statement

The creation of language resources for low-
resource languages like Faroese raises important
ethical considerations, particularly when utilis-
ing LLMs. Our dataset generation process in-
volved processing approximately 1,675 Faroese
Wikipedia articles through GPT-4-turbo. While
this automated approach enabled efficient initial
data generation, we acknowledge the computa-

tional resources required and their environmen-
tal impact, and we conservatively estimate that
the processing spanned 48 GPU hours. We note
that OpenAI’s infrastructure runs on Azure, and
Azure will be running on 100% renewable energy
by 2025 and has been carbon neutral since 201221.

A primary ethical concern in using LLMs for
low-resource language content generation is the
potential introduction of non-native language pat-
terns and cultural misrepresentations. This risk is
particularly relevant for Faroese, where preserv-
ing authentic linguistic patterns and cultural con-
text is crucial. To address these concerns, we
implemented a comprehensive validation protocol
requiring native speaker review of all generated
content. This human-in-the-loop approach helped
identify and correct systematic errors while ensur-
ing linguistic authenticity.

To maximise the dataset’s benefit to the Faroese
language technology community, we have made it
freely available under an open-source license. We
are committed to ongoing maintenance and error
correction, ensuring the dataset remains a valuable
resource for Faroese language technology devel-
opment while maintaining high standards of lin-
guistic quality and cultural authenticity.
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Vésteinn Snæbjarnarson, Annika Simonsen, Goran
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Abstract

Mozilla Common Voice is a crowdsourced
project that aims to create a public, mul-
tilingual dataset of voice recordings for
training speech recognition models. In
Common Voice, anyone can contribute by
donating or validating recordings in vari-
ous languages. However, despite the avail-
ability of many recordings in certain lan-
guages, a significant percentage remains
unvalidated by users. This is the case
for Spanish, where in version 17.0 of
Common Voice, 75% of the 2,220 hours
of recordings are unvalidated. In this
work, we used the Whisper recognizer to
automatically validate approximately 784
hours of recordings which are more than
the 562 hours validated by users. To verify
the accuracy of the validation, we devel-
oped a speech recognition model based on
a version of NVIDIA-NeMo’s Parakeet,
which does not have an official Spanish
version. Our final model achieved a WER
of less than 4% on the test and validation
splits of Common Voice 17.0. Both the
model and the speech corpus are publicly
available on Hugging Face.

1 Introduction

Developing Automatic Speech Recognition (ASR)
systems requires extensive labeled speech data,
which is costly and time-consuming to annotate
manually. Crowdsourcing and automated meth-
ods help address these challenges by enabling ef-
ficient and consistent validation of data quality.
For instance, Hernandez et al. (2018) used the
Kaldi toolkit (Povey et al., 2011) to prepare the
TED-LIUM corpus, while Krizaj et al. (2022) in-
troduced a toolkit for automatic validation based
on criteria like audio quality and transcription ac-

curacy. Automated pipelines have also been ap-
plied in domain-specific scenarios (Romanovskyi
et al., 2021), audio-visual speech recognition (Ma
et al., 2023), and multilingual ASR systems from
parliamentary archives (Nouza and Safarik, 2017;
Kulebi et al., 2022; Helgadóttir et al., 2017). In
this work, we employ OpenAI’s Whisper ASR
model to automatically validate the data by com-
paring the automatic transcription to a reference,
which may or may not accurately reflect the con-
tent of the speech recording.

1.1 Objectives

Mozilla Common Voice (Ardila et al., 2019) is
a multilingual, crowdsourced dataset of voice
recordings that are validated based on user votes.
Recordings are labeled as “validated” if they re-
ceive at least two more positive votes than nega-
tive ones. Recordings rejected by the community
are labeled as “invalidated,” while those with in-
conclusive results are categorized as “other.”

We focus on the “other” category in Common
Voice 17.0 (CV17), using Whisper-based ASR
to validate recordings by matching transcriptions
with references, as done in similar efforts for Ice-
landic data (Hernández Mena et al., 2024).

We evaluated our method with NVIDIA’s Para-
keet architecture (Galvez et al., 2024), compar-
ing models fine-tuned on original CV17 validated
data (∼500 hours) and our validated data (∼784
hours), both achieving a Word Error Rate (WER)
< 5%. Combining both subsets (∼1284 hours)
further reduced WER. Our validated dataset and
best-performing model are publicly available on
Hugging Face.

1.2 Paper Organization

This paper is organized as follows: Section 2
presents the final version of The Corpus shared
in this work. Section 3 details the Validation
Methodology used to automatically verify the
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CV17 speech recordings, which later became part
of the corpus. In Section 4, we describe the de-
velopment and fine-tuning of the Acoustic Models
used to assess the effectiveness of the validation
methodology. Finally, Section 5 concludes the pa-
per with a summary of our contributions and sug-
gestions for future work.

2 The Corpus

The corpus “Spanish Common Voice V17.0 Split
Other Automatically Verified,”1 as its name sug-
gests, is the result of the automatic validation of
the split called “other,” which is part of the Span-
ish version of the Common Voice 17.0 corpus
(CV17 for short). The corpus contains 784 hours
and 50 minutes of audio across 581,680 record-
ings, surpassing the size of the “validated” cat-
egory in CV17, which contains only 562 hours.
Of these, 53 hours are allocated to the “test” and
“dev” splits, while the remaining 509 hours belong
to the “train” split. In comparison to the origi-
nal CV17, our corpus contains only a single split
called ”other.”

2.1 Audio Format

The audio files are distributed in the same format
as the original CV17, with a sample rate of 48
kHz, a single channel, a bitrate of 64 kbps, and
the MPEG-1 Layer 3 (MP3) codec.

2.2 Data Loader

In general, Hugging Face allows users to share
datasets with others through dataset cards. A
dataset card is a web page that contains the profile
of the dataset. On this “web page,” users can typ-
ically find documentation for the dataset, speech
files, transcriptions, and metadata, as is the case
with our corpus. Since the repository chosen to
share our corpus is Hugging Face, the implica-
tions are that 1) the corpus has its own dataset card
and, 2) the speech data can be accessed through
the “datasets” Python library (Lhoest et al., 2021).
In datasets, the object responsible for download-
ing the data from the dataset card, loading it into
memory, and allowing Python to iterate over each
recording in a for-loop is a “data loader.” The
data loader communicates with code executed by
the Hugging Face website via the dataset card of

1https://huggingface.co/datasets/
projecte-aina/cv17_es_other_
automatically_verified

the corpus. We programmed our data loader to
download the data directly from the original CV17
repository, which means that our dataset card does
not contain any audio files. The only informa-
tion provided is a TSV file containing metadata for
each recording in the corpus. Consequently, be-
fore downloading our corpus through the datasets
library, it is important to agree to the terms and
conditions shown on the dataset card for Mozilla
Common Voice.2

2.3 Corpus Metadata

As explained in Section 2.2, the corpus metadata
is contained in a TSV file that is stored in the
dataset card. The information in the TSV was
taken from the original CV17 with no changes;
however, the rows in the TSV correspond only
to the speech files validated by us. The columns
of this TSV file are as follows: The client id
is a hexadecimal ID identifying the client (voice)
that made the recording. The path field speci-
fies the ID of the audio file followed by the ex-
tension “.mp3”. The sentence id is a hex-
adecimal ID of the speaker. The sentence field
contains the sentence the user was prompted to
speak. The sentence domain indicates the
context or scope to which the sentence belongs
(this field is empty in all cases). The up votes
and down votes fields represent the number of
upvotes and downvotes, respectively, received by
the audio file from reviewers. The age field de-
notes the age group of the speaker (e.g., teens,
twenties, fifties), while the gender field spec-
ifies the speaker’s gender (male masculine
or female feminine). The accents field
lists the speaker’s accent(s) (e.g., España, México,
Caribe, América Central), and the variant field
refers to specific types of accents or pronunciation
patterns associated with the speaker (this field is
empty in all cases). The locale field indicates
the locale of the speaker (the value is “es” in all
cases). Finally, the segment field can either be
empty or have the value “Benchmark.”

3 Validation Methodology

Whisper (Radford et al., 2023) is one of the
state-of-the-art multilingual speech recognition
and translation models, available under the MIT
license. It utilizes a Transformer-based architec-

2https://huggingface.co/datasets/
mozilla-foundation/common_voice_17_0
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ture with an encoder-decoder structure, trained via
weak supervision on a massive dataset of multilin-
gual speech (680 000 hours). The Whisper archi-
tecture supports both transcription and translation
tasks.

As part of our validation methodology, we use
OpenAI’s Whisper to transcribe the speech record-
ings in the “other” category of CV17. If Whis-
per produces the same transcription as the refer-
ence, the recording is considered validated and
added to the final corpus; otherwise, the recording
is rejected. A total of 1,138,631 recordings were
transcribed through this process, of which 581,680
(784 hours and 50 minutes) matched the reference
transcription. This subset represents the total size
of the corpus shared in this work. However, the
reference transcriptions used in this process are
not the original ones found in CV17 but have been
normalized.

3.1 Normalization of the Transcripts

Reference transcriptions in CV17 include capi-
talization and punctuation. However, CV17 is
used in experiments with a wide variety of ASR
models and architectures, some of which do not
accept punctuation marks as inputs. Addition-
ally, we have detected that the Spanish portion of
CV17 contains some characters not belonging to
the Spanish alphabet (e.g., ä, ë, ô, ö). For this
reason, the version of CV17 that we store is nor-
malized as follows: 1) lowercase, 2) punctuation
marks removed, and 3) letters not belonging to the
Spanish alphabet are replaced with white spaces.
In consequence, the same normalization is applied
to the output transcriptions of Whisper during the
validation process described in Section 3.

4 Acoustic Models

An indirect way to assess the correctness of our
validation process is to evaluate how our validated
recordings perform when training a real ASR
model, as faulty data would hinder the produc-
tion of a good acoustic model. For this purpose,
we fine-tuned distinct models based on NVIDIA’s
Parakeet architecture, as described in Section 4.1.

It is important to note that, to the best of
our knowledge, the official model (trained by
NVIDIA) based on the specific Parakeet architec-
ture we use in this work is only available in En-
glish; so, we chose this Parakeet architecture with
the hope of making a meaningful contribution to

the language technologies community.

4.1 NVIDIA’s Parakeet

The Parakeet ASR models (Galvez et al., 2024),
developed by NVIDIA as part of the NeMo
framework (Kuchaiev et al., 2019), are state-
of-the-art speech recognition systems offering
high-accuracy English transcription. The Para-
keet family includes four models: two with
RNNT decoders and two with CTC decoders.
This study employs the nvidia/parakeet-rnnt-1.1b
model, ranked third on the Hugging Face speech
recognition leaderboard.3

Built on the Fast Conformer architec-
ture (Rekesh et al., 2023), an optimized version
of the Conformer (Gulati et al., 2020), Parakeet
features efficient downsampling, enhanced convo-
lutional kernels, and local attention mechanisms.
These improvements reduce memory use while
enabling accurate transcription of audio segments
up to 11 hours long (Koluguri et al., 2024).

4.2 Results

Table 1 shows WER and Character Error Rate
(CER) results for models based on the “Parakeet
RNNT 1.1B” architecture, evaluated on the “test”
and “dev” splits of CV17. The “CV17 Validated”
model was fine-tuned on user-validated CV17 data
(∼500 hours), the “CV17 Other” model on data
validated by our methodology (∼784 hours), and
the “CV17 Combined” model on the combined
dataset (∼1284 hours).

All models were fine-tuned for 48 hours us-
ing NVIDIA H100 GPUs. The “CV17 Vali-
dated” and “CV17 Other” models used 12 GPUs
each, while the “CV17 Combined” model used 32
GPUs. Checkpoint 17, corresponding to epoch 18,
was selected for all models to ensure comparabil-
ity.

Additionally, Table 1 shows results using the
first version of OpenAI’s Whisper and the latest
version Whisper-large-v3. As can be seen, the of-
ficial Whisper models tend to outperform the mod-
els “CV17 Validated” and “CV17 Other”; how-
ever, our “CV17 Combined”4 model outperforms
all other models in the table, demonstrating the ef-
fectiveness of our validation method.

3https://huggingface.co/spaces/
hf-audio/open_asr_leaderboard

4https://huggingface.co/projecte-aina/
parakeet-rnnt-1.1b_cv17_es_ep18_1270h
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Model Split WER CER
(%) (%)

CV17 Validated
Test 5.13 1.69
Dev 4.66 1.41

CV17 Other
Test 5.23 1.80
Dev 4.85 1.53

CV17 Combined
Test 3.93 1.29
Dev 3.55 1.05

OpenAI Whisper large
Test 4.97 1.81
Dev 4.21 1.45

Whisper-large-v3
Test 5.15 1.84
Dev 4.34 1.48

Table 1: Performance of the models trained with
distinct subsets of Common Voice compared to the
performance of two different versions of Whisper.

It is important to note that we distinguish be-
tween OpenAI’s Whisper (sourced from GitHub)
and Whisper-large-v3 (sourced from Hugging
Face). In various experiments conducted for this
and other studies, we have observed that the Whis-
per model available on GitHub and the Whisper
model available on Hugging Face yield different
results, even when they are the same size (tiny,
base, small, etc.).

4.3 The Use of a Unique ASR System.

One potential criticism of this work is that we did
not use multiple ASR systems for the validation
process, as was done in the previously cited study
by Hernández Mena et al. (2024). In that study, a
recording was considered validated if at least one
of their four ASR systems produced the same tran-
scription as the reference, or a “perfect match”
as they termed it. With this in mind, we can in-
fer that involving additional ASR systems in our
validation process would result in more validated
recordings, though it would not invalidate those al-
ready verified by our single ASR system. Due to
constraints in time and computational resources,
we made the decision to use only one ASR sys-
tem; however, we believe our results remain valid
and valuable under the current experimental con-
ditions.

4.4 The Use of Normalized Transcriptions

Another aspect worth discussing is the normal-
ization of the transcripts. Given that the original
CV17 references include punctuation and capital-
ization, and Whisper is capable of generating tran-

scriptions with those same features, why not com-
pare the transcripts without normalization? The
answer lies partly in Section 3.1, where we explain
that our laboratory experiment with a wide vari-
ety of ASR systems. Ultimately, we seek data that
is compatible with both current and future experi-
ments, adaptable to the latest technology as well as
systems that have already proven reliable. In this
regard, normalized transcriptions enable compat-
ibility with a broader spectrum of ASR systems,
many of which are not designed to handle punctu-
ation, as is the case of Parakeet.

4.5 Performance of Acoustic Models

Results in Table 1 demonstrate the Whisper’s im-
pressive performance, as it outperforms two out
of the three models we developed for this study.
This reinforces the capability of Whisper to han-
dle diverse datasets effectively, a result likely tied
to the extensive training hours and resources in-
vested in its development. Whisper’s robustness
in handling varied linguistic inputs, coupled with
its high accuracy across CV17’s “test” and “dev”
splits, highlights its value as a benchmark model
in automatic validation processes.

However, our best model, “CV17 Combined,”
achieves lower WER and CER than Whisper, sug-
gesting that our validation method successfully cu-
rated a high-quality dataset for Spanish ASR. Al-
though Whisper’s performance is consistent with
expectations given its extensive training set, and it
was likely trained on a version of Mozilla Com-
mon Voice in Spanish that may introduce a bias
enhancing its transcription accuracy on our test
data, our results demonstrate that a carefully val-
idated, language-specific corpus can yield models
that not only compete closely with but even sur-
pass larger-scale models.

These findings underscore the importance of
targeted, language-specific model training, even
in an era where large-scale, multilingual models
dominate ASR.

5 Conclusions and Further Work

Crowdsourcing platforms are vital for ASR devel-
opment, offering affordable and diverse data col-
lection. However, manual validation limits their
efficiency. This study demonstrated the poten-
tial of automatic validation for the Spanish subset
of Common Voice 17.0 (CV17) using a Whisper-
based ASR system. Our best Parakeet model
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trained with the extended dataset, “CV17 Com-
bined”, outperformed both OpenAI’s Whisper and
Whisper-large-v3, showcasing the benefits of au-
tomated validation. Future work could explore ap-
plying this approach to other datasets (e.g., Vox-
forge5) and languages, especially low-resource
ones, which could gain significantly from auto-
mated dataset expansion despite potential model
performance challenges.
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Abstract

This paper presents WikiQA-IS, a novel
question-answering dataset focusing on
Icelandic culture and history, along with
an automated pipeline for dataset gener-
ation and evaluation. Leveraging GPT-
4 to create questions and answers based
on Icelandic Wikipedia articles and news
sources, we produced a high-quality cor-
pus of 2,000 question-answer pairs. We
introduce an automatic evaluation method
using GPT-4o as a judge, which shows
strong agreement with human evaluations.
Our benchmark reveals varying perfor-
mances across different language mod-
els, with closed-source models generally
outperforming open-weights alternatives.
This work contributes a resource for eval-
uating language models’ knowledge of
Icelandic culture and offers a replicable
framework for creating similar datasets in
other cultural contexts.

1 Introduction

Recent advancements in natural language process-
ing (NLP) have led to significant improvements in
question-answering systems, particularly through
large language models (LLMs) (Brown, 2020).
While these models show impressive capabilities,
they can generate incorrect or fabricated informa-
tion, a phenomenon known as hallucination (Ben-
der et al., 2021; Huang et al., 2024). This makes
it crucial to systematically measure how much
factual knowledge these models actually possess
about specific domains, such as individual cultures
or topics. Current evaluation methods often lack
domain-specific benchmarks, making it difficult
to assess models’ true understanding of particu-
lar cultural contexts. This paper presents an auto-
mated approach to generate and evaluate questions

and answers, using Icelandic culture and history as
a case study.

Icelandic, despite its small speaker base, has
a rich literary and historical heritage. How-
ever, creating comprehensive QA datasets for
such domains is resource-intensive if done manu-
ally. While prior work on Icelandic QA datasets
has focused on language and reading compre-
hension (Snæbjarnarson and Einarsson, 2022b;
Skarphedinsson et al., 2023; Snæbjarnarson and
Einarsson, 2022a; Geirsson, 2013; De Bruyn et al.,
2021), there remains a need for a dataset testing
knowledge of culture and history in an open-ended
fashion.

Our research introduces a method leveraging
an LLM to automate the generation of high-
quality questions and answers based on Icelandic
Wikipedia articles, inspired by previous work ex-
tracting knowledge from Wikipedia (Yang et al.,
2015; Auer et al., 2007) and work on automatic
QA dataset creation (Lewis et al., 2019). This ap-
proach addresses the challenge of creating large-
scale datasets for low-resource languages and ex-
tends the application of language models to cul-
tural and historical knowledge evaluation.

The main contribution of this paper is the
WikiQA-IS corpus1 along with the pipeline used
to generate the corpus and the automatic evalua-
tion approach2. This research not only contributes
to create benchmarks focusing on Icelandic cul-
tural knowledge but also offers a replicable frame-
work adaptable to other languages and cultural
contexts.

1Dataset released under a CC BY license:
https://repository.clarin.is/repository/
xmlui/handle/20.500.12537/347

2Code: https://github.com/icelandic-lt/
AutomaticQAPipeline and https://github.
com/mideind/lm-evaluation-harness/
blob/add-icelandic-evals/lm_eval/tasks/
icelandic_qa/icelandic_wiki_qa.yaml
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2 Methods

2.1 Dataset Preparation

The questions in this work are based on the Ice-
landic Wikipedia and on the news from RÚV in the
Icelandic Gigaword corpus (Steingrímsson et al.,
2018). From Wikipedia, the 41,569 articles that
contained at least 250 characters were used, and
from the RÚV news, because the data is extensive,
only a portion of articles that contained at least
500 characters were used. For each page used in
a given source, we kept track of the "url", "title"
and "text" as fields in a JSONL file. The text field
serves as the basis for question generation.

2.2 Question Generation Pipeline

2.2.1 Document to Request Conversion

We first convert the documents into requests suit-
able for the GPT model. This process involves cre-
ating a JSON object for each document, which in-
cludes a system prompt and a user prompt, both in
Icelandic. The system prompt is: Þú ert vandvirk
aðstoðarmanneskja which translates to You are a
meticulous assistant.

The complete prompt structure pairs document
text with an instruction component that guides
the model in generating questions and perform-
ing dual evaluations: it must score both the quality
and relevance of each generated question and as-
sess the document’s connection to Icelandic cul-
ture and history, using a scale from 0 to 1 for
both metrics. These scores enable automatic filter-
ing of questions and documents that would likely
be rejected by human annotators. The instruction
component underwent several rounds of refine-
ment until it reliably produced high-quality ques-
tions from the input texts, and is provided below
in both Icelandic and English.

Semdu almenna spurningu upp úr
þessu skjali og svaraðu
henni ef skjalið fjallar að
einhverju leyti um íslenska
menningu og/eða íslenska
sögu.

↪→

↪→

↪→

↪→

↪→

Spurningin á að vera um innihald
skjalsins, ekki skjalið
sjálft. Ekki vísa í skjalið
í spurningunni.

↪→

↪→

↪→

Hafðu svarið eins hnitmiðað og
hægt er.↪→

Ef spurning og/eða svar vísar
til tíma þarf sá tími eða
ártal að vera tekið fram í
bæði spurningu og svari.

↪→

↪→

↪→

Spurning og/eða svar má ekki
vísa til hluta sem eru
núverandi, heldur þarf
tímasetning að vera til
staðar.

↪→

↪→

↪→

↪→

Skilaðu niðurstöðunni á
eftirfarandi json sniði:↪→

{"question": [question],
"answer": [answer], "id":
[doc["url"] OR
doc["xml_id"]],
"question_score": [score
0.0-1.0], "document_score":
[score 0.0-1.0], "source":
[doc["source"]]}

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Spurningin á að vera almenn og
tengjast íslenskri menningu
og/eða íslenskri sögu.
"question_score" á að meta
hversu mikið spurning
tengist íslenskri menningu
og/eða íslenskri sögu og
hversu góð og almenn hún er
en "document_score" á að
meta hversu gott skjalið er
og hversu mikið það tengist
íslenskri menningu og/eða
íslenskri sögu.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Ef skjalið er stutt, slæmt eða
ekki er hægt að skapa
spurningu upp úr skjalinu,
skilaðu þá sama json sniði
með engu innihaldi fyrir
"question" og "answer".

↪→

↪→

↪→

↪→

↪→

Ef skjalið fjallar ekki um
íslenska menningu eða
íslenska sögu, skilaðu þá
sama json sniði með engu
innihaldi fyrir "question"
og "answer".

↪→

↪→

↪→

↪→

↪→

An English translation of the prompt is given be-
low.
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Generate a general question from
this document and answer it
if the document relates in
any way to Icelandic culture
and/or Icelandic history.

↪→

↪→

↪→

↪→

The question should be about the
content of the document, not
the document itself. Don't
reference the document in
the question.

↪→

↪→

↪→

↪→

Keep the answer as concise as
possible.↪→

If the question and/or answer
refers to time, that time or
year must be specified in
both question and answer.

↪→

↪→

↪→

Question and/or answer must not
refer to current things,
rather a timestamp must be
present.

↪→

↪→

↪→

Return the result in the
following json format:↪→

{"question": [question],
"answer": [answer], "id":
[doc["url"] OR
doc["xml_id"]],
"question_score": [score
0.0-1.0], "document_score":
[score 0.0-1.0], "source":
[doc["source"]]}

↪→

↪→

↪→

↪→

↪→

↪→

↪→

The question should be general
and relate to Icelandic
culture and/or Icelandic
history. "question_score"
should evaluate how much the
question relates to
Icelandic culture and/or
Icelandic history and how
good and general it is,
while "document_score"
should evaluate how good the
document is and how much it
relates to Icelandic culture
and/or Icelandic history.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

If the document is short, poor,
or it's not possible to
create a question from the
document, then return the
same json format with no
content for "question" and
"answer".

↪→

↪→

↪→

↪→

↪→

↪→

If the document does not discuss
Icelandic culture or
Icelandic history, then
return the same json format
with no content for
"question" and "answer".

↪→

↪→

↪→

↪→

↪→

Note that if the document is inadequate or un-
related to Icelandic culture/history, an empty re-
sponse should be returned in the same JSON for-
mat.

2.2.2 API Calls to GPT
We make API calls to OpenAI’s gpt-4-turbo
model using the prepared requests. The model
generates questions, answers, and scores based on
the input documents.

2.2.3 Filtering Generated Questions
The generated questions and answers are filtered
based on the scores provided by the LLM. We se-
lected only questions that had both a document
score of at least 0.7 and a question score of at
least 0.7. Note that these thresholds were cho-
sen based on intuition after inspecting the docu-
ments and questions. We discarded 29,450 ques-
tions created from the 41,569 Wikipedia articles
through this approach, meaning that 29% of the
automatically created questions were deemed ad-
equate. For the RÚV news data, 5,350 questions,
created from 6,672 articles, were discarded, which
means that 20% of questions were adequate. The
difference in adequacy can be explained by the fact
that the question and document had to relate to Ice-
landic culture and/or history. The question-answer
pairs that were not discarded were then eligible for
manual question-answer pair review (see below),
but note that not all pairs were manually reviewed.

2.2.4 Spelling and Grammar Correction
While gpt-4-turbo demonstrates strong com-
prehension of Icelandic, its generative capabili-
ties in the language exhibit some limitations. The
model produces generally intelligible output, but
frequently requires grammatical corrections, par-
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ticularly in terms of nominal inflection, which is a
crucial feature of Icelandic morphology3.

We use a Byte-Level Neural Error Correction
Model for Icelandic to correct spelling and gram-
mar in the generated questions and answers (In-
gólfsdóttir et al., 2023). During this process,
26.49% of questions were corrected and 41.99%
of answers.

2.2.5 Dataset Format
The dataset is available in different formats com-
patible with BIG-bench (Srivastava et al., 2022),
OpenAI-evals and the Language Model Evalua-
tion Harness (Gao et al., 2023).

2.3 Manual Question-Answer Pair Review
Question-answer pairs generated with the pipeline
were reviewed by a single human annotator, a na-
tive speaker of Icelandic with a B.A. degree in
general linguistics. Due to time restraints, only
a portion of the generated question-answer pairs
were manually reviewed. All pairs are, however,
published as part of the dataset. In this process, the
annotator had access to the context used to gener-
ate the question-answer pair. The annotator was
instructed to work based on the following anno-
tation guidelines and to discard or improve ques-
tions and answers if they did not meet some of
these points. As a result, the majority of question-
answer pairs were manually corrected so that they
met the points in the guidelines.

• Questions and answers must be in Icelandic.

• Questions and answers must relate to Ice-
landic culture and/or history.

• A question can only include one question,
and the answer must answer that question un-
ambiguously and contain no information be-
yond that.

• A question and answer cannot include any
spelling or grammar errors, and the text must
be natural.

2.4 Automatic Evaluation
To evaluate the performance of language models
on our dataset, we employed an automated eval-
uation process using gpt-4o-2024-08-06 as
a judge model. This process involves presenting

3The current ranking of models on the Icelandic inflection
benchmark is shown on the Icelandic LLM leaderboard

the model under evaluation with a question, col-
lecting its generated answer, and then providing
the question, generated answer, and correct an-
swer to the judge model for assessment. The judge
model evaluates the correctness and relevance of
the generated answer, providing a rating of "poor"
(0 points), "fair" (0.5 points), or "excellent" (1
point). The instructions for the LLM are given be-
low:

Please act as an impartial judge
and evaluate the quality of
the response provided by an
AI assistant to the user
question displayed below.
Your evaluation should
consider correctness. You
will be given the question
which was asked, a correct
reference answer, and the
assistant's answer. Begin
your evaluation by briefly
comparing the assistant's
answer with the correct
answer. Identify any
mistakes. Be as objective as
possible. Additional
information beyond the
reference answer's content
should not be considered. If
the assistant's answer is
not in Icelandic but the
reference answer is, you
should rate the answer
poorly. After providing your
short explanation, you must
rate the assistant's answer
using the following scale:
[[poor]]: Incorrect,
off-topic or in a different
language; [[fair]]:
Partially aligns with the
reference answer with some
inaccuracies or irrelevant
information; [[excellent]]:
Accurate and relevant,
matching the reference
answer in content and
language.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→
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2.5 Manual Evaluation

To validate the performance of the automatic eval-
uation process, three annotators also perform man-
ual evaluation. In the manual evaluation phase, a
human annotator receives the question and com-
pares the generated answer to the reference an-
swer. The human annotator is tasked with provid-
ing a rating of "poor" (0 points), "fair" (0.5 points),
or "excellent" (1 point) and receives the same in-
structions as the LLM. We compute the agreement
between the annotators and the LLM as a judge
using Cohen’s Kappa (Cohen, 1960).

2.6 Question Classification

We used gpt-4o-2024-08-06 to classify the
questions into five classes we considered to be
representative of the majority of questions in the
dataset. The prompt is given below and we used
structured output so the model could only respond
with one of the five given categories.

Categorize the question (written
in Icelandic) based on the
type of question it is. The
question types are 'time'
for questions that ask about
the time of something,
'place' if they as for a
place, 'people' if they ask
about a person, 'object' if
they ask about an object or
a non-person entity. If the
question does not fit any of
these categories, respond
with 'other'.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

An annotator was tasked with evaluating whether
the categorization was correct or not. They re-
ceived instructions stating how the questions were
categorized, along with the prompt, and were
asked to judge whether the categorization was cor-
rect or not for 200 questions chosen uniformly at
random.

3 Results

3.1 Dataset Generation and Curation

Our data generation and curation process pro-
duced a dataset of high-quality question-answer
pairs focusing on Icelandic culture and history.
The automatically generated pairs were reviewed
to ensure their quality and relevance.

For the Wikipedia-based dataset, we examined
2,116 question-answer pairs, ultimately including
1,900 in the final set. This high retention rate of
89.8% demonstrates the effectiveness of our auto-
mated generation process. In contrast, the IGC-
RÚV (Icelandic Gigaword Corpus – RÚV) dataset
yielded a lower retention rate. Out of 274 re-
viewed pairs, only 100 met our inclusion crite-
ria, resulting in a 36.5% retention rate. The ob-
served difference can be attributed to the distinct
focus of each corpus: while the RÚV corpus con-
sists primarily of contemporary news content, the
Wikipedia corpus contains a higher proportion of
articles dedicated to Icelandic culture and history.

It is worth noting that most retained pairs re-
quired some level of correction. These ranged
from minor spelling adjustments missed by our
automatic correction tool to more substantial re-
visions of questions and answers based on the
source documents. This manual refinement pro-
cess was crucial in ensuring the dataset’s overall
quality, naturalness and accuracy. For the result-
ing dataset, the questions varied in length ranging
from 15 to 210 characters and the answers var-
ied from 2 to 233 characters. The distributions
of question and answer lengths are shown in Fig-
ure 1.

3.2 Evaluation of Automatic Evaluation

To assess the reliability of our automatic evalu-
ation method, we conducted a human evaluation
study. Our automatic evaluation uses GPT-4o as a
judge to evaluate responses from other LLMs, cat-
egorizing them as "Excellent", "Fair", or "Poor".
To validate this approach, we sampled 100 re-
sponses each from gpt-4o-2024-08-06 and
claude-3-5-sonnet-20240620, that were
then evaluated manually as described in Sec-
tion 2.5. Tables 1 and 2 present the confusion ma-
trices for GPT-4o and Claude 3.5 Sonnet, respec-
tively.

The results demonstrate high agreement be-
tween our automatic evaluation method and hu-
man judgments. For GPT-4o judging GPT-4o re-
sponses, we observed an a Cohen’s kappa score
with human annotators ranging from 0.81 to 0.91.
The evaluation of GPT-4o judging Claude 3.5 Son-
net responses showed slightly lower agreement but
still strong agreement with Cohen’s kappa ranging
from 0.75 to 0.82. These results suggest that our
judge based on GPT-4o provides a robust and effi-
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Figure 1: Distribution of question and answer lengths.

Figure 2: Performance comparison of various
models on the WikiQA-IS dataset. The plot illus-
trates the accuracy of different models, with black
bars representing closed weight models and gray
bars representing open weight models.

cient means of evaluating LLM responses, closely
aligning with human judgments.

In an effort to reveal systemic biases in the eval-
uation, we manually inspected the few examples
where human and GPT-4o annotations differed.
We see that in almost all cases where a human
rated an answer higher than GPT-4o, the answer
was either partially or fully correct, but contained
some additional information which the LLM judge
penalized it for more severely than the human. We
also notice an opposite trend where in half of the

cases where GPT-4o scored an answer as "fair" but
a human as "poor", the answer was factually cor-
rect but required more domain knowledge to ver-
ify than the human could be expected to infer from
the reference answer. This suggests that GPT-4o
might be biased towards rewarding answers that
align with its own factual knowledge, instead of
comparing the answer against the reference an-
swer in isolation. The LLM judge, however, never
awarded an answer with the "excellent" score if it
did not semantically match the reference answer,
even when it was factually correct, indicating that
this slight bias has limited impact.

3.3 LLM Performance

Figure 2 presents the performance of vari-
ous language models on the WikiQA-IS bench-
mark. The results demonstrate a clear perfor-
mance hierarchy among the evaluated models.
The top-performing models are predominantly
large, closed-source language models developed
by major AI research companies. Claude-
3.5-sonnet-20240620 and o1-preview
achieve the highest scores of 44.7 and 44.5,
respectively, closely followed by claude-3-
opus-20240229 with 38.9. The GPT-4o vari-
ants also perform well, scoring 38.0 and 37.8, re-
spectively.

Among the open-weights models, Llama 3.1
(405B) (Dubey et al., 2024) stands out with a
score of 33.8, demonstrating competitive perfor-
mance with some of the closed-weights models.
This suggests that well-trained open-weights mod-
els can approach the capabilities of proprietary
models in specialized tasks like answering ques-
tions about Icelandic culture and history.

There is a noticeable performance gap between
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the top-tier models and the rest of the field. Mod-
els such as GPT-4 variants show moderate perfor-
mance, with scores ranging from 23.8 to 31.0. The
performance then drops significantly for smaller
models and earlier versions, with scores falling
below 20 for models like Llama 3.1 (70B) and
claude-2.1.

Open-weights models generally perform less
well than their closed-source counterparts, with
most scoring below 10 on the WikiQA-IS bench-
mark. However, there is significant variation
among open-weights models, with some (like the
top Llama models) performing much better than
others. We specifically chose to include models
from AI-Sweden (Ekgren et al., 2022) as they were
amongst the only models trained specifically for
Nordic languages at the time of the evaluation.

Human Rating

Judge Rating Poor Fair Excellent

Poor 117 3 0
Fair 3 39 21
Excellent 0 0 117

Table 1: Agreement between three human annota-
tors and GPT-4o judge for responses generated by
GPT-4o.

Human Rating

Judge Rating Poor Fair Excellent

Poor 79 5 0
Fair 7 15 12
Excellent 1 1 80

Table 2: Agreement between two human annota-
tors and GPT-4o judge for responses generated by
Claude 3.5 Sonnet

3.4 Question Difficulty Analysis
The analysis of model performance across ques-
tions revealed substantial variation in question dif-
ficulty (Figure 3). Most notably, 761 questions
(roughly 38% of the dataset) received no "Excel-
lent" rated responses from any of the 30 models
tested, indicating that these questions were par-
ticularly challenging. The distribution of high-
quality responses shows a rapid decline, with pro-
gressively fewer questions receiving multiple "Ex-
cellent" rated responses. Only a small subset
of questions were answered excellently by more

than 7 models, suggesting that most models tested
struggle with consistent high-quality performance
on questions related to Icelandic culture and his-
tory.

The gap between questions receiving "Excel-
lent" rated responses and those receiving either
"Fair" or "Excellent" rated responses remains rel-
atively constant across the distribution, indicating
that for most questions, several models typically
provided "Fair" rather than "Excellent" responses.
This pattern suggests that while models often cap-
ture some relevant information, they frequently in-
clude unnecessary details or minor inaccuracies in
their responses. The rapid decline in both distribu-
tions also highlights that achieving a majority con-
sensus among models on correct answers is rare,
pointing to the continuing challenges in providing
factful responses in this domain. 761 questions
received no "Excellent" ratings, while 488 ques-
tions garnered neither "Excellent" nor "Fair" rat-
ings. These findings indicate that a substantial por-
tion of our dataset consists of questions that pose
significant challenges for LLMs. To further inves-
tigate the nature of these challenging questions,
we employed an LLM to systematically categorize
each question into one of five types (object, peo-
ple, place, time, and other). An annotator manu-
ally reviewed 200 questions to estimate the perfor-
mance of this categorization and they were judged
to be appropriate in 95.5% of cases. The confu-
sion occurred where the category "other" should
have been used instead of "object".

Table 3 presents a comparative distribution
of these question types, contrasting the overall
dataset with the subset of questions that no LLM
could answer correctly. We observe that among
the most difficult questions for LLMs, nearly
half (48.05%) pertain to people or individuals, a
marked increase from the 34.74% in the over-
all dataset. This disparity reflects the hallucina-
tion tendency of LLMs (Kalai and Vempala, 2024)
since the names in the questions and the facts
asked about rarely appear in the pretraining data.

4 Discussion

Our study demonstrates the effectiveness of lever-
aging LLMs for creating specialized question-
answering datasets. The significant difference
in retention rates between Wikipedia-based ques-
tions (89.8%) and news articles (36.5%) under-
scores the importance of source material selection
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Question Set People Time Object Place Other

All Questions 660 (34.7%) 576 (30.3%) 310 (16.3%) 229 (12.1%) 125 (6.6%)
Difficult Questions 234 (48.0%) 136 (27.9%) 53 (10.9%) 55 (11.3%) 10 (2.0%)

Table 3: Distribution of question types.

Figure 3: Distribution of question difficulty based on large language model performance. The histogram
shows how many questions (y-axis) received a specific number of high-quality responses (x-axis). The
blue bars represent questions receiving "Excellent" rated responses from LLMs, while the orange bars
show questions receiving either "Fair" or "Excellent" rated responses. 488 questions received zero com-
bined "Fair" or "Excellent" rated responses, indicating these questions were particularly challenging.

in QA dataset creation.
The performance analysis reveals a clear hi-

erarchy among models, with closed-source mod-
els generally outperforming open-weights alterna-
tives. This gap highlights ongoing challenges in
democratizing advanced language understanding
capabilities for specialized domains. Our auto-
matic evaluation method shows promise for effi-
cient, large-scale assessment, though it may be in-
fluenced by the judge model’s capabilities and bi-
ases.

Future work could explore expanding source
materials to reduce potential biases, and develop
more comprehensive categorization of questions
to uncover specific areas of model strength and
weakness. While our method provides valuable
insights into models’ cultural knowledge, it rep-
resents just one facet of measuring world knowl-
edge, and complementary approaches could offer
a more holistic assessment of cultural understand-
ing.

Ethics Statement

Experiments were conducted via OpenAI’s API
services, Anthropic’s API services and on a local
machine with eight A100 GPUs. While the exact
computational infrastructure is not publicly dis-

closed, we estimate the carbon footprint based on
the assumption that computation was performed in
Microsoft Azure datacenters in Western Europe,
with an estimated grid carbon intensity of 0.57
kgCO2eq/kWh. Given OpenAI’s non-disclosure
of infrastructure details, we estimate that the ex-
periments consumed in the order of 10 GPU hours,
presumably on NVIDIA A100 PCIe 40/80GB
GPUs with a Thermal Design Power of 250W.

The total estimated emissions for 10 GPU hours
amount to 1.4 kgCO2eq. For context, these emis-
sions are equivalent to driving approximately 5.7
kilometers in a conventional internal combustion
engine vehicle. We also note that OpenAI’s infras-
tructure runs on Azure, and Azure will be running
on 100% renewable energy by 2025 and has been
carbon neutral since 20124.

We similarly estimate conservatively that an-
swer generation and evaluation of other models is
at most 20 GPU hours amounting to at most 2.8
kgCO2eq.

Estimations were conducted using the Machine-
Learning Impact calculator presented in (Lacoste
et al., 2019).

4See more information on Azure’s sustainability page.
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Limitations

While our approach demonstrates promising re-
sults in creating and evaluating culturally-specific
QA datasets, several limitations should be ac-
knowledged. First, our reliance on Wikipedia and
RÚV news articles as source material may intro-
duce coverage biases. These sources, while au-
thoritative, may not fully represent the breadth of
Icelandic cultural knowledge, particularly oral tra-
ditions, contemporary cultural developments, or
specialized academic research not covered in these
venues.

The use of GPT-4 Turbo for question genera-
tion, while efficient, may introduce systematic bi-
ases in question formulation and potentially limit
the diversity of question types. Although our man-
ual review process helps mitigate these issues, it
may not completely eliminate them. Using GPT-4
Turbo also introduces limitations on using the gen-
erated dataset based on OpenAI’s terms of use,5

particularly the clause on using output to develop
models that compete with OpenAI. The generated
dataset is published under a CC BY license but as
its intended use is for benchmarking, we do not
consider its publication to violate the terms of use.

Our automated evaluation method, despite
showing strong correlation with human judg-
ments, relies on large language models as judges,
which may perpetuate certain biases or limita-
tions inherent to these systems. The nature of
our scoring system (poor/fair/excellent) may not
fully capture nuanced differences in answer qual-
ity, particularly for questions about cultural inter-
pretations or historical perspectives where multi-
ple valid viewpoints might exist.

Finally, while our dataset size of 2,000 ques-
tions is substantial for a language with limited re-
sources like Icelandic, it may not be comprehen-
sive enough to fully evaluate an LLM’s knowl-
edge of Icelandic culture and history. The current
version of the dataset also lacks explicit catego-
rization of different aspects of cultural knowledge
(e.g., literature, folklore, social customs), which
could provide more granular insights into model
performance across different cultural domains.
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Abstract
This paper introduces a recently released
Ottoman Turkish (ota) treebank in Uni-
versal Dependencies (UD) style, DUDU.
The DUDU Treebank consists of 1,064 au-
tomatically annotated and manually cor-
rected sentences. The texts were manually
collected from various academic or liter-
ary sources available on the Internet. Fol-
lowing preprocessing, the sentences were
annotated using a MaCHAMP-based neu-
ral network model utilizing the large lan-
guage model (LLM) architecture and man-
ually corrected. The treebank became
publicly available with the 2.14 release,
and future steps involve expanding the
treebank with more data and refining the
annotation scheme. The treebank is the
first and only treebank that utilizes the
IJMES transliteration alphabet. The tree-
bank not only gives insight on Ottoman
Turkish lexically, morphologically, and
syntactically, but also provides a small but
robust test set for future computational
models for Ottoman Turkish.

1 Introduction

Among several treebank projects, the Univer-
sal Dependencies treebank project establishing
a cross-linguistically consistent treebank annota-
tion scheme for many languages (Nivre et al.,
2016, 1659), stands out as the largest collection
of treebanks sharing the same annotation scheme
(Jøhndal, 2020, 18). Although UD has numerous
treebanks for modern languages, historical lan-
guages such as Ottoman Turkish remain signif-
icantly underrepresented. This paper introduces
the DUDU Treebank, one of the first Ottoman
Turkish treebanks annotated in the Universal De-
pendencies (UD) style. The DUDU Treebank con-
sists of 1,064 Latin-transliterated automatically

annotated and manually corrected sentences from
various genres. The treebank employs the standard
Ottoman Turkish transliteration alphabet to handle
the alphabet change.

2 Background

Languages from historical periods have always
been an engrossing research topic for schol-
ars. The proliferation of computational linguis-
tics methods has accelerated such research in the
recent years (e.g., (Harris, 1962)), and UD tree-
banks project is the manifestation of this pro-
cess. The UD treebanks aim to provide the
sentence’s lemma, universal part-of-speech tag
(UPOS), XPOS, and mapping for the relation-
ship between arguments (dependency) (see (Nivre
et al., 2016) for further explanation). The lan-
guage analyzed in this paper is Ottoman Turkish,
the official and literary language of the Ottoman
Empire (Göksel and Kerslake, 2005, 10) and ”a
variant of the Perso-Arabic script” consisting of
31 letters (Redhouse, 1884, 1). It was used from
the 14th century until the 20th century, up until
the decision taken by the Republic of Turkey in
1928 to replace with Latin script (Resmı̂ Gazete,
1928). Unlike the BOUN treebank (Özateş et al.,
2024), another treebank for Ottoman Turkish in
UD, the DUDU treebank utilizes IJMES Translit-
eration System to prevent information loss caused
by alphabet changes and includes the gender fea-
ture, which is absent in modern Turkish but crucial
in Ottoman Turkish grammar.

3 Data

A total of 1,064 automatically annotated and man-
ually corrected sentences consisting of 10,012 to-
kens and 10,287 syntactic words which indicates
that 273 tokens are fused forms that are split
into multiple syntactic words. The longest sen-
tence has 91 words while the shortest has two
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words. The treebank includes 3,133 lemmas and
15 universal POS tags. The morphological anno-
tation covers 67 unique features, including num-
ber distinctions (singular: 5,816 instances; plu-
ral: 1,001 instances; dual: 3 instances), gender
(female: 644 instance; mascular: 110 instances),
proper name type (e.g., geography: 173; per-
son: 334), and tense/aspect marking (e.g., past:
1,067 instances; present: 489 instances). Among
38 unique dependency relations, the most com-
mon dependency relations are obliques (1,191 in-
stances), noun modifiers (1,291 instances), and
objects (657 instances). Various written works
from 14th to 20th century were collected as data.
Sentences were from various topics including bi-
ographical texts, national newspapers, religious
texts, fictional works such as stories, instructional
texts, popular culture articles, and essays. The
main purpose of including data from various reg-
isters was to initiate a creation of a representative
treebank for the language. The texts were col-
lected from various academic journals, disserta-
tions, and literary sources on the Internet. The
texts were transcribed from Perso-Arabic letters
to Latin by domain experts; however, with some
mistakes. In this research, the Latin transcribed
versions were utilized. This initial work focuses
on laying the foundation for future research on
Ottoman Turkish by leveraging existing modern
Turkish treebanks and LLM models instead of fo-
cusing on establishing a large treebank.

4 Methodology

In the annotation process, both automatic and
manual annotation were leveraged. Initially, we
created a seed dataset with only 85 sentences by
correcting and manually transforming Ottoman
Turkish sentences into their modern equivalents.
These sentences were later used to train the anno-
tation model with existing modern Turkish tree-
banks, as detailed in the following three sub-
sections. Once the initial treebank was created,
a model trained on the Ottoman Turkish data
was used to annotate unseen sentences without
manually transforming phase, which were manu-
ally corrected. Following the manual correction
phase, these sentences were added into the training
dataset and the model retrained. This iterative pro-
cess significantly improved annotation efficiency.

4.1 Preprocessing

Due to human errors and the lack of standardiza-
tion in the transcription scheme (e.g., not using
a consistent transcription alphabet), a preprocess-
ing step was essential to normalize the data before
the annotation phase. This step included compar-
ing the transcribed text with the original Perso-
Arabic script manually to correct errors made by
the transcriber, if the original script was accessible
to the authors. Although the mistakes were min-
imal, these changes ensured the standardization
of the data within the transliteration system for
Ottoman Turkish. The primary reason for utiliz-
ing the transliteration alphabet instead of modern
Turkish alphabet was to more accurately represent
Ottoman Turkish with Latin characters. While
some transcribers used only the modern Turk-
ish alphabet, some transcribers employed the Ot-
toman Turkish transliteration alphabet suggested
by the IJMES Transliteration System (Cambridge
University Press, n.d.), a standardised method for
converting the Perso-Arabic script into the Latin
alphabet while preventing information loss. In the
Ottoman Turkish alphabet, not every letter has a
direct equivalent in the modern Turkish Latin al-
phabet. As a result, multiple Ottoman letters can
be represented by the same letter in modern Turk-
ish leading to the loss of information. For instance,
the two letters in Perso-Arabic alphabet repre-
sented by k and k in IJMES Transliteration System
for Ottoman Turkish are demonstrated by only k in
modern Turkish alphabet which removes the nu-
ance. This situation, if not addressed with utilizing
the IJMES transliteration alphabet, not only leads
to morphological ambiguity when words with dif-
ferent meanings are Latinized with the modern
Turkish alphabet but also prevents the accurate re-
flection of Ottoman Turkish orthography. Addi-
tionally, it was found that during the transcrip-
tion phase, punctuation marks were sometimes in-
serted in the text by the domain expert to make the
text clear although there was no punctuation mark
in the original sentence in Perso-Arabic script. For
such cases, the punctuation marks were removed
in preprocessing phase. However, if a word was
misspelled in the original text or the punctuation
mark was present in the original text, no changes
were made. Furthermore, since several books in
the data sources were not OCR’d, some sentences
were manually transliterated. Following the stan-
dardization, the sentences were saved to retrieve
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Original Sentence
What the original

sentence is
in the Latin

transcribed text

Mevc beni
götürdi,
deryâ kenârına attı.

=⇒ Preprocessing
Corrected sentence

mevc beni
götürdi,
deryâ kenârına atdı.

=⇒
Preprocessing
Preparing the

sentence
for the main
processing

Dalga beni
götürdü,
deniz kenarına attı.

=⇒ Main Processing
Automatic
annotation

Dalga beni
götürdü,
deniz kenarına attı.

=⇒
Post-processing

Manual correction
and converting

the surface forms
into the step 2

mevc beni
götürdi,
deryâ kenârına atdı.

Figure 1: The initial annotation workflow for Ottoman Turkish treebank creation.

later as ”corrected Latin-transliterated sentences”.
Originally, the sentences were quite different from
modern Turkish ones, especially lexically. Thus,
the words in Ottoman Turkish sentences, which
were heavily influenced by Arabic and Persian ele-
ments, were manually transformed into their mod-
ern Turkish equivalents without altering the mor-
phological structure of the words or the syntac-
tic structure of the sentence since the model was
trained via modern Turkish treebanks. This step
ensured high accuracy for the model during the
automatic annotation process which will be dis-
cussed in next subsection. Since the data was in
the IJMES transliteration system, LLMs for Ara-
bic and Persian could not be utilized. Moreover,
the absence of tools particularly trained on Ot-
toman Turkish data was another factor to use mod-
ern Turkish data to parse Ottoman Turkish sen-
tences.

4.2 Main Processing

After the sentences were manually transformed to
resemble modern Turkish, they were ready to be
processed by MaCHAMP, ”a flexible toolkit for
multi-task learning and fine-tuning of NLP prob-
lems”(van der Goot et al., 2021). The MaCHAMP
architecture was chosen because of the easiness of
the implementation and capability for multi-task
learning enabling to annotate all necessary fields
for the Ottoman Turkish treebank. The annota-
tion model was trained on over one million sen-
tences from the four existing modern Turkish (tr)
treebanks in Universal Dependencies (Sulubacak
et al., 2016; Kuzgun et al., 2020, 2021; Marşan
et al., 2022). The use of multiple treebanks al-
lowed the model to see more data that enhances its
performance in rare and complex linguistic struc-
tures. For the task of annotation Ottoman Turk-
ish sentences, we utilised two different transform-
ers. Until we have sufficient data, we used bert-
base-multilingual-cased transformer, a large lan-
guage model to handle multilingual data, (Devlin
et al., 2018) as the backbone architecture. After
having around 500 sentences, we deployed XLM-
RoBERTa base (Conneau et al., 2019), another

multilingual transformer model. The model per-
formed five tasks: (I) morphological analysis, (II)
lemmatization, (III) UPOS annotation, (IV) XPOS
annotation, and (V) dependency parsing. To miti-
gate overfitting, a dropout rate of 0.2 was utilised
and early stopping was applied after 19 epochs.
Loss and score results for the training and devel-
opment phase can be seen in Table 1, below.

Table 1: Model’s performance results.
Task Train Loss Development Loss Train Score Development Score
Lemmatization 0.3647 1.6630 0.8467 0.6758
Morphological Analysis 0.1216 0.2654 0.9647 0.9350
UPOS 0.2106 0.8509 0.9423 0.8336
XPOS 0.0698 0.4214 0.9731 0.9040
Dependency LAS 0.0460 1.2093 0.9863 0.7965

The model just served to create a base annota-
tion to make the process time efficient and to ease
the workload. Afterwards, the automatically an-
notated sentences were corrected by hand.

4.3 Post-processing
After automatically annotating the transformed
sentences via the model, the intermediate trans-
formed sentences were automatically converted
back to their forms in the IJMES system using a
script. Subsequently, the results were manually re-
viewed through ”Annotatrix” (Tyers et al., 2018)
and corrected. Furthermore, since the model was
trained on modern Turkish datasets, it was unable
to annotate any feature absent in modern Turkish
treebanks such as ”gender”, a significant feature in
Ottoman Turkish especially in the construction of
noun phrases since all Arabic and Persian words
in the noun phrase should share the same gen-
der. Therefore, the ”gender” feature was manu-
ally added during the post-processing phase. In
addition to the gender feature, the value ”dual” for
number feature was also added for words such as
t.arafeyn (meaning to ”two sides”), even though
it does not exist in modern Turkish. Figure 1
can be used to explain the whole pipeline to cre-
ate the initial dataset. In Figure 1, following the
transcribed sentence, mevc beni götürdi, deryâ
kenârına attı (the wave carried me, threw to the
sea shore), the manually corrected sentence with
the IJMES transliteration system can be seen in
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the second phase. Subsequently, â was automati-
cally replaced with a and mevc was manually con-
verted into dalga, its modern counterpart to obtain
better performance from the model trained using
modern Turkish, not Ottoman Turkish. Follow-
ing the fourth phase, where the sentence was au-
tomatically annotated, the sentence was automati-
cally converted to the second phase, the predicted
lemma, and other fields were manually corrected.

4.4 Iterative Training

After establishing the initial treebank with 85
sentences using the method described above, we
trained a model using Ottoman Turkish data with
MaCHAMP. Subsequently, we annotated Ottoman
Turkish sentences with this model and manually
corrected the annotations. Then, we retrained
the model with more data and used the improved
model for the next annotation phase. This pro-
cess was iterated until we reached 1,064 sentences.
During the iterative training phase, we skipped
step 3 shown in Figure 1. Furthermore, we found
that the XLM-RoBERTa base yielded the best re-
sults among various transformer models when suf-
ficient data were available. With the final dataset,
the model was trained with a dropout rate of 0.3
and early stopping applied in the 58th epoch. The
performance results for the model can be found in
the following.

Table 2: Last Model’s Performance Results.
Task Train Loss Development Loss Train Score Development Score
Lemmatization 0.2509 0.5787 0.9313 0.8534
Morphological Analysis 0.4143 0.9946 0.8898 0.7686
UPOS 0.0389 0.4896 0.9895 0.8976
XPOS 0.0774 0.4927 0.9761 0.8911
Dependency LAS 0.1728 3.5904 0.8933 0.6757

5 Challenges

The main challenge was due to the fact that the
Ottoman Turkish language was affected by Ara-
bic and Persian not only lexically, but also gram-
matically (Göksel and Kerslake, 2005, iii). This
meant a comprehensive knowledge of Turkish, as
well as Arabic and Persian, was required to ad-
dress these challenges. The main two challenges
related to Arabic elements in Ottoman Turkish
were noun phrase structure in Arabic and gender
feature. Firstly, dataset contains several Arabic
phrases as fixed expressions. Since they func-
tion as single units and were mostly idiomatized
in Ottoman Turkish, they were treated as single
units. A good example of this is fi’l-vâk. i’. The

phrase, formed with the preposition fi’ (meaning
”in”) and the noun vâk. i’ (meaning ”fact”), is in a
noun phrase structure and translates to ”in fact” or
”indeed”. Such fixed expressions were shown as
single units rather than as separate ones, as shown
below:

Table 3: Annotated Arabic fixed noun phrase.
ID Form Lemma POS Morph Head Deprel
- ve’s-selâm ve’s-selâm INTJ - 30 discourse

On the other hand, we chose to split non-fixed
Arabic noun phrases, since each lexical compo-
nent contributes to the sentence with its mor-
phological and syntactic features, as seen in the
şeyhü’l-beled (”the religious leader of the town”)
example, below:

Table 4: Annotated Arabic non-fixed noun phrase.
ID Form Lemma POS Morph Head Deprel Misc
4-5 şeyhü’l-beled - - - - - -
4 şeyh şeyh NOUN Case=Nom|Number=Sing|Person=3 5 nmod:poss -
5 ü’l-beled beled NOUN Case=Gen|Number=Sing|Person=3 6 nmod:poss -

Another challenge emerged from the gender
feature in Arabic and Persian words. Although
the gender of words in noun phrases is irrelevant
in Turkish, because there is no gender agreement,
in Arabic, the words involved in the noun phrase
must have the same gender (Göksel and Kerslake,
2005, iii). Gender plays a significant role in Ot-
toman Turkish noun phrases and the automatic an-
notation model did not assign the gender feature
due to the absence of gender information in the
training data. Thus, the gender feature was man-
ually added during the post-processing when nec-
essary. This enrichment aimed to better reflect the
linguistic characteristics of Ottoman Turkish in the
treebank. Furthermore, Ottoman Turkish, particu-
larly in religious texts, often contains entire sen-
tences in Arabic. To reduce the complexity of the
work, such sentences from the treebank were ex-
cluded. The challenge related to Persian features
in Ottoman Turkish was mainly aroused by izafet,
”by which the head of a noun phrase was linked
to the modifying noun or adjective that followed
it” (Göksel and Kerslake, 2005, iii). In Persian
noun phrases, the suffix attaches to the modifier
rather than the head noun. If the phrase includes
a head noun and an adjective, the suffix applies to
the adjective, marking the entire phrase. Although
not grammatical in modern Turkish, this struc-
ture is common in Ottoman Turkish. An example
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of izafet from the dataset can be h. uk. ûk. -u meşrû‘
(meaning ”legitimite rights”). In such cases, dur-
ing the post-processing phase, the morphological
analysis of the adjective, which functions as the
modifier, was manually corrected as shown below.

Table 5: Example for an Annotated Persian noun
phrase.

ID Form Lemma POS Morph Head Deprel Misc
13 tı̂r-i tı̂r NOUN - 16 nmod -
14 tı́ze tı́z ADJ Case=Dat 13 amod -

In Table 5, while tı̂z (”sharp”) is an adjective
and cannot take the dative case when it modifies a
noun, tı̂r (”sword”) in modern Turkish, it is gram-
matical in Ottoman Turkish. Although challenges
listed above both signify the necessity to know,
at some degree, the grammar of the languages
which were in contact with the target language
and demonstrates the requisite of having the post-
processing including manual correction to solve
the issues.

6 Conclusion and Future Work

To conclude, the DUDU treebank, as the first Ot-
toman Turkish treebank using the IJMES translit-
eration alphabet, provides a foundation for fur-
ther research on different aspects of the Ottoman
Turkish language, particularly in lexical, morpho-
logical, and syntactic analysis, but also beyond
these areas. Furthermore, it also demonstrates that
a model trained in the treebanks of a language’s
present-day form can be utilized for the analysis
of its low-resourced historical form, in this case,
Ottoman Turkish leveraging LLM. Future work
will focus on expanding the treebank with more
data to serve a wide spectrum of language use in
Ottoman Turkish and adding new features which
modern Turkish lacks; however, Ottoman Turk-
ish has. Unfortunately, for this version, the gen-
res cannot be separated by sentence ids. The order
of the sentences is chronology-based rather than
genre-based, and the earliest written sentence is at
the top. In addition, it is planned to add the origi-
nal form of the sentence in Perso-Arabic letters to
the treebank. Lastly, we plan to publicly release
the trained model, which is trained on the final
dataset, on the Internet to make it available acces-
sible for further research. In the end, the treebank
was created by the first author of this paper with
the name DUDU and was published in the UD

v2.14 release1. The work is currently in progress
to expand the treebank to at least 20,000 words for
the next release.
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Abstract

In this paper we present an audio and text
annotation tool for indigenous languages
with focus on native speakers, initially
developed for Brazilian indigenous lan-
guages. Our tool simplifies the process of
language resource annotation and employs
gamefication techniques typically found in
language learning games. Then we de-
scribe the annotation tool and present pre-
liminary results for the Bororo language.
We discuss the limitations of our tool,
highlighting ethical and practical imple-
mentation concerns.

1 Introduction

Audio and text annotation tools are key for doc-
umenting and building resources for endangered
languages (Brugman and Russel, 2004). Existing
tools are mostly designed for linguistic profession-
als and focus on formal description of language
resources, such as dependency treebanks and lex-
ical databases. While such tools are fundamen-
tal for properly documenting languages, only lin-
guist experts can operate them, and they remain
often unknwon outside academia. Hence, despite
the pressing need for annotated corpora, language
annotation tools remain costly and dependent on
scarcely available experts. Annotation tools, in
their current form, can hardly scale to address the
2,680 languages at risk of extinction by the end of
this century (Wurm, 2001; Lewis, 2009).

Furthermore, ethical and practical concerns
arise when we consider that experts who operate
language annotation tools are often not members
of the indigenous communities themselves (Pin-
hanez et al., 2023). It is hard to ensure that data
annotation procedures are compliant with ethical
guidelines (Lewis et al., 2020), such as the Los

Pinos Declaration 1, or even that annotations are
validated by actual indigenous speakers.

We argue that next-generation tools should be
designed for use by lay indigenous speakers to
accelerate the data collection and annotation pro-
cess. While there are few linguist experts, indige-
nous communities are large. In particular, Brazil
is home to a significant number of languages. For
example, the Xavante language population alone
represents more than 27,000 people. These lan-
guages are collectively referred to here as Brazil-
ian Indigenous Languages (BILs). In spite of the
high number of languages spoken in Brazil (esti-
mated around 180, see (glo, 2024)), this number
is declining fast as populations age and many lan-
guages are not learned by younger generations.

In this work, we propose and implement an ini-
tial language annotation tool that can be used di-
rectly by native speakers in indigenous commu-
nities without expert linguistic knowledge. Our
proposal simplifies the annotation process so as
to only collect words in audio and written text
format. Our tool allows indigenous speakers to
annotate words with their own speech, perform
translations and associate morphemes to word to-
kens. The main goal is to achieve a source dataset
of paired instances, which doe not require fur-
ther work to develop dependency treebanks, natu-
ral language processing tools, and other resources.

We employ a gamification-based design (Sykes,
2018) to maximize engagement among native
speakers, encouraging them to produce a high vol-
ume of annotations in the shortest possible time.
Recognizing the limited availability of indigenous
community members, we prioritize a highly user-
friendly interface to ensure accessibility and ease
of use.

We guide speakers/users through the annotation
process by specifying the target word and direct-

1https://unesdoc.unesco.org/ark:/48223/pf0000374030
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ing their input to an internal speech recognition
component, which transcribes the audio into writ-
ten text. This transcription includes preliminary
annotations, such as morphological information
and translations. Speakers can then review, refine,
and confirm the prefilled text and annotations be-
fore proceeding to the next word.

To enhance usability and minimize friction, we
integrate automated annotation components, such
as speech recognition. We also address challenges
associated with limited computational resources.
In our prototype, we employ lightweight models
and heuristics that can run offline in a standard
web browser or mobile app. Finally, we present
preliminary results for the Bororo language as a
proof of concept.

The paper is organized as follows. Section 2
describes our annotation tool design and its devel-
opment, including data sources and methods. Sec-
tion 3 presents preliminary results for the Bororo
language. Section 4 discusses the challenges and
limitations of our prototype and offers concluding
remarks.

2 Methodology

Our data collection and annotation tool aims to
empower native speaker communities to collect
and annotate language resources by themselves
without requiring expert linguistic knowledge.
Our tool takes the form of a game, similar to for-
mats often found in language learning game apps
from both industry (e.g. Duolingo) and the liter-
ature (Polleti, 2024; von Ahn, 2006; Katinskaia
et al., 2017).

The tool follows a linear progression structure,
where the user advances by completing units. In
order to do so, the user is asked to annotate a se-
ries of specific words, similar to language exer-
cises. In the annotation screen, depicted in Fig-
ure 1 (top), the user is asked to provide speech
audio translation in native language for a given
Portuguese word. In the figure, the tool asks for
a speech translation of the Portuguese word for
jaguar, “Onça Pintada”, to the Bororo language.
First, the user records their speech in native lan-
guage. The user should say the given word only
once within 10 seconds. After the audio record-
ing finishes, we run a speech recognition model
to generate a transcript. In our Bororo language
example, we have a Bororo-Portuguese dictionary
available (Ferraz Gerardi; Polleti et al., 2024),

thus, we know in advance that the target word,
or the Bororo translation for “onça ointada”, is
“adugo”. However, there are many alternative
ortographies or even regional synonyms that can
be absent in our knowledge base. In order to
avoid enforcing a specific ortography by present-
ing the target word beforehand, we allow the user
to freely annotate so as to preserve linguistic diver-
sity. Next, we check whether the produced tran-
script matches the target word from the dictionary
entry. If a match is found (Figure 1a), we re-
trieve an image representing the word concept, the
written word in native language and its descrip-
tion from the dictionary entry. Finally, the user
can make editions if necessary (such as providing
an alternative orthography), confirm changes and
move on to the next. On the other hand, if we
cannot assert that the transcript matches the tar-
get word (Figure 1b), the user is required to fill
up the written translation and description manu-
ally before moving to the next. The tool may fail
to properly identify a match by several reasons;
for example, the speech recognition may fail, the
dictionary may be incomplete or may not contain
all synonyms or simply the user translation may
be incorrect. We allow the user to retry record-
ing the speech translation multiple times, so if the
speech recognition fails due to background noises,
computer glitches or any other intermitent issues,
it can succeed in a second attempt. If the match-
ing keeps failing even after multiple retries, users
can always fill the written translation and descrip-
tion manually. We provide autocomplete options
based on lexical similarity to speed up the man-
ual filling process. Additionally, we also provide
an option for the user to skip the current annota-
tion and move to the next. For example, if the user
does not know the translation for the given word,
we want to save time and avoid incorrect anno-
tations by giving them the option to immediately
move on to the next. The whole annotation pro-
cess is depicted in Figure 2.

Now we focus on the speech recognition model
and on the word matching heuristic. We pro-
pose to reuse speech recognition models that were
trained for other languages to be used for low-
resource languages. In our proof of concept for the
Bororo language, we employed the Web Speech
API’s Speech Recognition model for Brazilian
Portuguese (pt-BR), which can run offline and is
available in most web browsers (e.g. Chrome,
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Edge, Safari, except Firefox). Back to our ex-
ample, note that “Adugo” is a romanized word.
Most writing systems for brazilian indigenous lan-
guages were romanized with strong Portuguese
language influence, Bororo language included.
We observed that the speech recognition model of-
ten produced transcripts of portuguese words that
are phonetically similar the original Bororo word.
For example, the transcript for the word “Adugo”
results in “Adubo”, which is a portuguese word
with completely different meaning but phoneti-
cally similar to the Bororo word. Since Bororo
writing system is romanized, we could perform a
lexical similarity search between the portuguese
transcript and the known Bororo vocabulary to
find good match candidates. Additionally, since
we know the target word, we can consider a match
if the target word has high lexical similarity to
the transcript. In our prototype, we built a simi-
larity score based on levenshtein distance and ap-
plied an arbitrary 0.9 threshold as the heuristic
criteria to tell whether the speech to text process
matches or not the target word. Table 1 presents
some examples from our prototype. Despite mi-
nor spelling issues, for our few examples, we can
observe that the portuguese speech recognition
model is able to produce phonetically similar tran-
scripts for Bororo words, which can produce accu-
rate matches when coupled to our heuristic.

We define our similarity score as:

1−(distance(a, b)/(length(a)+length(b))+ϵ),

where a and b are the target word and transcript,
respectively, distance refers to the weighted Lev-
enshtein distance function, length s returns the
total number of characters in a string and ϵ is a
hyperparameter that smoothes the similarity score
for small words. We observed that our similar-
ity score is often too strict when comparing small
sized strings. To avoid missing potential matches,
we introduced ϵ to smoothen the distance metric
for small strings. In our prototype we arbitrar-
ily used ϵ = 3. To illustrate, consider the words
“caro” and “karo”: they are both very similar, their
Levenshtein distance is only 1, but our similarity
score would yield only 0.875 if we did not take ϵ
into account. Additionally, we apply NFD unicode
normalization form in the transcript string before
calculating the similarity score.

3 Results

We still need to evaluate our proposal more
broadly with the Bororo indigenous community
to measure community adoption and engagement.
This will require a more comprehensive evaluation
of our processes and methods to measure, for ex-
ample, how effective the speech recognition model
is in speeding up the annotation process. At this
point, we ran simulated experiments to get pre-
liminary results on: (1) the speech to text recall,
(2) how much time the speech to text saves in the
annotation process, i.e. the speed up. First, to
measure recall, we sampled 50 words from the
Bororo dictionary, generated correct speech au-
dio for them and ran a simulation to evaluate how
many instances our speech to text process was able
to find a match, the fraction of matches over the
total number of instances is what we refer to as re-
call. We obtained 0.56 recall, 28 matches out of
50 words, as presented in Table 2. Next, we got
all the words we were able to find a match and
asked a volunteer from our University to use the
annotation tool, first with the speech to text sup-
port and later without it, filling all the information
manually. Given that the volunteer is not a native
speaker, he had access to the target words and their
descriptions during the experiment. We compared
the completion times between the volunteer filling
it with and without speech to text support to get
preliminary insight into the annotation speed up.
The volunteer took 3 minutes and 12 seconds to
complete the annotation of 28 words, compared
to 4 minutes and 33 seconds without speech to
text support. We obtained 29.7% speed up, sav-
ing around 1 minute in our experiment setup, as
presented in Table 3.

Table 2: Speech to text simulation metrics.

Metric Result

Recall 56% (28 matches out of 50)
No transcript 2% (1 out of 50)

Table 3: Completion time results.

Scenario Total Completion time

without Speech to Text 273 secs (4 min 33 secs)
with Speech to Text 192 secs (3 min 12 secs)

Relative Speed Up 29.7%
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Table 1: Bororo speech to text examples. The target word is highlighted in the matching candidates.

Target word (en) Target word (native) Transcript (pt) Match Candidates

jaguar adugo adubo adugo, arugo, atugo
rain bubutu bubu tu bubutu
scarlet macaw nabure naburi nabure
howler monkey pai pai pai
woman aredy aredo aredo, taredo, aredy, arego, arudo, arudu
wart akogo acogo akogo, apogo, arogo, ecogo
fish karo caro karo, ocaro, care, caru
eye joku jogo jodo, jomo, joto, jugo, joga
anteater apogo apogo apogo, apogoe, apodo, akogo
seed bug arogo arrogo arogo
potato tadari padari padaro, tadari
nose eno (no transcript) (no match)
dog arigao arigato arigao
banana bako barco (no match)
grandmother marugo marugo marugo

(a) Successful speech recognition and information re-
trieval. The transcript identified the word “adugo” and
retrieved the associated jaguar image and description.

(b) Failed speech recognition and information retrieval.
The transcript failed to indentify a matching word so the
user was required to fill manually.

Figure 1: Example of a single session: the user was asked to record the translation in Bororo for the word
“jaguar”. It depicts autocomplete success and failure scenarios.

Figure 2: Annotation process diagram.
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4 Concluding Remarks & Limitations

The annotation tool introduced in this work rep-
resents a significant step forward in the advance-
ment of resources for Brazilian indigenous lan-
guages. Our proposed design allows native speak-
ers, who do not necessarily require specific lin-
guistic knowledge, to perform annotations in au-
dio and text resources. Our design avoids biases
towards specific ortographies by allowing the user
to freely annotate their speech and written forms.
At the same time, we incorporate speech to text
and autocomplete components to speed up the an-
notation process.

Despite the promising benefits, our prototype
falls short in multiple aspects that we now exam-
ine. First, our tool currently only supports word
annotation. We consider it to be a natural step to
evolve our methods to enable sentence annotation.
Before we can support sentences, we must require
word annotation to be fully functional, which im-
plies better autocomplete and speech recognition
capabilities. Additionally, users annotations can
vary significantly and we still do not have a proper
process to create consensus around them. The
orthography currently used by the Bororo peo-
ple was developed by Catholic missionaries and is
not well-suited to their language (see Colbacchini
1925 and Colbacchini 1942). Recent publications
have adopted a different orthography, which occa-
sionally leads to minor discrepancies. For exam-
ple, we have two ortographies for the word “rain”
in Bororo, which are “Bubutu” (old) and “Bybyty”
(new). If our tool presents “Bubutu” to users,
they may be confused as our tool is incentivizing
an outdated ortography. Once the Bororo Corpus
(Ferraz Gerardi et al., 2024) is completed, this is-
sue is expected to be resolved, as all sources will
be unified under a standardized orthography.

One significant issue stems from the fact that
Bororo territories are not contiguous, resulting in
variations in pronunciation among different re-
gions. These differences can sometimes lead to
mockery of speakers from areas where the lan-
guage is less commonly spoken, as if their way
of speaking were “incorrect.” This poses an im-
portant ethical concern, as it may cause speakers
to feel that a new orthography privileges certain
pronunciations over others. This concern becomes
even more relevant when we consider that our
tool employs automatic speech recognition mod-
els, which may incentivize specific accents. Given

that the speech recognition models were trained
in foreign languages, biases towards pronunciation
similar to the Portuguese language may occur.

There is still room for improvement in our
speech to text process. We considered applying
more sophisticated approaches, such as accoustic
models (Li et al., 2022, 2020), for zero shot speech
recognition in indigenous languages, but models
like those require stable internet connectivity as
they are too large to run in offline devices. We are
currently limited to work with models that can run
in the web browser or mobile app so they can be
actually used in the field. Future work should con-
duct evaluate varied speech to text methods and
improve their performance.

At this point, we have only implemented a proof
of concept for the Bororo language; thus, it is still
necessary to assess how well the methods intro-
duced in this work generalize to other languages.
Endangered language revitalization requires the
development of annotated resources (Miyagawa
et al., 2023). We believe that our proposal can be
extended to annotate languages beyond Brazilian
ones. Similar strategies around phonetical simi-
larities have already been employed in other con-
texts (Mæhlum and Ivanova, 2023).

Future work should evaluate the effectiveness
of our annotation tool in partnership with native
speakers and assert its value. We hope our prelim-
inary research can help scaling up data annotation
for endangered languages and produce rich data
sources to support revitalization initiatives.
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Abstract
The performance of multilingual large lan-
guage models (LLMs) in low-resource
languages, such as Latvian, has been
under-explored. In this paper, we in-
vestigate the capabilities of several open
and commercial LLMs in the Latvian lan-
guage understanding tasks. We evaluate
these models across several well-known
benchmarks, such as the Choice of Plau-
sible Alternatives (COPA) and Measur-
ing Massive Multitask Language Under-
standing (MMLU), which were adapted
into Latvian using machine translation.
Our results highlight significant variabil-
ity in model performance, emphasizing
the challenges of extending LLMs to low-
resource languages. We also analyze
the effect of post-editing on machine-
translated datasets, observing notable im-
provements in model accuracy, particu-
larly with BERT-based architectures. We
also assess open-source LLMs using the
Belebele dataset, showcasing competi-
tive performance from open-weight mod-
els when compared to proprietary sys-
tems. This study reveals key insights into
the limitations of current LLMs in low-
resource settings and provides datasets for
future benchmarking efforts.

1 Introduction

The recent progress of large language models
(LLMs) has made them very popular and widely
used. Being the most widely used natural lan-
guage processing technique (NLP) today, LLMs
differ in their performance depending on several
key factors, such as, the quality and size of the
training data, the model architecture, the computa-
tional resources used for training, and the specific
tasks they are evaluated on.

Most of the language data used for training
LLMs is in English and few other widely spoken
languages, while other languages, especially less-
and low-resourced, are represented by very small
portions of data. For example, in recently de-
veloped EuroLLM Multilingual Language Models
for Europe, English language data form 50% of
training data, while low-resourced languages, such
as Latvian, Lithuanian, Estonian, Finnish, and oth-
ers are represented by about 1% of data (Martins
et al., 2024). As a result, although many language
models are multilingual and powerful in language
transfer, they have generally demonstrated consid-
erably less reliable results on low-resource lan-
guages (Lai et al., 2023; Ahuja et al., 2024).

The fast growth of LLMs in size, language cov-
erage, and overall quality, has made benchmark-
ing critical for assessing LLM performance and
capabilities across various tasks. A wide range
of benchmarks are available to evaluate differ-
ent capabilities of large language models. They
span multiple categories, including natural lan-
guage understanding and generation, robustness,
ethics, or biases of the models (Chang et al., 2024).
LLMs have demonstrated impressive gains on nat-
ural language understanding (NLU) benchmarks,
starting from GLUE (Wang et al., 2018) and Su-
perGLUE (Wang et al., 2019) with 10 tasks related
to different NLU problems, followed by MMLU
(Hendrycks et al., 2020) covering nearly 60 sub-
jects and Bigbench (Srivastava et al., 2023) with
more than 200 tasks, as well as many other bench-
marks. However, many of these benchmarks fo-
cus on the English language, as well as some other
widely spoken languages and only some attempts
have been made to evaluate LLM performance on
low-resource languages.

A recent study of LLMs for European languages
(Ali and Pyysalo, 2024) has identified eight EU
languages as low-resource (Croatian, Estonian,
Irish, Latvian, Lithuanian, Maltese, Slovak, and
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Slovene).
The aim of this paper is to conduct an initial

assessment of natural language understanding and
reasoning skills of different LLMs for the low-
resource Latvian language:

• our first group of experiments aims to evalu-
ate NLU capabilities of different BERT fam-
ily (Devlin et al., 2019) LLMs using Choice
of Plausible Alternatives (COPA) dataset
(Section 3);

• as next, we evaluate the performance of two
commercial LLMs (ChatGPT-3.5 Turbo and
Google Gemini 1.0) on widely used Mea-
suring Massive Multitask Language Under-
standing (MMLU) dataset (Section 4);

• finally, we use a multilingual Belebele dataset
to understand the impact of machine trans-
lation on the performance of different open-
source LLMs (Section 5).

We provide the datasets used in our experi-
ments to facilitate further benchmarking of Lat-
vian1, ensuring that researchers have access to the
resources necessary to replicate and build upon
our work. By making these datasets publicly avail-
able, we aim to support the development of robust
tools and methodologies for the Latvian language,
as well as foster collaboration and facilitate ad-
vancements in natural language understanding for
low-resourced languages.

2 Related Work

Latvian is an Indo-European language of the
Baltic branch with about 1.5 million native speak-
ers. Taking into account its size, it is rather
well supported by language technologies (Skadin, a
et al., 2022). However, in the context of LLMs the
Latvian language is a low-resource language (Ali
and Pyysalo, 2024).

Before 2024, only limited research has been
conducted on the performance of BERT fam-
ily language models (e.g., Znotin, š and Bārzdin, š
(2020), Vı̄ksna and Skadin, a (2020)). A widely
used Latvian dataset to assess LLM perfor-
mance on different natural language processing
tasks (NER, POS-tagging, dependency parsing)
is FullStack-LV dataset (Gruzitis et al., 2018).
Comparison of several BERT family models that

1https://github.com/LUMII-AILab/
VTI-Data

include Latvian (mBERT (Devlin et al., 2019),
LVBERT (Znotin, š and Bārzdin, š, 2020), and Lit-
Lat BERT (Ulčar and Robnik-Šikonja, 2021))
has been performed by Ulčar and Robnik-Šikonja
(2021). The evaluation showed that the LitLat
BERT model has the best performance in named
entity recognition, part-of-speech tagging, and
word analogy tasks, whereas LVBERT demon-
strated the best score for the dependency parsing
task.

Until 2024, there were no datasets available to
assess the natural language understanding and rea-
soning skills of LLMs in Latvian and compare
them across different models or languages. For ex-
ample, mBERT’s performance has been evaluated
using the XNLI dataset (Conneau et al., 2018) - an
evaluation corpus for language transfer and cross-
lingual sentence understanding in 15 languages,
but it does not contain any Latvian samples. Simi-
larly, the dataset for the evaluation of multilingual
LLMs developed by Okapi (Lai et al., 2023), in
which the English part was translated with the help
of ChatGPT, covers 26 languages, but does not in-
clude any of the the Baltic languages (the “small-
est” language is Danish with 6 million speakers,
followed by Slovak with 7 million speakers).

Latvian is mentioned as one of the languages
on which the GPT-4 model was evaluated with
MMLU benchmark (Achiam et al., 2023). The
prompts were machine-translated from English
into Latvian. When comparing GPT-4’s 3-shot ac-
curacy on MMLU across different languages, En-
glish reaches 85.5% (only 70.1% for GPT 3.5),
while Latvian – 80.9% (Achiam et al., 2023).

Different approach has been chosen by Dar ‘gis
et al. (2024), who used standardized Latvian high
school centralized graduation exams as a bench-
mark dataset. They showed that several open-
source models have reached competitive perfor-
mance in NLU tasks, narrowing the gap with GPT-
4, while keeping notable deficiencies in natural
language generation tasks (specifically in gener-
ating coherent and contextually appropriate text
analyses).

Recently META has released the Belebele
benchmark (Bandarkar et al., 2024). This bench-
mark was used to evaluate three masked language
models (XLM-V, INFOXLM and XLM-R) and
several LLMs (GPT3.5-TURBO, FALCON, and
LLAMA). The accuracy of these models for the
Latvian language varies from 37.6% for FALCON
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40B 5-shot In-Context Learning model to 74.1%
for Translate-Train-All XLM-V Large model.

Finally, European LLM leader-board that in-
cludes Latvian has been recently published on
HuggingFace.2 This leaderboard provides a com-
parison of more than 15 open-source multilingual
LLMs across several machine-translated bench-
marks – ARC, GSM8K, HellaSwag, MMLU and
TruthFullQA.

3 Evaluation of BERT Family Models

While today LLMs offer broad multilingual capa-
bilities, they may not always be the best solution
for low-resourced languages, thus in some cases
BERT-based models still remain relevant as a cost-
effective, adaptable, and open-source alternative
for research and real-world applications in under-
represented languages. Although several BERT
models include Latvian, their NLU capabilities
have not been assessed due to the absence of nec-
essary evaluation datasets.

3.1 COPA Dataset
In our first experiment, conducted in early spring
of 2024, we evaluated several BERT models using
the machine-translated 3 version of the Choice of
Plausible Alternatives (COPA) dataset (Roemmele
et al., 2011).

The COPA dataset consists of 1000 common-
sense casual reasoning samples. The task is to se-
lect the alternative that more plausibly has a causal
relation with the premise. The dataset is split
equally into two parts, one for development and
the other for evaluation.

3.2 Selected Models
The following models that include Latvian
have been selected: multilingual BERT model
(mBERT, Devlin et al. (2019)), LVBERT (Znotin, š
and Bārzdin, š, 2020), and LitLat BERT (Ulčar and
Robnik-Šikonja, 2021). mBERT and LVBERT
models implement the BERT reference architec-
ture, while the LitLat BERT model is based on
RoBERTa-base architecture (Liu et al., 2019). The
mBERT model is pre-trained on a corpus that in-
cludes text from 104 languages, the LitLat BERT
model is trained on Latvian (LV), Lithuanian
(LT), and English (EN), and LVBERT is trained

2https://huggingface.co/spaces/
openGPT-X/european-llm-leaderboard

3In this experiment we used Tilde Translator https://
tilde.ai/machine-translation/

Model Languages Parameters
(million)

mBERT 104 lang. 110
LVBERT LV 110
LitLat BERT LV, LT, EN 125

Table 1: Selected language models.

Machine-
translated Post-edited

mBERT 54.62% 55.00%
LVBERT 60.38% 61.54%
LitLat BERT 58.46% 62.69%

Table 2: Accuracy of BERT models on COPA
dataset.

solely on Latvian. None of them share training
datasets; however, there is some overlap between
mBERT and LVBERT models, as they both con-
tain Wikipedia datasets. Table 1 summarizes lan-
guage models selected for the evaluation, their lan-
guage coverage and the parameter count.

3.3 Experimental Setup

BERT models require fine-tuning of the pre-
trained model for COPA task. For this, model
weights were acquired from HugginFace website.4

We added an additional linear layer and a soft-
max function to the pre-trained models. During
the fine-tuning process for the COPA task, we ex-
perimented with different learning rates (5e-5, 4e-
5, 3e-5, 2e-5) while keeping the batch size fixed at
32 and training for 10 epochs.

We split the development dataset into 400 sam-
ples used for training and 100 samples for vali-
dation. The highest accuracy on the validation
dataset on all models was achieved using 5e-5
learning rate.

3.4 Results

The evaluation dataset consists of 500 machine-
translated samples, from which 260 were post-
edited by native Latvian speaker. Table 2 com-
pares the evaluation results between 260 machine-
translated and post-edited samples.

4https://huggingface.co/google-bert/
bert-base-multilingual-cased, https:
//huggingface.co/AiLab-IMCS-UL/lvbert,
https://huggingface.co/EMBEDDIA/
litlat-bert
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Notably, post-edited machine translation sam-
ples bring an improvement of a few percentages.
The most significant improvement has been ob-
served for the LitLat BERT model with more than
4 percentage points. Similar gains have been no-
ticed with BERT models in Estonian, where the
post-editing lead to an improvement of a few per-
centages (Kuulmets et al., 2022). When compared
to English BERT model (70.6%) the Latvian mod-
els perform significantly worse.

4 Evaluation of Commercial LLMs

As next, in spring 2024, we evaluated the perfor-
mance of several commercial models on the Lat-
vian language to assess their capabilities in han-
dling low-resource languages.

4.1 MMLU Dataset

Measuring Massive Multitask Language Under-
standing (MMLU) benchmark (Hendrycks et al.,
2020) consists of various multiple-choice ques-
tions across 57 different subjects, grouped in four
categories: human sciences (philosophy, history,
jurisprudence, etc.), social sciences (economics,
sociology, geography, etc.), STEM (high school
mathematics, college computer science, etc.), and
miscellaneous (finance, accounting, global facts,
etc.). The motivation for selecting MMLU bench-
mark comes from both its popularity and the fact
that the results are available for wide-range of
LLMs, including OpenAI’s GPT-4 (Achiam et al.,
2023), Google’s Gemini family of models (Gem-
iniTeam et al., 2024), and the recently announced
NVIDIA’s NVLM 1.0 (Dai et al., 2024). Similarly
to COPA, MMLU was not available in Latvian,
and thus was machine-translated for our experi-
ments.

4.2 Selected Language Models

For our experiments, we selected two cost-
effective AI models that support Latvian and are
available via a public API: GPT-3.5 Turbo5 and
Google Gemini 1.0 Pro.6 These models were cho-
sen based on their balance of affordability and
performance, making them suitable for conduct-
ing comprehensive tests without exceeding budget
constraints.

5https://platform.openai.com/docs/
models/gpt-3-5-turbo

6https://ai.google.dev/gemini-api/
docs/models/gemini

Machine-
translated Post-edited

ChatGPT-3.5 Turbo 78.79% 81.82%
Gemini 1.0 Pro 81.82% 90.90%

Table 3: MMLU evaluation results (accuracy)
in sociology domain with machine-translated and
post-edited prompts.

4.3 Experimental Setup
The evaluation of ChatGPT-3.5 Turbo and Gem-
ini Pro 1.0 was performed using the API provided
by the developers of the models. During the eval-
uation of Gemini Pro 1.0, the safety filters were
disabled, since with the default configuration for
some prompts, no answer was provided. Both
models were evaluated using 2-shot prompts, i.e.,
the first two multiple-choice question-answer pairs
serve as examples and the model is expected to
provide the correct answer for the third question.

During the evaluation, we observed that some-
times the output of models is inconsistent with
the expected format. For example, if the correct
answer is D, the model could also output varia-
tions, e.g., (D), D. 0,4, or (D) 0,4. These cases
were also considered as correct answers. This ap-
proach differs from Laskar et al. (2023) where the
authors performed additional manual evaluation of
prompts.

4.4 Results
Table 4 shows the evaluation results of machine-
translated MMLU dataset per subject for both
Gemini Pro 1.0 and ChatGPT-3.5 Turbo mod-
els. Overall, the accuracy of Gemini 1.0 Pro is
6.09 percentage points higher than ChatGPT-3.5
Turbo. For multiple subjects the difference of
accuracy exceeds 20 percentage points. For in-
stance, college biology, econometrics, human sex-
uality. However, there are also subjects, in which
ChatGPT-3.5 Turbo model performed better, like
computer security and public relations.

Our choice of few-shot prompts differs from
those reported for English. ChatGPT-3.5 Turbo
reached 67% accuracy for English using 0-shot
prompts. The average accuracy of our results for
Latvian across all subjects is 52.58%. The differ-
ence is significant, considering that our evaluation
provided two additional examples. For English
ChatGPT-3.5 Turbo accuracy of 5-shot prompts is
around 70% and for Gemini 1.0 Pro accuracy is
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Subject ChatGPT-3.5 Turbo Gemini Pro 1.0
abstract algebra 37.500 32.260
anatomy 46.600 44.190
astronomy 54.000 72.920
business ethics 48.480 40.625
clinical knowledge 57.950 55.290
college biology 37.500 62.500
college chemistry 34.375 37.930
college computer science 39.390 41.940
college mathematics 24.240 40.000
college medicine 57.890 58.930
college physics 29.410 28.125
computer security 78.780 63.630
conceptual physics 29.410 52.000
econometrics 31.580 52.630
electrical engineering 41.600 56.520
elementary mathematics 43.200 41.530
formal logic 31.430 37.140
global facts 33.330 39.390
high school biology 64.070 77.450
high school chemistry 42.420 42.370
high school computer science 63.630 78.790
high school European history 70.900 77.780
high school geography 61.530 78.460
high school government and politics 65.625 79.370
high school macroeconomics 50.000 69.230
high school mathematics 34.090 30.120
high school microeconomics 55.700 69.620
high school physics 40.810 45.830
high school psychology 65.190 80.190
high school statistics 40.270 42.860
high school US history 63.240 76.120
high school world history 64.100 69.620
human aging 55.400 64.380
human sexuality 58.130 78.570
international law 75.000 65.000
jurisprudence 69.400 88.890
logical fallacies 51.850 53.700
machine learning 40.540 50.000
management 73.530 76.470
marketing 78.200 89.120
medical genetics 66.670 63.640
miscellaneous 66.530 71.150
moral disputes 52.170 59.650
moral scenarios 26.510 24.480
nutrition 63.730 64.700
philosophy 60.109 67.000
prehistory 59.260 52.880
professional accounting 30.430 47.190
professional law 33.140 51.970
professional medicine 51.110 66.670
professional psychology 50.980 53.000
public relations 72.200 50.000
security studies 53.090 56.250
sociology 78.780 80.600
US foreign policy 72.720 78.790
virology 43.640 48.150
world religions 75.440 66.670
Average 52.577 58.672

Table 4: Comparison of Gemini Pro 1.0 and ChatGPT-3.5 Turbo on MMLU (accuracy, %).
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around 71.8% .
We also verify the impact of post-editing. As

the dataset is vast, post-editing was performed
only for the prompts of the sociology subject. The
results in Table 3 show an increase of accuracy for
both models – ChatGPT-3.5 Turbo achieves a 3.03
percentage point increase, while Gemini 1.0 Pro
achieves a more substantial gain of 9,08 percent-
age points.

5 Evaluation of Open LLMs

We continue to explore the impact of machine
translation on benchmarking using the recently
released multilingual Belebele dataset, which in-
cludes Latvian. We compare the performance
of several popular open-weight LLM families
(Gemma, Llama, Mistral, and Qwen) using both
the original and machine-translated versions of the
dataset.

5.1 Belebele Dataset

Belebele is a multiple-choice machine reading
comprehension dataset (Bandarkar et al., 2024).
The dataset was created without the use of ma-
chine translation technology, relying solely on ex-
perts fluent in English and the target language. For
each language the dataset contains 900 questions.
Each question is based on a short passage from the
FLORES-200 dataset (NLLBTeam et al., 2022)
and has four multiple choice answers.

To assess the impact of machine translation
we translated English (EN) part of the Belebele
dataset into Latvian (LV) and Latvian part into
English using two different machine translation
strategies – machine translation system DeepL7

and GPT-4o-mini with system prompting. We
used the original English and Latvian parts of
this dataset as references to evaluate transla-
tions. Results of the automatic evaluation are
summarized in Table 5. For both translation
directions DeepL demonstrates better translation
(BLEU (Papineni et al., 2002) and ChrF (Popović,
2015) scores), when compared to GPT-4o-mini.
Since Latvian is a low-resource morphologically
rich free-word order language, automatic scores
for English->Latvian machine translation direc-
tion are lower than for Latvian->English direction.

7https://www.deepl.com/en/translator

LV: Izlasi tekstu un atbildi uz jautājumu:
EN: Read the text and answer to the question:

{{flores_passage}}
{{question}}
A: {{option1}}
B: {{option2}}
C: {{option3}}
D: {{option4}}

LV: Atbildi formātā ’Pareizā atbilde ir X’,
kur X ir pareizās atbildes burts.

EN: Answer in form ’Correct answer is X’,
where X is the letter of the correct answer.

Figure 1: Prompt structure.

5.2 Selected Language Models
The most popular open LLM families were se-
lected: Gemma2 (GemmaTeam et al., 2024),
Llama3 (Dubey et al., 2024), Mistral-large (Jiang
et al., 2023) and Qwen (Bai et al., 2023). A 5-
bit K-quantized version was used for every model.
We also included OpenAI’s GPT-4o and GPT-4o-
mini models for reference as the most popular
closed commercial models.

5.3 Experimental Setup
All tests were run using the Ollama toolkit8 on
a computer with 8x interconnected Nvidia A100
80GB GPUs.

The questions were asked directly in a zero-
shot approach with each model’s default system
prompt (see Figure 1).

Some models answered with just the required
phrase, some also added explanation. Therefore
we used a case-insensitive regular expression:

(?:Atbilde ir|Answer is)[*\s(]*([A-D])

to find the model’s answer in the response.
Each question was asked three times with three

different seeds to test the robustness of the models.
Robustness was measured as percentage of ques-
tions to which the model chose the same answer
in all three cases. The top models scored 99%
robustness on human translated English data and
98% for human translated Latvian data.

5.4 Results
The evaluation results (accuracy) for different
LLMs are summarized in Table 6. Each of 900
questions is considered to be answered correctly
only if all three responses were equal and correct.

8https://github.com/ollama/ollama
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Language pair Section BLEU chrF
DeepL GPT DeepL GPT

English->Latvian passages 0.36 0.28 65.8 60.6
English->Latvian questions 0.29 0.18 64.7 53.1
English->Latvian answers 0.32 0.22 64.4 58.2
Latvian->English passages 0.43 0.38 69.3 67.3
Latvian->English questions 0.48 0.34 69.7 61.4
Latvian->English answers 0.34 0.26 63.7 62.0

Table 5: Evaluation of DeepL and GPT-4o-mini translations (BLEU and ChrF scores).

English Latvian
Model DeepL GPT Belebele DeepL GPT Belebele
gemma2:27b 85% 87% 94% 90% 87% 91%
gemma2:9b 82% 85% 94% 87% 85% 88%
gemma2:2b 69% 73% 83% 55% 54% 58%
gpt-4o 87% 88% 95% 93% 90% 94%
gpt-4o-mini 83% 86% 94% 88% 85% 88%
llama3.1:405b 87% 89% 96% 91% 90% 92%
llama3.1:70b 84% 87% 94% 87% 85% 87%
llama3.1:8b 71% 74% 87% 62% 59% 63%
mistral-large:123b 87% 88% 96% 86% 80% 85%
qwen2:72b 85% 87% 94% 87% 84% 87%
qwen2:7b 79% 79% 89% 63% 61% 67%
qwen2.5:72b 85% 87% 96% 89% 87% 91%
qwen2.5:32b 86% 89% 95% 88% 86% 91%
qwen2.5:14b 83% 85% 94% 76% 73% 78%
Average 82% 85% 93% 82% 79% 83%

Table 6: Evaluation results for different LLMs on original (Belebele column) and machine translated
(DeepL and GPT columns) datasets (accuracy).

5.4.1 Original Belebele Dataset

The best result of 96% accuracy for English is
achieved by several models - Qwen2.5, Mistral-
large, Llama3.1, while for Latvian only gpt-4o
achieved 94% accuracy, followed by several open
LLMs - llama3.1:405b with 92% accuracy and
gemma2:27b and qwen2.5:72b and 32b with 91%
accuracy. gpt-4o also seems the most balanced
model with only one percentage point difference
in accuracy between Latvian and English.

In general, the model’s accuracy seems to cor-
relate with the parameter size - the smaller the
model, the lower is accuracy. Although our re-
sults are not directly comparable with the results
obtained by the authors of the Belebele dataset,
it seems that most recent LLMs demonstrate bet-
ter "understanding" of low-resource languages and
the results of the best open-weight LLMs differ
only by 2-3 percentage points when compared to

commercial ones.

5.4.2 Machine Translated Datasets
Evaluation results in Table 6 demonstrate a de-
crease of accuracy in case of machine-translated
datasets. For English, the accuracy for the
machine-translated dataset is always below 90%,
dropping by at least 5 percentage points.

In case of Latvian, most of the models demon-
strate comparable performance for both original
and machine-translated datasets, with only a 1-
3 percentage point decrease when tested on MT-
datasets.

Although the automatic evaluation of MT (see
Table 5) indicated that DeepL MT outperformed
GPT in terms of standard MT quality metrics, the
results for English in this natural language under-
standing task showed a different trend. Specif-
ically, models demonstrated better performance
when using the GPT-translated dataset rather than
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the DeepL-translated version.

6 Conclusion

In this study, we provided an initial assessment
of several large language models’ performance in
Latvian across different natural language under-
standing tasks.

Results of our evaluation of multilingual com-
mercial and open-source models highlights the
disparities in model accuracy when applied to low-
resource languages.

Our findings indicate that for the low-resource
language Latvian, the top-performing LLMs can
achieve similar results on both the original
(human-created) and machine-translated datasets.
However, machine translation proved less effec-
tive for high-resource language benchmarks, such
as English, where it significantly impacted model
accuracy.

While machine translation offers a feasible
route to generate benchmarks for low-resource
languages, it is not without its pitfalls. The choice
of translation method and the inherent properties
of the language models significantly influence the
outcomes of benchmarking exercises.

Additionally, the benchmarking of open-source
LLMs against proprietary systems reveals a nar-
rowing performance gap. Despite these advances,
significant challenges remain, including the lack
of comprehensive evaluation datasets tailored to
Latvian.

By introducing adapted versions of the COPA9

and MMLU10 datasets and evaluating models on
the Belebele dataset, this paper lays the ground-
work for further research in benchmarking.11

Future work should focus on creating robust,
high-quality datasets specifically for low-resource
languages and exploring novel architectures that
can better generalize across linguistic diversity.
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Abstract

There is limited work aimed at solving the
core task of noun classification for Nguni
languages. The task focuses on identi-
fying the semantic categorisation of each
noun and plays a crucial role in the abil-
ity to form semantically and morphologi-
cally valid sentences. The work by Bya-
mugisha (2022) was the first to tackle the
problem for a related, but non-Nguni, lan-
guage. While there have been efforts to
replicate it for a Nguni language, there
has been no effort focused on comparing
the technique used in the original work vs.
contemporary neural methods or a number
of traditional machine learning classifica-
tion techniques that do not rely on human-
guided knowledge to the same extent.
We reproduce Byamugisha (2022)’s work
with different configurations to account
for differences in access to datasets and re-
sources, compare the approach with a pre-
trained transformer-based model, and tra-
ditional machine learning models that rely
on less human-guided knowledge. The
newly created data-driven models outper-
form the knowledge-infused models, with
the best performing models achieving an
F1 score of 0.97.

1 Introduction

Solid performance when using modern Natural
Language Processing (NLP) approaches, espe-
cially ones that are popular with languages like
English, is dependent on the availability of large
text corpora. Unlike English, all Niger-Congo
B1 (NCB) languages do not have large training
datasets; hence, contemporary techniques have

1Some authors use the term Bantu languages

not been used for tasks such as noun classifica-
tion. Since the languages are characterized by
agglutinative morphology, have an intricate noun
class system, and possess little datasets and tools
that can be repurposed for various tasks (Moors
et al., 2018), most problems have been tackled
with knowledge-infused approaches. The discrep-
ancy of resource availability also means that there
are limited efforts to contrast contemporary data-
driven and knowledge-infused techniques to de-
termine whether there is any difference in perfor-
mance.

In this paper, we address this lack of compari-
son for the task of noun class disambiguation for
NCB languages. Using isiZulu, the focus of this
paper and the largest language in South Africa by
L1 speakers, as a case study the task consists of
predicting the noun class (e.g., NC2) when one is
given a noun (e.g., abantu ‘people’). We limit our
investigation to this task since it is a crucial but
unsolved problem for all NCB languages, isiZulu
especially. Due to NCB languages’ low-resourced
state, the only work that tackles the task for a NCB
language was done by Byamugisha (2022) focus-
ing on Runyankore and related languages from
Guthrie’s Zone J (Maho, 1999).

Byamugisha (2022)’s work deals with the lack
of a large dataset of noun and class pairs by intro-
ducing a number of modules, each solving some
crucial function. Some modules use unlabelled
or automatically labelled datasets that, when com-
bined are able to predict the noun class of the
noun. Byamugisha’s work is a promising start,
since it obtained accuracies in the range 80%-87%
for Runyankore. The work does not resolve the
question of technique comparison; hence, the util-
ity of relying on a multi-modular and knowledge-
infused approach that combines morphology, syn-
tax, and morphology vs. machine learning tech-
niques and a neural model, especially a large
language model (LLM) adapted via the pretrain-
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finetune paradigm for classification, is still un-
clear. All of the aforementioned models have the
potential to classify nouns using morphology, syn-
tax, and morphology but differ in the following
way:

System complexity and resource requirements:
Knowledge-infused approaches tend to in-
crease the number of sub-modules, each with
a clear and dedicated responsibility, hence
the complexity of the system increases.
While the dedicated functionality of the
subcomponents makes the entire system
more auditable, such techniques tend to rely
on stopgap resources (e.g., models that are
trained using automatically labelled datasets
(e.g., (Mahlaza et al., 2025)) due to a lack
of a context-free grammar that can be used
to generate a gold standard dataset unlike
Byamugisha (2022)) and they are sometimes
inferior with respect to advanced pattern
recognition vs. modern blackbox models
(e.g., LLMs).

Reliance on morphosyntax: Knowledge-
infused approaches have not been used to
investigate noun classification while relying
only on morphosyntax, in the context of NCB
languages, due to the difficulty associated
with the lack of clarity regarding effective
representations, especially ones that separate
semantics from syntax, morphology and
other features (see (Huang et al., 2021) for
similar challenges with English sentences).

Our approach is two-fold. First, we reproduce
Byamugisha’s knowledge-infused noun classifier
for isiZulu, while noting the differences in re-
source requirements and their availability. The
primary goal is to determine how best to build a
syntactic-semantic model for isiZulu since there is
no Context Free Grammar (CFG) that can be used
to generate labelled and unlabelled datasets. This
requires that we identify how changes in training
corpora characteristics for the data-driven compo-
nents affect accuracy. In that regard, we consider
various options for labels in the labelled data (con-
cord, noun class, or both), training corpus size, an-
notation quality (manually annotated by an expert
or automatically labelled), and data-level (senten-
tial, phrasal, or word-based).

Second, we create various supervised machine
learning classifiers (k-Nearest Neighbours (kNN)
algorithm, decision trees, Support Vector Ma-

chines (SVM)), and deep learning based mod-
els (a fully connected feed-forward neural net-
work and a fine-tuned version of the Serengeti lan-
guage model (Adebara et al., 2023)). We com-
pare all the models using a larger dataset (cf.
Byamugisha (2022)) made up of nouns and their
classes to ascertain whether one can obtain sim-
ilar or superior performance by relying on a tra-
ditional ML model that makes use of morphosyn-
tax only. We also investigate whether similar, or
superior, performance can be achieved via a neu-
ral model that relies on morphological, syntax,
and semantic knowledge trained from scratch or
adapted from a pre-trained multilingual LLM (in
this case, Serengeti (Adebara et al., 2023)).

Our results showed that the neural-based and
traditional ML models perform the best. The best
multi-modular model that relies on human-guided
knowledge achieves an F1 score of 0.71 while the
best neural model and traditional ML models have
scores of 0.97.

The rest of the paper is structured such that
Sections 2-3 introduce noun classification and
the existing models, Section 4 details the created
dataset, Sections 5-7 introduce our models, Sec-
tion 8 presents the results, Section 9 discusses, and
Section 10 concludes.

2 NCB noun classification

NCB languages are found in more than 54 coun-
tries, with an estimated 240 million speakers,
and they have a lot of diversity (Gowlett, 2014).
Nonetheless, they all have a noun class system that
categorises each noun to one of 23 classes, as in-
formally summarized in Table 1 for isiZulu. To
demonstrate the impact of the noun classes on the
formation of sentences, consider the following ex-
ample English sentence and its translation:

English: The dog is unhealthy
Thearticle dogsubj. noun issingl.identifier
unnegation-healthyadjective

IsiZulu: Inja ayiphilile
INC9-njastem aneg.preprefix-yiNC9 SC-
philileadjective root

The formation of the word ayiphilile ‘is un-
healthy’ relies on identifying the noun class (here:
NC9) of the subject inja ‘dog’. However, there are
no models for automatically classifying nouns into
their respective classes for isiZulu.
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Table 1: List of NCB, including isiZulu, noun
classes and the semantics that govern inclusion for
each class (Source: (Byamugisha, 2022))

Noun class Example semantic categoriza-
tion

1, 2 People and kinship
3, 4 Plants, nature, and some parts of

the body
5, 6 Fruits, liquids, some parts of the

body and paired things
7, 8 Inanimate objects
9, 10 Tools and animals

11 Long thin stringy objects, lan-
guages,and inanimate objects

12, 13 Diminutives
14 Abstract concepts
15 Infinitives and parts of the body

16, 17, 18 Locative classes
19 Diminutives

20, 21, 22 Augmentatives
23 Locative

3 Existing models for noun classification

The only work that has tackled the task at hand, for
NCB languages at least, was conducted by Bya-
mugisha and it took inspiration from the existing
linguistic theory on the NCB noun class system
by modelling the possible avenues for classifying
a noun namely the morphological prefix, seman-
tic categorization and syntactical context (Bya-
mugisha, 2022). They pursue the task via a mul-
timodular knowledge-infused model, whose func-
tion will now be described.

The simplest avenue relies on the prefix. Bya-
mugisha’s model uses the morphological prefix in-
formation to classify a noun if it is unique. For
instance, the noun abantu ‘people’ has as prefix
aba- and stem -ntu and the prefix aba- is unique
to NC2, the noun will be correctly classified. The
noun umuntu ‘person’ has as prefix umu-, but it
is ambiguous, because the prefix associated with
both NC1 and NC3 is either um- or umu- depend-
ing on the number of syllables of the stem. This
simple model will only output a prediction if a
unique prefix is found otherwise it is considered
ambiguous and continues to the next step.

When the prefix is insufficient, it draws on
the semantic generalizations to determine the
noun class. This is done by training a new

model to determine similar words, using Fast-
Text2 with a corpus of 1 million sentences, to de-
termine a noun’s semantic neighbours. For in-
stance, for the Runyankore noun omuntu ‘per-
son’ from NC1, the model determines that the
nearest neighbours are omugyesi ‘reaper’ (NC1),
omutaahi ‘companion’ (NC1), omukoreesa ‘over-
seer’ (NC1), omushomesa ‘teacher’ (NC1), and
omukuru ‘elder’ (NC1). The semantic informa-
tion derived from the nearest neighbours allows
discerning between ambiguous classes, since in-
formation associated with, e.g., omuntu ‘person’
(NC1) can be used to distinguish it from the noun
omukono ‘arm’, based on the noun class frequen-
cies associated with its neighbours. The noun
omukono shares the same prefix omu-, but one
retrieves different neighbours, such as omunwa
‘mouth’ (NC3), omutwe ‘head’ (NC3), eriino
‘tooth’ (NC5), and enkokora ‘elbow’ (NC9), i.e.,
body parts, vs. omuntu ‘person’ and certain roles
they play. Fundamentally, the differentiation be-
tween the two is done by analysing the noun
classes associated with the neighbouring words
and ascertaining that NC1 is the most common
class among the neighbours for omuntu ‘person’,
hence, the input noun is inferred to belong to the
same class.

The determination of the most common class
among the neighbours requires filtering out some
elements. Specifically, when given neighbouring
nouns, without any labels, a corpus made up of 1
million sentences is used to train a FastText clas-
sifier, where the corpus’ is annotated with parts-
of-speech, the noun class, and the concord (where
possible). The resulting model is used to anno-
tate the input neighbouring words and if these pre-
dictions are found to be inconsistent then they are
dropped from consideration. The concord annota-
tion is then used for the syntax-based filtering step
because it is unique among the classes (Gowlett,
2014; Maho, 1999).

Alternative work involving processing NCB
nouns exists, but it does not tackle the problem
of noun classification; specifically, the efforts on
building morphological analysers (Bosch et al.,
2008), morphological generators (Bosch and Pre-
torius, 2003), part-of-speech taggers (De Pauw
et al., 2012), and noun pluralization tools (Bya-
mugisha et al., 2018, 2017) show attempts to

2https://radimrehurek.com/gensim/
models/fasttext.html
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deal with the ambiguity of nouns. Other re-
searchers have created a massively multilingual
transformer-based encoder-only language model,
named Serengeti, whose training data includes
isiZulu (Adebara et al., 2023). However, none of
these models have been investigated, despite their
potential capability, to classify nouns or to com-
pare them with Byamugisha (2022)’s approach.

4 New dataset for the experiments

The aim of the experiments is to ascertain and
compare the performance of multiple methods, de-
tailed in Sections 5-7. In this section, we describe
the dataset that is used to compare the techniques.

We created a new isiZulu dataset by extract-
ing nouns and their classes from the Oxford Zulu-
English dictionary (de Schryver, Gilles-Maurice,
2015) via optical character recognition and man-
ual cleaning. We created two versions of the
dataset where one version is labelled with a sin-
gle noun class, either singular or plural depend-
ing on the modality of the noun, and the second
is labelled with the singular and plural classes.
For instance, the word umuntu ‘person’ is labelled
with the singular noun class 1 in one dataset and
labelled with the singular and plural combined
classes 1/2 in another. The dataset version that
combines noun classes is only used to train some
of the traditional machine learning models and the
details are provided in Section 6.

The number of nouns per class in the dataset is
listed in Table 2. We used an 80-20 train-test split.

5 Knowledge-infused models

We created multiple variations of Byamugisha
(2022)’s multi-modular classifier to support
isiZulu. This is done by creating multiple versions
of each module in the architecture, labelled A-G
in Figure 1. We now turn to describe the design
decisions and resources used.

Component A This module identifies the noun
class via the noun’s prefix. We use Table 7 to
determine if a noun has a unique prefix hence it
is possible to uniquely determine its noun class.
When the prefix is unique then we resolve the
noun class while ensuring that we prioritise values
that have the longest length. For instance, when
a noun begins with the prefix aba- then it can be
uniquely identified as belonging to NC2, however,
a noun such as umthandazo ‘prayer’ can be classi-

Table 2: Distribution of nouns per class in the
dataset used for training and testing models.

Class % of nouns |nouns|
1 4.80 110
1a 6.37 144
2 4.13 94
2a 2.11 48
3 7.02 160
4 3.82 87
5 12.99 296
6 10.14 231
7 10.05 229
8 7.33 167
9 13.08 299
10 6.80 155
11 4.30 98
14 2.63 60
15 4.43 101

Total 2279

fied to NC1 or NC3. When a noun’s class is am-
biguous then the noun is passed to the following
modules.

Component B and C These modules take first
responsibility in the pipeline to determine the class
when a noun’s prefix is not unique. They first em-
bed words in a vector space as a means of iden-
tifying similar words. Words are embedded using
two possible models; both versions are FastText
skipgram models, motivated by our interpretation
of the work done for Runyankore. One version is
a pre-trained isiZulu model created using 1 mil-
lion sentences sourced from Dlamini et al. (2021).
It was trained with 300 dimensions, and subwords
are formed using n-grams in the range of 3-6. The
alternative model is trained on 180 000 unlabelled
web-crawled sentences, whose sources are listed
in Table 3. For each word representation, we iden-
tify K similar words using the traditional kNN al-
gorithm, where K was selected from the range 10
to 200.

Component D This module takes each of the
predicted neighbouring nouns, produced by mod-
ules B and C, and labels them with a noun class
and/or a class-specific concord using a classi-
fier. This annotation classifier is trained from
scratch. Since we do not have access to a context-
free grammar to generate training data à la Bya-
mugisha (2022) for the classifier, we investigated
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the use of different datasets to determine the im-
pact of certain characteristics (e.g., annotation
quality); all features are listed in Table 4. Seven
classifier versions were developed, each with Fast-
Text’s supervised training capability and its hyper-
parameter autotuning feature (Joulin et al., 2017).
Training data was split in the ratio 80/20 for
training and validation respectively. As an inter-
nal evaluation approach, the performance of each
classifier is tested on the Keet dataset listed in Ta-
ble 3.

Component E and F These modules are re-
sponsible for automatically filtering nearest-
neighbouring nouns using either a part-of-speech
classifier or regular expressions. Since module D
did not annotate the words with a part-of-speech,
these modules rely on a newly trained POS classi-
fier for the annotations. The classifier was trained
on web-crawled data with simplified POS tags and
sourced from (du Toit and Puttkammer, 2021).
The new classifier is able to identify verbs with
96% accuracy when tested against the combined
gold standard datasets listed in Table 4. When the
current modules use the trained classifier, they re-
move all neighbouring words that are identified as
verbs. These modules also rely on an alternative
filter that removes verbs by matching their sub-
ject concord using regular expressions based on
the work by Keet and Khumalo (2017), along with
additional rules from the Oxford isiZulu Bilingual
Dictionary (de Schryver, Gilles-Maurice, 2015).

The second phase of filtering removes words
that do not contain a morpheme associated with
their predicted noun class. There are two alterna-
tive models considered to achieve this. The first
version (i.e., subword-level) removes a neighbour
if the morpheme associated with predicted label is
not contained in the word, by matching all possi-
ble versions of it (including phonological condi-
tioned variations) (Keet and Khumalo, 2017). The
second model (i.e., word-level) filters neighbours
based on their subwords. It fetches the character
n-gram range for the word model, computes all
substrings for the word that matches that length,
labels each subword with a noun class and con-
cord using the previously mentioned classifier and
returns True if the neighbour’s predicted label is in
the set of predictions for its subwords.

Component G This module is responsible for
identifying the noun class from the set of anno-

Table 3: List of datasets used to build the annota-
tion classifiers required for the isiZulu knowledge-
infused model.

Dataset Size Type Label
Web-crawled
data (Leipzig CC
- isiZulu 2016
Mixed Corpus)
(Leipzig Univer-
sity, 2024)

180 000 Sent. ✗

NCHLT Morph.
Corpus (Gaustad
and Puttkammer,
2022)

45 000 Word ✓

Ukwabelana
(Spiegler et al.,
2010)

21 416 Word ✓

Gaustad & McKel-
lar (Gaustad and
McKellar, 2024)

50 000 Word ✓

Keet (sourced
from author and
(Gilbert and Keet,
2018))

795 Word ✓

tated words produced by the previous steps in the
pipeline. It does so by computing the frequencies
for each noun class found in the dataset and identi-
fies the class with the highest count in the final list
of nearest neighbours. The most common class is
then used as the final prediction.

We compared the various versions of the
knowledge-infused model by determining their ac-
curacies on the Keet dataset, listed in Table 3. The
evaluation results will be discussed in Section 8.
For the final evaluation, we compute the precision,
recall, and F1 scores using the test set detailed in
Section 4 for the best performing models.

6 Traditional machine learning models

To create novel supervised ML models that rely
on morphosyntax, and possibly syntax and seman-
tics, for noun classification we considered four su-
pervised machine learning algorithms and mod-
els. In addition, we also experimented with var-
ious ways of preprocessing and representing the
nouns. We describe the choices made regarding
these elements in the following subsections.

Noun forms We investigate the use of com-
pressed and uncompressed versions of each noun
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Figure 1: Architecture of the approximated knowledge-infused model for noun classification.

Table 4: Datasets used to train a word embedding
model for the replicated classifier. Abbreviations:
SN = Sentence, Part = Partial, B = Bronze, G =
Gold, W = Word, SC = Subject concord, NC =
Noun class, and PC = Possessive concord.

,

Dataset
name

Label(s) Size Level

Automatically labelled datasets (Bronze)
SN-B SC, NC 103 895 SN
SN-B-
PartSN

SC, NC 103 895 Phrase

SN-BW SC, NC 336 029 Word
N-BW NC 246 362 Word

Expert labelled datasets (Gold)
Full-GW SC, NC,

OC, PC,
Verb

61 954 Word

SN-GW SC, NC 50 954 Word
N-GW NC 36 713 Word

and this is done to address the hypothesis that the
compressed form of the morphosyntactic model
will outperform the surface-form variant, drawing
from the existing literature surrounding the accu-
racy gains observed when compressing text in the
context of topic classification (i.e., (Jiang et al.,
2023)). Specifically, nouns are compressed using
gzip with all the default parameters found in Jiang
et al. (2023) but we use a single time parameter
(i.e., 0) instead of relying on the current time.

Noun representations We convert each noun
into a vector by relying on term frequencies, ob-
tained via scikit-learn’s TfidfVectorizer and TfVec-
torizer with the same ‘character’ and ‘lower-
case=false’ parameters to ensure that we only con-
sider character level n-grams within the nouns and
account for capitalization. When creating vector
representations, we made use of term frequency

(TF) and term frequency inverse document fre-
quency (TF-IDF) to determine the impact of tak-
ing into account the rarity of an n-gram in the noun
set (Shahmirzadi et al., 2019).

Models We investigated the use of a nearest
neighbours classifier, decision tree, and a support
vector machine, all created using scikit-learn3.
The main hyper-parameter adjusted and tested for
in the case of kNN was the number of neighbours
considered, otherwise all defaults for the scikit-
learn’s KNNClassifier class were used. For the de-
cision tree, we adjusted the tree depth, in addition
to assigning an integer to the random state param-
eter to achieve deterministic behaviour. We also
combatted overfitting via cost complexity pruning;
otherwise, all defaults for the scikit-learn’s Deci-
sionTreeClassifier class were used. For the SVM,
we used a linear kernel since it leads to faster train-
ing speed and tends to be less prone to overfitting
(Rochim et al., 2021).

We also created an ensemble variation of the
kNN, SVM, and DT models. Specifically, we cre-
ated models that first predict dual noun classes
hence they predict the plural and singular noun
classes first. For instance, when given the noun
abantu ‘people’ each model would predict the
noun class pair ‘1/2’. The final noun class predic-
tion is then determined based on the two predicted
classes (i.e., 1 and 2) based on the probability as-
sociated with each of the two classes via the pre-
dictProb function from the scikit-learn library.

We computed the precision, recall, and F1
scores for all models using the test set.

7 Deep learning-based models

We created two types of deep learning models.
One is a simple neural network that is trained from

3https://scikit-learn.org/
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scratch while the second is a pre-trained large lan-
guage model that supports isiZulu and fine-tuned
for the task at hand. We describe each of the mod-
els in the following subsections.

Simple feed-forward neural network We cre-
ated a fully connected feed-forward neural (FNN)
network that consists of an input layer, two hidden
layers, and an output layer. The FNN was trained
using isiZulu embeddings sourced from Adelani
(2022), therefore, it may capture not only mor-
phosyntax but other linguistic features. We relied
on FastTextKeyedVectors for loading the embed-
dings so that out-of-vocabulary words can be in-
ferred. The hidden layers make use of a ReLU ac-
tivation function and they are followed by dropout
layers to prevent over-fitting. The neural net-
work’s hyper-parameters are listed in Table 6. This
was created to act a simple baseline for the pre-
trained model.

Pre-trained LLM We also fine-tuned Serengeti
(Adebara et al., 2023), a model based on the XLM-
R (Conneau et al., 2020) architecture, by updat-
ing all parameters through the transformers li-
brary4 and the trainer application programming
interface5 using a training batch size of 16, with
100 training warm-up steps, and a weight decay
of 0.01. Serengeti was originally pre-trained and
tested on a variety of tasks which include named
entity recognition, part of speech tagging, and
phrase chunking but not noun classification hence
there is no additional baseline to compare against,
other than the newly created FNN.

We computed the precision, recall, and F1
scores for both models using the test set.

8 Results

The results of the internal evaluation of the repro-
duced knowledge-infused technique are presented
in Figure 2. The best performing model relies on
a expert labelled dataset, with syntax and verb in-
formation, for component D (N-GW in Table 4),
which achieves an accuracy of 85%. The best per-
forming model that was created from the largest
automatically labelled dataset, at the word-level,
has an accuracy that is lower by 16.99%. The
prefix-only models that only rely on the prefix to

4https://huggingface.co/docs/
transformers/index

5https://huggingface.co/docs/
transformers/main_classes/trainer

classify nouns perform the worst with an accuracy
of 36.6%.

The results from comparing all the developed
models are provided in Table 5. The traditional
machine learning-based approaches that rely only
on morphosyntax, make use of compressed data,
and used in an ensemble approach, perform the
best. Specifically, the best support vector machine
model has an F1 score of 0.9736. The model per-
forms comparably to the best model that relies on
morphology, syntax, and semantics with 0.965 and
performs slightly better than the best performing
morphosyntax-based model that makes use of un-
compressed data (3% difference).

9 Discussion

We now revisit the problem of inferring a noun’s
noun class by the various techniques and deter-
mining whether the use of semantics, syntax, and
morphology, in a human-guided setting, yields the
best results. The results obtained show that the
neural-based models that make use of semantics,
syntax, and morphology without human-guidance
(the FNN and pre-trained LLM) and the traditional
machine learning models that rely only on mor-
phology, with less human-guided knowledge, per-
form better.

For NC detection, is better to rely on data-driven
models that use human-guided knowledge in a less
labour intensive approach where there are fewer
modules so that errors are not propagated and have
less negative impact on performance. This is evi-
denced by the observation that all the models that
achieve an F1 score above 0.9, as listed in Table 5,
do not rely on significant human guidance that en-
sures that the task is solved via only the prefix or
a semantic approach that mandates the identifica-
tion of semantically similar words and infers the
noun class based on related words. Even if the
‘good performance’ threshold is lowered to an F1
score of 0.8, we see that none of the knowledge-
infused models obtained by replicating the work
by (Byamugisha, 2022) can be considered as hav-
ing good performance. In fact, all 14 models that
meet that standard are either neural-based or make
use of traditional machine learning models.

The performance difference between the FNN
and LLM is small (4%), in particular considering
the simplicity of the FNN. This suggests that pre-
training offers limited benefit for the current task.
When comparing the traditional machine learning
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Figure 2: Accuracies in replicated models, across the models that differ based on the datatset used for
the NC-Concord classifier module. The abbreviates used correspond to those detailed in Table 4.

Table 5: Precision, recall, and F1 scores of the best
performing models. Abbreviations: FT = Fine-
tuned, Ens = Ensemble, Prec = Precision, Rec =
Recall, TF = Term frequency, and IDF = Inverse
document frequency

Model Prec. Rec. F1
Morphology, syntax, and semantics

SN-B 0.714 0.591 0.604
SN-BP-PartSN 0.768 0.736 0.714
SN-BW 0.795 0.675 0.686
N-BW 0.743 0.641 0.655
Full-GW 0.625 0.565 0.576
SN-GW 0.789 0.771 0.762
N-GW 0.725 0.729 0.713
FNN 0.9213 0.9273 0.9209
Serengeti-FT 0.9642 0.9666 0.9650

Morphosyntax-based (uncompressed)
kNN-TFIDF 0.7094 0.7149 0.6979
kNN-TF 0.6968 0.7281 0.6928
kNN-Ens. 0.7269 0.7302 0.7060
SVM-TFIDF 0.8222 0.8421 0.8273
SVM-TF 0.8424 0.8509 0.8439
SVM-Ens. 0.9367 0.9429 0.9385
DT-TFIDF 0.7300 0.7478 0.7133
DT-TF 0.7961 0.7917 0.7902
DT-Ens. 0.7916 0.8052 0.7691

Morphosyntax-based (compressed)
kNN-TFIDF 0.8640 0.8770 0.8585
kNN-TF 0.8349 0.8070 0.7970
kNN-Ens. 0.8693 0.8662 0.8632
SVM-TFIDF 0.8608 0.8487 0.8419
SVM-TF+ 0.8947 0.8904 0.8883
SVM-Ens. 0.9742 0.9736 0.9736
DT-TFIDF 0.8824 0.8706 0.8642
DT-TF 0.9038 0.8904 0.8859
DT-Ens. 0.9094 0.8991 0.8918

models, we see that most of the models that use
compressed data perform better than their counter-
parts that use uncompressed data. In fact, the en-
semble SVM model also outperforms deep learn-
ing models. This suggests Jiang et al. (2023)’s
findings on the utility of compression also apply in
the context of a Nguni language. Since not all the
compression-based models outperform the neural
models, this might demonstrate that there is util-
ity in using minimal knowledge in traditional ma-
chine learning models. This is because the best
performing model is an ensemble that exploits the
fact that it is easier to identify the plural and sin-
gular noun classes of a noun vs. predicting the sin-
gular or plural in isolation. Then it disambiguates
between just the plural vs. singular classes instead
of 15, unlike the single class prediction problem.
As such, this may indicate that there is value in
using insights about a language in less labour in-
tensive ways.

10 Conclusions

In reproducing the work by (Byamugisha, 2022)
with different configurations and techniques, the
results showed that the neural and ML models per-
form best, with an F1 score of 0.97, while the
replicated models achieve a score of 0.71 despite
their reliance on human-guided knowledge.

In future work, we plan to consider also other
NCB languages and determine whether the num-
ber of ‘ambiguous’ prefixes among the number
of prefixes might influence a technique’s perfor-
mance. We also plan to investigate the use of
transformer-based and decoder-focused models.
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Appendix A. Hyper-parameters and
linguistic information

In this appendix, we provide the hyperparameters
used to train the FNN detailed in Section 7 and the
noun classes with unique prefixes of which mod-
ule A of the knowledge-infused model uses, as de-
tailed in Section 5.

Table 6: Hyper-parameters used to train the neural
networks

Hyper-parameter Value
Activation function ReLU

Optimizer Adam
Learning rate 0.001

Epochs 11 - 20
Hidden Layer Sizes 256, 128

Table 7: List of classes whose prefixes uniquely
identify a class in isiZulu.

Prefix Class Prefix Class
aba 2 isi 7
abe 2 si 7
ba 2 zi 8
be 2 n 9
o 2a m 9
bo 2a zin 10
imi 4 zim 10
mi 4 lu 11
ili 5 ulu 11
il 5 bu 14
li 5 uku 15
ama 6 ku 15
am 6 pha 16
ma 6 ph 16
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Abstract
There is a lack of Swedish datasets an-
notated for emotional and argumentative
language. This work therefore presents
an annotation procedure and a dataset of
Swedish political tweets. The tweets are
annotated for positive and negative atti-
tude. Challenges with this type of an-
notation is identified and described. The
evaluation shows that the annotators do
not agree on where to annotate spans, but
that they agree on labels. This is demon-
strated with a new implementation of the
agreement coefficient Krippendorff’s uni-
tized alpha, uα.

1 Introduction

Automatic computational analysis of emotional
and argumentative language (sentiment, attitude,
emotion, argumentation, etc.) has progressed con-
siderably over recent years, but annotated datasets
are still lacking for all but a few languages. At
the same time, such datasets are necessary at
least as evaluation data, for instance for evaluat-
ing approaches that attempt to alleviate the lack of
language-specific training data by involving ma-
chine translation or multilingual LLMs. In ad-
dition to the fact that careful annotation of large
volumes of text for emotion and argumentation
is labor- and time-consuming, like most NLP an-
notation tasks, it is clear from the literature that
this particular annotation task is inherently diffi-
cult, due to its complexity and subjectivity (see for
example Lawrence and Reed (2020)). Here, we
present a new dataset consisting of Swedish po-
litical tweets manually annotated for positive and
negative attitude, more specifically what the atti-
tude is towards. We have chosen to call the anno-
tation in this dataset for attitude, but it could also
be called stance, or argumentation, as these con-
cepts often overlap.

We also address some of the complexities en-
countered in assessing the quality of the annota-
tions, in particular how to calculate inter-annotator
agreement in a reasonable way. For this pur-
pose, we have reimplemented Krippendorff’s uni-
tized alpha measure (Krippendorff et al., 2016) in
Python, thereby hopefully making it more accessi-
ble to the NLP community.

2 Related work

Previous work on emotional and argumentive lan-
guage in Swedish are few, and work focusing on
annotation of these concepts are fewer. There are
however exceptions. For example, some work has
focused on sentiment, such as creating a sentiment
lexicon (Rouces et al., 2018b,a). There are also
works describing argumentation annotation.

Most similar to the task presented here is the
aspect based sentiment analysis (ABSA) corpus
(Rouces et al., 2020; Språkbanken Text, 2023).
The corpus consists of editorials, opinion pieces
and posts from online forum annotated with sen-
timents and the aspect of the sentiment (source,
target and expression). The agreement was re-
ported as Krippendorff’s α of 0.34 for documents
and 0.44 for paragraphs.

Beyond the Swedish language there are others
who have presented similar annotation tasks. For
example, Bosc et al. (2016) present a dataset of
3883 tweets annotated for argumentation, where
a tweet containing an opinion is considered argu-
mentative. The tweets were selected among cur-
rent popular discussion topics, such as politics.
They reach a Krippendorff’s α 0.74 on a subset
of the dataset. Another similar task is presented
in Trautmann (2020), where aspects (defined as
“the main point the argument is adressing”) are
added to previously annotated spans. These spans
were annotated for expressing negative or posi-
tive stance or argumentation on a topic. Instead of
asking the annotator to annotate freely, they were
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shown a set of candidates and asked to choose the
appropriate one. The agreement was 0.87 Cohen’s
κ. Schaefer and Stede (2022) also present a corpus
of tweets, which consist of 1200 German tweets
related to climate change. While the unit of anno-
tation is the same as here, spans, their annotation
scheme differs. They annotate different kinds of
claims and evidence as well as sarcasm and toxic
language. For these categories they reach between
0.41-0.83 Krippendorff’s α.

An analysis of the agreement of the annotations
of this dataset was previously presented in Lindahl
(2024), which discusses disagreement in argumen-
tation annotation. Compared to this, in this paper
we present the dataset, the annotation procedure
and add additional analysis.

3 Data

The tweets in this dataset were collected from
the period between February 2018 to September
2022. This period roughly represents the time pe-
riod (term of office) between two Swedish gen-
eral elections, held in September 2018 and 2022.
The tweets were taken from the official accounts
of the political parties represented in the Swedish
parliament as well as from the official accounts of
the political party leaders at the time and the of-
ficial account of the prime minister , in total 19
users1. Only original tweets were collected, not
retweets. From this collection, around 4500 tweets
were randomly selected, see table 1. However, we
ensured the tweets were chosen from the whole
time period and that all users were represented.
Still, because the users differ a lot in how many
tweets they publish, the amounts of tweets per user
are not balanced. In order to keep as much of the
content, the preprocessing was kept to a minimum.
External links were removed.

Type Nr. of tweets Nr. of tokens
Test annotation 315 9677
Main annotation 4280 131338

Table 1: Data statistics

4 Annotation

The annotation was carried out by four annotators
with linguistic background. Before the main an-
notation started, a test round was carried out were

1Not all parties or party leaders had an official account.

all annotators annotated 315 tweets. For the main
round, around 600 tweets were annotated by all
annotators. Due to time and monetary constraints,
the rest were annotated by three of the annotators
(around 3300 tweets per annotator).

The annotation was done with the annotation
platform Prodigy (Montani and Honnibal). The
annotators were shown one tweet at a time and
could choose to annotate spans with either posi-
tive or negative label. The spans could not over-
lap. The name of the author of the tweet was also
shown, as this was deemed to be important for the
context.

For each tweet there was also the option to ig-
nore the tweet (if there was something wrong with
the tweet) or to flag it as “very difficult to anno-
tate”. During the test round, the annotators were
also asked to write a comment about the tweets
that were difficult to annotate and why. A meeting
was also held with the annotator between the test
and main round in order to discuss difficult exam-
ples. After the feedback from the test round the
guidelines were updated, see the next section.

4.1 Annotator guidelines

The purpose of this annotation was to find attitude
in political tweets, more specifically what the ob-
ject of an expressed attitude is. In order to de-
termine what to annotate, this was formulated as
the question “Is there a negative or positive atti-
tude expressed in the tweet?” in the guidelines. If
that was the case, the annotator was asked to mark
the object of this attitude with a span. See this
(translated) example below, where bold indicates
a negative attitude:

“Now every penny needs to go to-
wards counteracting the municipal cri-
sis. Therefore, we say no to increased
Swedish EU fees. The EU bureaucrats
will have to cut their coat according to
their cloth.”

The object of the attitude could be both one
word or a phrase, as well as the full tweet if
deemed necessary. The guidelines included sev-
eral examples of both negative and positive spans.
They also included a test in order to determine
if an attitude was expressed - by adding “for” or
“against”.

As an observant reader might have noticed, in
the example above one could argue that “The EU

107



bureaucrats” should also be annotated as a nega-
tive attitude. This highlights one of the difficulties
in this annotation - what to include. Implicitness
and ambiguity was brought up by the annotators as
difficult after the first round, so for the main round
they were asked to only annotate when attitudes
were explicitly expressed. If a tweet was too am-
biguous, implicit in expressing an attitude or the
annotator had difficulties determining the object of
the attitude, they could chose to not annotate the
tweet. Another reported difficulty was regarding
how much to include. Spans was chosen as unit
for the annotation in order to be able to capture
different ways an attitude can be expressed. Lim-
iting the unit of annotation to tweet-level would
have been to broad, as many tweets include more
than one object of attitude. For the same reason,
and because of the unstructured language some-
times present in tweets, annotating on sentence-
level would not have been suitable. Because of
this, we chose to keep spans as the unit of annota-
tion. But, because of the feedback, the annotators
were asked to annotate all instances of an attitude
(instead of marking longer spans) and to also keep
their annotations as short as possible.

5 Annotation evaluation

As previously mentioned, a thorough analysis of
the agreement and disagreement in this dataset
was done in Lindahl (2024). It is reported that
even though agreement is low, there are cases in
which the annotators partly agree. There are also
cases where multiple interpretations are possible.
Here we will summarize some of the agreement
and add new, additional analysis.

A new example of a how a tweet has been anno-
tated by three of the annotators is seen below, bold
is again negative and italics is positive.

A. The elderly should not have to suffer due to
understaffing. Female-dominated professions
must be revalued and appreciated so that more
people want to stay in their jobs - it’s about the
care of our loved ones!

B. The elderly should not have to suffer due to
understaffing. Female-dominated professions
must be revalued and appreciated so that more
people want to stay in their jobs - it’s about the
care of our loved ones!

C. The elderly should not have to suffer due to
understaffing. Female-dominated professions

must be revalued and appreciated so that more
people want to stay in their jobs - it’s about the
care of our loved ones!

We can see that the annotators both agree and
don’t agree. They all agree that understaffing is
negative, but they disagree on how much of the
context should be included. Annotator A has also
included a span which the others have not marked.
This is in line with the reported difficulties about
determining what to annotate.

5.1 Annotator statistics

As described in the previous section, the annota-
tors were given the choice to ignore tweets and to
flag them as extra difficult. In both the test and the
main round, almost no tweets were ignored due
to errors. In the main round, the annotators also
found most tweets acceptable to annotate. One an-
notator, annotator D, marked more tweets as extra
difficult to annotate compared to the others. Inter-
estingly, the annotators rarely agreed on the tweet
being marked as extra difficult.

A B C D
Nr. rejected 34 16 11 142

Table 2: Rejected tweets

As reported in Lindahl (2024), the annotators
marked spans in most tweet, between 95-80% of
the tweets. Annotator A diverged from the others,
annotating more and shorter spans on average but
also the most tokens. The average length of a span
was between 4-6 tokens.

Further examining the annotations, part of
speech (POS) patterns were investigated. The
annotators have a similar distribution over part
of speech annotated. The most common POS
is nouns followed by verbs. Annotator A differ
again, their spans more often starts with proper
nouns, compared to the others. All of them starts
their spans the most with nouns (Between 37-45%
of spans). The annotators also most often end the
spans with nouns (about 70% of spans).

5.2 Agreement

As reported in Lindahl (2024), Krippendorff’s α
(Krippendorff, 1995) on token level for all anno-
tations is 0.41, ranging between 0.36-0.46 for dif-
ferent annotator combinations. The agreement is
low to moderate according to the scale by Landis
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and Koch (1977), with higher in some annotator
combinations.

However, evaluation on token level is not al-
ways suitable for span annotation. Most agree-
ment measures assume that the units of annotation
are predefined. In span annotation, the annotator
both divide some continuum into units, in our case
text into spans, and labels them. Because of this,
we implemented a version2 of Krippendorff’s α
developed specifically for determining the relia-
bility of the unitizing process and the labels: uni-
tized alpha, uα (Krippendorff et al., 2016; Krip-
pendorff, 2013). This coefficient has been sug-
gested as an appropriate measure for span label-
ing, but has not been adopted on a wide scale (Klie
et al., 2024). To our knowledge, this is the only
python implementation of this coefficient.

uα itself has four variants, all giving valuable
information about the annotations. Three of them
are shown in table 3. uα is the general agreement
of both the spans and the labels (in this case posi-
tive and negative). |uα describes the agreement be-
tween spans, disregarding the label (unannotated
vs. annotated segments). Taking the annotations
in this paper as an example, this variant reports
agreement of all annotated spans, ignoring the la-
bel of these spans. cuα instead only consider the
intersections of annotated segments and describes
agreement on label. cuα also reports its coverage,
how much of the data which consists of overlap-
ping spans.

The fourth version, kuα, reports agreement on
each label separately, which in our case is almost
the same as cuα for both categories.

Combo uα |uα cuα cuα coverage
ABCD 0.34 0.31 0.84 13.5%
ABC 0.45 0.43 0.88 14.1%
ABD 0.39 0.36 0.91 12.6%
ACD 0.36 0.33 0.83 14.3%
BCD 0.41 0.38 0.89 14.5%

Average 0.39 0.36 0.87 -

Table 3: uα for different annotator combinations

Like α, agreement is perfect when uα is 1. Sim-
ilar to other agreement coefficients, how to inter-
pret what is an acceptable or good level of uα is
not always clear.

In table 3 above, we can see that while agree-

2https://github.com/lindanna/unitized_
alpha

ment is low concerning where the spans are lo-
cated (|uα between 0.31-0.43), it is high where the
annotators have annotated the same segments (cuα
between 0.83-0.91). An example of this can be
seen in the example in the beginning of this sec-
tion. The coverage of cuα tells us that between 12-
14% of the annotated data are overlapping spans.
The annotators thus do not agree very much on
where attitudes are being expressed. However,
when they do agree that an attitude is being ex-
pressed, they agree on the label. Determining if
something is positive or negative seems easier than
determining what to include.

6 Discussion & Summary

In this paper a dataset of annotated political
tweets, with the accompanying annotation proce-
dure, was presented. The agreement (normal Krip-
pendorff’s α) for our dataset was similar to the
ones reported in (Rouces et al., 2020), but lower
than that in (Bosc et al., 2016) or (Trautmann,
2020).

During the annotation process, based on the an-
notators feedback, we identified several challenges
in annotating attitudes. The most prominent one
was what to consider an attitude. Due to ambi-
guity, implicitly and sometimes phrasing, the an-
notators reported difficulties determining what to
include. While we tried to solve this by only an-
notation explicit attitudes, it remained a problem.

By using our new implementation of unitized
alpha (uα), we can confirm this problem. The an-
notators differ in where they have annotated the
spans, resulting in general uα of 0.34. However,
at the places where they have annotated the same
spans, the agreement (cuα) is 0.87. This highlights
the need to not only report one agreement number,
but to look at annotations from several angles.

A future annotation task of this kind could prob-
ably benefit from annotation predefined spans, or
annotating in several steps, as in for example
Trautmann (2020). Another factor to consider in
this, previously shown by Lindahl (2024), is that
there can be several possible interpretations, natu-
rally leading to lower agreement.
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Abstract
Understanding and generating morpholog-
ically complex verb forms is a critical
challenge in Natural Language Processing
(NLP), particularly for low-resource lan-
guages like Armenian. Armenian’s verb
morphology encodes multiple layers of
grammatical information, such as tense, as-
pect, mood, voice, person, and number,
requiring nuanced computational model-
ing. We introduce VerbCraft, a novel neural
model that integrates explicit morpholog-
ical classifiers into the mBART-50 archi-
tecture. VerbCraft achieves a BLEU score
of 0.4899 on test data, compared to the
baseline’s 0.9975, reflecting its focus on
prioritizing morphological precision over
fluency. With over 99% accuracy in as-
pect and voice predictions and robust per-
formance on rare and irregular verb forms,
VerbCraft addresses data scarcity through
synthetic data generation with human-in-
the-loop validation. Beyond Armenian, it
offers a scalable framework for morpholog-
ically rich, low-resource languages, paving
the way for linguistically informed NLP
systems and advancing language preserva-
tion efforts.

1 Introduction

Armenian, an Indo-European language, presents
significant challenges in natural language process-
ing (NLP) due to its intricate verb morphology.
Armenian verbs encode multiple layers of gram-
matical information, including tense, aspect, mood,
voice, person, and number, using both synthetic and
analytical forms (Dum-Tragut, 2009). This mor-
phological complexity leads to highly nuanced verb
forms that are computationally difficult to model.

Morphologically rich languages (MRLs) like Ar-
menian, characterized by their complex inflectional

systems and scarcity of annotated data, pose unique
challenges for NLP. In such languages, grammat-
ical information is embedded within individual
word forms, making accurate modeling essential
for tasks such as translation and morphological
analysis.

Despite recent advances in neural machine trans-
lation (NMT) and pretrained language models, ex-
isting approaches often fall short in handling the
intricate morphological structures of MRLs. Stan-
dard models, such as mBART, struggle to gener-
alize well on low-resource languages, where mor-
phological richness compounds the difficulty of
learning effective representations.

To address these challenges, we introduce Ver-
bCraft, a morphologically aware extension of the
mBART-50 model. Motivated by the unique mor-
phological complexity of Armenian verbs, Ver-
bCraft incorporates explicit mclassifiers for predict-
ing morphological features into the shared encoder-
decoder architecture, bridging the gap between lin-
guistic specificity and translation quality. By ex-
plicitly modeling Armenian verb features, such as
tense, aspect, and mood, during training, VerbCraft
enhances the model’s capacity to generate accurate
and morphologically consistent translations.

A key feature of this work is the creation of
a synthetic dataset using large language models
(LLMs), such as ChatGPT, coupled with human-in-
the-loop validation by native Armenian speakers.
This strategy addresses the scarcity of annotated
data for Armenian, enabling the development of
robust and linguistically informed NLP models.
The dataset includes standard, rare, and irregular
verb forms, ensuring comprehensive evaluation of
the model’s performance.

Through extensive experiments, VerbCraft
demonstrates significant improvements over base-
line models. Specifically, it achieves a BLEU
score of 0.4899 on the test set, compared to the
baseline’s 0.9975, reflecting its focus on capturing
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morphological precision over sentence fluency. In
terms of morphological accuracy, VerbCraft consis-
tently outperforms the baseline across key features,
achieving 100% accuracy in aspect predictions,
96.26% in voice, 95.33% in tense, and 91.59% in
mood. These results underscore the importance of
integrating linguistic supervision into NLP systems
for morphologically rich languages and highlight
the potential for applying this framework to other
low-resource languages.

This paper contributes to the field by:

• Introducing VerbCraft, a novel neural model
integrating morphological classifiers into the
mBART-50 architecture, specifically tailored
for Armenian verb generation.

• Developing a synthetic dataset with Chat-
GPT and native speaker validation, addressing
data scarcity in Armenian NLP.

• Providing a comparative analysis demon-
strating the advantages of morphologically
aware models over traditional sequence-to-
sequence models.

This paper is structured as follows: Section 2
reviews related work, highlighting prior efforts in
low-resource NLP, NMT, and morphological in-
tegration. Section 3 describes the methodology,
including model architecture, dataset creation, and
evaluation setup. Section 4 presents experimental
results and discusses the findings, while Section 5
outlines the limitations of this approach. Finally,
Section 6 concludes the paper with insights and
directions for future research.

2 Background and Related Work

This section explores prior efforts in integrating
morphological features into neural models, par-
ticularly for low-resource settings like Armenian,
and highlights their applications in neural machine
translation and cross-lingual transfer.

2.1 Morphologically Rich Languages in
Low-Resource NLP

Languages like Armenian, characterized by com-
plex morphological systems, present significant
challenges in NLP due to limited annotated
datasets. Morphologically rich languages (MRLs)
encode grammatical information, such as tense,
aspect, mood, and voice, within individual word
forms, resulting in high variability that traditional

sequence-based models often fail to capture. Prior
works, including KinyaBERT (Nzeyimana and
Rubungo, 2022) and MorphoBERT (Mohseni and
Tebbifakhr, 2019), demonstrate the value of explic-
itly integrating morphological features into neural
architectures. These studies highlight how morpho-
logical information enhances generalization and
linguistic understanding in MRLs, especially under
low-resource constraints.

Recent studies have also explored the morpho-
logical generalization capabilities of LLMs. Dang
et al. (2024), for instance, introduced a multilingual
adaptation of the Wug Test to assess LLMs’ pro-
ficiency in applying morphological rules to novel
words. Their findings indicate that LLMs can gener-
alize morphological knowledge to unfamiliar terms,
with performance influenced by the morphological
complexity of each language. Similarly, Ismay-
ilzada et al. (2024) conducted a systematic evalua-
tion of compositional generalization in agglutina-
tive languages like Turkish and Finnish, identify-
ing challenges with novel word roots and increased
morphological complexity.

Weller-Di Marco and Fraser (2024) examined
LLMs’ understanding of morphologically com-
plex German compounds, demonstrating that while
LLMs grasp the internal structure of complex
words, they often lack formal knowledge of deriva-
tional rules, leading to challenges in identifying
ill-formed constructions.

Morphological preprocessing techniques, such
as those outlined by Straka and Straková (2017),
have shown that token-level linguistic features like
lemmatization and part-of-speech tagging improve
downstream NLP tasks. Additionally, the use of
universal dependencies (Nivre et al., 2016) pro-
vides a multilingual framework for morphosyntac-
tic analysis, which has inspired methods for inte-
grating rich morphological annotations into neural
models.

2.2 Neural Machine Translation and
Morphological Features

Neural machine translation (NMT) systems, such
as MarianMT and mBART, have been widely
adapted for low-resource languages. However,
these models often falter when handling exten-
sive morphological variation. Recent approaches,
including MorphoBERT and end-to-end lexically
constrained NMT (Jon et al., 2021), emphasize the
importance of explicitly modeling morphological
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features to improve translation accuracy. Arnett
and Bergen (2024) discuss how dataset size and to-
kenization strategies influence performance dispar-
ities across typologically diverse languages, under-
scoring the importance of linguistically informed
approaches. Building on these efforts, VerbCraft
integrates Armenian-specific morphological clas-
sifiers directly into the mBART architecture, en-
abling precise verb generation and morphological
feature prediction.

2.3 LLMs and Data Augmentation
Recent advances in large language models (LLMs),
such as GPT-3, offer promising solutions to ad-
dress data scarcity for low-resource languages.
Techniques such as synthetic dataset generation,
combined with human-in-the-loop validation, have
proven effective for enhancing dataset quality (San-
toso et al., 2024). VerbCraft leverages these tech-
niques by employing ChatGPT to generate Arme-
nian verb datasets, which are validated and refined
by native speakers. This process ensures linguis-
tic accuracy while addressing the scarcity of an-
notated resources. Moreover, approaches such as
those proposed by Dolatian and Sorensen (Dolatian
et al., 2022) provide additional insights into enhanc-
ing data generation for underrepresented languages
through morphological transducers.

Yin et al. (2024) proposed MorphEval, a bench-
mark designed to evaluate LLMs’ comprehension
of Chinese morphemes across characters, words,
and sentences. Their evaluation highlights issues
such as dysfunctions in morphology and syntax,
challenges with long-tailed semantic distributions,
and difficulties arising from cultural implications,
underscoring the necessity for language-specific
enhancements in LLMs. Shin and Kaneko (2024)
highlight challenges in modeling character-level in-
formation in morphologically complex languages,
which are crucial for synthetic dataset creation.
Marco and Fraser (2024) further emphasize the role
of subword segmentation in improving the recog-
nition and generation of lemmas in morphologi-
cally rich languages, aligning with the strategies
employed in VerbCraft.

2.4 Cross-Lingual Transfer Learning
Cross-lingual transfer learning provides another
avenue for improving NLP tasks in low-resource
languages by leveraging data from high-resource
counterparts. Methods such as embedding align-
ment and vocabulary matching (Rybak, 2024) have

shown success in tasks like part-of-speech tag-
ging and named entity recognition. Hofmann
et al. (2024) investigated linguistic generalization
in LLMs, focusing on English adjective nominaliza-
tion. Their study suggests that LLMs rely more on
analogical processes operating on stored exemplars
rather than abstract symbolic rules, particularly in
cases of variable nominalization patterns.

VerbCraft builds on these ideas by adapting
mBART, a multilingual model, for Armenian, ex-
plicitly focusing on integrating morphological fea-
tures. These cross-lingual techniques, combined
with recent subword-based methods (Singh et al.,
2023), provide a robust foundation for addressing
the unique challenges of low-resource morphologi-
cally rich languages.

2.5 Research Gap and Contributions

Despite advancements in integrating linguistic fea-
tures into neural systems, explicit incorporation
of explicit classifiers for predicting morphological
features for low-resource, morphologically rich lan-
guages like Armenian remains underexplored. Ver-
bCraft addresses this gap by embedding Armenian-
specific explicit classifiers for predicting morpho-
logical features into mBART, demonstrating signifi-
cant improvements in verb generation accuracy and
providing a framework extensible to other MRLs.
The alignment with findings from MorphoBERT
(Mohseni and Tebbifakhr, 2019) and the emphasis
on morphological analysis for downstream tasks
(Mohseni and Tebbifakhr, 2019) strengthen its po-
sition as a key contribution in this domain. Addi-
tionally, insights from Yin et al. (2024) and Beguš
et al. (2023) underline the broader necessity of
explicit morphological considerations in NLP for
low-resource languages.

3 Methodology

This section describes the architecture of VerbCraft,
the process of dataset creation, and the evaluation
setup, emphasizing the integration of explicit clas-
sifiers for predicting morphological features into
the mBART-50 model and the strategies used to
address data scarcity for Armenian.

3.1 Model Architecture

VerbCraft extends the mBART-50 model by inte-
grating explicit morphological classifiers tailored
to Armenian verb morphology. These classifiers
predict key grammatical features, including tense,
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aspect, mood, voice, person, and number. The ar-
chitecture is composed of three main components:

1. Shared Encoder: The mBART encoder pro-
cesses the input sequence, generating contex-
tual embeddings that serve as the foundation
for both translation and morphological predic-
tions.

2. Morphological Classifiers: Separate linear
layers are applied to the encoder’s embed-
dings to predict each morphological feature.
These classifiers are auxiliary tasks during
training, providing additional linguistic super-
vision and enhancing the encoder’s represen-
tation.

3. Decoder: The decoder generates translations
without explicitly incorporating morphologi-
cal predictions as input tokens, ensuring the
sequence-to-sequence nature of mBART is
preserved.

The training objective of VerbCraft combines
translation and morphological prediction losses to
achieve balanced optimization across tasks. For-
mally, the objective is expressed as:

Ltotal = Ltranslation +
∑

f∈features

αfLf

where Ltranslation denotes the standard translation
loss, and Lf represents the loss associated with pre-
dicting each morphological feature f (e.g., tense,
aspect, mood). The weights αf are empirically
tuned to balance the contributions of these auxiliary
tasks. This formulation ensures that the model si-
multaneously learns to generate fluent translations
and accurately predict morphological features, en-
abling it to handle the linguistic complexities of
Armenian verbs effectively.

3.2 Dataset
This study employs a novel dataset that encloses
the complex morphology of Armenian verbs. The
dataset is annotated with fine-grained morpholog-
ical features, providing a rich resource for NLP
tasks focused on Armenian verb generation and
analysis.

3.2.1 Dataset Overview and Structure
Our annotated dataset consists of 1,068 sentences
and 1,883 annotated verbs, whereby one sentence
might encompass more than one annotated verb.

Each data point in the dataset is structured as a
JSON object containing the following fields:

• sentence: The original Armenian sen-
tence.

• translation: English translation of the
sentence.

• verb info: Detailed information about the
verb(s) in the sentence: tense, aspect,
mood, voice, person, number and
component breakdown.

More detailed information on the distribution of
morphological features in the dataset can be taken
from Table 1.

Tense Aspect
Aorist 432 Imperfective 1,102
Present 395 Perfective 765
Imperfect 184 Inceptive 15
Future 138 Habitual 1
Conditional 141
Pluperfect 116
Present Perfect 112

Mood Voice
Indicative 1,266 Active 1,614
Subjunctive 404 Passive 142
Conditional 20 Reflexive 84

Person Number
3rd Person 1,212 Singular 1,303
1st Person 351 Plural 397
2nd Person 137 None 177
None 177

Table 1: Distribution of Morphological Features

3.3 Synthetic Data Generation

To address the scarcity of annotated Armenian
datasets, we generated synthetic data using Chat-
GPT 1. The data generation pipeline includes the
following steps:

1. Prompt Design: Custom prompts were engi-
neered to produce diverse verb-centric sen-
tences with rich morphological variations.
The prompts used for this task can be taken
from A.1.

1OpenAI, ChatGPT (October 2023 version), GPT-4o,
2024, https://openai.com.
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2. Human-in-the-Loop Validation: Two native
Armenian speakers, including a linguist, re-
viewed and corrected the morphological anno-
tations. This step was crucial to ensure that the
dataset reflects linguistic accuracy, especially
for irregular verbs or forms with ambiguous
meanings.

The final dataset (1,883 annotated verb in-
stances) consists of training, validation, and test
splits. An additional inference set (40 instances),
enriched with rare and irregular verb forms, eval-
uates the model’s ability to generalize beyond the
training distribution.

3.3.1 Preprocessing Steps
The preprocessing pipeline ensures the model re-
ceives well-structured input data and correct mor-
phological feature labels. We designed a compre-
hensive preprocessing function to transform raw
input into tokenized sequences and associated mor-
phological annotations.

Tokenization and Feature Extraction:

• Input Tokenization: Sentences are tokenized
using the MBart50TokenizerFast from Hug-
ging Face, which handles multi-lingual text,
including Armenian.

• Morphological Feature Annotation: Each
verb in the input sentence is annotated with
its corresponding morphological features. For
example, the verb ”run” would be encoded as
<VERB:run:<TENSE:past> to indicate
its tense. Additional tags are used for the other
features such as aspect, mood, and person.

3.4 Evaluation Setup
We evaluate the system on two main dimensions:

1. Armenian-to-English Translation: BLEU
scores are computed to measure the fluency
and adequacy of the model-generated transla-
tions by comparing them with reference trans-
lations. This evaluates the model’s capability
as a translation system.

2. Morphological Feature Analysis: Accuracy
scores for each morphological feature assess
the model’s ability to predict explicit linguis-
tic attributes (e.g., tense, aspect, mood) for
Armenian verbs. This evaluation highlights
the effectiveness of incorporating morpholog-
ical supervision.

3. Qualitative Error Analysis: Qualitative anal-
ysis was performed to identify common error
patterns, such as tense inconsistencies and in-
correct verb conjugations. This analysis pro-
vides insights into the model’s limitations and
guides future improvements.

Additionally, we introduce a specialized infer-
ence dataset enriched with rare and irregular verb
forms. This dataset is designed to assess the gen-
eralization capacity of the model in challenging
linguistic scenarios, such as handling verbs with
uncommon morphological patterns.

Morphological accuracy is calculated as:

Accuracyfeature =
Correct Predictions
Total Predictions

The evaluation process ensures a comprehen-
sive understanding of the model’s strengths and
weaknesses, highlighting its ability to handle the
complexities of Armenian verb morphology while
maintaining translation quality.

3.5 Baseline Model
To contextualize the performance of our enhanced
model, we established a baseline using the standard
mBART-large-50 model without any morphologi-
cal enhancements. This baseline serves as a point
of comparison, allowing us to quantify the improve-
ments brought about by our architectural modifica-
tions and multi-task learning approach. The base-
line model was evaluated using the same metrics
and datasets as our enhanced model, ensuring a fair
and comprehensive comparison.

3.6 Reproducibility
Code, model checkpoints, and datasets are open-
sourced to ensure reproducibility. Detailed config-
uration files for hyperparameters and preprocessed
datasets are available as well.

4 Results and Discussion

This section evaluates VerbCraft on the generated
dataset, analyzing its performance across various
morphological features and translation accuracy.

4.1 Translation Quality: BLEU Score
Analysis

VerbCraft’s BLEU scores demonstrate a significant
improvement in translation quality across epochs:

• Epoch 1: 0.2470
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• Epoch 10: 0.4876

However, an anomaly is observed at epoch 5, where
the BLEU score temporarily drops to 0.0000 before
recovering. This phenomenon likely reflects a shift
in internal representations as the model balances
translation and auxiliary morphological prediction
tasks. Further investigation into these dynamics
could optimize learning efficiency.

4.2 Morphological Feature Prediction
Accuracy

VerbCraft excels in predicting key morphologi-
cal features of Armenian verbs during training, as
shown in Table 2. The model demonstrates signifi-
cant improvements across all features, particularly
in tense and mood, which are critical for accurate
translations.

Feature Initial Training Accuracy Final Training Accuracy
Tense 0.0654 0.9813
Aspect 0.0000 1.0000
Mood 0.0000 0.9813
Voice 0.0000 0.9626
Person 0.7103 0.9439
Number 0.0280 0.9626

Table 2: Improvement in Morphological Feature
Prediction During Training

These results indicate that the model learned to
accurately predict Armenian morphological fea-
tures during training, crucial for handling the ag-
glutinative nature of Armenian verbs.

A closer look at the learning dynamics of specific
morphological features reveals interesting patterns:
Aspect and Voice: These features show rapid im-
provement, reaching high levels of accuracy early
in the training process. Aspect achieves perfect
accuracy (1.0000), suggesting that the model fully
grasped the distinction between perfective and im-
perfective forms in Armenian verbs. Similarly,
Voice (96.26%) indicates that the model has ef-
fectively learned to distinguish between active, pas-
sive, and other voice forms.
Tense and Person: The model struggled ini-
tially with Tense (0.0654) and Person (0.7103) but
showed significant improvement throughout train-
ing. The slower improvement may reflect the com-
plexity of the Armenian tense system and agree-
ment patterns requiring more exposure to varied
forms in the training data.
Number: The Number feature started with rela-
tively low accuracy (0.0280) but achieved strong
performance by the end of training (96.26%). This
suggests that singular vs. plural distinctions in

Armenian verbs are easier for the model to learn,
possibly due to explicit morphological markers in
the verb forms.
Mood: The model showed steady improvement
in predicting mood (e.g., indicative, subjunctive,
imperative), reaching 98.13% accuracy by epoch
10. This suggests that while mood distinctions are
challenging, the model can handle them effectively
with enough training data and exposure to varied
verb forms.

4.3 Comparison of Baseline and Enhanced
Model

The comparison between the baseline mBART-50
model and the enhanced VerbCraft reveals substan-
tial improvements in handling Armenian verb mor-
phology. The enhanced model achieved a BLEU
score of 0.4899 on the test set, significantly im-
proving over the baseline model’s 0.9975. This
improvement reflects the model’s ability to gen-
erate more syntactically and semantically correct
verb forms by effectively capturing complex mor-
phological structures.

Integrating explicit morphological classifiers al-
lowed the enhanced model to outperform the base-
line across all key morphological features (see Ta-
ble 3), particularly in tense and aspect, where accu-
rate predictions are critical. VerbCraft emphasizes
morphological precision, possibly at the expense of
sentence fluency. This trade-off could lower BLEU
scores despite achieving higher accuracy in gram-
matical features like tense, aspect, and voice. Con-
versely, the baseline might produce fluent but mor-
phologically inconsistent outputs, inflating BLEU
artificially.

The evaluation, conducted on both test and infer-
ence sets, showed that the enhanced model demon-
strated superior accuracy, confirming that explicitly
modeling morphological features leads to signifi-
cant performance gains in languages with complex
verb systems like Armenian.

Metric Test Data Inference Data
Baseline Enhanced Baseline Enhanced

BLEU Score 0.9975 0.4899 0.9229 0.1060
Tense Acc. 8.41% 95.33% 5.00% 87.50%
Aspect Acc. 39.25% 99.07% 70.00% 100%
Mood Acc. 70.09% 91.59% 87.50% 95.00%
Voice Acc. 81.31% 96.26% 85.00% 92.50%
Person Acc. 14.95% 94.39% 25.00% 97.50%
Number Acc. 78.50% 97.20% 42.50% 100%

Table 3: Performance on Test and Inference Sets
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4.4 Error Analysis and Broader Implications
VerbCraft demonstrates notable strengths in han-
dling Armenian verb morphology, while also re-
vealing challenges that highlight broader issues in
modeling morphologically rich languages.

4.4.1 Strengths
The enhanced model consistently outperforms the
baseline mBART-50 in predicting complex mor-
phological features. Key strengths include:

• Tense and Person: VerbCraft excels in pre-
dicting morphological features for verbs, par-
ticularly in past and imperfect tenses, where
the baseline struggled significantly.

• Aspect and Voice: With near-perfect accu-
racy, the model effectively distinguishes be-
tween perfective and imperfective aspects, as
well as active and passive voice forms.

• Morphological Awareness: The ability to
process and generate linguistically complex
forms demonstrates the model’s advanced un-
derstanding of Armenian’s rich inflectional
system.

These strengths underscore the effectiveness of
integrating morphological classifiers and linguistic
supervision into the model architecture.

4.4.2 Areas for Improvement
Despite its strengths, VerbCraft encounters chal-
lenges in balancing grammatical precision with
natural language fluency:

• Tense Consistency: Errors arise in compound
tenses, with occasional mismatches in tense
usage within a sentence.

• Verb Stem Alterations: Rare but impactful
errors involve incorrect modifications of verb
stems, altering intended meanings.

• Auxiliary Verb Omission: Missing auxiliary
verbs in compound tense constructions reduce
grammatical completeness.

• Mood Mismatches: Generating correct sub-
junctive and imperative moods remains a chal-
lenge, reflecting broader modality modeling
issues.

Addressing these issues requires deeper integra-
tion of contextual and syntactic information to re-
fine predictions and improve consistency.

4.4.3 Linguistic Insights
The results provide valuable insights into Armenian
verb morphology and computational modeling:

• Aspect and Voice: Accurate representation
of these features is critical for morphologi-
cally rich languages and has implications for
languages like Turkish and Arabic.

• Compound Tenses and Mood: Challenges
with auxiliary verb generation and mood pre-
dictions highlight the need for nuanced inte-
gration of morphology, syntax, and semantics.

4.4.4 Balancing Accuracy and Fluency
The model’s high accuracy in predicting linguistic
features occasionally comes at the expense of trans-
lation fluency. This trade-off reflects the ongoing
challenge in NLP for low-resource languages: bal-
ancing precise linguistic modeling with coherent
and fluent language generation.

4.4.5 Generalization and Broader Relevance
VerbCraft’s framework can be adapted to other low-
resource, morphologically rich languages such as
Finnish, Greek, and Persian. This adaptability of-
fers a roadmap for addressing similar linguistic
complexities across diverse languages, advancing
NLP for underrepresented linguistic systems.

5 Conclusion and Future Work

VerbCraft successfully integrates explicit morpho-
logical classifiers into the mBART-50 framework,
addressing key challenges in modeling Armenian
verb morphology. The model achieves significant
gains in:

1. Morphological Accuracy: Achieving 100%
accuracy in aspect, 96.26% in voice, 95.33%
in tense, and 91.59% in mood predictions, Ver-
bCraft demonstrates its ability to handle the
complexities of Armenian verbs.

2. Morphologically Consistent Translations:
Despite a lower BLEU score (0.4899) com-
pared to the baseline (0.9975), VerbCraft pri-
oritizes grammatical accuracy over fluency,
effectively capturing rare and irregular verb
forms.

This study establishes a foundation for advanc-
ing NLP systems tailored to morphologically rich,
low-resource languages. By integrating linguis-
tic supervision into neural architectures, VerbCraft
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demonstrates the potential for improving both lin-
guistic precision and translation quality.

Building on these findings, future work will fo-
cus on several key areas of improvement and expan-
sion. Firstly, enhanced contextual modeling will
be explored to address challenges such as tense con-
sistency, auxiliary verb generation, and mood pre-
diction. This will involve incorporating advanced
mechanisms to refine the model’s contextual under-
standing.

Secondly, the approach will be extended to in-
clude broader linguistic features, such as noun
morphology and additional dialectal variations.
This expansion aims to increase the model’s gen-
erality and applicability across diverse linguistic
contexts.

Thirdly, the methodology will be adapted for
scalability to other languages, including Greek,
Persian, and Turkish. This adaptation will test the
framework’s potential effectiveness and flexibility
in handling diverse linguistic systems.

Additionally, dataset enrichment will be priori-
tized by expanding the current dataset with natural
text and multimodal data. This step aims to im-
prove the model’s robustness and ability to under-
stand and process richer contextual information.

Finally, future efforts will focus on integrating
syntax and semantics into the model. By unify-
ing these linguistic layers, the model can achieve
holistic linguistic representation, addressing com-
plex phenomena like compound tenses and modal
constructions.

Future efforts will address the trade-off between
grammatical precision and fluency, optimizing Ver-
bCraft for broader NLP applications while main-
taining its focus on linguistic accuracy.

6 Limitations

While VerbCraft represents a significant advance-
ment in morphologically aware NLP for low-
resource languages, several limitations warrant at-
tention. VerbCraft faces challenges in balancing
accuracy and fluency, with occasional inconsisten-
cies in tense, mood, and auxiliary verb generation.
Its reliance on synthetic data and limited dialec-
tal coverage highlight areas for dataset enrichment.
Scalability to unrelated languages remains untested,
and resource constraints pose practical challenges
for widespread adoption. Addressing these issues
will refine and generalize the framework further.

A Appendix

A.1 ChatGPT Prompts
Prompt for Dataset Generation: ”Generate a
diverse set of Armenian sentences with verbs an-
notated for their morphological features. For each
sentence, ensure the verb is annotated with the
following features: tense, aspect, mood, voice, per-
son, and number. Include both regular and irreg-
ular verbs, as well as a mix of common and rare
forms. The output should be formatted in JSON.
For each verb, provide: 1) The Armenian sentence.
2) The English translation of the sentence. 3) A
detailed breakdown of the verb’s morphological
features (tense, aspect, mood, voice, person, and
number). Generate at least 50 examples featuring
verbs across various tenses, aspects, moods, and
voices. Ensure the inclusion of sentences contain-
ing irregular verbs and complex verb forms, such
as the future subjunctive and compound tenses, to
capture the full range of Armenian verb morphol-
ogy.” The data was generated between 05.08.2024
and 18.08.2024.

Figure 1: Example output (in JSON format).

A.2 Data Split
Number of training samples: 854 Number of vali-
dation samples: 107 Number of test samples: 107
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Sirin, Abdullatif Köksal, Bhuwan Dhingra, Antoine
Bosselut, Lonneke van der Plas, and Duygu Ataman.
2024. Evaluating morphological compositional gen-
eralization in large language models. arXiv preprint
arXiv:2410.12656.

Josef Jon, João Paulo Aires, Dusan Varis, and Ondřej
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Abstract

Optical Character Recognition (OCR) is
critical for accurate access to historical
corpora, providing a foundation for pro-
cessing pipelines and reliable interpreta-
tion of historical texts. Despite advances,
the quality of OCR in historical docu-
ments remains limited, often requiring
post-OCR correction to address residual
errors. Building on recent progress with
instruction-tuned Llama 2 models applied
to English historical newspapers, we ex-
amine the potential of German Llama 2
and Mistral models for post-OCR correc-
tion of German medical historical periodi-
cals. We perform instruction tuning using
two configurations of training data, aug-
menting our small annotated dataset with
two German datasets from the same time
period. The results demonstrate that Ger-
man Mistral enhances the raw OCR out-
put, achieving a lower average word error
rate (WER). However, the average char-
acter error rate (CER) either decreases or
remains unchanged across all models con-
sidered. We perform an analysis of perfor-
mance within the error groups and provide
an interpretation of the results. The code
and resources are publicly available.1

1 Introduction

The effectiveness of transcription methods, such
as optical character recognition (OCR), in pro-
cessing historical documents critically influences
the accuracy of search and analysis in text pro-
cessing pipelines (Lyu et al., 2021). Despite ad-
vances in OCR technology, library and archive
collection transcriptions often contain significant

1https://github.com/veraDanilova/ocr_
post-correction_RESOURCEFUL-2025

errors and noise due to factors such as scan quality,
language, layout complexity, and character sim-
ilarity. Inaccuracies in OCR transcriptions can
propagate through multistep historical text pro-
cessing pipelines, hinder performance on down-
stream Natural Language Processing (NLP) tasks,
and create a risk of distorted interpretations (Lo-
presti, 2008; van Strien et al., 2020). Post-OCR
correction plays an important role in mitigating
these errors and improving transcription quality.

We focus on the post-correction of a dataset
from an ongoing project2 on the modern history
of medicine, which explores ten European patient
organizations. In this paper, we consider the pe-
riodical of the German Diabetes Association “Der
Diabetiker”, issued between 1951 and 1990. The
materials predate the German spelling and punc-
tuation reform of 1996, when new rules were im-
plemented regarding the double s (ß), consonants,
capitalization, hyphenation, and loanwords, mak-
ing the dataset different from modern texts. The
quality of raw OCR output varies significantly,
with simpler layouts achieving higher accuracy,
while complex multicolumn layouts containing
advertisements and rare fonts often result in nu-
merous errors.

In this paper, we address the following research
questions:

1. Can the previously successful approach for
post-OCR correction of an English-language
historical newspaper dataset (Thomas et al.,
2024) be effectively adapted using German-
specific models? Additionally, will genera-
tive models outperform BART (Lewis et al.,
2020) in reducing key metrics like the aver-
age Character Error Rate (CER) and Word
Error Rate (WER)?

2. How does augmentation with a different
source (National Library dataset including re-

2http://actdisease.org
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ligious and cultural articles) contribute to the
quality of post-OCR correction?

3. Given that our dataset includes both chal-
lenging pages with high initial CER and
easier pages with near-perfect recognition,
can post-correction improve difficult errors
without compromising the quality of already
well-recognized pages?

This paper unfolds as follows. Section 2 de-
scribes prior research. In Section 3, we present
our annotated dataset alongside the augmentation
datasets. Section 4 lays out the experimental
setup. Finally, Section 5 discusses our findings
and Section 6 concludes the paper.

2 Related Work

Post-OCR correction of historical documents has
become a central theme at the International Con-
ference on Document Analysis and Recognition
(ICDAR). The conference hosted two competi-
tions in 2017 and 2019 dedicated to post-OCR cor-
rection, introducing two key tasks: error detec-
tion and error correction. Sequence-to-sequence
neural machine translation emerged as the domi-
nant methodology among the most successful ap-
proaches showcased at this conference (Chiron
et al., 2017; Rigaud et al., 2019). The authors of
the competition emphasize that historical newspa-
pers and periodicals continue to pose a substantial
challenge to OCR systems, mainly due to their in-
tricate layouts and typographic diversity (Rigaud
et al., 2019). Following the conclusion of these
competitions, the benchmarks were further uti-
lized to advance the state of the art in post-OCR
correction of newspapers with pre-trained mod-
els, specifically by finetuning BART (Soper et al.,
2021).

Thomas et al. (2024) are the first to explore
the instruction tuning of generative models for
post-OCR correction of an English dataset of 19th
century newspapers. Llama 2 models (Touvron
et al., 2023) are reported to considerably outper-
form BART. The authors emphasize the adaptabil-
ity of models like Llama 2 to downstream tasks
with limited instruction-tuning data (Zhou et al.,
2024) in contrast to machine translation models
like BART that typically depend on large volumes
of parallel data for optimal performance (Xu et al.,
2024).

This paper addresses a real-world scenario in-
volving a very limited annotated dataset of Ger-
man historical medical periodicals, characterized
by varying quality in the initial OCR. The dataset
includes layouts and fonts that are easily recog-
nized by models, as well as more complex lay-
outs with distorted reading order, images, and ad-
vertisements featuring rare fonts and skewed text.
Given the small size of this dataset, which pre-
cludes instruction tuning, we augment it with a
German dataset from the ICDAR 2019 compe-
tition, which includes a similar time period and
source - newspapers. Additionally, we explore
augmentation using another ICDAR 2019 dataset,
which represents a different source - cultural and
religious materials from the German National Li-
brary.

This study does not explore augmentation with
synthetic data. While artificially inserted errors
can enhance model performance, they may fail to
capture the complexity and diversity of real-world
OCR errors, limiting the models’ generalization
ability (Jasonarson et al., 2023). This is particu-
larly relevant for our dataset, where typical error
insertion is insufficient due to the intricate chal-
lenges posed by complex layouts, such as those
with advertisements. We leave the exploration of
error generation approaches for our specific con-
text to future work.

Our experiments contribute to post-OCR cor-
rection for German historical documents by com-
paring the performance of a finetuned German
BART model with instruction-tuned German gen-
erative models, such as Llama 2 13b and Mistral
7b(Jiang et al., 2023). Beyond evaluating average
performance metrics, we focus on error categories
to better understand how the models handle spe-
cific types of errors and whether they degrade the
quality in areas where OCR is already accurate.

3 Data

3.1 Der Diabetiker

The dataset contains pages from the patient
organization periodical, Der Diabetiker (1951-
1990), published by the German Diabetes Asso-
ciation3. The journal was digitized using ABBYY
FineReader 144. Deskew and straighten lines were

3The periodical changed name in 1971 to Diabetes-
Journal

4https://www.abbyy.com/company/news/
abbyy-finereader-14-pdf-solution/
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selected as image processing steps in the work-
flow.

To create the ground truth, we manually cor-
rected a sample consisting of 35 pages selected to
represent layout complexity and time period. The
quality of simple layouts is generally high, while
most issues are concentrated in the more complex
layouts. Pages considered as simple layout have
only one or two columns, text in a common font
(Times New Roman or Arial), and no advertise-
ments or titles breaking the columns. Pages con-
sidered as complex layout contain full page ad-
vertisements, multi-text columns interspersed with
advertisements and images, and rare fonts.

Overall, we collected 20 pages with complex
layouts (12 pages from the period 1951-1970 and
8 pages from the period 1970-1990), and 15 pages
with simple layouts (7 pages from the period
1951-1970 and 8 pages from the period 1970-
1990).

3.2 Augmentation Datasets

To augment the training dataset, we utilize two
ICDAR-19 competition datasets with ground truth
for OCR post-correction: the Neue Zürcher
Zeitung (NZZ) and the IMPACT German National
Library dataset (GNL) 5.

The NZZ dataset includes 96 front pages of the
Swiss newspaper Neue Zürcher Zeitung, covering
the period from 1780 to 1947. Front pages were
chosen because they typically contain highly rel-
evant material. They include but not exclusively
consist of advertisements.

The GNL dataset is a subset of the IMPACT
dataset (Papadopoulos et al., 2013) that consists
of 150 pages from various time periods. Accord-
ing to our manual analysis, it is mostly written
in contemporary German, spanning different do-
mains such as art, literature, and religion, with
some excerpts in Latin. Neither the ICDAR-2019
competition nor the official description of the full
version in Papadopoulos et al. (2013) provide de-
tailed information on the distribution of time pe-
riods and domains within the German segment.
However, the latter reports that the full version of
the IMPACT dataset is predominantly composed
of 19th-century data, accounting for 316k of the
total 602k pages, followed by 20th-century data
with 160k pages. More than half of the dataset
consists of book pages (335k pages).

5https://zenodo.org/records/3515403

For NZZ and GNL datasets, special alignment
files are provided to match OCR-ed text with
ground-truth spans. Manual review of the aligned
spans showed that in four NZZ pages and eleven
GNL pages, the reading order was restored in the
ground truth. Therefore, the OCR and ground
truth spans are either partially or completely mis-
aligned. Additionally, multiple pages exhibit par-
tial mismatches due to missing text in the OCR
output. The next section outlines the dataset types
used to evaluate the impact of these misalign-
ments.

4 Experimental Setup

In this study, we evaluate German BART and gen-
erative models, Llama 2 13b and Mistral 7b, com-
paring their WER and CER metrics6 against raw
OCR outputs.

At the core of the training process lies a base
dataset consisting of Der Diabetiker pages, a small
annotated collection, combined with NZZ, a com-
parable newspaper source. To evaluate the impact
of dataset composition, we train the models with
and without augmentation using GNL, which adds
greater diversity to the data.

The training data is structured in two configu-
rations: one that retains misaligned spans and an-
other that excludes them.

To deepen our understanding of models’ perfor-
mance, we analyze their handling of diverse OCR
errors across three distinct error categories.

Our primary focus is the correction of errors in
the Der Diabetiker test data. The approach iden-
tified as successful will be further refined and ex-
panded for application in post-OCR correction of
the entire German segment of our project’s dataset
of patient organizations’ periodicals.

4.1 Data Pre-processing

Pre-processing for all datasets includes removing
extra spaces and duplicates. Additionally, we con-
trol for input context length based on the insights
from previous work. For Der Diabetiker, we use
the segmentation into paragraphs provided by the
raw OCR output. For NZZ and GNL, the splitting
strategy is detailed below.

6WER is the ratio of the minimum number of word substi-
tutions, deletions, and insertions (word edit distance) required
to transform the recognized text into the ground truth, divided
by the total number of words in the ground truth. Similarly,
CER is the character edit distance divided by the total number
of characters in the ground truth.
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Context length. We divided the NZZ and GNL
pages into spans at newline characters, resulting
in an average span length of 168 characters with a
standard deviation of 32. This decision was mo-
tivated by prior work, which discussed the impact
of text length on OCR post-correction (Veninga,
2024). Models like finetuned ByT5 (Xue et al.,
2022) and Llama-2 7b, in zero-shot and few-shot
settings, were found to be sensitive to context
length. Long or very short spans make it challeng-
ing for these models to learn effectively.

To further investigate this, we analyzed results
from prior work (Thomas et al., 2024) regarding
OCR text length and CER reduction for the Llama
2 13b model. The table summarizing the results is
provided by the authors in the associated GitHub
repository7. It revealed that OCR texts exceeding
400 characters, though constituting a small frac-
tion of the test set (38 out of 2792 texts), suffered
a significant increase in errors (CER reduction =
-190). At the same time, shorter spans showed no-
table improvement (CER reduction = 60). Given
that the corresponding training set had an average
text length of 124 characters, we decided to fine-
tune on spans between 100 and 200 characters.

Training dataset configurations. To evalu-
ate the impact of misalignments discussed in the
previous Section on models’ performance, we
use two configurations of training sets for each
of the datasets. ALL-DATA includes the full
dataset without filtering, while FILTERED ex-
cludes any mismatched entries. Furthermore, we
apply whitespace correction (Bast et al., 2023) to
the NZZ ground truth, addressing issues such as
merged words and unseparated punctuation marks
that we identified in this dataset. In the FIL-
TERED dataset, all Latin texts identified in the
GNL dataset are removed.

4.2 Training and Test Data Description

Training data. The resulting training dataset is
composed of three distinct parts. Der Diabetiker
makes up 6% of the training data, the NZZ dataset
contributes 56%, and the GNL dataset accounts
for the remaining 38%. We vary the inclusion of
the GNL portion in our experiments, as this dataset
is more distant from the target data source (medi-
cal periodicals) and time period, whereas NZZ is
more closely aligned with the target source and

7https://github.com/Shef-AIRE/llms_
post-ocr_correction

ALL-DATA FILTERED

No. text spans 6371 4985
No. tokens 150k 118k
µ CER 0.85 0.24
σ CER 6.45 2.19

Table 1: General description of the training dataset
configurations. CER statistics reflect the initial
raw OCR quality

ALL-DATA FILTERED
µ CER σ CER µ CER σ CER

NZZ 0.7 6.34 0.23 2.8
GNL 1.21 7.05 0.31 0.34
DD 0.03 0.09 0.03 0.09

Table 2: CER statistics for raw OCR grouped by
data source and dataset configuration. DD stands
for Der Diabetiker

time frame.
The general description of the resulting training

dataset configurations including the three datasets
is provided in Table 1.

The CER statistics for raw OCR, grouped by
data source and training set configuration, are pre-
sented in Table 2. It presents the average and stan-
dard deviation of the CER for each section of the
training dataset, providing insight into the OCR
quality across the dataset-specific training samples
before and after filtering.

The initial OCR quality for Der Diabetiker is
generally high, as reflected in the CER statistics
for the training data shown in Table 2. To en-
sure a balanced representation of different error
magnitudes in both the training and test sets, we
examined the error categories within the Der Di-
abetiker data. Through this analysis, we found
that approximately 7% of the data (54 out of 760
paragraphs) has a CER of 0.1 or higher, where the
OCR output resulted in text spans that were sig-
nificantly altered, making it nearly impossible to
understand the meaning without the surrounding
context. These errors occurred in pages with com-
plex layouts and rare fonts. In contrast, 31% of the
paragraphs (242 out of 760) had a CER between 0
and 0.1, with minor errors like missing umlauts,
lowercase letters instead of capitals, and spacing
issues. While these errors occasionally altered the
meaning of some words, the overall meaning of
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Table 3: Examples of raw OCR CER error categories - minor (<0.1&!=0) and major (>=0.1)

the text remained largely recoverable. The remain-
ing 464 paragraphs had perfect OCR (CER = 0).

Based on these observations, we decided to use
the identified error categories to balance the Der
Diabetiker data in both the training and testing
sets. This approach allows us to better assess
model performance, particularly in terms of how
well the models handle perfect OCR text (ensur-
ing they do not degrade its quality) and how they
perform with varying levels of error. The follow-
ing error categories were introduced for both data
balancing and further analysis:

• [NONE]: CER = 0 – perfectly recognized text

• [MINOR]: 0 < CER < 0.1 – minor errors that
do not significantly alter the text. These in-
clude issues such as missing umlauts, lower-
case letters instead of capitals, and spacing
errors, where the text remains recognizable
and the meaning is generally preserved.

• [MAJOR]: CER >= 0.1 – substantial er-
rors that significantly alter the text, where the
meaning of the text is changed or obscured.
Examples can include missing half-lines or
sequences of characters that are unrecogniz-
able due to page damage, where context is
essential for comprehension. Furthermore,
problems arise when the scan inadvertently
includes partial text from adjacent pages.

An example of this categorization is shown in
Figure 3

Test data. The test set consists of 376 para-
graphs from Der Diabetiker, selected through
shuffling and stratified sampling according to the
CER error category. It includes 23 paragraphs
with major errors, 146 with minor errors, and 207
with perfect OCR.

4.3 Finetuning Setup
As a baseline, we finetune German BART base8

on our sequence pairs. This model is a fine-
tuned version of facebook/bart-base on the Ger-
man MultiLingual Summarization dataset, ML-
SUM (Scialom et al., 2020).

For instruction tuning of generative models, we
train LoRA adapters (Hu et al., 2021) with PEFT
(Mangrulkar et al., 2022) following the methodol-
ogy from (Thomas et al., 2024). We use Llama 2
13b models specifically optimized to process Ger-
man text9.

Additionally, we experiment with the German
Mistral 7B, which is recommended by the devel-
opers for offering a good trade-off between perfor-
mance and computational efficiency. The prompt
is the translation into German of the prompt from
(Thomas et al., 2024). The exact prompt formula-
tion is as follows:

f"""### Anweisung:
Korrigieren Sie die OCR-Fehler
im bereitgestellten Text.

### Eingabe:
{example[’OCR Text’]}

### Antwort:
{example[’Ground Truth’]}
"""

We conduct finetuning using two combined sce-
narios:

1. A comparison between ALL-DATA, which
includes mismatching spans, and manually
filtered data (FILTERED).

8https://huggingface.co/Shahm/
bart-german

9https://github.com/jphme/EM_German

124

https://huggingface.co/Shahm/bart-german
https://huggingface.co/Shahm/bart-german
https://github.com/jphme/EM_German


Table 4: Post-OCR correction of an advertisement by Mistral 7b (ALL-DATA, not augmented with GNL)

2. In addition to the first setup, we compare
the base training set, which includes Der Di-
abetiker and NZZ, with the same set aug-
mented by GNL, denoted as [+GNL].

4.4 Evaluation Metrics

We measure average CER and WER, as well as
CER and WER within error categories for the pro-
posed training data configurations. WER is partic-
ularly critical for our data, as accurate word counts
are essential for further comparisons across time
periods and are also used for temporal topic mod-
eling.

To investigate improvements in relation to the
defined error categories, we assess the percent-
age of text spans with improved OCR quality
compared to those with deteriorated or unchanged
quality. This percentage is calculated as the ratio
of texts with a positive CER reduction and WER
reduction to the total number of texts in each error
category. The CER reduction, as defined in pre-
vious work (Thomas et al., 2024), is determined
using the following formula:

CERreduction =

(
CER(gt, ocr)− CER(gt, pr)

CER(gt, ocr)

)
× 100

(1)

where gt denotes the ground truth, ocr repre-
sents the OCR output, and pr indicates the gen-
erative model prediction. WER reduction is cal-
culated similarly using the corresponding WER
values. To calculate WER and CER we use Ji-
WER10, a package for the evaluation of automatic
speech recognition systems, which supports CER
and WER measures. These measures are com-
puted using the minimum edit distance between
one or more reference sentences and their corre-
sponding hypothesis sentences.

10https://pypi.org/project/jiwer/

ALL-DATA FILTERED
CER WER CER WER

raw OCR 0.02 0.09 0.02 0.09
BART 140M 0.03 0.1 0.03 0.11
BART 140M [+GNL] 0.03 0.11 0.03 0.11
Mistral 7b 0.02 0.07 0.07 0.27
Mistral 7b [+GNL] 0.07 0.26 0.1 0.45
Llama-2 13b 0.25 0.28 0.03 0.08
Llama-2 13b [+GNL] 0.08 0.28 0.13 0.63

Table 5: Average error rate before (light-gray row)
and after post-OCR correction

5 Results

5.1 Average Performance

Table 5 presents the average CER and WER across
various models and dataset configurations. On av-
erage, none of the models achieves a reduction
in CER. BART demonstrates stable performance
across all configurations; however, it slightly in-
creases both CER and WER, thereby deteriorat-
ing the initial OCR quality. Among the gener-
ative models, Mistral 7b stands out by maintain-
ing CER levels and achieving a 22% reduction in
WER when trained on the complete dataset with-
out filtering (ALL-DATA).

In Table 4, we present an example of success-
ful word correction by Mistral 7b trained on ALL-
DATA and not augmented with GNL. The para-
graph is categorized as a major error, as its initial
raw OCR score is 0.13. The red frame highlights
the OCR error that was subsequently corrected by
the model, as shown in the green frame within the
model correction column. The context includes
the name of the location, Castrop-Rauxel, associ-
ated with the company Schulte-Rauxel. We have
highlighted in blue the contextual information that
could potentially assist the model in making the
correction.

We identified several instances where the Mis-
tral 7b model successfully recovered words from
context. In contrast, other models, including
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ALL-DATA FILTERED
[MINOR] [MAJOR] [ALL] [MINOR] [MAJOR] [ALL]

CER WER CER WER CER WER CER WER CER WER CER WER

BART 140M 26 25 26 17 26 24 29 26 35 30 29 26
BART 140M [+GNL] 25 24 30 22 25 24 25 24 39 35 27 25
Mistral 7b 61 64 39 35 58 60 51 48 30 39 48 47
Mistral 7b [+GNL] 53 56 43 43 52 55 54 57 43 57 53 57
Llama-2 13b 54 58 52 43 54 56 51 50 48 43 51 49
Llama-2 13b [+GNL] 53 55 43 52 52 55 49 50 48 35 48 48

Table 6: Percentage of corrected paragraphs in terms of WER and CER in each error category (%)

BART, were unable to perform similar corrections
for the same paragraphs. Further investigation is
required to understand the factors contributing to
this difference.

We conducted a manual analysis of a subset of
model outputs where a decrease in CER was ob-
served. In several instances, the models exhibited
repetition of punctuation marks and words after
partially correcting the input sequence. Addition-
ally, LLaMA 2 occasionally reproduced parts of
the prompt in its output. These repetitions were
not filtered out prior to metric evaluation. Further
investigation is needed to better understand and
mitigate these issues.

When trained on the manually filtered dataset
(FILTERED), all models exhibit an increase in the
average CER (Table 5). This outcome may be at-
tributed to the reduced dataset size following the
filtering process. However, Llama-2 13b demon-
strates an 11% improvement in WER despite the
reduction in dataset size.

On average, we observe that the inclusion of
GNL data does not lead to improvements in the
reduction of either CER or WER. Nevertheless, it
is worth noting that GNL data might prove bene-
ficial in addressing specific types of errors within
error categories - minor or major. To explore this
possibility further, we conduct a detailed analysis
of models’ performance within categories in the
following.

5.2 Performance in Error Groups

To investigate how models perform across the er-
ror categories outlined in Section 4.2, we calculate
the percentage of texts in the test set where error
rates improved following post-OCR correction.

As detailed in Section 4.2, the test set comprises
23 paragraphs classified as having major errors
and 146 paragraphs categorized as having minor
errors. The percentage of corrected paragraphs is
determined by computing the ratio of paragraphs

within a given error category that exhibited a pos-
itive CER or WER reduction after post-correction
(CER or WER reduction > 0) to the total number
of paragraphs in that category.

We analyze this performance across three dis-
tinct categories: minor errors, major errors, and
the combined category (all errors), which aggre-
gates all instances where the initial raw OCR CER
was greater than 0. Table 6 summarizes the per-
centage of corrected paragraphs for each model
and dataset configuration, offering a comprehen-
sive view of how effectively these models address
errors across categories.

Among the models evaluated, BART demon-
strated the least success in correcting paragraphs
across both minor and major error categories.

Mistral 7b corrected over 60% of paragraphs
with minor errors in terms of both WER and CER
when trained on the ALL-DATA configuration.
However, its performance dropped when dealing
with more challenging errors, with the model cor-
recting less than half of the paragraphs containing
such difficult issues.

In contrast, Llama-2 demonstrated a more bal-
anced performance across error categories. It cor-
rected more than half of the paragraphs in terms of
CER without augmentation, and over half in terms
of WER when GNL augmentation was applied.

Through our manual analysis, we observed that
Mistral, in particular, exhibited a certain level of
creativity when handling major errors, when us-
ing the same configuration settings as the other
models. This creativity was apparent in its abil-
ity to address complex error patterns, but it some-
times led to substitutions that, while contextually
relevant, deviated from the exact ground truth. In
these instances, Mistral was able to replace non-
sensical or garbled character sequences with text
that, although thematically similar, did not align
perfectly with the original source.

For example, as shown in Table 4, Mistral
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ALL-DATA FILTERED
ERR % GT % ERR % GT %

BART 140M 24 72 20 60
BART 140M [+GNL] 24 70 22 62
Mistral 7b 11 90 14 84
Mistral 7b [+GNL] 12 91 14 87
Llama-2 13b 12 87 17 80
Llama-2 13b [+GNL] 13 86 17 83

Table 7: Percentage of paragraphs with unchanged
error (ERR) and those with preserved perfect OCR
quality (GT). The highest percentages in both
columns are highlighted

corrected the misrecognized part of the para-
graph, which in the ground truth should have read
“. . . wo kaufen Sie ihre diätetischen Nahrungsmit-
tel?” (translating to ”...where do you buy your di-
etary foods?”) by replacing it with “. . . zur Herstel-
lung diätetischen Vollkornsmittel” (”...for the pro-
duction of dietary whole grain products”). While
both sequences are related in topic (dietary foods),
the produced variations decrease the accuracy.

When we remove misaligned text spans from
the dataset (in the FILTERED dataset configura-
tion), the addition of GNL augmentation begins
to show a positive impact on error correction for
Mistral across both error categories. Specifically,
Mistral corrects 10% more paragraphs in terms of
WER and 5% more in terms of CER when GNL is
included, compared to the configuration without it.

This could be attributed, in part, to the larger
size of the ALL-DATA dataset, which is 27.8%
larger than the FILTERED dataset. Additionally,
the inclusion of misaligned passages may be en-
hancing Mistral 7b’s ability to recover words from
context. These misaligned spans could provide
valuable contextual clues, aiding the model in
making more accurate corrections. This potential
relationship between misalignment and model per-
formance warrants further exploration to fully un-
derstand how these factors interact and contribute
to the model’s effectiveness.

Interestingly, when we examine the results in
the major error category for both dataset config-
urations, both BART and Mistral show improve-
ments with the inclusion of GNL, demonstrat-
ing better performance in terms of both CER and
WER. This suggests that the addition of GNL aug-
mentation may help both models address more
challenging errors.

We further investigate the cases with the perfect
initial OCR (error-free cases) to determine which

models preserve a higher proportion of accurately
OCR-ed spans. In addition, we analyze spans
with zero CER reduction to identify which mod-
els leave a higher percentage of errors unchanged
compared to others. The results are summarized
in Table 7, where GT indicates the percentage of
OCR spans that perfectly match the ground truth,
and ERR reflects the percentage of spans with un-
changed errors. BART exhibits a higher percent-
age of unchanged errors compared to the genera-
tive models and preserves fewer perfectly OCR-
ed spans than both Llama 2 and Mistral. In con-
trast, Mistral models, retain the highest proportion
of accurately OCR-ed spans.

6 Conclusion

This paper compares the performance of large lan-
guage models, specifically BART as an encoder-
decoder, and Llama 2 13b and Mistral as gen-
erative models, for post-OCR correction of the
German historical periodical Der Diabetiker, pub-
lished by the German Diabetes Association. We
examine the impact of different dataset configura-
tions and the effect of dataset augmentation with
data from a distant source.

The results suggest that BART detects fewer er-
rors compared to the generative models. However,
since BART does not correct these errors, it also
avoids introducing larger changes — an issue that
we observe in the generative models. Also, BART
tends to correct more spans that were already ac-
curate in the first place, leading to unnecessary
modifications. This behavior aligns with the aver-
age CER and WER scores in Table 5, where BART
shows a decline in OCR quality, but the degrada-
tion is not as severe as observed with some gener-
ative models. This could imply that BART’s sta-
bility comes at the cost of detecting fewer errors
overall.

Among the evaluated models, Mistral 7b stands
out as the most promising in terms of performance
on historical data from patient organization peri-
odicals. It achieves a significant 22% improve-
ment in average WER and retains the highest pro-
portion of correctly OCR-ed paragraphs compared
to other models. Despite these strengths, Mistral
maintains the average CER without improvement,
and further investigation is needed to understand
how it handles major errors. Specifically, more
research is required to manage the model’s cre-
ativity in generating corrections, ensuring that it
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produces more accurate and contextually relevant
outputs without deviating from the ground truth.
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Abstract

Large Language Models (LLMs) have
demonstrated significant potential in nat-
ural language processing, but they de-
pend on vast, diverse datasets, creating
challenges for languages with limited re-
sources. The paper presents a national
initiative that addresses these challenges
for Slovene. We outline strategies for
large-scale text collection, including the
creation of an online platform to engage
the broader public in contributing texts
and a communication campaign promot-
ing openly accessible and transparently
developed LLMs.

1 Introduction

Extremely large language models, such as GPT-
4, have demonstrated remarkable advancements
across various natural language processing tasks,
sparking widespread interest in their applica-
tions. However, their reliance on vast and di-
verse datasets makes them inherently biased to-
ward well-resourced languages. For languages
like Slovene, with a smaller speaker base and lim-
ited data availability, this disparity poses a signif-
icant challenge, hindering the development of ro-
bust language-specific LLMs.

Recent studies have highlighted similar chal-
lenges faced by other low-resource languages,
underscoring the need for comprehensive mul-
tilingual evaluation and language-specific model
development. (Lai et al., 2023) provide an
in-depth assessment of ChatGPT’s performance
across multiple languages, revealing its uneven ef-
fectiveness in low-resource contexts. Their evalu-
ation, covering seven tasks and 37 languages, ex-
poses significant performance gaps in both low-
and extremely low-resource languages. Likewise,
(Alam et al., 2024) explore the broader landscape

of LLMs for low-resource languages, addressing
their multilingual, multimodal, and dialectal com-
plexities. Their findings emphasize the necessity
of language-specific initiatives and reveal the per-
sistent limitations of LLMs for medium- to low-
resource languages, largely due to the lack of rep-
resentative datasets.

While these studies highlight the performance-
related limitations of current LLMs for low-
resource languages, an equally pressing concern
is their accessibility. The proprietary nature and
high computational demands of existing models
restrict access for many research organizations
and smaller companies, underscoring the need for
open-access alternatives. Addressing this issue re-
quires not only the development of computation-
ally efficient models, but also the creation of large,
diverse, and high-quality datasets tailored to spe-
cific languages.

For smaller language communities, such as
Slovene, the search for texts to be included in
LLMs must extend well beyond readily available
online sources, as these alone are insufficient to
support the development. In this paper, we in-
troduce a national initiative aimed at overcoming
these obstacles for Slovene, detailing our strate-
gies for large-scale text collection and community
engagement for the development of openly avail-
able Slovene LLMs.

2 Project framework and previous work

LLMs have introduced a major shift in the field
of Natural Language Processing (NLP), offering
more efficient fine-tuning for common NLP tasks
while simplifying their implementation (Brown
et al., 2020). The datasets serve as the foun-
dational infrastructure analogous to a root sys-
tem that sustains and nurtures the development of
LLMs (Liu et al., 2024). Therefore, preparing lan-
guage data for LLMs is a crucial step that directly
impacts their performance across various tasks.
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The effectiveness of NLP tasks relies heavily on
the scale of the language model’s training, which
is directly influenced by access to large, diverse
datasets spanning various domains (Kaplan et al.,
2020). Moreover, diversity in training data plays
a crucial role in enhancing the generalization ca-
pabilities of large models, enabling downstream
tasks, as outlined in (Ali et al., 2019), to effec-
tively leverage knowledge even with limited train-
ing data (Brown et al., 2020).

In the ongoing PoVeJMo—Adaptive Natural
Language Processing with Large Language Mod-
els project,1 we aim to develop several computa-
tionally efficient and open-access large language
models trained on Slovene language data. These
models will also be adapted and evaluated for
selected industry use cases, such as enhancing
Slovene speech recognition and synthesis for in-
dustrial systems, preparing museum materials and
interactive systems, as well as for medical appli-
cations and infrastructure code generation.

We have first gathered 9.2 billion tokens
from freely available sources, including exist-
ing language corpora and other openly accessi-
ble Slovene-language data, providing a solid foun-
dation for the project. The initial dataset in-
cludes different types of text, such as news arti-
cles up to and including September 2023 (Kosem
et al., 2023), academic works (Žagar et al., 2022),
web crawls (mC4 (Raffel et al., 2020), MaCoCu
(Bañón et al., 2023), CC100 (Wenzek et al.,
2019)), and various Slovene reference and spe-
cialized corpora included in the Metafida database
(Erjavec, 2023)). The GaMS-1B-Chat language
model, with one billion parameters, has been
trained on this language material (Vreš et al.,
2024).

While this initial model provides valuable in-
sights into the effects of training on Slovene data,
it is roughly a thousand times smaller than the
largest models (e.g., used for the latest version of
ChatGPT), makes errors frequently, and highlights
the need for further text collection to improve per-
formance.2

1The project is funded between 2023 and 2026 by the
Slovenian Research and Innovation Agency ARIS and the
EU Recovery and Resilience Facility. More information on
https://www.cjvt.si/povejmo/en/project/.

2GaMS-1B-Chat can be tested at https://povejmo.
si/klepet/ (at the moment, the interface is only available
in Slovene).

3 National text-collection campaign

We have estimated that the development of a suffi-
ciently large model requires approximately 40 bil-
lion additional words. The estimation of the re-
quired amount of training data is heuristic and ap-
proximate, derived from two approaches. The first
approach is based on the findings of the LLama
model study (Touvron et al., 2023). The study
illustrates the decline in the loss function as the
number of training tokens increases, where, on av-
erage, two tokens correspond to one word. For
most models, including LLaMa 7B, which is the
closest equivalent to GaMS, the most significant
decrease in the loss function occurs up to approx-
imately 100 billion tokens (that is, around 50 bil-
lion words). We expect to collect around 10 billion
words from freely available online resources (cur-
rently 9.2 billion; see Section 2), while an addi-
tional 40 billion will need to be gathered using al-
ternative approaches.3 The second approach relies
on LLM scaling laws, which suggest that a model
of size x requires at least 5x to 10x words for ef-
fective training, though in practice the requirement
is often even greater. Given that the larger GaMS
model is expected to have approximately 10 bil-
lion parameters, it would require a minimum of 50
billion words to achieve optimal performance.

This ambitious undertaking necessitated the de-
velopment of a comprehensive communication
and operational strategy. The key components of
this strategy include: (1) identifying and engag-
ing potential contributors of textual materials; (2)
developing efficient mechanisms for text submis-
sion; (3) implementing secure and scalable stor-
age systems; (4) establishing effective and reliable
processes for tracking and documenting all text ac-
quisition activities; and (5) defining the metadata
framework to ensure systematic organization and
accessibility of collected texts. Beyond these op-
erational aspects, strategy (6) addresses legal and
ethical considerations associated with data collec-
tion and usage, while also prioritizing (7) promo-
tional and dissemination activities to build public
awareness and support. A key objective of these
efforts is to emphasize the importance of devel-
oping a large-scale language model for Slovene,
highlighting its far-reaching implications for tech-

3The observed trend indicates that the loss function con-
tinues to decrease even to 1,500 billion tokens, and in the case
of LLaMa 3, where 3,000 billion tokens were used, the loss
function still exhibited a downward trajectory, although more
pronounced for larger models.
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nological innovation and cultural preservation.

Our text collection campaign operates through
two main strategies. On the one hand, we engage
with large-scale text providers such as national li-
braries, publishing houses, media organizations,
government ministries, and other significant con-
tributors, strongly advocating for the value and
potential impact of creating a Slovene LLM and
encouraging them to contribute their textual re-
sources. On the other hand, we reach out to in-
dividuals, inviting them to donate their own texts
to both actively support and directly contribute to
the co-creation of the Slovene language model.

Each of these two groups presents unique re-
quirements and demands distinct approaches to
communication and engagement. Beyond the
technical challenges of acquiring and processing
the material, the primary obstacles lie in legal con-
straints. Current Slovene legislation permits the
use of copyrighted material for data mining. How-
ever, this does not apply to material available on
the web unless it is provided under an appropri-
ate license. However, this does not include the
material available on the web. This legal frame-
work imposes significant limitations on the abil-
ity to gather and utilize existing Slovene texts for
model training.

Addressing this issue involves two potential ap-
proaches. The first option is to advocate for leg-
islative reform, urging lawmakers to amend the
copyright laws to accommodate the specific needs
of language technology development. Such a le-
gal adjustment could facilitate broader access to
textual resources while ensuring that intellectual
property rights are respected in a manner com-
patible with technological advancements. How-
ever, this approach is inherently time-intensive and
comes with no guarantee of success. It places the
outcome largely outside of our control, as it de-
pends on the willingness of policymakers to adopt
the proposed changes and the eventual implemen-
tation of new legal frameworks.

Given these uncertainties, we have determined
that a more pragmatic and immediate approach is
to actively seek permission from copyright hold-
ers to use their texts for the purpose of building a
Slovene LLM. This strategy, while more labour-
intensive, allows us to make direct progress with-
out waiting for external factors to align. This ap-
proach requires substantial effort on our part, as
it involves identifying relevant stakeholders, initi-

ating discussions, addressing potential concerns,
and negotiating agreements. A significant chal-
lenge in this process arises from the hesitation of
some stakeholders, particularly media outlets and
publishers, who are concerned about the uncertain
societal implications of artificial intelligence and
its potential impact on their work.

3.1 Engaging with large-scale providers

Our experiences with addressing large-scale text
providers so far suggest that stakeholders often
prefer to maintain the status quo, choosing to wait
and observe who among them will take the first
step. This creates a paradoxical situation: while
applications such as ChatGPT, which rely on data
from other languages, are already widely used also
in the Slovene language, there is hesitation about
building a Slovene-specific model or, more pre-
cisely, about allowing access to copyrighted text to
build the model. The primary concern seems to be
uncertainty about what will happen with the texts,
specifically how and why the data will be used,
whether there is potential for misuse, and what
safeguards are in place to ensure that the texts are
handled responsibly and ethically. A general con-
clusion could be drawn that stakeholders are will-
ing to use an English-based model, which requires
no contribution of their own texts, but they might
be hesitant about contributing when it comes to de-
veloping a Slovene model.

In response, our communication strategy em-
phasizes the importance of preserving Slovene as
a digital language. We argue that a Slovene lan-
guage model is essential to ensure that the lan-
guage remains comparable and competitive with
other similar languages in the digital age. This
initiative is framed as a collective effort, where
every contribution helps to achieve a shared ben-
efit—enhancing and improving resources for ev-
eryone. Additionally, we highlight the advantage
of building this model independently, rather than
solely relying on foreign corporations. By taking
control of the process, we can ensure transparency
in the types of texts included and maintain the abil-
ity to use the model for our specific needs.

In the meantime, the European Union has also
recognized the importance of this issue and is ac-
tively working toward creating a publicly available
large language model for all European languages.
This initiative aims to provide equal opportuni-
ties for both commercial and non-commercial use
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Figure 1: The section of the web portal where
the interested participants can provide their texts
(https://zbiranje.povejmo.si/).

across European languages. In this context, the
amount of Slovene text collected directly impacts
the positioning of the Slovene language within this
broader European framework. Thus, one of our
messages to the public is that building a Slovene
language model is a matter of national interest. It
ensures that Slovene can be effectively integrated
into products and services developed by compa-
nies, benefiting both businesses and the wider
community.

3.2 Engaging with individuals

To address individuals or groups that do not fall
into the category of large-scale text providers
and to encourage their contribution of textual re-
sources for the development of the Slovene lan-
guage model, we designed a targeted promotional
strategy. As part of this effort, we participated
in radio and television programs focused on lan-
guage or technology-related topics, where we ex-
plained the concept of LLMs, the processes in-
volved in their development, their potential appli-
cations, and the importance of individual engage-
ment. In addition, we organized or participated in
roundtable discussions and expert panels that fa-
cilitated debates on the advantages and concerns
surrounding the creation of such a model.

To facilitate the widest possible text collec-
tion, we developed a web portal (https://
povejmo.si/) where participants can submit
their texts (Figure 1) while accessing essential in-
formation about the phases of developing a large
generative language model, details of the text
collection campaign, and answers to frequently

Figure 2: The section of the web portal where the
interested participants can test the existing model
(https://povejmo.si/klepet/).

asked questions. To ensure trust and encour-
age participation, we highlighted both the pur-
pose and values of the text-collection project. The
project’s goals include supporting developmental
independence by creating a Slovene-specific lan-
guage model, ensuring a controlled and secure
process for data handling, promoting open acces-
sibility of the model, improving the machine un-
derstanding and generation of Slovene, overcom-
ing language barriers, and capturing Slovenia’s na-
tional specifics. The project is guided by three
key values: openness, ensuring transparency, clear
methodologies, and secure data handling; ethics,
with a commitment to privacy, anonymity, and
proper consent; and inclusiveness, fostering the
participation of diverse groups to reflect the rich-
ness of the Slovene language.

In Appendix A, we include the translated Agree-
ment for the use of copyrighted works in connec-
tion with text collection in the PoVeJMo project to
demonstrate the implemented legal solution.

The web portal also features an interactive sec-
tion where users can try GaMS-1B-Chat, devel-
oped on the current version of the language model
(Figure 2). As mentioned in Section 2, the current
version still underperforms, however, this limita-
tion also serves as a call for action: if we aim to
develop a more accurate and robust model, a sig-
nificantly larger dataset of Slovene texts is essen-
tial.

4 Data Storage and processing protocol

We have implemented a comprehensive protocol
for securely managing the storage, encryption,
transmission, and processing of data throughout
all stages of its lifecycle. Data is received through
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network connections or on portable storage de-
vices, which may contain unencrypted or option-
ally encrypted data using a temporary key set by
the data owner. Once received, data undergoes
decryption (if necessary) on a secure system, is
re-encrypted with a new encryption key, and then
securely uploaded to the primary storage system.
Backup copies of the encrypted data are created
and stored on a secondary system to ensure dis-
aster resilience. During processing, unencrypted
data is used exclusively for the duration of the
analysis or transformation. Owners define specific
rules for further sharing of their data, such as lim-
iting its use to the project or permitting broader ac-
cess to other researchers within Slovenia, the EU,
or beyond.

Data is transferred between systems using en-
crypted channels (e.g., SSL/TLS, SSH). Data min-
imization principles are applied, providing only
the necessary subsets of data for specific use cases,
packaged as encrypted ”data bundles”. All data
transfers are tracked to ensure accountability, with
detailed records of which data was shared and with
whom. Processing on high-performance comput-
ing systems (e.g., Vega supercomputer) or special-
ized research infrastructures (e.g., FRIDA at the
Faculty of Computer and Information Science) ad-
heres to strict security protocols. Data is stored
in encrypted form and decrypted only temporar-
ily during processing. After processing, unen-
crypted data is securely deleted. Future improve-
ments may include leveraging Confidential Com-
puting technologies for enhanced security.

Access management prioritizes security and
simplicity, given the initial small group of users.
Encryption keys are manually tracked and man-
aged by the project lead, with backups maintained
securely. Data bundles for specific use cases are
encrypted with unique keys assigned to each user,
employing AES symmetric encryption for effi-
ciency and security. As the number of users or
datasets grows, more advanced access manage-
ment systems will be introduced.

5 Conclusion and Future Work

This paper has outlined the national initiative to
overcome data scarcity and support the develop-
ment of a Slovene large language model. By im-
plementing diverse text-gathering scenarios, in-
cluding a user participation portal and an exten-
sive communication strategy, the project has ac-

tively addressed the unique challenges faced by
languages with a small speaker base.

At the time of this paper’s submission, the
foundational infrastructure for collecting Slovene-
language texts has been fully established, includ-
ing a user-friendly portal for contributions and ro-
bust protocols for data storage and processing. A
nationwide promotional campaign was launched,
aiming to mobilize broad participation from both
institutions and individuals. By the time of the
workshop, we anticipate being able to report on
the first campaign’s outcomes, including the vol-
ume and diversity of collected texts and their suit-
ability for training the Slovene large language
model. These results will provide valuable in-
sights into the scalability and replicability of such
initiatives for other less-resourced languages.
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Erjavec, Nikola Ljubešić, Primož Ponikvar,
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erative model for less-resourced language with 1 bil-
lion parameters. pages 485–511.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-
mand Joulin, and Edouard Grave. 2019. Ccnet: Ex-
tracting high quality monolingual datasets from web
crawl data. arXiv preprint arXiv:1911.00359.
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Appendix A

Copy of the Agreement for the use of
copyrighted works in connection with text
collection in the PoVeJMo project

Article 1 (Introductory Provisions)
1.1. The Contractor is a scientific research organi-
zation engaged in building open-access large lan-
guage models for the Slovenian language, among
other activities, within the framework of the pro-
gram Adaptive Natural Language Processing with
Large Language Models (PoVeJMo) (hereinafter:
PoVeJMo program), which is implemented un-
der the Public Call for Co-financing of Long-term
Large Research and Innovation Collaborative Pro-
grams at TRL 3-6 within the Recovery and Re-
silience Plan (RRP).

1.2. With the aim of developing open-access
large language models for the Slovenian language,
the Contractor collects various types of texts.
[NAME SURNAME] manages this process on be-
half of and for the Contractor’s account.

Article 2 (Subject of the License)
2.1. By this license, the Copyright Holder trans-
fers to the Contractor all economic copyrights,
related rights, and other rights of the author as
defined by the Slovenian Copyright and Related
Rights Act (hereinafter: ZASP), necessary for the
development of open-access large language mod-
els for the Slovenian language, particularly the
right of reproduction, the right to make available
to the public, and the right of adaptation.

2.2. The transfer of rights to the Contractor
is non-exclusive, royalty-free, indefinite in dura-
tion, and unlimited in territorial scope, allowing
the Contractor to build open-access large language
models for the Slovenian language, including the
execution of the long-term PoVeJMo program.

2.3. The Copyright Holder agrees that the Con-
tractor may freely transfer the granted rights to
third parties for the purpose of developing open-
access large language models for the Slovenian
language.

2.4. The subject of this agreement pertains to
the rights of the following copyrighted works:

• Copyrighted Work 1

• Copyrighted Work 2

• ...
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Article 3 (Obligations of the Copyright Holder)
3.1. The obligations of the Copyright Holder in-
clude:

• Enabling the Contractor access to the copy-
righted works in digital form via the on-
line portal (https://povejmo.si/) or by another
method agreed upon in an annex to this agree-
ment.

• Collaborating with the Contractor to ensure
the successful development of open-access
large language models for the Slovenian lan-
guage, particularly in the implementation of
the PoVeJMo program.

3.2. The Copyright Holder guarantees that they
hold all rights to the copyrighted works specified
in Article 2.4, thereby enabling the Contractor to
obtain all necessary permissions for their use in
developing open-access large language models for
the Slovenian language.

Article 4 (Obligations of the Contractor)
4.1. The obligations of the Contractor include:

• Using the copyrighted works specified in Ar-
ticle 2.4 of this agreement and any copies
thereof created during the development of
open-access large language models for the
Slovenian language solely for that purpose
and storing them in a secure environment that
ensures an appropriate level of security, pro-
portionate and limited to what is necessary
for safe storage and prevention of unautho-
rized use.

• The works from Article 2.4 are exclusively
used for the development of open-access
large language models for the Slovenian lan-
guage.

Article 5 (Data Protection)
5.1. The Contractor and the Copyright Holder
agree to protect and process any personal data in
accordance with the provisions of the Slovenian
Personal Data Protection Act (Official Gazette of
the Republic of Slovenia, No. 163/22, hereinafter:
ZVOP-2) and Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27
April 2016 on the protection of natural persons
with regard to the processing of personal data and
on the free movement of such data, repealing Di-
rective 95/46/EC (OJ L 119, 4.5.2016, hereinafter:
General Data Protection Regulation).

Article 6 (Final Provisions)
6.1. The Contractor and the Copyright Holder
agree that this agreement shall be governed by
Slovenian law, and any matters not regulated by
this agreement shall be governed by the provisions
of ZASP and the Slovene Obligations Code (here-
inafter: OZ).

6.2. This license is drawn up in two (2) identical
copies, one (1) for each party. Any modifications
or amendments to this agreement are possible only
with mutual consent and in writing.

6.3. The Contractor and the Copyright Holder
commit to resolving any disputes amicably. If a
dispute cannot be resolved, the competent court at
the Contractor’s registered office shall have juris-
diction over dispute resolution.
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Abstract

In this work, we study the cross-lingual
distance of machine translations through
alignment of seq2seq representations over
small corpora. First, we use the M2M100
model to collect sentence-level represen-
tations of The Book of Revelation in sev-
eral languages. We then perform unsuper-
vised manifold alignment (spectral cluster-
ing) between these collections of embed-
dings. As verses between translations are
not necessarily aligned, our procedure falls
under the challenging, but more realistic
non-correspondence regime. The cost func-
tion associated with each alignment is used
to rank the relative (machine) similarity of
one language to another. We then perform
correspondent alignment over another clus-
ter of languages, this time using FLORES+
parallel NLLB model embeddings. Our
experiments demonstrate that the represen-
tations of closely-related languages group
closely, and are cheap to align (requiring
<1000 sentences) via our strategy.

1 Introduction

Assessing the similarities and differences between
languages, that is, comparative linguistics, requires
the consideration of historical factors, vocabulary,
phonology, and written script Georgi et al. (2010);
Starostin (2000); Anttila (1989). Computational
linguists adopting lexicostatistical techniques can
study language distances by measuring the evolu-
tion of cognates Gudschinsky (1956). Comparative
analysis which operates purely at the word level,
such as ranking Levensthein distances (a string-edit
metric) Sturrock (2000), has been both widely used
and disputed Greenhill (2011). In parallel, the ma-
chine learning community recognized the need for
sentence-level processing to produce high-quality

translations. The attention mechanism, common
to transformer-based language models Vaswani
(2017), considers the semantic contribution of all
tokens (word/sub-word units) in an input to develop
an output.

The quality of machine translation has drasti-
cally improved in recent years due to the advent
of attention-based sequence-to-sequence (seq2seq)
models which intake sentences in a source language
and output a corresponding translation in a target
language Sutskever (2014); Cho (2014). Sharp
improvements in multilingual training strategies
have resulted in so-called many-to-many transla-
tion models that can accept many source-target
language pairs. Many-to-many translation models,
such as the M2M100 Fan et al. (2021) and NLLB
Costa-jussà et al. (2022), can accept pairs from 100
and 200 widely-spoken languages, respectively.

Given a specified source language, the M2M100
and NLLB models tokenize an input and pass it
along several attention layers which encode the
specified sentence(s) to real-valued embeddings
Phuong and Hutter (2022). Such representations
produced by deeper encoder layers are thought to
embody abstract semantic meaning critical to devel-
oping coherent, high-quality output in the decoding
phase Vaswani (2017); Clark (2019); Voita et al.
(2019). Intuitively, we would expect that closely
related languages produce similar representations.
If we regard sentences as concepts, language gener-
ation benefits from the alignment of closely-related
concepts (The et al., 2024). We expect the syntac-
tical and figurative structure of sentences to align
more closely among related languages, thus we
want to investigate whether many-to-many trans-
former representations are capturing this dynamic.

In this work, we propose a low-resource strat-
egy for assessing how a many-to-many machine
translation model encoder groups languages. First,
we collect the sentence representations over a
common corpus across a cluster of Slavic, Indo-
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Aryan/Dravidian, Romance languages, Scandina-
vian, Turkic/Mongolic, and Bantu languages. For
this paper, we use the mean pooling of hidden states
over the entire sequence to get a sentence-level
representation, in line with other works Xu et al.
(2020); Kudugunta et al. (2019). For one group
of language families, the common corpus is the
Book of Revelation (BoR). For the other group, the
common text is a collection of parallel (i.e., corre-
spondent) sentences from the FLORES-200 dataset
Costa-jussà et al. (2022). We validate our method
over this correspondent dataset to verify alignment
is working as expected in a naive setting. In com-
parison to the work of Kudugunta et al. (2019)
which uses an irreproducible web crawl to generate
hundreds of thousands to tens of millions of parallel
sentence pairs Uszkoreit et al. (2010), our resource
is low-resource: we only require < 1000 sentences
per language pair to perform our clustering.

We treat each language’s set of embeddings as
a discrete manifold. Then, we perform a pairwise
manifold alignment via spectral clustering Wang
and Mahadevan (2009) and use the associated cost
to produce an ordering of machine-lingual similar-
ities. For the BoR corpus, since translations are
not necessarily verse-aligned, we are performing
alignment without correspondence – a much more
challenging regime, and realistic scenario for ultra
low-resource languages. Our similarity rankings
over both BoR and FLORES+ closely correspond
to established analyses in comparative linguistics
Bella et al. (2021) along with a few sharp devia-
tions that may indicate the preference of M2M100
and NLLB to occasionally place representations of
less related languages close to one another.

2 Comparison Algorithm

The semantics of a language, referring to its mean-
ing and how words and phrases convey ideas, often
follow distinct patterns based on the relationships
between words, contexts, and usage. These pat-
terns can be observed in how words group together,
how similar meanings emerge in different contexts,
or how words with similar meanings are often used
in comparable syntactic structures.

Spectral clustering Von Luxburg (2007); Law
et al. (2017) can be applied to identify these seman-
tic patterns by analyzing the structure of a similarity
matrix constructed from the relationships between
words or phrases. We follow the method of Wang
and Mahadevan (2009), referred to as manifold

alignment without correspondence, and describe
this process explicitly in Section 2.1. We must use
a “without-correspondence” strategy as variations
in translations (in our case, of the Christian Bible),
can produce different verse-orderings and shuffled
semantics which prevents a verse-to-verse (1-1)
correspondence between two languages.

In our case, we used the heat kernel similarity on
a suggestion by Wang and Mahadevan (2009) for
language comparison. By representing sentences
as real-valued vectors in high-dimensional space
using encoder embeddings (e.g., M2M100/NLLB
representations), we can calculate pairwise similar-
ities, which are then used to create a graph where
nodes represent vectors in these representations,
and the edges are given quantitatively by their sim-
ilarity matrix. The spectral clustering algorithm
then partitions this graph into clusters by project-
ing these vector representations onto a set of vec-
tors given by solutions to a generalized eigenvec-
tor solution (see Section 2.2). This method hopes
to potentially reveal similarities between machine
representations of languages by comparing these
projections, which are closely related to the clus-
ters. In particular, we examine the square sum of
the first d eigenvalues as defined by the general
eigenvector equation as given in Section 2.1.

Chowdhury et al. (2021) also used a graph-based
approach to study the similarities between lan-
guages. They created graph Laplacians between
given languages at the word level. Our method
considers language at the sentence level and, in-
stead creates a joint graph based on their combined
information. Motivated by Wang and Mahadevan
(2009), we opt for the combined graph approach
due to a belief that we can measure the distance be-
tween two languages by considering spectral data
associated to a submanifold derived from a combi-
nation of data from the graphs of both languages.

2.1 Algorithm Sketch

Let X = [x1, x2, . . . , xn] and Y =
[y1, y2, . . . , yn] be p × m and q × n matri-
ces, respectively. For our application, X and
Y are the mean poolings of hidden sentences
states. The rows are the representations and the
columns are the features. Let || x2 || denote the
Euclidean distance. Define the (k + 1)× (k + 1)

matrix Rxl
by Ri,j

xl =
∥zj−zi∥2

δX
, where z1 = xl and

z2, . . . , zk+1 are xl’s k-closest neighbors and δX
is the standard deviation for the pairwise distances
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between the xj . We now define the similarity
matrix Wx by Wx = exp

(
−∥Rxi −Rxj∥F

)
,

where ∥A∥F =
√

trace(ATA) is the Frobenius
norm of the matrix A. The matrix Wx is sometimes
called the similarity matrix.

Let the diagonal matrix Dx be defined by Di,i
x =∑

j W
i,j
x , and let Lx = Dx − Wx. We similarly

define a family of matrices in terms of Y . Let

Z =

[
X 0
0 Y

]
and D =

[
Dx 0
0 Dy

]
.

Define W by W i,j = exp (−dist(Rx, Ry)/δX,Y ),
where dist(Rx, Ry) and δX,Y are defined in Wang
and Mahadevan (2009) or in the Appendix. Let Bx

be the diagonal matrix with Bi,i
x =

∑
j W

i,j and
Bj,j

y =
∑

iW
i,j . We define the distance function

d(·) as

d(Rxi , Ryj ) = min
1≤h≤k!

min{d1(h), d2(h)},where

d1(h) = ∥{Ryj}h − k1Rxi∥F ,
d2(h) = ∥k2{Ryj}h −Rxi∥F ,
k1 = trace(RT

xi
{Ryj}h)/trace(RT

xi
Rxi)

k2 = trace({Ryj}ThRT
xi
)/trace({Ryj}Th {Ryj}h).

Here, h is a permutation of the k possible choices
for Ryi . The quantity δX,Y is the standard deviation
of the set {dist(Rxi , Ryj ) : xi ∈ X, yj ∈ Y }.

Further, define

L =

[
Lx + µBx −µW
−µW T Ly + µBy

]
.

Consider the solutions for λ in the equation

ZTLZγ = λZTDZγ. (1)

Next, index the generalized eigenvalues from least
to greatest and consider the first d eigenvalues {λi :
1 ≤ i ≤ d} and calculate K(d) =

∑d
i=1 |λi|2.

This K(d) will be used to measure the alignment
quality between two languages.

2.2 Cost Function
The cost function from Wang and Mahadevan
(2009) is given as

C(γ) = C(α, β) =
∑

i,j

µ(αTxi − βT yj)
2W i,j

+
1

2

∑

i,j

µ(αTxi − αT yj)
2W i,j

x

+
1

2

∑

i,j

µ(βT yi − βT yj)
2 = γTZTLZγ,

where γT = [αT , βT ]T is a solution to the
generalized eigenvalue problem Eqn. 1. Note
that if we normalize γ by dividing the constant√
|γTZTDZγ| then C(γ) = |λ|2. The cost func-

tion C(α, β) from Wang and Mahadevan (2009)
is minimized by the generalized eigenvectors for
the above equation. Hence we define the new cost

function K(d) =
d∑

i=1
|λi|2, where the λi are the

eigenvalues for the above equation. The minimum
possible value of K(d) is 0 (manifolds are identi-
cal) while the maximum is unbounded, though in
practice we do not observe it to exceed 1000.

3 Experiments

In this section, we produce a ranking of (ma-
chine) language distances. We review our distances
against prevailing comparative linguistics theory.

Dataset. Our corpora to compare encoder man-
ifolds are the Book of Revelation (BoR) of the
Christian Bible and the FLORES+ dataset (dev
split). We choose the BoR due to (1) its widely
available translations and (2) since it contains a di-
verse set of vocabulary and vivid imagery this can
help further probe for concept alignment. For the
BoR, we source these translations from the digital
eBible corpus Akerman et al. (2023). Revelations
has a diverse set of words describing abstract vi-
sions. We thought this diversity would help sepa-
rate out some of the differences in the languages
we consider. For each family, we attempt to choose
translations of the BoR descending from a com-
mon pivot or consistent translator, though this is
not always possible. FLORES+ sentences are 1-1
aligned between all languages and professionally
translated.

Languages. For the non-correspondent BoR clus-
tering task, we consider three clusters of lan-
guages: (French, Italian, Spanish, Portuguese),
(German, Russian, Ukrainian, Polish), (Kannada,
Hindi, Bengali, Gujarati). For the correspondent
FLORES+ task, we consider three new clusters of
languages: (Icelandic, Swedish, Danish, Norwe-
gian Bokmål), (Swahili, Kirundi, Kinyarwanda,
Luganda), (Khalkha Mongolian, Kyrgyz, Tatar,
Kazakh). In each quadruplet, we include a chal-
lenge (grey) language which is widely accepted to
be the most dissimilar of its group despite close
geographic proximity.
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Italian Portuguese French
Portuguese 239

French 313 153
Spanish 101 174 296

Table 1: Romance Language Distances. Our
method generally places Italian, Spanish, and Por-
tuguese close together, but controversially ranks
French closer to Portuguese than the other Ro-
mance languages.

Bengali Hindi Kannada
Hindi 21

Kannada 98 304
Gujarati 231 360 365

Table 2: Indo-Aryan/Dravidian Language Dis-
tances. Our ranking overall tends to cluster the
Indo-Aryan languages Bengali, Hindi, and Gujarati
together. It erroneously places Kannada, a Dravid-
ian language, not as far away for several orderings.

German Russian Polish
Russian 325
Polish 397 252

Ukrainian 228 220 155

Table 3: Slavic/Germanic Language Distances.
Our ranking overall tends to cluster the Slavic lan-
guages together.

Model. For each translation of the BoR, we push
every verse through the M2M100 (418M model)
and extract the mean pooling of hidden states over
the entire sequence to get a sentence-level represen-
tation. For each language, this results in roughly
403 points in R1024. For translations of FLORES+,
we use NLLB (600M model) mean pooling embed-
dings of 997 sentences also in R1024. We choose
d = 400 eigenvalues to construct our cost K(d) (as
described in Section 2.2 as this explained roughly
90% of covariance across all individual language
graph Laplacians. We ran all experiments using
only a CPU.

4 Experimental Analysis

4.1 Non-Correspondent Alignment
Tables 1, 2, and 3 depict our seq2seq spectral clus-
tering rankings via manifold alignment without
correspondence over the BoR. A higher spectral
clustering score indicates a higher cost for manifold
alignment.

Our spectral rank successfully tends to group

Swedish Danish Nor. Bok.
Danish 299

Nor. Bok. 76 228
Icelandic 577 600 619

Table 4: East/West Scandinavian Language Dis-
tances. Our ranking clusters members of the East
Scandinavian family closer together than with Ice-
landic, which is closer to Old Norse.

Kh. Mong. Tatar Kazakh
Tatar 744

Kazakh 226 413
Kyrgyz 600 436 461

Table 5: Turkic/Mongolic Language Distances.
Kazakh, Tatar, and Kyrgyz (all members of the
Turkic Kipchak branch), and generally clustered
together. The method commits an error by viewing
Khalka Mongolian and Kazakh as closest.

Swahili Luganda Swahili
Luganda 497
Kirundi 317 298

Kinyarw. 254 299 282

Table 6: Great Lakes/Sabaki Bantu Language
Distances. The alignment generally views the
Great Lakes Bantu languages as close. Our method
commits a single error by viewing Swahili (a
Sabaki Bantu language) as the closest language
to Kirundi.

close languages together. This indicates that the
manifold alignment is easier for the core similar
languages, thus their representations may occupy
similar regions in the ambient space. Our ranking,
though generally accurate is not immune to errors
– for example, placing Kannada, a Dravidian lan-
guage, very close to some Indo-Aryan languages.

4.2 Correspondent Alignment

Tables 4, 5, and 6 depict rankings via manifold
alignment with correspondence over FLORES+.
To perform parallel alignment, we set W = I in
Section 2.1. Our results generally fall in line with
what is found in Bella et al. (2021).

Swedish, Danish, and Norwegian Bokmål are
closely related members of the East Scandinavian
group within the Northern Germanic family and our
clustered closely by our method. Kahlkha Mongo-
lian, a member of the Mongolic languages, shares
typological features but is less related to the Turkic
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group. Our approach does commit an error by judg-
ing Khalkha Mongolian as closer to Kazakh than
the other Kipchak languages. Swahili, although a
Bantu language, is part of the Sabaki group, differs
in vocabulary from the other three. Our methodol-
ogy erroneously views Swahili as the closest lan-
guage to Kirundi (which is, in fact, Kinyarwanda).

5 Conclusion

In this work, we study how seq2seq translation
models group languages together. We conduct this
assessment by extracting M2M100 and NLLB hid-
den representations of sentences of various lan-
guages over small, common corpora. We observe
that the embedding manifolds of closely related
languages likely contain similar structures as they,
on average, do not incur high spectral clustering
costs. In contrast to Kudugunta et al. (2019), we
require < 1000 sentences and can perform cluster-
ing without parallel alignment, thus framing our
method as a low-resource strategy.
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Abstract

Dialect classification is essential for pre-
serving linguistic diversity, particularly in
low-resource languages such as Luxem-
bourgish. This study introduces one of
the first systematic approaches to classi-
fying Luxembourgish dialects, addressing
phonetic, prosodic, and lexical variations
across four major regions. We bench-
marked multiple models, including state-
of-the-art pre-trained speech models like
Wav2Vec2, XLSR-Wav2Vec2, and Whis-
per, alongside traditional approaches such
as Random Forest and CNN-LSTM. To
overcome data limitations, we applied tar-
geted data augmentation strategies and
analyzed their impact on model perfor-
mance. Our findings highlight the su-
perior performance of CNN-Spectrogram
and CNN-LSTM models while identify-
ing the strengths and limitations of data
augmentation. This work establishes foun-
dational benchmarks and provides action-
able insights for advancing dialectal NLP
in Luxembourgish and other low-resource
languages.

1 Introduction

Dialectal research plays a critical role in under-
standing linguistic diversity and cultural identity.
Luxembourgish, a West Germanic language spo-
ken by over 600,000 people, presents unique chal-
lenges due to its regional phonetic, prosodic, and
lexical variations. Limited annotated resources
and influences from German and French compli-
cate automated dialect classification (Hovy, 2015;
Adda-Decker et al., 2014).

Luxembourgish dialects are categorized into
four regions: North, East, South, and Center. Each
region exhibits distinct linguistic traits, with the

northern dialect displaying the most divergence
and the central region aligning closely with the
standard variety (Gilles, 2023).

Automatic dialect classification has practical
importance in improving automatic speech recog-
nition (ASR) and machine translation systems and
in enabling more inclusive digital archiving of di-
alectal data. Previous work has underscored the
importance of dialect identification in preserving
linguistic diversity and supporting sociolinguis-
tic research (Kantharuban et al., 2023). How-
ever, Luxembourgish, like other low-resource lan-
guages, lacks substantial annotated datasets for
automated processing, which hinders the develop-
ment of robust models for dialect classification.
Moreover, Luxembourgish’s multilingual setting
presents additional challenges, as shown by exist-
ing research in Luxembourgish ASR and related
linguistic tasks (Gilles et al., 2023; Nguyen et al.,
2023; Song et al., 2023).

1.1 Linguistic Variability Across
Luxembourgish Dialects

Luxembourgish dialects display considerable vari-
ation in lexical, phonetic, and prosodic structures
influenced by geographic factors (Gilles, 1998).
To illustrate, we present a sample sentence ren-
dered in the four main dialects—North, East,
South, and Center—along with phonetic transcrip-
tions. This example highlights the differences
in pronunciation and vocabulary that complicate
automated dialect classification due to regional
speech patterns.

These examples underscore the challenges in
distinguishing Luxembourgish dialects due to lex-
ical differences (e.g., “Fregdig” vs. “Freiden”) and
phonetic variations (e.g., vowel lengthening and
consonant shifts). Automatic dialect classification
models must account for these subtleties to handle
distinct regional forms accurately.

In this study, we address these challenges by
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Region Dialectal Sentence Phonetic Transcription

North Eng Frau hott e Fregdig di schwarz
Kléider gebikst.

[æN föAU hot @ föægdiC di: SwAöts kl3id5
g@bIkst]

East En Fra hott e Freddig di schwarz
Klääder gebéit.

[e:n föa: hot @ föædIC di: SwAts klE:d5 g@b3it]

South Eng Fra huet e Freiden di schwoarz
Kleeder gebitzt.

[æN föa: huet @ föAId@n di: SwO:5ts kle:d@
g@bitst]

Center Eng Fra huet e Freideg déi schwaarz
Kleeder gebitzt.

[æN föa: huet @ föAIdeC d3i Swa:öts kle:d@
g@bitst]

Table 1: Example Sentence in Luxembourgish Dialects with Phonetic Transcriptions

employing data augmentation techniques to in-
crease sample diversity and improve model robust-
ness, particularly for underrepresented dialects.
Our methodology explores phonetic, prosodic,
and lexical features across various classifiers, in-
cluding both traditional machine learning algo-
rithms and neural network models.

This paper contributes to computational linguis-
tics by:

1. Introducing one of the first comprehensive
studies on Luxembourgish dialect classifica-
tion, investigating the impact of data aug-
mentation on model performance in a low-
resource setting.

2. Establishing performance benchmarks
across multiple model architectures, includ-
ing Random Forest, CNN-Spectrogram,
CNN-LSTM, Wav2Vec2, Whisper, and
XLSR-Wav2Vec2 to create a foundation for
future research in Luxembourgish and other
low-resource languages.

These contributions establish Luxembourgish
as a compelling case study in low-resource lan-
guage processing and illustrate the broader appli-
cations of dialectal NLP research. Our results un-
derscore the importance of linguistic equity and
highlight directions for future research in multi-
lingual and dialectal NLP.

2 Related Work

Automatic dialect classification has advanced sig-
nificantly in high-resource languages, where anno-
tated datasets and sophisticated processing tools
facilitate robust model performance. For in-
stance, substantial work has been conducted in

Arabic (Harfash and Abdul-kareem, 2017), Chi-
nese (Ng and Lee, 2008), German (Dobbriner and
Jokisch, 2019), and English (Etman and Louis,
2015). In these languages, the availability of ex-
tensive data resources enables classification ap-
proaches to take advantage of phonetic, prosodic,
and lexical features, supporting higher accuracy
and model robustness. For example, Harfash and
Abdul-kareem (2017) improved dialect classifi-
cation in Arabic by incorporating phonetic and
prosodic cues, while Ng and Lee (2008) applied
entropy-based measures to enhance Chinese di-
alect classification, highlighting the versatility of
feature-based methods in these contexts. In high-
resource settings, models often use a combination
of rule-based linguistic knowledge (Biadsy and
Hirschberg, 2009) and data-driven machine learn-
ing techniques that benefit from large training cor-
pora, allowing them to learn complex patterns ef-
fectively (Ali et al., 2016).

In contrast, low-resource languages like Lux-
embourgish lack the annotated datasets and pro-
cessing infrastructure needed for accurate dialect
classification, presenting unique challenges for
computational linguistics. For low-resource lan-
guages, researchers have explored strategies such
as synthetic data generation and unsupervised
learning to mitigate data scarcity. Transfer learn-
ing, for example, can leverage pre-trained mod-
els in related languages, using phonetic similar-
ities to improve dialect classification in under-
resourced contexts (Shah et al., 2023; Khosravani
et al., 2021). Data augmentation has also emerged
as a critical strategy for low-resource languages,
allowing researchers to expand datasets and intro-
duce variability, as demonstrated in tasks involv-
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ing accent and dialect variation (Ullah et al., 2023;
Xu et al., 2021).

For Luxembourgish, however, computational
research remains relatively limited. Existing stud-
ies have focused mainly on its phonetic and
syntactic characteristics (Gilles and Trouvain,
2013), as well as distinctive phonological fea-
tures (Gilles, 2014), with limited exploration of
automated dialect classification. Research on re-
gional phonetic variation in Luxembourgish in-
dicates that its dialects are influenced by neigh-
boring German and French, with generational
shifts contributing further to its linguistic diver-
sity (Conrad, 2023). This complexity requires
tailor-made classifiers and careful feature engi-
neering to capture subtle distinctions in phonet-
ics and prosody that are integral to Luxembour-
gish dialectal variation (Snoeren et al., 2011).
Computational studies have suggested that cross-
lingual models that utilize resources from German
and French could improve Luxembourgish speech
recognition (Nguyen et al., 2023), highlighting
both the potential and the computational chal-
lenges that the classification of the Luxembourgish
dialect entails (Adda-Decker et al., 2014).

Future progress in Luxembourgish dialect clas-
sification may benefit from techniques like data
augmentation, which has proven successful in
other low-resource contexts. For instance, Xu
et al. (2021) demonstrated that targeted data aug-
mentation techniques, such as pitch and speed
modifications, significantly improved the accuracy
of dialect classification for Chinese dialects, un-
derscoring the value of these methods to improve
model performance in low-resource settings. Such
approaches could potentially be adapted for Lux-
embourgish, where similar variability in phonetic
and prosodic features across dialects could benefit
from targeted augmentation.

Building on this foundation, our study intro-
duces a model for the classification of Luxembour-
gish dialects that integrates linguistic insights with
computational techniques specifically designed
for low-resource settings. By applying data aug-
mentation strategies, we address the constraints
imposed by limited annotated data, contributing to
the broader field of dialect classification for under-
represented languages. This work aims to lay the
groundwork for Luxembourgish NLP, underscor-
ing the importance of dialectal research in mul-
tilingual NLP and advancing methodologies for

low-resource language processing.

3 Methodology

3.1 Dataset and Preprocessing

The dataset used in this study was crowd-sourced
through a smartphone application developed as
part of a prior project [redacted]. Participants were
asked to translate sentences spontaneously from
German or French into their Luxembourgish di-
alect.

Attribute Category Count

Total Audio Files 1720
Unique Entries 1720

Gender Female 1210
Male 510

Age Group

25–34 567
35–44 377
45–54 352
55–64 277
65+ 132

Dialect Region
Center 762
South 482
East 293
North 168

Table 2: Demographic Distribution of the Luxem-
bourgish Dialect Dataset.

The dataset (Table 2) includes 1720 unique au-
dio samples annotated with gender, age group, and
dialect region. The samples reflect Luxembour-
gish’s four main dialect regions: Center, South,
East, and North, with the Center being the most
represented. To evaluate whether age groups were
evenly distributed across dialect regions, we con-
ducted a chi-square test. The results indicated that
age distribution did not differ significantly by di-
alect region (χ2(6) = 5.73, p = 0.45), suggesting
the four regions are relatively balanced with re-
spect to participants’ ages.

For feature extraction, Mel-Frequency Cepstral
Coefficients (MFCCs) were computed using the
torchaudio and librosa libraries, capturing pho-
netic features essential for dialectal differentia-
tion. Additionally, the mean and standard devi-
ation of each waveform were calculated to pro-
vide statistical descriptors of each audio signal.
Together, these features allow the model to learn
from both phonetic characteristics and statistical
patterns across dialects, supporting accurate di-
alect classification.
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3.2 Model Architecture and Training
In this study, we explore multiple approaches to
dialect classification, leveraging both traditional
machine learning techniques and advanced deep
learning models. Our methodology includes six
key approaches, each with unique strengths in han-
dling different aspects of speech data. All clas-
sifiers were implemented in Python 3.9. For the
Random Forest classifier, we used scikit-learn to
handle training and evaluation, and Optuna for hy-
perparameter tuning. For the DL models (CNN-
Spectrogram, CNN-LSTM, Wav2Vec2, XLSR-
Wav2Vec2, and Whisper), we used PyTorch along
with the torchaudio library for audio processing;
hyperparameter tuning was also managed via Op-
tuna. This integrated setup allowed us to maintain
a consistent development pipeline across both tra-
ditional and DL methods.

1. Random Forest with AutoML Tuning: We
use Random Forest as a baseline classi-
fier and employ AutoML (Optuna (Akiba
et al., 2019)) for hyperparameter optimiza-
tion. Random Forest is a robust ensemble
model noted for its interpretability and effec-
tiveness in handling tabular, low-dimensional
features. AutoML tuning identifies optimal
configurations, establishing a strong bench-
mark for comparison with deeper architec-
tures (Ramadhan et al., 2017).

2. Wav2Vec Model: Wav2Vec 2.0 is a pre-
trained model for speech representation
learning, capturing nuanced phonetic and
acoustic features. By fine-tuning Wav2Vec2
on our dialectal data, we leverage its abil-
ity to detect subtle variations in pronuncia-
tion, tone, and rhythm—key elements in di-
alect classification. Its extensive pre-training
makes it highly effective, even with limited
labeled data (Das et al., 2023).

3. Whisper Model: Whisper (Radford et al.,
2023) is a sequence-to-sequence model de-
signed for automatic speech recognition
(ASR) and robust transcription across vari-
ous languages. In our approach, we lever-
age Whisper for dialect classification by fine-
tuning it on Luxembourgish dialect data.
Specifically, we modify its final classifica-
tion layer to predict dialect labels rather than
transcriptions. We extract Whisper’s inter-
mediate acoustic embeddings from its final

transformer layers and pass them through a
fully connected classifier, which outputs soft-
max probabilities over the dialect classes.
This method enables Whisper to capture
subtle phonetic and prosodic differences
among Luxembourgish dialects while bene-
fiting from its inherent robustness to noise
and diverse acoustic conditions. Compared
to other models such as Wav2Vec2 and CNN-
based approaches, Whisper’s sequence-to-
sequence architecture allows it to use broader
context across speech segments, making it
particularly effective in capturing dialectal
shifts that span longer temporal patterns.

4. XLSR-Wav2Vec2 Model: The Cross-Lingual
Speech Representation (XLSR) variant of
Wav2Vec2 extends the model’s capabilities
to multiple languages by learning universal
speech representations. Fine-tuning XLSR-
Wav2Vec2 (Conneau et al., 2021) on our
dialectal data leverages these cross-lingual
features, facilitating more accurate detection
of subtle acoustic patterns that may overlap
across dialects or language families. This ap-
proach is especially useful when the available
labeled data for each dialect is limited.

5. CNN on Spectrograms: We apply Convolu-
tional Neural Networks (CNNs) to Mel spec-
trograms, treating them as 2D images. CNNs
excel in identifying spatial patterns—such as
phonetic markers, intonation shifts, and ac-
cent variations—by leveraging their proven
effectiveness in image processing. This ap-
proach highlights visual representations of
acoustic features for clearer insight into di-
alect differences (Alrehaili et al., 2023).

6. CNN-LSTM Hybrid Model: To capture both
spatial and temporal patterns, we integrate
CNN and Long Short-Term Memory (LSTM)
layers. The CNN layers learn spatial fea-
tures from each spectrogram frame, while the
LSTM layers model temporal dependencies
such as rhythm and sequential patterns across
frames. This combined architecture offers a
more holistic understanding of dialectal char-
acteristics (China et al., 2018).

Through these six approaches, we explore how
different models capture dialectal differences in
speech, analyzing which features—ranging from
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the phonetic details learned by Wav2Vec2, XLSR-
Wav2Vec2, and Whisper to the spatial and tem-
poral patterns identified by CNN-Spectrogram and
CNN-LSTM—are most effective for dialect clas-
sification.

The CNN model for dialect classification was
designed to process spectrogram data as a 2D
image-like input, beginning with a 2D convolu-
tional layer with 32 filters (kernel size of 3 × 3),
followed by additional convolutional and max-
pooling layers to capture spatial features from the
spectrograms. For the CNN-LSTM model, this
convolutional stack was followed by an LSTM
layer to capture temporal dependencies across
spectrogram frames. Both models used padding
to ensure consistent input dimensions. The ar-
chitecture was optimized using categorical cross-
entropy loss and an Adam optimizer with a learn-
ing rate of 0.001. Each model was trained over
15 epochs with five cross-validation folds to eval-
uate robustness. To handle class imbalance, we in-
corporated a weighted sampler in the DataLoader,
using class weights calculated per fold to empha-
size learning on underrepresented dialect classes,
improving model generalizability across dialects.

3.3 Data Augmentation

To address data imbalance within the Luxembour-
gish dialect dataset, we implemented data aug-
mentation techniques using controlled variations
in speed and pitch to enhance sample diversity and
model robustness. Specifically, we targeted under-
represented dialect classes (Northern and Eastern)
to generate additional samples. In total, we created
820 new audio samples, increasing the dataset size
from 1720 to 2540 recordings.

We applied time stretching with a 1.2x speed
factor to generate faster-paced versions of each
sample, creating tempo variations that reflect nat-
ural speaking speed differences without altering
phonetic content. Pitch shifting was also used to
create tonal variations by adjusting playback at a
50ms chunk level with crossfade transitions. This
replicates natural differences in vocal tone, help-
ing to distinguish differences between dialects and
individual speakers.

We implemented these augmentations using
the pydub library (Robertson, 2010), which en-
abled systematic file augmentation while preserv-
ing originals. Augmented files were prioritized for
dialects below the median frequency (i.e., North-

ern and Eastern), addressing class imbalance ef-
fectively. Furthermore, to maintain demographic
consistency, we mirrored the gender and age dis-
tributions for each new sample, ensuring that
both male and female speakers across various age
ranges were also augmented when needed. The
final dataset became more balanced, reducing the
disparity between the best- and worst-represented
dialects from 594 recordings to 147 recordings
difference. Parallel processing was employed to
manage the computational load, ensuring efficient
augmentation of underrepresented dialects.

After augmentation, the dataset included 2540
audio clips, with each dialect represented by at
least 500 samples. The mean clip length was 3.2
seconds (SD = 0.8), with a similar distribution of
lengths across dialects, genders, and age groups.
On average, each audio sample contained approx-
imately 6.3 tokens of spoken text (SD = 1.1), with
a total vocabulary of 1,550 unique Luxembour-
gish tokens (up from 1,100 prior to augmentation).
This increase in unique tokens reflects the added
lexical variability introduced by augmentation and
ensures that minority dialects are not underrepre-
sented in the linguistic feature space.

Baseline (Without Augmentation)

Model Northern Central Southern Eastern

Random Forest 63/61/62 58/60/60 56/57/57 55/55/55

Wav2Vec2 70/72/72 69/70/70 70/71/71 69/69/70

Whisper 67/69/68 66/67/66 68/69/69 64/65/65

XLSR-Wav2Vec2 68/70/69 66/68/67 69/70/69 63/64/64

CNN-Spectrogram 72/71/73 71/71/71 72/74/73 70/69/71

CNN-LSTM 72/70/72 73/72/71 69/72/70 68/71/72

Optimized (With Augmentation)

Model Northern Central Southern Eastern

Random Forest 71/69/71 65/63/65 63/61/63 59/58/59

Wav2Vec2 75/74/75 72/71/72 73/72/73 70/71/71

Whisper 72/72/73 70/70/70 72/72/72 67/69/68

XLSR-Wav2Vec2 72/73/72 69/70/70 71/72/71 66/66/66

CNN-Spectrogram 76/74/76 74/73/74 79/76/78 78/75/76

CNN-LSTM 76/73/74 75/74/73 77/75/77 72/70/71

Table 3: Performance Comparison Between
Baseline (Without Augmentation) and Optimized
(With Augmentation) Results for Luxembourgish
Dialect Classification. Each cell shows Accu-
racy/Precision/Recall (%). Bold indicates the
highest performance metric.
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3.4 Evaluation and Metrics

To evaluate model performance in dialect classifi-
cation, we used four key metrics: accuracy (over-
all correctness), precision (minimizing false posi-
tives), and recall (capturing true instances) to eval-
uate each model. Each table reports per-class ac-
curacy, precision, and recall, giving insight into
how models handle each dialect.

We applied stratified sampling during training
to ensure balanced dialect representation in the
dataset, helping to address class imbalance and
maintain model performance across all dialects.
Early stopping was implemented to halt training
when the validation loss did not improve over
five consecutive epochs, thereby preventing over-
fitting. A batch size of 16 was chosen to balance
computational efficiency and convergence speed,
while the Adam optimizer was used to adjust the
learning rate adaptively, ensuring stable and effec-
tive convergence during training.

4 Results

Table 3 presents a comparison of model per-
formance on Luxembourgish dialect classifica-
tion under two conditions: baseline (without data
augmentation) and optimized (with data augmen-
tation). Six primary models were evaluated:
Random Forest, Wav2Vec2, Whisper, XLSR-
Wav2Vec2, CNN-Spectrogram, and CNN-LSTM.
Performance, evaluated through accuracy, preci-
sion, and recall metrics, was measured across
Northern, Central, Southern, and Eastern dialects
for each model.

4.1 Baseline Performance (Without
Augmentation)

In the baseline setting (see Table 3), all models
exhibit moderate accuracy (55%–73%), reflecting
the challenges posed by a relatively small and im-
balanced dataset:

CNN-Spectrogram attains the highest accuracy
in the Northern (72%) and Southern (72%) di-
alects, underscoring CNNs’ effectiveness in ex-
tracting spatial patterns (e.g., phonetic cues) from
spectrograms. CNN-LSTM excels in classifying
the Central dialect (73% accuracy), possibly due
to its capacity to capture temporal dependencies
along with spatial cues. Wav2Vec2 also performs
strongly, particularly for Northern and Southern
dialects (70% accuracy), benefiting from its robust
self-supervised speech representations. Random

Forest consistently lags behind the neural models,
particularly for the Southern and Eastern dialects,
reflecting its limited ability to model complex
acoustic cues. Whisper and XLSR-Wav2Vec2
provide competitive results but do not surpass the
CNN-based or standard Wav2Vec2 models in most
dialects. Eastern dialect classification remains the
most challenging for all approaches. This is con-
sistent with its underrepresentation in the dataset
and with prior observations that Eastern exhibits
phonetic overlaps with adjacent dialects, com-
pounding classification difficulties.

4.2 Optimized Performance (With
Augmentation)

Applying speed and pitch augmentation yields
performance gains across all models, particularly
for underrepresented Northern and Eastern di-
alects (see Table 3):

Random Forest sees an overall accuracy in-
crease of 4–5%, indicating that extra variabil-
ity in the training set helps even simpler classi-
fiers. Wav2Vec2 improves to 75% accuracy for
Northern and 70% for Eastern, confirming that its
self-supervised features benefit from augmented
data. Whisper and XLSR-Wav2Vec2 also enjoy
small but consistent boosts across all dialects, re-
inforcing the notion that multilingual or sequence-
to-sequence approaches capitalize on the broader
acoustic variability introduced by augmentation.
CNN-Spectrogram emerges as the top performer
in most dialects post-augmentation: 76% accu-
racy in Northern, 79% in Southern, and 78% in
Eastern, highlighting CNNs’ capacity to adapt to
new spectrogram variations (e.g., pitch-shifted or
speed-stretched speech). CNN-LSTM remains
highly competitive, matching CNN-Spectrogram
in Northern dialect classification (76%) and ex-
celling in the Central dialect (75% accuracy). Its
ability to capture both spatial and temporal cues
remains beneficial. These findings confirm that
data augmentation helps mitigate class imbalance,
particularly for Northern and Eastern dialects,
which see some of the largest proportional gains.
However, the overall improvements—while mean-
ingful—remain limited by the modest size of the
dataset. Gathering more recordings and exploring
advanced or multi-parameter augmentation tech-
niques (e.g., multiple speed factors, SpecAug-
ment) could further boost performance.
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5 Discussion

The results demonstrate that data augmentation
can contribute to modest but consistent improve-
ments in dialect classification for Luxembourgish,
a low-resource language. These findings align
with prior studies highlighting the effectiveness
of CNNs and end-to-end ASR models, such as
Wav2Vec, in handling spectrogram data for dialect
and language classification tasks.

CNNs have proven effective in extracting mean-
ingful features from spectrograms, which are
crucial for distinguishing subtle phonetic and
prosodic differences across dialects. For ex-
ample, Alrehaili et al. (2023) reported that
CNNs achieved 83% accuracy in Arabic dialect
classification, capitalizing on their capacity to
process spatial information within spectrograms.
Similarly, Revay and Teschke (2019) demon-
strated CNNs’ suitability for language identifica-
tion across multiple languages, achieving up to
89% accuracy by focusing on acoustic cues en-
coded in spectrograms (Revay and Teschke, 2019).
Prior studies support our findings, showing that
CNN-based models, such as CNN-Spectrogram
and CNN-LSTM, achieved competitive accuracy
(68-73%) on Luxembourgish dialects, with further
improvements post-augmentation.

Research supports the effectiveness of CNN-
LSTM architectures in dialect classification, espe-
cially for capturing both spatial and temporal lin-
guistic patterns. For instance, CNN-LSTM mod-
els have shown high accuracy in dialect classifica-
tion tasks for Arabic, where they effectively cap-
tured dialectal sentiment variations across regional
Arabic texts (Abu Kwaik et al., 2019). Similar
success has been observed in distinguishing tonal
versus non-tonal Indian languages using acoustic
data, where the model’s ability to capture tempo-
ral dependencies significantly improved classifi-
cation outcomes (China et al., 2018). Studies on
dialectal sentiment analysis for Roman Urdu and
English have further highlighted CNN-LSTM’s
adaptability, demonstrating the model’s capacity
to capture linguistic nuances in dialects within so-
cial media contexts (Khan et al., 2022). In gen-
eral, CNN-LSTM hybrids improve dialect classi-
fication accuracy by effectively capturing both lo-
calized phonetic features and sequential temporal
dynamics (She and Zhang, 2018).

Additionally, research on self-supervised mod-
els like Wav2Vec has demonstrated the model’s

ability to capture detailed phonetic and acous-
tic features, enabling it to perform well even in
low-resource dialect classification tasks. Wav2Vec
embeddings have proven effective in detect-
ing dialect-specific nuances and handling out-of-
distribution dialect data (Das et al., 2023). Studies
also show that fine-tuning Wav2Vec on dialectal
datasets enables it to capture phonetic variations in
pronunciation, tone, and rhythm, essential for ef-
fective dialect classification (Baevski et al., 2019).
Furthermore, Wav2Vec has demonstrated robust-
ness across low-resource languages, achieving no-
table improvements in speech recognition for un-
derrepresented dialects (Yi et al., 2020).

These findings align with our results, where
the CNN-LSTM model showed consistent perfor-
mance gains after augmentation, underscoring the
utility of combining convolutional and sequential
layers to handle the complex linguistic structures
present in Luxembourgish dialects. Our findings
also resonate with prior work in low-resource di-
alect classification. For instance, in the study
by Wang et al. (2021), a multilingual ASR model
improved classification accuracy for Chinese di-
alects, significantly reducing classification errors.
Although we did not directly utilize this approach,
Wav2Vec’s pretraining on multilingual datasets
may have contributed to its relative robustness in
Luxembourgish dialect classification. This abil-
ity to handle a range of dialectal inputs, even with
limited training data, illustrates the model’s value
in low-resource language contexts.

The improvements observed with data augmen-
tation, while modest, highlight its potential to
enhance model robustness, particularly for di-
alects with lower representation. Kethireddy et al.
(2020) explored similar strategies by introduc-
ing augmented spectrogram features, leading to
gains in dialect classification accuracy. In our
study, augmenting the dataset by adjusting pitch
and tempo introduced additional variability, help-
ing the models to generalize better. This approach
was especially beneficial for the Random Forest
model, which lacks the feature extraction capabili-
ties of CNNs and ASR models. Despite the limited
scale of the improvements, these findings under-
score the utility of data augmentation as a practical
approach to mitigate the effects of data scarcity in
dialect classification tasks.

Our CNN-LSTM model, designed to cap-
ture both spatial and temporal dependencies,
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also showed consistent gains with augmenta-
tion. Chemudupati et al. (2023) demonstrated
that Wav2Vec could maintain robust performance
across diverse conditions, including real-world
“in-the-wild” settings with noisy and reverberant
audio. Although the Luxembourgish dataset does
not include such variability, the slight improve-
ments in recall and precision seen in our CNN-
LSTM model after augmentation suggest that tem-
poral architectures may add value in dialectal clas-
sification tasks, especially in capturing sequential
acoustic features.

Overall, the updated performance metrics re-
ported in Table 3 confirm that CNN-Spectrogram
achieved top accuracy in Southern (79%) and
Eastern (78%) dialects following augmentation,
while CNN-LSTM matched or surpassed other ap-
proaches in Central (75%) and Northern (76%).
Wav2Vec2 also registered stable improvements
(e.g., 70% accuracy for Eastern) after incorporat-
ing time-stretch and pitch-shift strategies. No-
tably, the Random Forest benefited substantially
from augmentation, gaining about 4–5% in ac-
curacy—particularly in Northern and Eastern di-
alects—underscoring the value of enriched data
variability even for non-neural classifiers.

5.1 Limitations of the work

One key limitation is the lack of sufficiently di-
verse data, which poses a risk of overfitting and
makes it difficult to capture subtle phonetic or
lexical nuances in border regions. Additionally,
our augmentation experiments are limited to a sin-
gle set of parameters, leaving open the possibil-
ity that other augmentation methods or intensi-
ties might yield higher improvements. Finally,
while Whisper and XLSR-Wav2Vec2 adapt well
to multilingual contexts, further tuning (e.g., mul-
tiple epochs, domain adaptation) could potentially
boost their performance.

6 Conclusions

We introduced a comprehensive methodology for
Luxembourgish dialect classification, pairing data
augmentation (speed/pitch shifts) with a spectrum
of models from Random Forest to CNN-LSTM and
pretrained Whisper / Wav2Vec2 variants. Our re-
sults highlight:

CNN-Spectrogram achieves top accuracies in
Northern, Southern, and Eastern dialects af-
ter augmentation, showcasing its spatial feature-

extraction strengths. CNN-LSTM outperforms
other models in Central Luxembourgish, sug-
gesting the value of modeling temporal depen-
dencies in dialect classification. Wav2Vec2 re-
mains consistently strong across all dialects, af-
firming the resilience of self-supervised speech
representations. Data augmentation partially mit-
igates imbalance, boosting performance the most
in underrepresented dialects (Northern and East-
ern). Though the improvements are modest, they
demonstrate the potential of augmentation in low-
resource dialect classification. Future work should
explore more advanced augmentation pipelines
(e.g., SpecAugment, multiple pitch/speed factors)
and target larger-scale data collection, possibly
leveraging multilingual transfer from related Ger-
manic varieties. These steps will be instrumen-
tal in achieving broader robustness and higher ac-
curacy for Luxembourgish and other low-resource
dialects.
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Abstract

The paper presents a computer-assisted
exploration of a set of texts, where qualit-
ative analysis complements the linguistic-
ally aware vector-based language distance
measurements, interpreting them through
close reading and thus proving or disprov-
ing their conclusions. It proposes using
a method designed for small raw corpora
to explore the individual, chronological,
and gender-based differences within an ex-
tinct single territorial lect, known only by
a scarce collection of documents.

The material under consideration is the
Novgorodian birchbark letters, a set of
rather small manuscripts (not a single
one is more than 1000 tokens) that
are witnesses of the Old Novgorodian
lect, spoken on the territories of modern
Novgorod and Staraya Russa at the first
half of the first millennium CE.

The study shows the existence of chro-
nological variation, a mild degree of
individual variation, and almost absent
gender-based differences. Possible pro-
spects of the study include its application
to the newly discovered birchbark letters
and using an outgroup for more precise
measurements.

1 Introduction

This article discusses the complexities of study-
ing the variation with the low-resourced data on
the material of the corpus of the East Slavic birch-
bark letters, dated from 1020 to 1500 CE, found
in the territories of modern Russia (among others,
Staraya Russa, Pskov, Moscow, Smolensk) and

Belarus (Viciebsk1, Mscislaŭ2); the most well-
known site with the most manuscripts, where they
were originally discovered, is Novgorod (Zalizn-
jak, 2004).

The research investigates three distinct types of
variation: variation within a collection of doc-
ulects from the same place and time, time vari-
ation, and gender variation. The latter two are
impossible to study without the first one (with a
high level of individual variety, it is not possible
to produce more effective research with more ap-
proximation) and are crucial for the study of Old
Novgorodian, allowing one to understand the so-
cial dynamics within the society and the reflection
of its development on its language. They are also
irreplaceable for the building of the Old Novgoro-
dian lect resources as they help to capture its ever-
changing state until its extermination in the XV -
XVI centuries CE.

Birchbark letters are usually small fragmented
texts, so there is no way to use a more tradi-
tional lectometry (Shim and Nerbonne, 2022) or a
corpus-based (Gamallo et al., 2020) methodology.
The study requires a method designed for small
raw corpora. The method relies on the combina-
tion of frequency-based metrics, string similarity
measures, and a set similarity coefficient and their
application to the subtoken-level units.

The research is based on three hypotheses:
H1. The differences detected by the proposed

method among the individual documents are in-
significant.

H2. The differences among the chronological
periods of Old Novgorodian are significant.

H3. Genderlects are present in Old Novgoro-
dian, there were significant differences between

1Most commonly called Vitebsk after the Russian variant;
this article gives the official Belarusian transliteration for it
and the other mentioned Belarusian cities.

2Most commonly called Mstsislaw after the Russian vari-
ant.
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the style of writing between men and women.
To test the hypotheses, the article uses a com-

bination of quantitative and qualitative analysis,
aimed at differentiating between random distri-
butional skewings and regular significant differ-
ences. The important constraint is that the pro-
posed method is intended to be preliminary, its
results are not set in stone and require subsequent
exploration by a human scholar, which this article
is going to perform. However, it is necessary to
state that a thorough qualitative analysis will re-
quire a detailed close reading of hundreds of texts
(Zaliznjak, 2004), so the study concentrates on the
method application and the exploration of its res-
ults.

The structure of the study is as follows. Section
2 expounds on the history of the Old Novgorodian
studies and defines the present research gap. Sec-
tion 3 provides detailed information on the utilised
data. Section 4 explains the method and the means
of analysis. Section 5 reports on the results of the
experiments. Section 6 is a conclusion that out-
lines the future research prospects.

2 Related Work

The East Slavic birchbark letters have been known
in the field of Slavic studies since the second half
of the XX century (Zhukovskaja, 1959), however,
for a long time they failed to gain recognition,
as scholars perceived them as erroneous and illit-
erate, thus having little to contribute to the lan-
guage study (Isačenko et al., 1980), which is a
common misconception in traditional and gener-
ative studies (Otheguy and Stern, 2011). Only
during the last two decades have the linguistic
features of birchbark letters received acceptance
as a full-fledged resource of information on lects
spoken at the corresponding territory (Krys’ko,
1998; Zaliznjak, 2004). Since then, a signific-
ant body of work has been produced, with top-
ics ranging from the language of these manu-
scripts(Andersen, 2006; Kwon, 2016; Gippius and
Schaeken, 2011; Dekker, 2018), including the
genderlect variation (Zaliznjak, 1993) and soci-
olinguistics (Lebedeva, 2003), to the creation of
a network of linguistic databases that includes
Birchbark Letter Database3 (BLD), and Russian
National Corpus 4 (RNC).

Old Novgorodian is part of a large group of his-

3http://gramoty.ru/birchbark
4https://ruscorpora.ru/en/corpus/birchbark

torical and contemporary lects, generally called
fragmented languages, which are attested only
partially and by rather low-resourced corpora (in
the best-case scenario, less than 100 000 tokens,
in the worst-case scenario, less than 100 tokens)
(Baglioni and Rigobianco, 2024). These lects
present a significant challenge to the NLP meth-
ods due to their low-resourcedness and heterogen-
eity (Swaelens et al., 2023; Doyle and McCrae,
2024; Lyashevskaya and Afanasev, 2021). Old
Novgorodian and the cases akin to it (Verhelst,
2020–2021) add a new layer to the complexity of
the task, as the texts themselves frequently lack
significant parts due to the damage to the original
manuscript.

Despite the relative well-studiedness of the Old
Novgorodian (Zaliznjak, 2004) and a high aware-
ness of the low-resourcedness problem in NLP
(Dione, 2019), there are crucial lacunae in the
current research. Some types of language vari-
ation in the birchbark letters gained attention
(Zaliznjak, 1993), but not all of them: for ex-
ample, the chronological division remains under-
studied (Zaliznjak, 2004). The 2010s advance-
ments in computational methodology (Nerbonne
et al., 2013) were not applied to the language vari-
ation within Old Novgorodian. At the same time,
low-resourced NLP rarely problematises the fea-
tures of the analysed lects from the linguistic per-
spective (de Graaf et al., 2022), but rather de-
clares these features as obstacles to be overcome
via strictly mathematical algorithm enhancement
(Nehrdich and Hellwig, 2022) and only rarely
with language-aware methods (Prokić and Moran,
2013). The current study aims to become the
first step in the direction of a language-aware
computer-assisted study.

3 Data

The research corpus consists of 1249 documents
available in the BLD as of February 2025. The
distribution is heavily skewed in favour of the
Novgorod letters which comprise most of the data-
set. It complicates the comparison between dif-
ferent regions. At the same time, some of the
non-Novgorod charters are still going to influence
the results of comparison by any other criterion
(gender or time frame), especially given the num-
ber of tokens in some of them. For instance,
Mosk_3, the third of the charters found in Moscow,
has 470 tokens. As one of the biggest manuscripts
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in the dataset, it may quantitatively outweigh a
hundred other charters. To eliminate this noise
in measurements that use other criteria, the study
data is restricted to charters from Staraya Russa
and Novgorod that represent Old Novgorodian in
the strict sense (Zaliznjak, 2004).

For the study, these letters undergo several
stages of preprocessing 5.

The birchbark letters suffer from being very
fragmented, and it is barely possible to use them
either in their raw form preserving only the fully
visible characters (there is not enough informa-
tion), or in the processed form containing all the
reconstructed characters (which may lead to the
researcher bias interfering with the existing vari-
ation). Thus, preprocessing starts with creating the
middle ground.

The initial step is to exclude all completely
non-reconstructible tokens, marked with .... The
next stage is the deletion of string breaks, marked
with ±±. Following this, each of the charters
is joined into a single string. After this, the
non-reconstructible parts of the existing tokens (...
joined to the tokens in the existing forms) undergo
replacement with ^ signs. The same applies to the
parts of the tokens that may be inferred from the
context but are not present in the charter in any
shape or form, originally surrounded by (). If
such reconstruction spans between two or more
tokens, both the end of the first token before the
reconstruction and the beginning of the second
token after the reconstruction receive the ^ sign.
The present misspellings, originally designated by
{}, are excluded from the texts. The parts of the
tokens that are not fully visible but reconstructible
with a high degree of certainty, surrounded by [],
are taken as is; only the designating signs [] are
excluded from the resulting text. The final step is
to merge the consequent break signs ^ that appear
before the token in cases when the break and/or
unrecognisable symbols go before the token that
contains a non-reconstructible part. Table 1 shows
examples of the transformations that the texts un-
dergo.

The further modifications to the dataset have the
purpose of adjusting it for the clusterisation: the
letters from Novgorod and Staraya Russa still suf-
fer from an imbalance between the size of differ-
ent charters: some are too small, consisting only of
one token, and some are too big, containing hun-

5https://zenodo.org/records/14808682

Original text Transformed text

рж(и) рж^
[с] с

·к· {блъ} блъ ·к· блъ

–ружиного шло с. . .
. . . по

^ружиного шло с^
по

дар(у с о)[с]ипова дар^ ^сипова

сел=<lb/>а села

Table 1: The preprocessed parts of the Novgorod
birchbark letter 1, compared to the fully prepro-
cessed version, are present in the BLD database.

Figure 1: Boxplot for the distribution of the num-
ber of tokens in Novgorod and Staraya Russa
birchbark letters.

dreds of tokens. Figure 1 shows the distribution.
For a more straightforward comparison, the

next preprocessing step excludes each letter that
consists of less than two tokens and five sym-
bols. The letters that consist of more than 60
tokens (an approximate value of Q36 + 1.5 *
(Q3 - Q1), with Q3 = 27.00 and Q1 = 6.00) are
shortened to the first 45 largest and the first 15
smallest tokens to preserve their features in the
set while partially eliminating imbalance. Figure

6Q denotes quartiles, the cut-off points for the range of
numbers that split this range into four more or less equal
parts. Q1 is the first quartile, below which lie the first 25%
of the range values, for example, 25% of the least frequent
words in the language. Q3 is the second quartile, below
which lie the final 25% of the range values, such as 25% of
the most frequent words in the language.
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Figure 2: Boxplot for the distribution of the num-
ber of tokens in the letters after normalisation.

2 shows the final distribution: here, the only re-
maining letters are the ones that are more than
two tokens or five symbols and less than 60 tokens
in length. This contrasts the original distribution,
where there was a significant number of letters
containing one short token, which are not very
useful for comparison purposes, and a dozen of
letters that contain several hundred tokens, which
significantly overweight the other letters, render-
ing comparison meaningless.

During the following step, each remaining letter
receives two metadata tags, based on the existing
analysis: time period and author gender.

Three periods are in the focus of the research:
1020 - 1140 (the early stage (Zaliznjak, 2004)),
1180 - 1240 (marked by the intensive contacts
within the Circumbaltic region (Wiemer and Ser-
žant, 2014; Podtergera, 2021)), and 1300 - 1360
(one of the latter stages of the Old Novgorodian
development, also marked by the dissolution of
the East Slavic area (Stankievič et al., 2007)). The
texts assigned to these periods in RNC acquire the
corresponding tag, the others get tag X.

For most of the texts, there is no possibility to
deduce the gender of the author. In such cases,
they receive the tag UNK. Otherwise, m (for au-
thors referred to with masculine gender), and f (for
authors referred to with feminine gender).

The resulting data frame containing 1158 letters
consists of 7 columns, excluding index: text (the
processed text of the charter), charter_number
(the index of the letter in the database), num_token
(number of tokens, excluding punctuation marks),
text_len (length in symbols, excluding punctuation

Experiment Number
of letters

Number
of com-
pared
lects

1020 - 1140 CE
period, internal
clusterisation

118 118

1180 - 1240 CE
period, internal
clusterisation

231 231

1300 - 1360 CE
period, internal
clusterisation

140 140

Chronological
clusterisation

489 3

Gender-based clus-
terisation

397 2

Table 2: The quantity of the letters, used in the
experiments, and their internal grouping.

marks and breaks symbols ^), author_gender - the
gender of the author, date - the estimated period
of text creation, place - the estimated place of
text creation. Further preprocessing, required for
specific language distance measurement methods,
will be discussed in the corresponding section.

4 Method

This section consists of three parts that elabor-
ate on the preprocessing of the data for the ex-
periments, applied quantitative methodology, and
qualitative analysis. The implementation is avail-
able via GitHub7.

4.1 Preprocessing

The first step of the preprocessing stage is to select
the required combination of the letters and their
grouping for each of the experiments. The lat-
ter includes a document-to-document comparison
within the three selected periods, a comparison of
the three time periods between themselves, and a
comparison of the letters by authors of different
genders. Table 2 shows the final numbers for each
of the experiments.

The first three experiments in Table 2 elaborate
on the internal variation within the given period, so
the unit of the analysis is a doculect (a lect of the
individual letter). The fourth experiment takes a

7https://zenodo.org/records/14808716
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more distant look at the differences between peri-
ods and groups letters from each period together
in a single list. The fifth experiment deals with
gender-based classification, so the split is between
two genderlects.

After the split, the letters are prepared for dis-
tance measurement. Tokens within each lect
are split into overlapping character 3-grams, fur-
ther called 3-shingles (Zelenkov and Segalovich,
2007), as the extremely fragmentary texts make it
impossible to use whole tokens as the main unit
of comparison. This way of analysing the texts
is akin to byte-pair encoding (BPE) (Gage, 1994),
which also utilises subtoken units. 3-shingles are
a fixed unit, which, in contrast to BPE, complic-
ates semantic comparison but enables a formal
one, especially on the phonetical and morpholo-
gical levels (Lyashevskaya and Afanasev, 2021),
better suited for onomaseological lectometry pur-
poses (Shim and Nerbonne, 2022).

The beginning and end of each token receive
special marks, ˆ and $ respectively. Then al-
gorithm removes each 3-shingle containing the ^
sign as there is no way to deduce the symbols
that lie behind it, and, subsequently, it may gen-
erate a lot of noise and skew the distributions
in a way that does not accurately reflect the lin-
guistic behaviour of the speakers. Thus, the token^остер^ becomes a collection of 3-shingles ост,
сте, тер, while token дару becomes a collection
of 3-shinglesˆда, дар, ару, ру$. If the letter con-
sists only of fragments of the size of two or fewer
symbols, it gets completely removed from the
dataset. Note, however, that the intact short tokens
remain in place (for instance, ˆа$), as their dele-
tion would significantly skew the distribution, de-
leting crucial linguistic information (Kestemont,
2014).

The next step is adding symbol embeddings: as
the main unit of the analysis is a 3-shingle, its
only possible subtoken is a single symbol, so the
vector-space representation should be built for it.
For embedding producing, the study employs the
FastText (Bojanowski et al., 2017) model, which
does not possess the inherent bias of large trans-
formers (Devlin et al., 2019), namely, the inform-
ation on the other languages, used for pre-training,
which can add noise. The hyperparameters for the
FastText model are in Appendix A.

The following step is to score the alphabet en-
tropy (Shannon, 1948) for each of the analysed

lect groupings, which can be approximated as the
average value of the probability of the symbols ap-
pearing in their respective positions.

The last part of the preprocessing includes mer-
ging 3-shingles for each of the lect groupings and
scoring their frequency ranks (the most frequent
gets 0, the least frequent - N - 1, where N is the
total number of 3-shingles). Frequency ranks are
then normalised into the interval of [0;1], as the
method requires.

4.2 Distance measurement and clusterisation
As the preliminary experiments have shown, the
study employs the most efficient possible setup of
the method utilised, which includes multiplying
mean DistRank (Gamallo et al., 2017) between the
coinciding 3-shingles by a hybrid string similarity
measure for the non-coinciding 3-shingles, and di-
viding by Sørensen-Dice (Sørensen, 1948) coeffi-
cient8 between two lects.

The employed string similarity measure for hy-
bridisation is vector-weighted Jaro distance norm-
alised (VWJDN), a product of Euclidean distance
of the sums of symbol embeddings between two
3-shingles, and the Jaro distance between them
(Jaro, 1989). The main idea is to emulate the
phonetic differences between the sounds that the
symbols represent and the distributional differ-
ences between the symbols themselves. Jaro dis-
tance accounts for transpositions, and thus, for
the symbol order. The result of VWJDN un-
dergoes multiplication by alphabet entropy differ-
ences between the given lects to account for poten-
tial distributional skewings, caused by dissimilar-
ities in the utilisation of the graphic system (Zal-
iznjak, 2004).

The Sørensen-Dice coefficient between sets (in
this case, sets of 3-shingles within the particular
lects) A and B is:

2 ∗ |X ∩ Y |
|X|+ |Y |

.
The algorithm is provided below.
The results of the combined metric form the

distance matrix between all of the present lects.
There are two ways to utilise this metric after-
wards.

The first one is to use it for creating a clus-
terisation as is. Here, the unit of analysis is a

8In natural language processing evaluation more fre-
quently referred to as F-score(Derczynski, 2016)
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Algorithm 1
1: Separate 3-shingles that coincide between

lects A and B (A ∩ B) from 3-shingles that
do not coincide between A and B (A XOR B)

2: Calculate mean DistRank(A ∩ B) (Gamallo
et al., 2017) between coinciding 3-shingles of
A and B

3: for each 3-shingle a of A that is in (A XOR
B) do

4: for each 3-shingle b of B that is in (A
XOR B) do

5: VWJDN(a, b)
6: end for
7: Select the pair with minimal VWJDN(a, b)
8: Calculate VWJDN(a, b) * DistRank(a, b)
9: end for

10: for each 3-shingle b of A that is in (A XOR
B) do

11: for each 3-shingle a of B that is in (A
XOR B) do

12: VWJDN(b, a)
13: end for
14: Select the pair with minimal VWJDN(b, a)
15: Calculate VWJDN(b, a) * DistRank(b, a)
16: end for
17: Score mean between all acquired values for

non-coinciding 3-shingles (VWJDND(A, B))
18: VWJDND(A, B) * DistRank(A∩B)/Sørensen-

Dice(A, B)

single lect and the values with which the cluster-
isation algorithm runs are the distances between
this lect and all other lects in the dataset. There
are two possible ways to do it: perform a hierarch-
ical bootstrap clusterisation with pvclust (Suzuki
and Shimodaira, 2006) or perform HDBSCAN
(Hahsler et al., 2019) over t-distributed Stochastic
Neighbour Embedding (t-SNE) (van der Maaten
and Hinton, 2008) over Principal Component Ana-
lysis (PCA) results (Jolliffe and Cadima, 2016).
These are going to be used for inner clusterisation
within the chronological periods.

The second one is to transform it into a lower
triangular matrix and build a tree-like clusterisa-
tion with UPGMA (Sokal and Michener, 1958).
This clusterisation algorithm is more effective for
the lesser number of closely related lects and the
study applies it to group chronological periods.

4.3 Qualitative analysis

The qualitative analysis is the most crucial re-
search step. It takes the resulting clusterisations
and attempts to explain the linguistic reasoning (or
lack thereof) behind the decisions of the similarity
metrics (whether they are correct or not). It uses
the information that the utilised software provides,
namely, the tables of comparison between all the
3-shingles, to discover the linguistic patterns in
the data. As 3-shingles appear across the different
tokens, the detection of a pattern goes through two
steps. The first includes going through the gen-
erated table of correspondences between lects to
check for possibly meaningful, based on the pre-
existing body of work, similarities and dissimil-
arities, the second – going through the texts of
the letters to prove the meaningfulness of the dis-
covered distributional skewings. Table 3 provides
the example of the generated table of correspond-
ences.

The aim of qualitative analysis is to either state
that the dissimilarities between the groups detec-
ted by method are not significant, or to explain
them on three key levels: individual (on the level
of doculects), chronological (on the level of chro-
nolects), and gender-based (on the level of gender-
lects).

5 Experiments and Analysis

This part provides the summary of the experiments
and the subsequent discussion of the linguistic dif-
ferences detected by the method.

5.1 Inner variation within the time periods

The experiments that investigate the linguistic
variation of the individual letters within chrono-
logical periods show significant homogeneity in
each one (see Figure 3). However, on the indi-
vidual level, PCA does not demonstrate significant
explanatory power, the differences are initially too
small and too scattered across the analysed letters.

The next step includes an attempt to dense the
data and provide more power to the final analysis
on the first period sample, 1020 - 1140 CE. This
stage starts with performing bootstrap clusterisa-
tion (hyperparameters are in Appendix B), the res-
ults of which become the new 13 groups of lects.
These new groupings consist of 2 (an outgroup,
letters 431 and 557 from Novgorod) to 30 items,
and represent higher-level, more reliable, accord-
ing to the bootstrap clusterisation (AU > 85%),
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1180–
1240

1020–
1140

Metric Distance

ˆпо ˆпо
Novgorod birchbark leters by period-
1-False-DistRank-True-True-False-
weighted_jaro_winkler_wrapper-True - DistRank

0.0012717253073336043

рвн рва Novgorod birchbark leters by period-
1-False-DistRank-True-True-False-
weighted_jaro_winkler_wrapper-True - hybrid

0.4689305328575265

Table 3: A sample of correspondences established by VWJDN.

Figure 3: PCA of the distance matrix between the
letters, written in the 1020 - 1140 CE.

Figure 4: PCA of the distance matrix between the
letters, written in the 1020 - 1140 CE, clustered
into the higher-level groupings.

groupings. This time, it is easier for PCA to rep-
resent the key differences (Figure 4).

It is possible to run t-SNE with HDBSCAN over
this result (Figure 5), showing the degree of cer-
tainty in cluster grouping. These figures include
the same data points, with the first providing the
information on the exact data point, and the second
- on the reliability of clusterisation.

This shows two distinct bigger clusters, with
groups 8 and 6 opposed to 12 and 9 as the centres
of the clusters, and other groups joining them with
a lesser degree of certainty. Group 7, a small

Figure 5: HDBSCAN, run over t-SNE results on
PCA of the distance matrix between the letters,
written in the 1020 - 1140 CE, clustered into the
higher-level groupings.

higher-level outgroup, is an outlier here as well;
PC1 is likely to represent the dissimilarities in the
size of the cluster, detected by the Sørencen-Dice
coefficient.

Interestingly, the consequences of the phonetic
processes, such as the reduced vowel fall, help in
joining some higher-level groupings together and
not in splitting them. Thus, group 12 contains
3-shingle ьло, while group 9 contains 3-shingle
ьлъ, with о and ъ known to become interchange-
able symbols (Zaliznjak, 2004), as the first had de-
noted full vowel and the second - its reduced coun-
terpart, before the reduced vowel fall occured. The
distance between these 3-shingles is 0.42. At the
same time, group 8 contains completely different
3-shingles, which, together with the 3-shingles of
group 12, forms such pairs as еть – окь with a
distance of 0.47. These dissimilarities in differ-
ences are the main cause of the split between two
bigger clusters. Yet, overall the letters of a given
time period are homogeneous, and it is safe to treat
them further as a uniform entity.
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Figure 6: UPGMA (Sokal and Michener, 1958)
clusterisation of chronolects, present in the data-
set.

5.2 Analysis of chronological clusters

Figure 6 shows the grouping of three chronolects,
representing three stages of Old Novgorodian
evolution: 1020 - 1140 CE, 1180 - 1240 CE, and
1300 - 1360 CE.

The picture clearly demonstrates the differences
between the chronolects, especially between two
earlier groups and the later one. It seems that
the Old Novgorodian changed between 1240 and
1300 more significantly than between 1140 and
1180, which is likely due to the inner processes as
well as to the intensive language contact (Wiemer
and Seržant, 2014).

Mostly, however, this is the same lect: the
branch length is not exactly large (compare the
differences between modern East Slavic territorial
lects in (Afanasev and Lyashevskaya, 2024), ac-
quired with the similar methodology, where the
branch length is 0.175, and ingroup splits at 0.03).
The found pairs of non-coinciding 3-shingles are
mostly random (тев of 1300 - 1360 and тет of
1020 - 1140).

Still, some pairs can provide a scholar with a
closer look into the ongoing phonetic processes.
In the earlier periods, the 3-shingle въх is present
in such tokens as въхъ ’entire’. In the later period,
the other form for the meaning ’entire’ prevailed:
вьсь. At the same time, there are graphical differ-
ences: the later letters use 3-shingle оду, while the
earlier prefer одоу.

Distributions of the coinciding 3-shingles also
give a hint into the nature of differences between
the stages of the Old Novgorodian development.
While sequences with ъ$ and ь that earlier de-
noted reduced vowels, almost do not change their
rank (лъ$ has a value of 0.002), the ones that

denoted their full-fledged counterparts changed
the distributions significantly (ло$ has a value of
0.15), becoming more frequent.

From the material given, it is possible to con-
clude the following: the utilised method allows
insight into language variation and change which
would not be possible on the token level. This be-
comes crucial in the case of DistRank-based ana-
lysis, which uniquely illustrates the dynamics of
the reduced vowel fall process, highlighting the
complexity of its written dimension.

5.3 Gender-based differences

The genderlects present a significantly more dif-
ficult challenge. The distance itself is not big,
only 0.12 (for reference, the metric returns the
same value between two letter clusters within the
same time period). The non-coinciding 3-shingles
here demonstrate the absence of any kind of mean-
ingful correspondence, mostly consisting of pairs,
akin to саю/ьса.

However, the DistRank behaviour for the sym-
bols that denoted reduced and full vowels is once
again suspicious. ло$ has a value of 0.002, while
лъ$ has the value of 0.17. Similar occurs with мо$
(0.01) and мъ$ (0.05), то$ (0.07) and тъ$ (0.03),
ˆвъ (0.01) and ˆво (0.03). It seems that there were
certain dissimilarities in preferences of female and
male writers in relation to the ъ$ and о, but even
these were restricted (cf. 0.02 for both но$ and
нъ$).

The genderlect differences (or, rather, their lack
thereof) show the limit of the method utilised. It
can pick on the distribution differences, provid-
ing a distant reading, based on fixed-size subtoken
units, but it inevitably fails when differences are
either completely absent (and it seems that Old
Novgorodian indeed did not have genderlect dif-
ferences) or too subtle to pick without the close
reading of documents.

6 Conclusion

The paper employed a new method to study indi-
vidual, chronological, and gender variation within
Old Novgorodian. It supported the hypothesis H2
of chronological variation, showing the similar-
ity between earlier and later periods of the Old
Novgorodian development. At the same time, no
signs of gender-based variation are present (hy-
pothesis H3 is thus rejected): from the existing
material only it is impossible to claim that Old
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Novgorodian had genderlects, which supports the
primary qualitative work on the topic, Zaliznjak
(1993). Yet the amount of the available material
may be misleading: it is possible that there is not
enough data. The method statement on the vari-
ation within the different time periods highly de-
pends on the letter size, supporting the idea of bal-
ancing the corpus before the method application
(Afanasev and Lyashevskaya, 2024); hypothesis
H1 is thus supported only partially.

One of the key elements that helped the method
to distinguish between different chronological
periods and played an important role in other tasks
is the contrast between the symbols that denote
reduced and full vowels. This is not the only
found contrast, as the method was able to find
other factors, such as lexical differences. It is
also paramount to note that all the components
of the combined metric were analysed, and partly
proved, during the final qualitative analysis. This
affirms the necessity of using lectometry methods
for computer-assisted and not computer-driven re-
search.

The acquired classification and the method
itself, especially 3-shingle-based representation,
will aid the analysis of the newly discovered doc-
uments and the exploration of how they fit the ex-
isting picture. It will facilitate expert judgment
about the period of their creation, aiding theor-
etical paleographic analysis (Janin and Zaliznjak,
2000). The found similarities and dissimilarities
may be included as linguistic features in the exist-
ing network of Old Novgorodian databases. The
results require further attention and exploration,
especially the ones that did not provide any sat-
isfactory conclusions, such as the ъ$ and о distri-
bution differences between the letters authored by
men and women. The study shows that the quality
of the resources is of the utmost importance for
computational methods, especially for language
distance measurement. One possible further re-
search direction is using an outgroup (for example,
Old East Slavic legal charters) to provide addi-
tional linguistic context to the clusterisation trees
(Kassian et al., 2021).

Limitations

The research is based on the corpus of frag-
mented documents that contains all the known
data about the Old Novgorodian lect, but defin-
itely not all the data about the lect, which means

that the comparison is corpus-driven and may not
cover all the spectre of similarities and differences
between the sublects (chronolects and genderlects)
of Old Novgorodian (Davis, 2017). Furthermore,
the dates of the letters creation are approximate,
which may have influenced the chronolect com-
parison results. It is not possible to establish the
author’s gender for all the letters, therefore the ma-
terial for the gender-based similarities and differ-
ences study is even less than it could have been,
which too may have influenced the final compar-
ison.

The applied method uses 3-shingles, the units
of sub-token level (Afanasev and Lyashevskaya,
2024), as the main objective of its application
is to find the differences between small raw cor-
pora. This means that it captures the variation on
the phonological, morphonological, and morpho-
logical levels, occasionally being able to account
for the lexical differences, thus mostly resembling
the character-based comparisons of morphological
features and basic vocabulary lists (Kassian et al.,
2021; Auderset et al., 2023). The syntactic and
pragmatic differences are generally out of scope of
this class of methods in general, due to the com-
plications of diachronic syntax studies (Campbell,
2013). And, given the quantity of the material,
any kind of the automatic quantitative analysis that
does not utilise rigorous manual preprocessing,
will not be suitable here as well. These features of
Old Novgorodian require further study with other
methods.
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Appendix A

Parameter Value
vector_size 128
window 15
min_count 1
workers 4
epochs 300
seed 1590
sg 1

Table 4: The parameters for FastText training.

Appendix B

Parameter Value
nboot 1000
method.dist euclidean
method.hclust ward.D2

Table 5: The parameters for bootstrap clusterisa-
tion.
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Abstract

In this paper we present a pilot study and
a qualitative analysis of the errors made
by three large language models (LLMs)
prompted to identify personal information
(PI) in texts written in languages with vary-
ing resource availability: Komi (extremely
low), Polish (medium), and English (high).
Our analysis shows that LLMs perform
better in detection of PI when provided
with JSON-eliciting prompts. We also
conjecture that the rich morphology and
inflectionality of languages like Komi and
Polish might affect the models’ perfor-
mance. The small-scale parallel dataset of
text that we introduce here can be used as
a starting point in developing benchmarks
for evaluation of PI detection with longer
textual contexts and LLMs.

1 Introduction
The lack of data for low-resourced languages is a
known problem in computational linguistics. This
problem can result in biases “within and across so-
cieties” (Søgaard, 2022), since the speakers of such
languages can effectively be excluded from using
language technology tools. Building infrastructure
that uses such technology as LLMs to study and
preserve low-resourced languages is important.
A key concern in the development of NLP in-

frastructure is the privacy of the data subjects and
other individuals mentioned.1 Linguistic data typ-
ically includes names, family relationships, health
status, or other sensitive details, especially when
collected texts are personal conversations, narra-
tives, or interviews (Szawerna et al., 2024), and
even seemingly scarce or incomplete PI may be
used to reidentify the data subject (Salehi et al.,

1For more on legal requirements regarding privacy in EU,
see Official Journal of the European Union (2016).

2017) and result in discrimination based on, for ex-
ample, medical conditions or faith. Methods to ob-
fuscate identities of data subjects have long been
employed in linguistics (Thomas, 2010; Wang
et al., 2024), but only a few of them have used
computational approaches for identification of PI
in low-resourced languages like Komi (Hämäläi-
nen et al., 2023). Since personal information has
been found in data used to train LLMs for many
high-resourced languages – raising concerns about
potential leaks in their outputs (Subramani et al.,
2023) – it is crucial to protect privacy of data in
these languages. However, protecting personal in-
formation in low-resourced languages is especially
important as these languages already struggle with
limited datasets, funding, and institutional sup-
port, making them particularly vulnerable to pri-
vacy risks.
In this pilot study we take a step towards bet-

ter PI detection in low-resourced languages and
prompt currently available LLMs. Such models,
trained on multilingual corpora, can be prompted
to perform a range of tasks, from text classification
to text generation, even in languages where limited
training data is available (A Pirinen, 2024; Pura-
son et al., 2024b). LLMs have been studied in the
context of low-resourced Uralic languages for the
task of POS tagging (Alnajjar et al., 2024). They
have also been used to support the creation of on-
line dictionary tools (Alnajjar et al., 2020). The
role of LLMs in PI detection in high-resourced lan-
guage like English and Chinese has started being
explored only recently (Yang et al., 2023), while
their role in the context of low-resourced languages
for PI detection remains unexplored.
To facilitate research in that direction, here we

analyze the differences in the behavior of three
LLMs in PI detection in languages with varied
resource availability and linguistic structure. We
use text data from two Uralic languages, Komi-
Permyak and Komi-Zyrian. We construct a paral-
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lel corpus containing Komi sentences2 with their
Polish and English translations. We prompt Llama
3.1 with 8B parameters (Grattafiori et al., 2024),
Mistral 7B (Jiang et al., 2023), and Gemma 2 with
9B parameters (Gemma Team et al., 2024) for PI
detection and test six different prompt configura-
tions. Our contributions, therefore, consist of 1)
a small, native speaker-curated parallel corpus
of sentences containing potential personal infor-
mation in Komi, English, and Polish3, and 2) an
initial analysis of how three LLMs perform on the
aforementioned dataset with respect to language’s
resource availability and inflectionality.

2 Materials and Methods

Data We looked at the Universal Dependencies
treebanks for Komi-Permyak and Komi-Zyrian
(Rueter et al., 2020; Partanen et al., 2018; Ze-
man et al., 2024) and found that there are 366
sentences in which there is at least one word
that is labeled with one of the semantic tags
for proper nouns as used in the GiellaLT infras-
tructure (Pirinen et al., 2023). These seman-
tic tags classify names and nouns into categories
such as animal (Sem/Ani), female (Sem/Fem) and
male names (Sem/Mal), objects (Sem/Obj), organ-
isations (Sem/Org), places (Sem/Plc), surnames
(Sem/Sur), and web addresses (Sem/Web). Blok-
land et al. (2020) have previously used these se-
mantic tags to identify nouns which are possible
instances of PI in a rule-based PI detection system.
Among the sentences with semantic tags for

proper nouns, 170 were translated to English and
Polish by authors of this study. The sentences
were first translated by the first author of this study
(a native Komi-Permyak speaker and a proficient
English speaker) from Komi-Permyak and Komi-
Zyrian to English with the help of Neurotõlge4
(Yankovskaya et al., 2023; Purason et al., 2024a),

2Originating from Komi corpora (Rueter et al., 2020; Par-
tanen et al., 2018; Zeman et al., 2024); we feature 143 sen-
tences in Komi-Zyrian and 27 sentences in Komi-Permyak.

3It is important to highlight that there exists no compre-
hensive definition of what it means to be a low-resourced lan-
guage (Nigatu et al., 2024); traditionally, due to small amounts
of available data among other things, Komi and many other
Uralic languages have been considered low-resourced. Polish
boasts a significantly larger collection of corpora, tools and
models than Komi (Dadas, 2019), and has been positioned as
the higher-resourced counterpart of West Slavic minority lan-
guages such as Kashubian, Silesian, or Sorbian (Torge et al.,
2023; Rybak, 2024), but in comparison with English, its re-
sources are still very limited.

4https://translate.ut.ee

PI categories Text JSON
PI only Prompt 1 Prompt 2

Megyesi et al. (2018) Prompt 3 Prompt 4
Subramani et al. (2023) Prompt 5 Prompt 6

Table 1: Prompts by tag and output type.

Google Translate5 and Majbyr Translate6. Pol-
ish translations were created by the second author
(a native Polish speaker and a proficient English
speaker) based off of the English translations, and
with the help of Google Translate in some cases.
The original names of people and places were pre-
served during translation into English and the final
form of the translated sentence was always over-
seen by a human. In the end, our data included 35
sentences with female names, 47 sentences with
male names, 49 sentences with place names, and
39 sentences with surnames in them. Some sen-
tences contain more than one name, possibly of
different types. Importantly, more information that
could be considered personal and which does not
necessarily belong to the aforementioned types
may be found in sentences, and was impossible to
account for during the sentence extraction process.
Our resulting dataset can be accessed on Zenodo
via https://zenodo.org/records/14845329.

Models and prompts We tested three multilin-
gual pre-trained large language models: Llama 3.1
with 8B parameters (Grattafiori et al., 2024), Mis-
tral 7B (Jiang et al., 2023), and Gemma 2 with 9B
parameters (GemmaTeam et al., 2024)7. Themod-
els and their weights were accessed via Ollama8.
Uploading data containing PI to third-party ser-
vices is not optimal, which is why we chose mod-
els that we were able to run locally. Note that we
chose recent LLMs which are similar in size and
comparable.
We used six different one-shot prompts, passed

to the models together with the sentences, follow-
ing the official guide on prompting Llamamodels9,
with a similar structure to the one used by Yang
et al. (2023) for PI detection. The prompts varied in
terms of (i) the output format (produce a sentence
with PI instances replaced with appropriate tags
or a JSON structure) and (ii) the PI classification.

5https://translate.google.com
6https://translate.majbyr.com
7In the paper we refer to these models as Llama,

Mistral, andGemma respectively.
8http://ollama.com
9https://www.llama.com/docs/how-to-guides/

prompting/
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System: You are amultilingual personal information de-
tection tool. Personal information is information that
can lead to someone in the text being reidentified, like
their name, surname, middle name, patronymic, nick-
name, where they live, address, city, country, zip code,
where theywork, study, or spend a lot of their time, what
unique lines or modes of transport they travel with, their
age, any dates mentioned in the text, phone numbers,
personal identity numbers, bank account numbers, other
number sequences, e-mail addresses, urls, their work ti-
tles, education, types of family relations, information
about faith, political beliefs, sexuality, ethnicity, unique
achievements, etc.
User: For each token in the given text, determine
whether it is a piece of personal information. Return
the text with “PI” replacing every instance of personal
information.
Example:
Text: I’m from Slovakia , but one of my best friends ,
Marie , is from Norway .
Result: I’m from PI , but one of my best friends , PI , is
from PI.
Text: [PLACEHOLDER]
Result:

Figure 1: One of the prompt templates used in this
study. When fed to a model, [PLACEHOLDER] is
replaced with an actual text.

For PI classification we used different category for-
mulations: (1) a “PI” category encompassing all
personal information, (2) detailed name- and ge-
ographical location-related categories inspired by
Megyesi et al. (2018), and (3) a slightly re-phrased
PI categorization from Subramani et al. (2023).
See Table 1 for a summary of the combinations.
All of the prompts included the description of the
task, tags, output format, and a single example of
an input-output pair followed by the input that the
model should generate output for. Examples can
be found in Figure 1 and Appendix A.

3 General error analysis
After feeding the models the prompt–sentence
combinations, we collected their outputs, which
we subsequently manually analyzed. We begin
with an analysis of the errors encountered and then
proceed to examine two specific examples. In this
pilot study we did not run any quantitative analy-
sis, as the data we have lacks token-level annota-
tion of PI in two of the three languages. Moreover,
the annotation that we do have for Komi is using
the GiellaLT tags, and not the aforementioned cat-
egories (1-3); thus, our analysis is preliminary.

Komi Gemma ignores case markers in words
identified as PI. For example, in the Komi-Zyrian

sentence Сiйӧ быдмис Парижын, Францияса
юркарын ‘He grew up in Paris.INE10, the capi-
tal.INE of France.LOC’, themodel marks only part
of the word Францияса ‘France.LOC’, ignoring
the marker -са. In contrast, it marks the entire
word when it appears in the genitive case in Komi-
Permyak, e.g. Франциялӧн ‘of France.GEN’.
When asked to tag PI, Gemma often misidenti-
fies the language as Russian or Urdmut and trans-
lates the text into English. It also frequently
asks for more context to identify PI, refusing to
produce an output. Llama rarely provides out-
put, referring to concerns about revealing infor-
mation that could lead to reidentification. Mod-
els are good at identifying first names and sur-
names (albeit worse with culture-specific names),
but they struggle with names of places. For ex-
ample, Gemma mistakenly tags Парижын ‘in
Paris.INE’ in both Komi varieties as situation
andФранция ‘France.NOM’ as society. Llama
detects spans correctly, but often assigns the wrong
tag: labelling быдмис ‘grew up’ in both Komi
varieties as birth, Парижын ‘in Paris.INE’ as
records, Франция ‘France.NOM’ as birth and
юркарын ‘the capital.INE’ as society. While
Mistral provides output in the requested format,
it struggles with tagging, changes spelling and
produces many hallucinations. For example, it
marks the personal pronoun Сiйӧ ‘he/she.NOM’
in Komi-Zyrian as PI and completely alters the
initial sentence from Сiйӧ быдмис Парижын,
Францияса юркарын ‘He grew up in Paris.INE,
the capital.INE of France.LOC’ to PI абыдмис
Пирижин, PI юркарын, where only юркарын
‘the capital.INE’ is a correct word.

English Gemma can not only mark a name
as PI but also sometimes identify and tag related
pronouns when asked to provide output in JSON
format, e.g. [...] replied Galina, with a dry
smile from the corner of her mouth [...]. How-
ever, it does not always follow the instructions and
sometimes invents tags that are not part of the
tagset, such as <other> for ambiguous PI cate-
gories. In one instance it is also able to assign the
<social> tag to Comrade and <character> to
Voroshilov, where the latter is a surname and the
former is a noun referring to Voroshilov. Llama
generates extensive explanations and often refuses

10Morphological analysis for Komi words was con-
ducted with the help of uralicNLP: https://github.com/
mikahama/uralicNLP?tab=readme-ov-file

167

https://github.com/mikahama/uralicNLP?tab=readme-ov-file
https://github.com/mikahama/uralicNLP?tab=readme-ov-file


to perform the task, mirroring its behavior on
Komi. It also hallucinates tags and fails to mask
multi-token PI spans accurately such as tagging
only Voroshilov as <firstname_male> in Com-
rade Voroshilov. While deciding whether Com-
rade is a part of a PI span can be problematic, it
is not unprecedented to find such titles included in
the span: Pilán et al. (2022) include elements like
Mr. or Dr. into the same span as the name and
surname. Therefore, it is possible that inclusion
of Comrade in reference to Voroshilov can lead to
reidentifcation of this person in a different situa-
tion. Mistral, while hallucinating and omitting
many PI instances, performs better at masking an-
glophone names. For example, it correctly masks
names like Mary, Peter, and Jane using appropri-
ate tags. However, it fails to mask names such
as Svezhov (ko.: Свежов), Petya (ko.: Петя), or
Sasha (ko.: Саша). Additionally, it masks Masha
(ko.: Маша) as <firstname_unknown>, indicat-
ing a lack of understanding of the name’s gender
(typically female). All models demonstrate (i) a
tendency to over-generate and provide unrequested
explanations that are difficult to evaluate and (ii)
struggle with maintaining consistency in tag as-
signment.

Polish Gemma appears to misclassify inflec-
tional cases of the words thus assigning it to the
wrong gender. For example, in the sentence [...]
tuż obok domu Epimowa Punegowa ‘[...] in
the immediate vicinity of the Epimov.GEN Pune-
gov.GENhouse’ themodelmistakenly assignsEpi-
mowa and Punegowa to <surname_female> and
<surname_male> respectively, while both these
are male names. Llama refuses to perform the
task stating that it cannot give away information
that could lead to someone being re-identified. It
also incorrectly identifies same words in same sen-
tences across multiple prompts: under two differ-
ent prompts it tags cerata ‘oilcloth’ as either a
street name or a type of a document. Mistral’s
output is not supplemented by extensive explana-
tions, but the model tends to hallucinate and pro-
duce incorrect tags. For example, when asked
to mark personal information as PI in Dorósł w
Paryżu, stolicy Francji ‘He grew up in Paris.INS,
the capital of France.GEN’, while the model as-
signs PI_City to Paryżu and PI_Country to
Francji, it also incorrectly assigns PI_Name to
Dorósł which is a verb. Note that these tags are
hallucinated - they are not like the ones we have

prompted the model to produce. Mistral also of-
ten translates Polish sentences into English in its
output.

3.1 Case analysis
We analyze outputs produced byGemma for the
prompt 4 as specified in Table 1, becauseGemma
has shown to be the most consistent in the quality
of its outputs. Each example has output for En-
glish (top) and tokenized output for Komi-Permyak
(middle) and Polish (bottom). We will focus on the
two characters mentioned in each sentence: Petya
and Masha. The main reason for choosing these
sentences in particular for comparison is that at
a first glance, they only differ in terms of what
verb they feature. However, in Komi and Polish,
these two verbs have a different influence, elicit-
ing specific case endings in the object of the sen-
tence (Masha). By comparing these two sentences
we can therefore investigate how themodel handles
this grammatical and morphological diversity.

(1) F-M
Petya
F-U
Петя
F-U
Petja

befriends

ёртасьö

zaprzyjaźnia się z

F-F
Masha

S-U
Машакöт

F-F
Maszą

.

.

.

(2) F-M
Petya
F-U
Петя
F-M
Petja

loves

любит

kocha

F-F
Masha
S-U

Маша
S-F

Maszę

о с

.

.

.

In both of the examples in English the model
correctly assigned <firstname_male> to Petya
and <firstname_female> to Masha, suggest-
ing that the semantic difference in the verbs
has no effect between these two sentences,
at least in English. In example 1, in Komi-
Permyak, the model marked Петя ‘Petya.NOM’
as <firstname_unknown> and Машакöт
‘Masha.COM’ as <surname_unknown>. For
Polish, it identified Petja ‘Petya.NOM’ as
<firstname_unknown> and Maszą ‘Masha.INS’
as <firstname_female>. While Petya is marked
correctly as <firstname_male> when given
English text, the model cannot identify the gender
in Komi-Permyak and Polish. The model also
thinks that Машакöт ‘Masha.COM’ is a surname
without gender indicator. Mistakes like this (the
model thinks there is e.g. no gender indicator)
might result in leakage of situational and societal
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context, because the affix -кöт in Машакöт
indicates comitative case that is used to express
companionship, and this type of information
can be considered personal. In example 2, the
model seems to now identify Petja ‘Petya.NOM’
in Polish as <firstname_male>, while think-
ing that Maszę ‘Masha.ACC’ is an instance
of <surname_female>. For Komi-Permyak,
the model translates the example into Russian
(the original text is Петя любитö Машаöс
‘Petya.NOM loves Masha.ACC’) and tokenizes
the affix. This example demonstrates a fragile
behavior of Gemma and combined with our
general error analysis, suggests that models often
try to translate input in less familiar language to
a language that is more known to them (English,
Russian). While Russian and Komi-Permyak
share the cyrillic alphabet, the similarities and
grammatical differences between two languages
cannot be exploited by LLMs, because intricacies
in less-resourced languages are then reduced to
phenomena in a language with more resources.

4 Discussion and conclusions

Our small qualitative examination suggests that
across the languages, models, and prompts that we
tested,Gemmawith JSON-eliciting prompts per-
forms best. Overall, the models exhibited the best
performance on the English sentences, followed by
Polish, with Komi being the most difficult. One
problem for the models is the rich morphology of
Komi variants and Polish. The models also denote
that they lack context to make a judgment, which
highlights the difficulty in disambiguating whether
a piece of information is personal or not. They are
often trying to default to English or ask for an En-
glish translation when asked to perform the task
on a low-resourced language that they cannot rec-
ognize. The models also learn differently from var-
ious tagsets: the one from Subramani et al. (2023)
is hard to generalize from, while tags based on
Megyesi et al. (2018) appear to be assigned cor-
rectly more often. Non-anglophone names, espe-
cially Komi ones, are hard for models to tag, espe-
cially in terms of the gender.
While Yang et al. (2023) consider their find-

ings for high-resourced languages to be promising,
we consider it better to err on the side of caution
regarding any conclusions on the performance of
LLMs on PI identification task for low-resourced
languages. Our impression is that even though the

models’ perform well on other NLP tasks, in this
case, their outputs require manual post-processing
and are not immune to hallucinations. This makes
them highly unreliable for the incredibly high-
stakes task of PI detection on their own with the
prompts used, even for high-resourced languages,
but especially for the low-resourced ones, where
the error rate appears to be higher. Future work
should focus on evaluating models on longer texts
with more context and further refinement of the
best-performing prompts.
This is — to the best of our knowledge — the

first study investigating the performance of LLMs
on PI detection in more than just high-resourced
languages (specifically, in such low-resourced lan-
guage as Komi), and the first one examining how
LLMs handle inflectionality in this task. We are
also contributing a novel parallel dataset translated
by native speakers. We hope that our work will in-
spire more research on the topics within the inter-
section of LLMs, PI detection, and low-resourced
languages.

Limitations and Ethical Concerns

This is a preliminary and qualitative analysis. Our
experiment featured six different prompts, three
different models and three different languages,
leading to 6×3×3 sets of outputs. In order to fully
support our claims based on the analysis of these
outputs, we require evaluation and statistical anal-
ysis. This entails the manual annotation of the out-
puts and annotation guideline development, which
was beyond the scope of this pilot study.
Another limitation of this experiment is the

small number of samples, which may not reflect
in style and content the types of utterances that
are of interest for people wishing to use LLMs
to detect personal information. Additionally, the
translations into Polish were not done directly from
the original, but via intermediate languages. It is
also possible that more extensive tweaking of the
prompt texts could lead to better performance, at
least on the high-resourced language.
We also note that we aggregated the Komi-

Zyrian and Komi-Permyak data without consider-
ing the differences in the models’ performance be-
tween them, largely due to the fact that there are so
few samples available for Komi-Permyak.
While the data that we used was sourced from

openly available corpora and, therefore, likely does
not pose any privacy concerns, we want to high-

169



light that we do not encourage the use of LLMs for
PI detection without manual post-processing to en-
sure that no personal information is leaked, as the
results are not consistent enough even for English.
It is also important to keep in mind that LLMs
are computationally rather heavy, and processing
larger batches of text will have a noticeable carbon
footprint, meaning that more lightweight solutions
with similar performance may be a better choice.
It is also essential to remember that LLM services
hosted online may collect the users’ data, so the
only way to use them for PI detection without trig-
gering privacy risks is to run them locally, which
can impose high hardware requirements.
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Kowner, Simon Krek, Parameswari Krishnamurthy,
Sandra Kübler, Adrian Kuqi, Oğuzhan Kuyrukçu,
Aslı Kuzgun, Sookyoung Kwak, Kris Kyle, Käbi
Laan, Veronika Laippala, Lorenzo Lambertino, Is-
rael Landau, Tatiana Lando, Septina Dian Larasati,
Alexei Lavrentiev, John Lee, Phûông Lê Hồng,
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A Appendix: Prompt templates and
examples from the parallel dataset

Here we show examples of sentences from our
dataset, as well as the prompts 1 through 6, as de-
fined in section 2 and Table 1.

(3) Ko.: Митяяслӧн керкаыс бокынджык
грездса мукӧд керкаясысь , но зэв гажа
местаын , неуна кыр горув лэччыштан —
Эжва визувтӧ .
Pol.: Dom Mitji jest oddalony od reszty
domów w wiosce , ale w bardzo miłym
miejscu , dołem stromego zbocza płynie
Eżwa .
Eng.: Mitya’s house is remote from other
houses in the village, but in a very pleasant
place, slightly down a steep slope - the Ezhva
flows.

(4) Ko.: — Эн тэрмасьӧй , Аннаыд ачыс
бӧръяс , кодi колӧ , — дорйис пӧдругасӧ
Зоя .
Pol.: - Nie pospieszaj , Anna sama zdecy-
duje kto jest potrzebny - Zoja wsparła swoją
przyjaciółkę .
Eng.: “Don’t rush, Anna will choose who
is needed herself,” Zoya supported her friend.

System: You are a multilingual personal information de-
tection tool. Personal information is information that can
lead to someone in the text being reidentified, like their
name, surname, middle name, patronymic, nickname,
where they live, address, city, country, zip code, where
they work, study, or spend a lot of their time, what unique
lines or modes of transport they travel with, their age,
any dates mentioned in the text, phone numbers, personal
identity numbers, bank account numbers, other number
sequences, e-mail addresses, urls, their work titles, edu-
cation, types of family relations, information about faith,
political beliefs, sexuality, ethnicity, unique achievements,
etc.
User: For each token in the given text, determine whether
it is a piece of personal information. Return the text with
“PI” replacing every instance of personal information.
Example:
Text: I’m from Slovakia , but one of my best friends ,
Marie , is from Norway .
Result: I’m from PI , but one of my best friends , PI , is
from PI.
Text: [PLACEHOLDER]
Result:

Figure 2: Prompt 1, [PLACEHOLDER] is replaced
with an actual text.

System: You are a multilingual personal information de-
tection tool. Personal information is information that can
lead to someone in the text being reidentified, like their
name, surname, middle name, patronymic, nickname,
where they live, address, city, country, zip code, where
they work, study, or spend a lot of their time, what unique
lines or modes of transport they travel with, their age,
any dates mentioned in the text, phone numbers, personal
identity numbers, bank account numbers, other number
sequences, e-mail addresses, urls, their work titles, edu-
cation, types of family relations, information about faith,
political beliefs, sexuality, ethnicity, unique achievements,
etc.
User: For each token in the given text, determine whether
it is a piece of personal information. Return the results in
a JSON format.
Example:
Text: I’m from Slovakia , but one of my best friends ,
Marie , is from Norway .
Result:
{

"1":{"I’m":""},
"2":{"from":""},
"3":{"Slovakia":"PI"},
"4":{",":""},
"5":{"but":""},
"6":{"one":""},
"7":{"of":""},
"8":{"my":""},
"9":{"best":""},
"10":{"friends":""},
"11":{",":""},
"12":{"Marie":"PI"},
"13":{",":""},
"14":{"is":""},
"15":{"from":""},
"16":{"Norway":"PI"},
"17":{".":""}

}

Text: [PLACEHOLDER]
Result:

Figure 3: One of the prompt templates used in this
study. When fed to a model, [PLACEHOLDER] is
replaced with an actual text.
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System: You are a multilingual personal information de-
tection tool. Personal information is information that can
lead to someone in the text being reidentified, classified
according to the following pattern:
<firstname_female> — women’s given names
<firstname_male> — men’s given names
<firstname_unknown> — given name that does not have
an obvious binary gender
<surname_female> — women’s surnames
<surname_male> — women’s surnames
<surname_unknown> — women’s surnames
<patronymic_female> — a woman’s patronymic
<patronymic_male> — a man’s patronymic
<street> — street names, names of squares, avenues, etc.
<city> — cities, villages, towns
<region> — regions smaller than a country
<country> — countries
<geo>—other geographical elements, such as mountains,
lakes, rivers
<age> — age in digits or words
User: For each token in the given text, determine whether
it is a piece of personal information. Return the text with
an appropriate tag replacing every instance of personal in-
formation.
Example:
Text: I’m from Slovakia , but one of my best friends ,
Marie , is from Norway .
Result: I’m from <country> , but one of my best friends ,
<firstname_female> , is from <country>.
Text: [PLACEHOLDER]
Result:

Figure 4: Prompt 3, [PLACEHOLDER] is replaced
with an actual text.

System: You are a multilingual personal information de-
tection tool. Personal information is information that can
lead to someone in the text being reidentified, classified
according to the following pattern:
<firstname_female> — women’s given names
<firstname_male> — men’s given names
<firstname_unknown> — given name that does not have
an obvious binary gender
<surname_female> — women’s surnames
<surname_male> — women’s surnames
<surname_unknown> — women’s surnames
<patronymic_female> — a woman’s patronymic
<patronymic_male> — a man’s patronymic
<street> — street names, names of squares, avenues, etc.
<city> — cities, villages, towns
<region> — regions smaller than a country
<country> — countries
<geo>—other geographical elements, such as mountains,
lakes, rivers
<age> — age in digits or words
User: For each token in the given text, determine whether
it is a piece of personal information and assign the appro-
priate tag. Return the results in a JSON format.
Example:
Text: I’m from Slovakia , but one of my best friends ,
Marie , is from Norway .
Result:
{

"1":{"I’m":""},
"2":{"from":""},
"3":{"Slovakia":"<country>"},
"4":{",":""},
"5":{"but":""},
"6":{"one":""},
"7":{"of":""},
"8":{"my":""},
"9":{"best":""},
"10":{"friends":""},
"11":{",":""},
"12":{"Marie":"<firstname_female>"},
"13":{",":""},
"14":{"is":""},
"15":{"from":""},
"16":{"Norway":"<country>"},
"17":{".":""}

}

Text: [PLACEHOLDER]
Result:

Figure 5: Prompt 4, [PLACEHOLDER] is replaced
with an actual text.
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System: You are a multilingual personal information de-
tection tool. Personal information is information that can
lead to someone in the text being reidentified, classified
according to the following pattern:
<birth> — characteristics true of a person at birth, most
of which are difficult or impossible to change, such as na-
tionality, gender, caste, etc.
<society> — include characteristics that commonly de-
velop throughout a person’s life and are defined in many
countries as a specially designated “status", such as immu-
nization status.
<social> — categories corresponding to social groups
such as teams or affiliations – e.g. member of the women’s
softball team, student of Carnegie Mellon University.
<character> — sequences of letters and numbers that can
often uniquely identify a person or a small group of peo-
ple; they change relatively infrequently and can therefore
persist as sources of identification for years or decades –
e.g. a name, surname, social security number, credit card
number, IBAN, or e-mail address.
<records> — information typically consists of a persis-
tent document or electronic analog that is not generally-
available, but can allow for the (reasonable) identification
of an individual – e.g. financial or health records.
<situation> — uniquely identify an individual, but that is
restricted to a given context or point in time – e.g. date,
time, GPS location, place of residence.
User: For each token in the given text, determine whether
it is a piece of personal information. Return the text with
an appropriate tag replacing every instance of personal in-
formation.
Example:
Text: I’m from Slovakia , but one of my best friends ,
Marie , is from Norway .
Result: I’m from <birth> , but one of my best friends ,
<character> , is from <birth>.
Text: [PLACEHOLDER]
Result:

Figure 6: Prompt 5, [PLACEHOLDER] is replaced
with an actual text.

System: You are a multilingual personal information de-
tection tool. Personal information is information that can
lead to someone in the text being reidentified, classified
according to the following pattern:
<birth> — characteristics true of a person at birth, most
of which are difficult or impossible to change, such as na-
tionality, gender, caste, etc.
<society> — include characteristics that commonly de-
velop throughout a person’s life and are defined in many
countries as a specially designated “status", such as immu-
nization status.
<social> — categories corresponding to social groups
such as teams or affiliations – e.g. member of the women’s
softball team, student of Carnegie Mellon University.
<character> — sequences of letters and numbers that can
often uniquely identify a person or a small group of peo-
ple; they change relatively infrequently and can therefore
persist as sources of identification for years or decades –
e.g. a name, surname, social security number, credit card
number, IBAN, or e-mail address.
<records> — information typically consists of a persis-
tent document or electronic analog that is not generally-
available, but can allow for the (reasonable) identification
of an individual – e.g. financial or health records.
<situation> — uniquely identify an individual, but that is
restricted to a given context or point in time – e.g. date,
time, GPS location, place of residence.
User: For each token in the given text, determine whether
it is a piece of personal information and assign the appro-
priate tag. Return the results in a JSON format.
Example:
Text: I’m from Slovakia , but one of my best friends ,
Marie , is from Norway .
Result:
{

"1":{"I’m":""},
"2":{"from":""},
"3":{"Slovakia":"<birth>"},
"4":{",":""},
"5":{"but":""},
"6":{"one":""},
"7":{"of":""},
"8":{"my":""},
"9":{"best":""},
"10":{"friends":""},
"11":{",":""},
"12":{"Marie":"<character>"},
"13":{",":""},
"14":{"is":""},
"15":{"from":""},
"16":{"Norway":"<birth>"},
"17":{".":""}

}

Text: [PLACEHOLDER]
Result:

Figure 7: One of the prompt templates used in this
study. When fed to a model, [PLACEHOLDER] is
replaced with an actual text.
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Abstract

Identifying closely related languages at sen-
tence level is difficult, in particular because
it is often impossible to assign a sentence to
a single language. In this paper, we focus
on multi-label sentence-level Scandinavian
language identification (LID) for Danish,
Norwegian Bokmål, Norwegian Nynorsk,
and Swedish.1 We present the Scandina-
vian Language Identification and Evalu-
ation, SLIDE, a manually curated multi-
label evaluation dataset and a suite of LID
models with varying speed–accuracy trade-
offs. We demonstrate that the ability to
identify multiple languages simultaneously
is necessary for any accurate LID method,
and present a novel approach to training
such multi-label LID models.

1 Introduction

Correctly identifying the language of a short piece
of text might seem like a simple (and possibly al-
ready solved) task. While differentiating between
two distant languages might be straightforward, we
show that, when focusing on a group of closely
related languages, this task becomes substantially
more challenging. This is especially true when we
consider the fact that language identification (LID)
tools have to be fast and efficient, as they are often
used for preprocessing large quantities of texts.

In this paper, we focus on the four closely re-
lated Scandinavian languages: Danish, Norwegian

*Equal contribution.
1While acknowledging that the term Scandinavian in En-

glish sometimes also includes Icelandic and Faroese, we use
the term Scandinavian in the sense of Mainland Scandinavian,
in accordance with established and legal usage of the term
in these languages. We also consider Swedish as a single
language, overlooking the nuances between Finland-Swedish
and Sweden-Swedish.

Jeg er hvalrossen

Denne fuglen
har flydd

En dag i livet

Jag vill ha dig

NN SV

SVDA

DA NNNB

NB

NBDA

NB

NN

DA SV

SV

NN

Figure 1: Scandinavian similarity Accurate lan-
guage identification has to necessarily be multi-
label when discriminating between closely related
languages.

Bokmål, Norwegian Nynorsk, and Swedish. In or-
der to accurately differentiate within this group, we
move away from the standard single-label (multi-
class) language identification and instead treat this
problem as multi-label classification task, allow-
ing for the identification of multiple languages si-
multaneously as illustrated in Figure 1. Sentences
valid in multiple Scandinavian languages are fairly
common—they account for about 5% of our eval-
uation dataset and 16% of the sentences shorter
than 6 words. If not accounted for, these exam-
ples can skew evaluation of existing systems. The
three main contributions of SLIDE (Scandinavian
Language Identification and Evaluation), are as fol-
lows:

1. A multi-label evaluation dataset We have
created a manually corrected multi-label LID
dataset for four Scandinavian languages. We
present two evaluation methods using this
dataset: one designed for a more accurate eval-
uation of traditional multi-class LID methods,
and a second for assessing the performance of
multi-label methods.

2. A suite of LID models We train a family
of language identification models of varying
complexities. The best performing models are
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based on fine-tuned BERT models and smaller,
substantially faster models based on FastText
embeddings. The source code, datasets and
models are released at https://github.com/
ltgoslo/slide.

3. A novel multi-label LID method Manual cre-
ation of a clean multi-label LID dataset is costly.
Instead, we present a novel method of silver-
labeling such a dataset by utilizing existing ma-
chine translation models.

2 Related work

Language identification The task of identifying
the language of a text is an “old” NLP task dating
back to the 1960s. Simple but relatively powerful
tools have been available since the 1990s (Jauhi-
ainen et al., 2019).

In recent years, the main focus of NLP research
has shifted towards large language models, and
especially towards extending their coverage to an
increasing number of languages. As training data
for underrepresented languages is mostly found in
web crawls, reliable LID systems covering a large
number of languages are more important than ever.
While the earliest LID systems were restricted to
a dozen languages, recent systems cover hundreds
(Joulin et al., 2017; Grave et al., 2018; Burchell
et al., 2023; Jauhiainen et al., 2022a) and even
thousands (Kargaran et al., 2023) of languages.

In terms of methods, simple linear classifiers
with character-level and word-level features have
often outperformed more sophisticated neural mod-
els (Jauhiainen et al., 2019). Most currently avail-
able large-coverage LID models are based on the
FastText architecture (Joulin et al., 2017), a multi-
nomial logistic regression classifier with charac-
ter n-gram embeddings as input features. These
include FastText-176 (Joulin et al., 2017; Grave
et al., 2018), NLLB-218 (NLLB Team et al., 2022),
OpenLID (Burchell et al., 2023) and GlotLID (Kar-
garan et al., 2023). Different approaches are used
by HeLI-OTS (Jauhiainen et al., 2022b), which
bases its decisions on a combination of character
n-gram and word unigram language models, and
gpt2-lang-ident2, which is a fine-tuned decoder-
only model (Radford et al., 2019).

In practice, LID is most often applied to individ-
ual sentences, even though the tools can work with
longer or shorter segments of text.

2https://huggingface.co/nie3e/gpt2-lang-ident

LID for closely related and Nordic languages
To our knowledge, the only publication focusing
specifically on LID for Nordic languages is Haas
and Derczynski (2021). They compile a dataset
for the six languages (including both Norwegian
standards) from Wikipedia and evaluate a range of
LID models on it. They find that the languages
mostly cluster into three groups: Danish–Bokmål–
Nynorsk, Swedish, and Icelandic–Faroese. Their
models were not available online as of writing
this paper. Besides this, de la Rosa and Kum-
mervold (2022) present two FastText-based LID
models: one containing only the 12 most common
languages of the Nordic countries (including sev-
eral Sámi languages, Finnish, and English), and
one with an extended coverage of 159 languages.

Futhermore, the previously mentioned off-
the-shelf LID systems (NLLB-218, OpenLID,
GlotLID, HeLI-OTS) cover all six Nordic lan-
guages, with the exception of FastText-176, which
does not include Faroese.

Multi-label language identification Most exist-
ing LID training and evaluation corpora are not
manually labeled. Instead, they are based on the
assumption that the language is determined by the
source it is retrieved from. If a sentence is retrieved
from a Danish newspaper, it is assumed to be only
Danish. But when dealing with closely related lan-
guages, it is often the case that an instance cannot
be unambiguously assigned to a single language
(Goutte et al., 2016; Keleg and Magdy, 2023).

Recent proposals address this issue by framing
LID between similar languages as a multi-label task
(e.g., Chifu et al., 2024; Abdul-Mageed et al., 2024)
and by manually annotating the evaluation data
(e.g., Zampieri et al., 2024; Miletić and Miletić,
2024). However, these works do not include studies
of Scandinavian languages.

3 Data

One of the main contributions of this paper is the
release of manually and automatically annotated
multi-label datasets. In Section 3.1, we introduce
the sources from which we compile our datasets.
We then present our manually annotated multi-
label evaluation dataset (Section 3.2). Next, we
describe a way to obtain multi-label annotations au-
tomatically for the larger training set in Section 3.3.
Lastly, we outline different approaches to data aug-
mentation in Section 3.4.
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3.1 Data sources
As a starting point, we use the Universal Dependen-
cies 2.14 treebanks (UD; Nivre et al., 2016, 2020),
keeping their train/dev/test splits intact.3 For each
of the four languages, we associate each sentence
in the treebank with the language tag correspond-
ing to that treebank’s language. This results in a
foundational single-label dataset with the following
language tags: Danish (DA), Norwegian Bokmål
(NB), Norwegian Nynorsk (NN), and Swedish (SV).
We further incorporate examples labeled as other,
drawing random samples from other UD treebanks
to represent other languages.

As the UD treebanks are manually annotated, we
assume that the texts accurately reflect their corre-
sponding languages. Additionally, the treebanks
cover multiple genres, improving the robustness
of the models to different text varieties. However,
while the resulting dataset is clean, it is not dis-
ambiguated. For example, a sentence labeled as
Nynorsk is almost guaranteed to be in Nynorsk, but
it could also be a valid Bokmål sentence.

3.2 SLIDE dataset: manually multi-labeled
evaluation data

Manual inspection To identify multi-label in-
stances in the validation and test splits, we per-
formed a combination of automatic filtering and
manual annotation. Automatic filtration was done
by removing frequent words that unambiguously
define a language (e.g. ‘ikkje’ is only valid in
Nynorsk; the full list is to be found in our Github
repository).

After filtering, we split the remaining instances
among a group of annotators to manually check
for cases of multilingual acceptability. All annota-
tors were native or near-native Norwegian speakers.
Annotation tasks were delegated depending on the
speakers’ knowledge and exposure to Swedish and
Danish (all native speakers have received education
in or about other Scandinavian languages through
the public curriculum or university classes).

Unclear instances Most cases of multilingual
acceptability involved short sentences with proper
names, numbers, or words that are acceptable in
multiple Scandinavian languages. Instances con-
sisting of only proper names were annotated with
all Scandinavian languages, even if more common
in one language than another. Numerical values

3Specifically, we use the following UD treebanks:
no bokmaal, da ddt, no nynorsk, and sv talbanken.

Language Train
split

Validation
split

Test
split

Bokmål 23 120 2 543 2 098

Danish 5 977 563 677

Nynorsk 21 587 2 031 1 628

Swedish 6 911 553 1 250

Other 8 360 1 124 1 745

Total 61 406 6 433 6 950

Table 1: Dataset sizes Number of sentences per
language. Multi-label samples are reported once
for each language, while the summary row shows
total number of unique sentences.

were treated similarly as they are universally ac-
ceptable across the languages.

Non-Scandinavian instances Sentences from
other languages that are not valid in the Scandi-
navian languages retain the other label, and we
set restrictions on when this label is used. This dis-
tinction is crucial as it ensures that the other label
exclusively identifies non-Scandinavian sentences,
setting it apart from the potential multi-label nature
of the remaining labels. For example, this instance
from the Danish treebank, “- Gerne.”, is labeled
as only Danish, despite it also being acceptable
in German. This approach allows us to evaluate a
model’s ability to handle ambiguity and focus on
the sentences that could belong to multiple Scan-
dinavian languages, without having to consider all
possible languages.

Punctuation errors We found several sentences
that were orthographically identical in Danish and
Bokmål, where commas were the sole distinguish-
ing factor. When a subordinate clause occurs in
the first position of a sentence, both languages in-
clude a comma at the end of the clause. However,
if the subordinate clause does not occur in the first
position, Danish can include a comma before that
clause4, whereas Norwegian cannot5. The optional
comma, in this case, means that Danish can follow
the same punctuation rules as Norwegian but does
not have to, making differentiation difficult.

Such a sentence is shown in example (1) from
the Danish treebank. The words in this sentence are

4https://ro.dsn.dk/?type=rulesearch&side=49
5https://sprakradet.no/godt-og-korrekt-sprak/

rettskriving-og-grammatikk/kommaregler/
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written the same in Danish and Bokmål however,
the comma introducing the subordinate clause at
hun skulle havne på et teater is technically not
allowed in Norwegian.

(1) Der stod ingen steder i Mai Buchs eksamenspapirer,
at hun skulle havne på et teater.

It said nowhere in Mai Buch’s exam papers that she
would end up in a theater.

We decided to annotate such sentences as both Dan-
ish and Bokmål, thereby focusing on lexical infor-
mation rather than punctuation. This is due to Nor-
wegians’ challenges with following comma rules in
general (Michalsen, 2015, pp. 37-39), perhaps due
to Norwegian earlier having Danish comma rules
(Papazian, 2013). We also find 29444 examples of
a comma preceding at ‘that’ in the Norwegian LBK
corpus, keeping in mind that some of these might
be examples of other usage (Fjeld et al., 2020).

Code switching There were also sentences in the
dataset that included more than one language. One
such example is:

(2) Låten heter “The spirit carries on.”

The song is called “The spirit carries on.”

For these sentences that include non-Scandinavian
words, we annotated them for the Scandinavian
languages only. In cases where a sentence had
words from different Scandinavian languages, e.g.
a Nynorsk quote in a Bokmål sentence, we made
small changes to make the sentence monolingual.6

Number of multi-label instances The statistics
of the validation and test sets are shown in Table 1.
The resulting shares of multi-label instances in the
validation and test sets are 6% and 5% respectively.

3.3 Automatically multi-labeled training data

As there is no available multi-labeled training
dataset for any subset of the Scandinavian lan-
guages, and manually annotating a large-enough
dataset would be out-of-scope for this project, we
decided to silver-label the UD training split au-
tomatically. To do so, we converted the task of
machine translation into the task of language iden-
tification. This conversion then allows us to utilize
existing high-quality resources for multi-label lan-
guage identification.

6There were few instances of this, however, it is important
to mention that there is not a complete 1-to-1 correlation
between the source material and our dataset.

Alterations Loose
accuracy

Exact-match
accuracy

Augmentation + Regex 98.6 96.4
Augmentation 98.4 96.3

Regex 98.4 96.2

NER 98.7 95.5

Base 98.3 96.2

Table 2: Ablation study Impact of data aug-
mentation and regular expression normalization
on SLIDE-base measured by test set performance.
”Augmentation” refers to punctuation augmenta-
tion, ”Regex” refers to regular expression normal-
ization, ”NER” refers to named entity swaps and
”Base” is neither of the above.

Machine translation conversion The method
relies on our observation that machine translation
models tend to stay conservative and minimize the
changes between the source and target texts. Thus,
if the translation of a sentence does not lead to any
changes, we label it as a valid sentence of the target
language. This means that the machine translation
model can only add additional language labels to
a sentence as a result; we do not use the translated
sentences in any other way.

Specifically, we use NorMistral-11b to per-
form the translation (Samuel et al., 2024). While
this large language model is able to translate in
a zero-shot manner, we increase its reliability by
fine-tuning it on the small high-quality Tatoeba
evaluation set (Tiedemann, 2020) in all translation
directions between Bokmål, Danish, Nynorsk and
Swedish.

3.4 Data augmentation

Punctuation augmentation To prevent our mod-
els from relying too much on punctuation, we aug-
ment the training data with random punctuation.
This is especially important for disassociating punc-
tuation from the other tag, for which the training
data exhibits punctuation noise to a higher degree
than the Scandinavian language examples. We ran-
domly add either (i) a period, an exclamation point,
or a question mark to the end of the sentence or
(ii) a hyphen, dash or comma at the beginning of
the sentence. Additionally, there is a 1/3 chance
of including an intervening space. This augmenta-
tion scheme is chosen to try to mimic punctuation
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variance that is present in sentence-level (parallel)
corpora.

This method is only applied to instances not
labeled as other and is performed on about 7.5%
of the training data. This value is heuristically
chosen.

Regular expression normalization We normal-
ize URLs, email addresses, and numbers into the
following special symbols: 〈URL〉, 〈mail〉 and
〈num〉. These elements are not informative for lan-
guage identification, and we do not want a model
to associate them with a certain language.

label

machine
translator

augment

named-entity
recognizer

finetune

NorBERT3,
GlotLID

SLIDE
models

SLIDE
evaluation

Existing models:

single-labeled
data

multi-labeled
data

augmented
data

SLIDE dataset
(multi-labeled)

Figure 2: Training pipeline A diagram that il-
lustrates the flow of the full training pipeline. We
start with a high-quality, single-labeled training
dataset, then extend it with multi-label annotations
using a strong machine translation model. The
dataset is further augmented by randomly swap-
ping named entities identified by existing NER
models and through other rule-based augmenta-
tions. We use the (augmented) data to fine-tune
strong tranformer-based models from a family of
NorBERT3 models (Samuel et al., 2023), a fast
model from the GlotLID static word embeddings.
Finally, the manually-annotated multi-label dataset
is used to evaluate the resulting models.

Alphabet variations The alphabet of the four
Scandinavian languages differs by the usage of
the letters ä, ö (in Swedish) and æ, ø (in Danish
and Norwegian). To ensure that the model does not
learn to associate the presence of these letters solely
with their corresponding languages, we augment
the training data by adding Swedish sentences con-
taining the Danish–Norwegian letters and Danish
and Norwegian sentences containing the Swedish
letters (e.g., in proper names and in the context of
quotations).

We use the NPK parallel corpus7 containing
translations of news texts from Bokmål to Nynorsk

7https://www.nb.no/sprakbanken/en/
resource-catalogue/oai-nb-no-sbr-80/

to extract texts containing ä and ö. For Swedish, we
use the EU Bookshop corpus (Skadiņš et al., 2014)
to extract Swedish sentences containing æ and ø.
Together, this yielded 10,262 sentences, which are
included in Table 1.

Named entity swaps We also want to prevent a
model from associating named entities with a given
language. Although named entities are unequally
distributed across languages, they are not necessar-
ily language-dependent. We perform named-entity
recognition (NER) on the training data using the
spaCy8 to identify and extract persons, organiza-
tions, locations, and miscellaneous entities. We
randomly swap the recognized entities with other
entities from the same category to try to break up
any connection between entity name and a given
language.

4 SLIDE evaluation

We introduce two evaluation metrics in our com-
parison: loose and exact-match accuracy.

Loose accuracy This evaluation metric is de-
signed for models that output only one language
label per input, which is common for off-the-shelf
classifiers like FastText and NLLB. According to
this metric, a prediction is considered correct if
the single predicted label is among the gold labels.
This metric is unreliable for multi-label models,
since a model that always predicts all four lan-
guages would get 100%.

Exact-match accuracy This evaluation metric is
more strict and requires an exact match between the
predicted and gold labels sets, making it more ap-
propriate for models capable of predicting multiple
labels.

Per-language scores Additionally, we report the
F1-score for each individual language to measure
the quality of classifications for each of the four
languages separately. Here, a true positive predic-
tion happens if and only if the respective language
is present both in the set of predicted labels and in
the set of gold labels.

5 SLIDE training methodology

In this section, we present our approach to training
the SLIDE models. We explore two main direc-

8https://spacy.io/ pipeline. We use the large
language-specific models, where the Norwegian model is used
for Bokmål and Nynorsk.
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tions: transformer-based models that achieve high
accuracy but require more computational resources,
and a fast model based on static word embeddings
that trades accuracy for faster inference times.

5.1 Transformer models (SLIDE x-small,
small and base)

Fine-tuned masked language models are nowadays
the most popular sequence classification solution
for problems that require accurate solutions and
reasonable inference time (Devlin et al., 2019).

Selection of BERT family We assessed mas-
sively multilingual, Scandinavian, and Norwegian
BERT-like models with comparable number of pa-
rameters in order to choose a model to focus on for
further optimizations.

We test two massively multilingual models:
XLM-RoBERTa-base (Conneau et al., 2020), which
is trained on a corpus containing 100 languages
(including the Scandinavian languages) and has a
total of 278M parameters, as well as DistilBERT-
multilingual-base (Sanh et al., 2019), which is a
distilled version of the multilingual BERT base
model trained on Wikipedia data from 104 lan-
guages (including all the Scandinavian languages)
with 135M parameters. The Scandinavian model
we use is called ScandiBERT (Snæbjarnarson et al.,
2023); it is a BERT-like model with 125M pa-
rameters trained on Icelandic, Danish, Norwegian,
Swedish and Faroese data. Finally, NorBERT3-
base (Samuel et al., 2023) is a masked language
model trained mostly on Norwegian data.

Preliminary experiments showed that the
NorBERT3 models performed the best on our
dataset, as shown in Table 3. We thus use the
NorBERT3 models for further experiments and con-
sider the following sizes from this family of mod-
els: xs (15M parameters), small (40M parameters),
and base (123M parameters). This allows us to
train SLIDE models of varying accuracy-to-speed
trade-offs.

Training details Fine-tuning is done using the
transformers library (Wolf et al., 2020) and the
PyTorch framework (Ansel et al., 2024). We use
binary cross-entropy as the loss function to train
the model for multi-label classification.

To find our final hyperparameters, we perform
a simple grid search. The models are fine-tuned
with a learning rate of 5 · 10−5, a batch size of
64, 1% warmup steps with a linear scheduler to-
gether with the AdamW optimizer. We train the

Model Loose
accuracy

Exact-match
accuracy

Macro
F1

XLM-RoBERTa-base 96.8 94.6 95.4

DistilBERT-base 96.5 94.5 95.2

ScandiBERT 97.6 95.9 96.6

NorBERT3-base 98.6 96.4 97.0

Table 3: Base model selection We made our
choice based on the validation data split, the met-
rics in this table, given in percent, are for the test
split. F1 is per-language exact match. NorBERT3
refers to the same model as SLIDE.

models for 3 epochs (2,877 steps) and load the best
checkpoint at the end based on metric performance
(weighted multi-label accuracy). Model evalua-
tion is performed on the validation set every 100
training steps. We fine-tuned the three NorBERT3
models in this way and release them as SLIDE-xs,
SLIDE-small and SLIDE-base.

Various training set compositions were evalu-
ated; the best model was trained on the multi-label
UD dataset combined with the ‘alphabet varia-
tions’ dataset using the punctuation augmentation
approach and regular expression normalization de-
scribed in Section 3.4. We also observe that lower-
casing the training set leads to slightly better per-
formance. Therefore, we applied lowercasing to
all the training data. While performance typically
improves with more training data, this was not ob-
served on our validation set. The final training set
has a skewed label distribution: 35% Bokmål, 33%
Nynorsk, 13% other, 11% Swedish, and 9% Danish.
The validation and test sets reflect similar skews
(see Table 1). We briefly tested both upsampling
and downsampling to balance labels, but the multi-
label nature of the data made this challenging, and
it ultimately yielded no improvement.

5.2 Static-word-embedding model
(SLIDE-fast)

Since our dataset is smaller than that used to train
baseline FastText models, we train a tiny multi-
label model instead of concentrating efforts on pre-
training a model on our dataset. The model is based
on GlotLID sentence embeddings and has 20.9k
parameters, not counting the input embeddings. It
uses a feed forward network with 1 hidden linear
layer of size 64 and a ReLU activation function be-
tween it and the output linear layer, and is trained
with a regular binary cross-entropy loss. We se-
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lected the 0.5 sigmoid threshold to accept a class
based on the validation data split. The other class
is selected only if all other classes are below the
threshold. Reducing number of classes from 2,102
to 4 explains faster inference (Table 4) than that of
original GlotLID.

Additional Scandinavian data Since a SLIDE-
fast model trained on the same training dataset
as the larger model does not correctly discrimi-
nate Bokmål from Nynorsk and Danish sentences,
we enhance the training dataset with additional
Bokmål, Nynorsk, Danish and Swedish sentences
from the Tatoeba evaluation dataset (automatically
labeled in the same way as the UD-based training
dataset). NER, punctuation augmentation and regu-
lar expression normalization are not applied to the
resulting training split.

6 Experiments

We evaluate our SLIDE models against several es-
tablished LID baselines, comparing both predic-
tion accuracy and speed. Our evaluation focuses
on two key aspects: performance on our manually
annotated multi-label test set, and generalization
to out-of-domain data. We first describe the base-
line models used for comparison, then present our
main results and the results of our out-of-domain
experiments.

6.1 Baselines

We compare against LID models available at the
time of writing that support the four Scandina-
vian languages: FastText-176 (Joulin et al., 2017),
NLLB-218 (Grave et al., 2018), NB-Nordic-LID
(de la Rosa and Kummervold, 2022), OpenLID
(Burchell et al., 2023), GlotLID (Kargaran et al.,
2023); Heliport, a faster version of HeLI-OTS
(Jauhiainen et al., 2022b)9, and gpt2-lang-ident.

While top-k prediction with confidence scores is
possible for the FastText and GPT2-based models,
we observe that the confidence scores are unreli-
able, i.e. there is no consistent threshold value that
improves performance, and for all baseline models,
except Heliport, the best results are achieved when
they are used as single-label classifiers.

6.2 Main results

Table 4 presents the main results of our experi-
ments on the manually-annotated SLIDE test set.

9https://github.com/ZJaume/heliport

We report loose accuracy and exact-match accuracy
as overall metrics, along with per-language exact-
match F1 scores for each of the four languages
and the ’other’ category. Additionally, we mea-
sure inference speed in milliseconds per sentence,
averaged over three runs10.

6.3 Out-of-domain test set
Haas and Derczynski (2021) provide two test
sets with single-label annotations, extracted from
Wikipedia. In order to evaluate our models on an
out-of-domain dataset and compare them with pre-
vious work, we use their two test splits containing 3
000 and 14 960 samples respectively and map Ice-
landic and Faroese to the ‘other’ label. We present
the results on these test sets in Table 5.

7 Discussion

Performance of baseline models The baseline
models exhibit varying levels of performance, see
Table 4 for detailed metrics. These results demon-
strate that, while most FastText-based models of-
fer speed advantages, they fall short in accuracy
for closely related languages such as Norwegian
Bokmål and Norwegian Nynorsk. GlotLID, though
slower (0.51 ms/sentence), provides the best perfor-
mance among the baseline models, with Heliport
being a close contender while being significantly
faster (0.02 ms/sentence). gpt2-lang-ident, orig-
inally pretrained as a monolingual English model,
fails to tell Danish and two Norwegian languages
from each other, while being able to detect Swedish
and ‘other’, which again highlights the importance
of a dataset focused on Scandinavian languages.

Performance of SLIDE models Our three
BERT-based LID models SLIDE-xs, SLIDE-small
and SLIDE-base perform the best on our test set,
with the base version reaching an exact-match ac-
curacy of 96.4%, while the small and xs both
reach 95.7%. This comes at the cost of significantly
longer runtimes compared to the static embedding
models. These models are suitable when high ac-
curacy is of most importance. However, it is worth
noting that we measured inference speed solely on
a CPU, one sentence at a time, to ensure a fair com-
parison with the faster baseline models intended
for CPU usage. Using a GPU with larger batch
sizes would result in significantly faster runtimes
for the transformer models.

10Measured on an AMD EPYC 7702 CPU, with a batch
size of 1.
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Model Loose
accuracy

Exact-match
accuracy

NB
F1

DA
F1

NN
F1

SV
F1

Other
F1

Runtime
ms/sample

BASELINES

gpt2-lang-ident 61.2 58.9 47.0 24.0 36.9 83.6 86.2 52.07

FastText-176* 80.5 77.7 72.6 66.0 55.7 92.7 93.5 0.01
NLLB-218* 95.3 91.6 93.0 85.9 89.0 96.8 93.6 0.08

NB-Nordic-LID* 83.3 80.6 85.0 67.0 84.8 89.7 70.2 0.02

OpenLID* 94.2 90.2 91.5 82.6 88.7 95.7 93.3 0.08

GlotLID* 97.2 93.4 93.5 89.5 89.4 97.9 98.1 0.51

Heliport (HeLI-OTS) 96.5 92.6 90.9 89.0 91.2 97.6 97.2 0.02

OUR MODELS

SLIDE-fast 95.7 93.4 94.5 90.2 92.4 97.5 96.4 0.16

SLIDE-x-small 97.8 95.7 97.5 90.4 96.2 98.0 98.7 13.22

SLIDE-small 98.1 95.7 97.7 89.9 96.3 98.0 99.1 19.70

SLIDE-base 98.6 96.4 98.1 92.0 97.1 98.6 99.4 38.41

Table 4: Detailed results on the manually-annotated multi-label SLIDE test split The best result for
each metric is typeset in bold; higher values are always better, except for the runtimes. * shows which
baselines use FastText.

While our SLIDE-fast model reaches the same
exact-match accuracy as GlotLID, 93.4%, it per-
forms better on Nynorsk, Bokmål and Danish, with
Nynorsk performance increasing by 3%.

Overall, performance on Danish is consistently
the lowest—the best model reaches 92% F1. Our
models have been trained on more Bokmål than
Danish data, and we observe a slight tendency to
predict only Bokmål instead of both Bokmål and
Danish for multilingual samples. We do, however,
notice the same trend with lower Danish perfor-
mance across all evaluated models, see Table 4.

As seen in Table 2, the punctuation augmenta-
tion led to minor performance improvements. The
main motivation behind this approach, however,
is increased robustness to noisy data. While the
model trained with named entity swapping (see
Section 3.4) gained the highest loose accuracy per-
formance, 98.7%, it performed poorly on exact-
match accuracy, 95.5%. We therefore decided not
to include this in the final SLIDE models.

Error analysis Common error sources are proper
names (half of ‘other’ instances misclassified as
Scandinavian contains proper names (e.g. ‘kruvi:
Karl Marx’), instances in English (30% of ‘other’
instances misclassified as Scandinavian), and loan-
words (‘- Ta avisa Kommersant.’, ‘Server med pas-

tasalat med bakte grønsaker og tsatsiki til’, ‘Men
Anne Linnet - oh la la.’) Bokmål and Nynorsk are
confused most often. If a sentence valid both in
Bokmål and Nynorsk contains irregular Bokmål
spelling like ‘høg’ instead of ‘høy’, and ‘tjuvfiske’
instead of ‘tyvfiske’, it is likely to be misclassified
as Nynorsk only. Some errors imply that partic-
ular tokens influence the prediction more than a
sentence representation as a whole: ‘høyre’ is a
valid word both in Nynorsk (‘hear’) and Bokmål
(‘right’), but the sentence ‘I alle år har vi fått høyre
at med dagens forbruk er det olje nok for mange
tiår.’, which is Nynorsk because of ‘høyre’ used
as a verb, is misclassified as Bokmål, while a both
Bokmål and Nynorsk sentence ‘I den nye designen
er høgre og venstre spalte på framsida til nettavisa
fjerna.’ is misclassified as only Nynorsk because of
the spelling. Additionally, some ‘other’ instances
containing subwords matching those in Scandina-
vian are misclassified, although the whole sentence
semantics does not make any sense: ‘Va shiaulteyr
er ny skeabey harrish boayrd.’ (Manx).

Out-of-domain evaluation In order to ensure
that we do not overfit to the UD data, we evaluate
our models on the out-of-domain test set presented
in Section 6.3, which was the only LID dataset spe-
cific for Scandinavian languages available at the
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Model 3K test split 15K test split

SLIDE-base 92.7 95.3

SLIDE-fast 85.4 88.5

GlotLID 93.0 95.7

Table 5: Performance on an out-of-distribution
single-labeled datasets Accuracy on the test sets
from Haas and Derczynski (2021). As this dataset
is single-label, we consider a prediction to be cor-
rect, if one of the predicted languages is correct.

time of writing. While SLIDE-base reaches lower
performance than GlotLID on this test set, we must
add that this dataset is heavily preprocessed: lower-
cased and stripped out of numbers, punctuation
signs and some accented characters. We also no-
ticed a fair amount of mislabeled sentences in the
dataset, with sentences like “ou di be t aatm ne en
wadi”, “atahualpa yupanqui” and “tromssan ruijan-
suomalainen yhdistys” being labeled as Swedish,
Danish and Nynorsk, respectively. Furthermore,
this dataset contains Icelandic and Faroese as the
other languages, which are similar to Nynorsk
in many cases. In short, we cannot draw confi-
dent conclusions from this result, but it hints at the
worst-case performance of our models on out-of-
distribution inputs.

8 Conclusion

We release a novel multi-label LID dataset for Dan-
ish, Norwegian Bokmål, Norwegian Nynorsk and
Swedish with manually annotated validation and
test splits. Using machine translation for creating
a silver multi-label training dataset from a single-
label one has proved to be efficient.

Although fine-tuning models for a specific data
source may be helpful to obtain high performance
on a selected test set, such models (especially the
FastText-based ones) may be not robust towards
the test dataset change. Also, excessive training
data preprocessing may lead to performance degra-
dation on data from unknown domains compared
with training without any preprocessing.

Limitations

We limit ourselves to the larger Scandinavian lan-
guages, and include neither the other closely re-
lated Nordic languages Faroese and Icelandic (also
known as Insular Scandinavian), nor the smaller

Scandinavian varieties with a limited written tradi-
tion, such as Scanian, Elfdalian and Bornholmsk.
We also do not look at other sources of variation,
e.g., dialectal, diachronic or otherwise different
varieties found in literature or social media.

Another limitation is that while all Norwegians
generally understand Swedish and Danish well, as
these languages are a compulsory part of the public
curriculum, and also teaching languages of Norwe-
gian universities, their productive capabilities are
much lower, and there might be cases of mislabel-
ing.
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Cyril Goutte, Serge Léger, Shervin Malmasi, and Mar-
cos Zampieri. 2016. Discriminating similar lan-
guages: Evaluations and explorations. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
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Abstract

In this work, we reframe multilingual neu-
ral machine translation (NMT) as a feder-
ated meta-learning problem and introduce
a translation dataset for the low-resource
Kirundi language. We aggregate machine
translation models (→ en) locally trained
on varying (but related) source languages
to produce a global meta-model that en-
codes abstract representations of key se-
mantic structures relevant to the parent lan-
guages. We then use PerFedAvg to fit the
global model onto a specified target lan-
guage in a few-shot manner. The target
language may live outside the subset of
parent languages (such as closely-related
dialects or sibling languages), which is par-
ticularly useful for languages with limit-
edly available sentence pairs. We first de-
velop a novel dataset of Kirundi-English
sentence pairs curated from Biblication
translation. We then demonstrate that a
federated learning approach can produce a
tiny 4.8M Kirundi translation model and
a stronger NLLB-600M model which per-
forms well on both our Biblical corpus and
the FLORES-200 Kirundi corpus.

1 Introduction

The federated learning (FL) paradigm has drawn
great interest for its inherent privacy, scalability,
and performance across myriad vision and lan-
guage tasks. Recent works have proposed feder-
ated learning as a solution for low-resource ma-
chine translation (Tupitsa et al., 2024; Moskvoret-
skii et al., 2024a). Centralized federated learning
often focuses on optimizing a global model by ag-
gregating weights over a cluster of clients trained
on identical tasks (with varying local datasets). Cur-
rent literature suggests a global model can also be

used as a meta-model to increase model perfor-
mance and convergence speed (Fallah et al., 2020;
Chen et al., 2018). In the meta-learning setting,
clients train on similar, but heterogeneous tasks,
enabling few-shot adaptation to new tasks of the
same flavor.

In this paper, we attempt to utilize federated
learning, viewed through the meta-learning lens, to
produce a seq2seq translation model for Kirundi,
which despite having 11.2 million speakers, is
rarely considered in literature and lacks transla-
tion resources. Here, the meta-task is → en ma-
chine translation, with varying source language.
We aggregate a global model over a small clus-
ter of parent seq2seq models. The parent models
train higher-resource Bantu languages, specifically
Luganda, Bemba, and Kinyarwanda.

To the best of our knowledge, the FLORES-
200 dataset (Costa-jussà et al., 2022) is the
only publicly-available parallel translation corpus
of Kirundi, containing roughly 2000 sentences
(aligned with 200 other languages). We produce a
novel corpus of 29,506 English to Kirundi sentence
pairs by scraping pairs from parallel corpuses of the
New and Old Testament produced by The Interna-
tional Bible Society (available at bible.com). We
demonstrate that the federated meta-learning strat-
egy can boost performance on both the FLORES-
200 Kirundi and our Bible corpus. We use our ap-
proach to construct a tiny, but performant 4 million
parameter run → en model and to improve the per-
formance of NLLB-600M, which has already been
trained to translate Kirundi (among many other
languages).

2 Algorithm and Preliminaries

The PerFedAvg algorithm combines FedAvg
(McMahan et al., 2017), Reptile (Nichol et al.,
2018), and personalization to increase convergence
speed and stability. To rapidly adapt to a new lan-
guage for a machine translation task (in our case,
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run → en), we split our approach into 3 steps,
similar to PerFedAvg (Fallah et al., 2020).

1. Global Model Training. Using the FedAvg
federated learning algorithm (McMahan et al.,
2017), we aggregate gradients across multiple
clients. Each client holds data for a language
exclusive to them. Training is performed, and
gradients are aggregated to update the global
model, which is used by clients for the next
epoch of training. It is well-known the het-
ereogeneous weighting of gradients during
aggregation is required to achieve optimal per-
formance (Moskvoretskii et al., 2024a; Fallah
et al., 2020; Tupitsa et al., 2024; Kairouz et al.,
2021). We use the Optuna library to fine-tune
gradient weighting rather than using an even
average (McMahan et al., 2017) or weighing
by the the amount of client data (Fallah et al.,
2020).

2. Reptile Meta-Learning. The fine-tuning is
tested against a subset of Kirundi training data.
We run the Reptile algorithm (Nichol et al.,
2018) 10 times on our model after training the
global model to improve model performance
as outlined by PerFedAvg. Reptile enables
our meta-model (i.e., federated global model)
to quickly adapt to run → en translation by
repeatedly sampling other parental translation
tasks and performing SGD on each parent task,
then updating the initialization parameters in
the direction of the of the run → en loss min-
ima. This will prepare our global model for
rapid personalization towards our full Kirundi
training sets.

3. Kirundi Personalization. We take our fine-
tuned, Reptile-optimized global model and
then perform full training over our Kirundi
datasets.

3 Experiments

3.1 Kirundi Dataset

While machine translation work has been per-
formed for other African languages(Vegi et al.,
2022; Emezue and Dossou, 2022; Omwoma et al.,
2024; Nyoni and Bassett, 2021), besides FLORES-
200, there are no other widely-known parallel cor-
pora for Kirundi. Despite having 11.2 million
speakers, it is underrepresented in the machine
translation community. One of the initiatives of

this work was to curate a new dataset of sentence
pairs to stimulate further work on this language.

Using the Kirundi Bible we were able to di-
rectly translate English sentences to their Kirundi
counterparts. The Kirundi verse pairs were ex-
tracted and cleaned from the Kirundi Bible found at
https://www.bible.com/. The dataset itself con-
tains 29,506 sentence pairs. For training purposes,
we truncated the full set down to sentence pairs
with token lengths <= 11 (for a total of 1317 pairs)
during training with a train dev/test of 80%/20%.
We intend to release these sentence pairs on GitHub
following the deanonymization of this submission.

3.2 Training

Small seq2seq model. For our tiny model sce-
nario, we use 4.8M parameter Seq2Seq torch
models with Bahdanau attention (Bahdanau et al.,
2014), Adam optimizers, and NLL loss (Sutskever
et al., 2014). Learning rate is set to 1e− 5, weight
decay to 1e − 4. FedAvg for our global model
is run for 50 communication rounds where every
client participates in 1 local epoch per round. Af-
ter 25 communication rounds, Optuna is used to
finetune the gradient weights (i.e., model mixture)
every 5 rounds. Reptile is run for 10 rounds. After
the global meta-model is prepared for knowledge
transfer, we run local Kirundi training (i.e., per-
sonalization) for 100 epochs. We source Luganda-
English pairs from a published Zenodo set (Kimera
et al., 2023) and Kinyarwanda-English pairs from
a biblical translation.

NLLB. For federated training of NLLB-600M
Kirundi, we adopt the same hyperparameters as the
tiny model scenario, but we do not perform Optuna
finetuning due to the sheer size of the model. That
is, we use equal weighting of the parent Luganda,
Bemba, and Kinyarwanda models, with all training
and test data sourced from FLORES-200.

3.3 Translation Tasks

3.3.1 Kirundi Bible Corpus
In Table 1, we record the BLEU scores of various
models on our Bible corpus. PerFedAvg refers to
parental model weighting Nk/N where Nk is the
number of training samples for client k and N =∑

k Nk. Equal weighting sets federated weights
equal to 1/k (in our case k = 3). Frozen weights
applies an Optuna fine-tuned, Reptile-optimized
global meta-model directly on the Kirundi bible
test set. No global model trains the tiny seq2seq
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Model BLEU Score
Fine-Tuned FL +
Personalization 20.67

PerFedAvg
Weights

17.66

Equal Weights 17.89
Frozen Weights 17.01

No Global Model 17.70
NLLB-600M 23.85

Table 1: Kirundi Bible Dataset. Highest achieved
BLEU scores of different algorithms averaged over
3 runs on our Kirundi Bible Corpus. NLLB is also
included as a baseline.

model from scratch (no federated learning). Fine-
Tuned FL + Personalization weights refers to Op-
tuna+Reptile global model fine-tuning in addition
to Kirundi bible train set personalization. We ob-
serve that a federated model with fine-tuned par-
ent model mixtures can achieve the highest per-
formance – lagging only the NLLB-600M model
which is roughly 125x its size.

3.3.2 FLORES-200 Corpus

Model BLEU Score
Fine-Tuned FL +

Personalization FL
19.26

NLLB-600M
(Unchanged

Default Weights)
23.46

NLLB-600M (No
FL +

Personalization)
23.45

NLLB-600M (FL
+ Personalization) 25.51

Table 2: FLORES-200 Dataset. Highest achieved
BLEU scores of different algorithms averaged over
3 runs on the FLORES-200 Kirundi dataset.

In Table 2, we study how our various models
perform on the FLORES-200 Kirundi corpus of
roughly 2000 sentence pairs (approximately 1000
pairs for train/test). Fine-tuned FL + Personaliza-
tion performs respectably on FLORES-200 with no
personalization the FLORES train set, indicating
the Bible training corpus imbues our tiny model
with general knowledge of modern Kirundi. We ob-
serve that federated learning is able to improve the
performance of NLLB-600M, which is already pre-

trained on massive web corpora of Bantu languages
(Costa-jussà et al., 2022).

3.3.3 K-shot Learning
We can see across all of our ablation training curves,
depicted in Figure 1, using a global model (Fine-
Tuned FL) for pre-training leads to an increase
in performance. It maintains this improvement in
all k-shot tasks. We found that improvement was
especially impressive in few-shot learning envi-
ronments, with consistent increases despite a low
amount of accessible training data.

In addition to this, we can also observe a much
faster convergence for the pre-trained model in Fig-
ure 1. The pre-trained model can be seen converg-
ing 5 to 10 rounds before a model trained without
a meta-model.

These improvements in training speed and ac-
curacy can be explained by the pre-trained model
having already seen similar examples during the
training of the global model. With this in mind,
using a global model as a meta-model presents an
avenue for improving model performance when
target language data is low, but data from related
languages is available.

3.4 Weighting Algorithms

In Figure 2, we review different weighting strate-
gies and their performance compared to our al-
gorithm. Compared to the PerFedAvg strategy
(weighting proportional to size of training data),
we can see increased performance in our algorithm.
PerFedAvg weights on sample count, but in our
case, we have a low number of clients with dif-
fering amounts of data. As a result, PerFedAvg
weighting results in overfitting to a specific lan-
guage which is detrimental in obtaining optimal
meta-model weights.

We also compare our algorithm to equally
weighting gradients from all clients. If finding
the truest average of our client languages during
our global model training was the most effective
for personalization, this strategy would yield the
highest performance. However, during our weight
tuning, we found that oftentimes certain languages
would be weighted as more important to person-
alization. For example, during training, we found
that weights from our Kinyarwanda client would
be weighted slightly higher than other clients. In-
tuitively, this is because Kinyarwanda has a closer
lexical similarity to our target language of Kirundi
compared to Bemba or Luganda.
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Figure 1: Comparing performances of fine-tuning from a pre-trained global model and training from
scratch in different k-shot settings.
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Figure 2: Comparing the performance of different weighting strategies applied during training of the
global model.

We also analyze the performance of personaliza-
tion with frozen intermediate weights. Again, our
algorithm outperforms this setting. This demon-
strates the task as more than a fine-tuning task, but
a more complex meta-learning problem.

From these results, we can surmise that there
exists a most optimal set of weights for each client
that is based on the lexical similarity of the parent
languages used in training the global model to our
target languages.

3.5 Parental Model

We also explored the impact of other Bantu lan-
guages on our personalization step, replacing Lu-
ganda in our parent languages with Swahili. We
previously discussed the correlation of lexical sim-
ilarity to a target language and the importance of
a parent language. Other studies have claimed un-
related parent models should not have an impact
on the personalization step (Moskvoretskii et al.,
2024b). However, from our experiment illustrated
in Figure 2, we can see that an unrelated language
has deleterious effects on performance. Despite
being a Bantu language, Swahili is much less lexi-
cally related to Kirundi than Luganda. As a result,
the drop in performance can be associated with our
Swahili client effectively poisoning the weights of
global model with an unrelated task.

4 Conclusion

In this work, we curate a dataset and develop an
algorithm for English to Kirundi translation. De-
spite being a widely spoken Bantu language, there
were no previously existing translation resources
for Kirundi. Despite limited sentence pairs, our
work shows a translation model can be developed
with certain federated learning techniques to pro-
vide support for an underrepresented language.
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