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Abstract

Transformer-based Large Language Models
(LLMs) have achieved remarkable success
across various domains, including clinical lan-
guage processing, where they enable state-of-
the-art performance in numerous tasks. Like
all deep learning models, LLMs are suscepti-
ble to inference attacks that exploit sensitive
attributes seen during training. AnonCAT, a
RoBERTa-based masked language model, has
been fine-tuned to de-identify sensitive clinical
textual data. The community has a responsibil-
ity to explore the privacy risks of these models.
This work proposes an attack method to infer
sensitive named entities used in the training of
AnonCAT models. We perform three experi-
ments; the privacy implications of generating
multiple names, the impact of white-box and
black-box on attack inference performance, and
the privacy-enhancing effects of Differential
Privacy (DP) when applied to AnonCAT. By
providing real textual predictions and privacy
leakage metrics, this research contributes to un-
derstanding and mitigating the potential risks
associated with exposing LLMs in sensitive do-
mains like healthcare.

1 Introduction

Various fields have seen the benefits of applying
transformer-based Large Language Models (LLM)
to NLP tasks (Wang et al., 2018). The medical do-
main is one such field that has applied LLMs to vari-
ous tasks and achieved state-of-the-art performance
(Peng et al., 2019). Due to the increased number of
training parameters; training such models can be
expensive in terms of computation, data, and time.
To alleviate these issues, pre-training is done via
a general language modelling task, and this “base”
model is distributed to be fine-tuned (Devlin, 2018).
The result of the pre-training and fine-tuning pro-
cess is a language model that achieves a high level
of performance for a specific task within a specific
domain.

AnonCAT is a RoBERTa-based LLM that has
been fine-tuned for the task of de-identifying clini-
cal textual data (Kraljevic et al., 2023; Liu, 2019).
The purpose of AnonCAT is to protect patient pri-
vacy within healthcare records and to provide a
framework that is adaptable between hospitals, de-
partments, and other healthcare agencies. Anon-
CAT is available through the MedCAT GitHub1

(Kraljevic et al., 2021).
Textual data containing sensitive personal infor-

mation can be encoded in the model during pre-
training (Huang et al., 2022) and fine tuning (Qi
et al., 2023), and this may be exploitable by infer-
ence attacks. Clinical textual data will often have
highly sensitive attributes that a model will see
during training, such as names, dates of birth, med-
ications, family, and lifestyle. Motivated attackers
may be able to infer such sensitive attributes via
white-box (direct access to the model) (Wang et al.,
2024) and black-box (access to model outputs only)
attacks (Huang and Zhang, 2019). Inference at-
tempts are more commonly applied to generative
models in comparison to alternative textual mod-
els (such as masked language models) (Gu et al.,
2023).

Efforts have been made to reduce the amount of
training that can be leaked from inference attacks;
such as regularization, differential privacy, con-
fidence masking, and knowledge distillation (Hu
et al., 2022). In particular, differential privacy (DP)
is a common defence against data leakage from
LLMs (Anil et al., 2021), where individual data
points are aimed at being obfuscated while main-
taining the statistical information of the underlying
dataset.

In this work, our aim is to look at AnonCATs
susceptibility to a “name inference attack“, a vari-
ant of an attribute inference attack. We also provide
two methods to measure the privacy of the model.

1https://github.com/CogStack/MedCAT
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A name inference attack is an attempt by a moti-
vated attacker to infer the named entities of a given
de-identified text. We look to answer the following
questions:

1. Can a decoder architecture be used to attack
AnonCAT via a name inference attack, extract-
ing names from de-identified text?

2. Are there additional privacy leaks from gener-
ating multiple names?

3. How does a name inference attack perform as
a white-box attack compared to a black-box
attack?

4. What are the privacy benefits of a model that
has been trained with Differential Privacy
when subject to a name inference attack?

2 Related Works

Language models have been well established
in their susceptibility to inference attacks
(Mireshghallah et al., 2022). Among large lan-
guage models, causal language models have been
shown to leak more information compared to
masked language models (Jagannatha et al., 2021).

Membership inference attacks are a somewhat
common method of attack explored. The work
focuses mainly on inferring if the samples were
part of the victim models training set (Duan et al.,
2024). This attack will not directly infer sensitive
attributes and will instead attempt to ascertain only
the presence of the sample being in the training set.
“Group” level attacks infer sensitive information
with a higher privacy leakage compared to a single
sample.

Attribute inference attacks are an alternative
method in which an attacker can infer sensitive fea-
tures from samples (Jayaraman and Evans, 2022).
These samples are assumed to be from the train-
ing set, or at least statistically similar to training
samples.

Another method of attack is embedding inver-
sion, where, given the embedding parameters, sen-
sitive tokens or phrases can be recovered (Morris
et al., 2023).

These methods generally do not target the most
sensitive of training information - such as names
and dates of birth. Some works look at inferring
sensitive information at a “group” level as opposed
to a single sample, which achieves a higher leakage
of relative privacy (Jagannatha et al., 2021).

Attackers also have multiple avenues to ex-
pose vulnerabilities and gain access to training
data. White-box and black-box attacks cover large
amounts of potential attacks, with varying levels
of access to victim models and source weights
(Chen et al., 2021; Song and Raghunathan, 2020).
Datasets used in the attack are similarly varied ac-
cording to their task and availability (Yeom et al.,
2018).

To combat this, work has been done to enable
the application of DP in deep learning on a large
scale, where privacy is maintained and the impact
on predictive performance is minimised (Abadi
et al., 2016). This has been extended to the realm of
NLP, where DP has been deployed in an attempt to
preserve the privacy encoded in hidden states while
maintaining the utility of the model(Coavoux et al.,
2018). Efforts have also been made to ensure the
privacy of fine-tuning datasets through techniques
applied during the fine-tuning process (Yu et al.,
2021).

2.1 AnonCAT

Figure 1: Sunburst hierarchical ontology structure of
terms for redaction from the AnonCAT de-identification
model. There is a shared root concept, with leaf nodes
being more specific than its inherited parent.

“AnonCAT” is a transformer language model
approach to text redaction (Kraljevic et al., 2023).
It employs localised fine-tuning of a pre-trained
model to improve performance of de-identifying
clinical text, to further improve the performance
at local sites. AnonCATs transformer model is a

43



masked language model based on RoBERTa (Liu,
2019). The method is proposed to enhance the
privacy protection of all entities within healthcare
organisations and contribute to the safety of health-
care data when used in research and development.

3 Methods

3.1 Attack Definition

Algorithm 1 Attribute Inference Attack
Inputs: AnonCAT model Φ with:

output hidden representation h,
Textual sample x which contains:
non-sensitive attributes xns and
sensitive attributes xs

Obtain h(xns) via querying Φ(xns)
Train: Train an attack model ϕ that aims to predict
xs

Output: x̂s = ϕ(h(xns))

Given a sample x which is comprised of it’s
sensitive and non-sensitive attributes (in this case
tokens) such that: x = [xns, xs] where xns refers
to its non-sensitive attributes and xs refers to its
sensitive counterparts. We define the attack algo-
rithm in Alg. 1.

The hidden states h(xns) provided by Φ are used
as input for the attribute inference attack, where
the trained parameters of Φ are frozen so as not to
poison the attack model with ground truth from the
attack dataset.
ϕ represents the learned name attack model to

infer sensitive attributes that have been used as part
of the training of the AnonCAT model Φ. The
model weights are updated for each training sam-
ple of non-sensitive and sensitive textual pairs. x̂s

is the predicted textual sensitive attributes that a
potential attacker would aim to be xs.

3.2 Attack Model Architecture

Fig. 2 describes the model architecture for perform-
ing an attribute entity attack on an AnonCAT /
masked language model. Before the attack model
is used the de-identified text will be passed through
the victim AnonCAT model. The raw AnonCAT
architecture without being part of an attack is de-
scribed in App. A.

The attack model encodes and embeds the prefix
and suffix entries to be fed along with the AnonCAT
models hidden states. The attack model parameters
are randomly initialised, as a pre-trained models

training would not be beneficial to the hidden states
passed from the victim model.

The attack model uses a causal language model
(or a “decoder model”) which is used to predict
the next token given previous tokens. In a stan-
dard setup for causal language models, next token
predictions will occur for each token given the pre-
ceding tokens. In the attack model variant, the only
tokens generated are those that contain the sensitive
names in the suffix.

3.3 Generation

3.3.1 Generation Sampling
Various generation strategies, such as greedy sam-
pling, multinomial sampling, or beam search, still
consider all possible tokens where the tail distri-
bution heavily outweighs likely tokens. The large
number of potential samples from the tail distribu-
tion will also include tokens that are impossible to
include in the prediction. To force these more likely
tokens to be sampled, we will remove the less likely
tokens from consideration by top-K sampling, as
first performed in (Gu et al., 2023):

C = argsort(P)[: k] (1)

qi =
ePci/t

∑
j e

Pcj /t
∀ci ∈ C (2)

P ′ = [q1, q2, ...qk] (3)

The top-k most likely indices are retrieved by
sorting by logits, giving us C. The probabilities
for each potential token are then returned via the
softmax function. We denote our top-k tokens to
be sampled as P ′. For our experiments, we set k at
50 and the temperature (t) at 3.

We scaled the logits for each potential token by
a temperature value (to promote diversity when
choosing from the top-k predicted tokens). The
diversity of an increased temperature value is better
suited to generating the first few tokens. We reduce
the temperature for each token after the first linearly
until the 10th token, where it is 1 for the remainder
of the generation process.

We limit the length of all generated text to a
maximum of 15 tokens. The maximum number
of tokens required to encode a name in the dataset
is 11. The ability to correctly generate consistent
words or phrases is also greatly reduced after 15
tokens.
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Figure 2: A single sample of the proposed decoder model for a name entity attack predicting the de-identified
name. The blue represents a standard AnonCAT model that performs entity recognition, and the parameters in this
model are frozen. The predictions for entities are ignored, and the hidden states are passed to the attack model. The
attack model also has prefixes and suffixes that are concatenated to sample of de-identified text before predicting the
entities name.

3.3.2 Top n sampling
At each forward step that generates text, there are
tens of thousands of potential tokens at a single
forward step and multiple consecutive tokens to be
generated. This results in a large number of po-
tential names being generated as part of the attack.
Depending on the motivations of an attacker, par-
tial predictions or predictions that are highly likely
but not the first prediction may be “good enough“.

To simulate this, we will continue to predict with
the n most likely tokens at each forward step. After
the final tokens have been generated, the n most
likely sequences will be used as the final names
inferred. The values of n used in this work are 1,2,5
and 10. These values have been explicitly chosen
to see the impact of n on attack performance.

4 Experiments

4.1 Datasets

4.1.1 AnonCAT Dataset
The model is initialised with the “RoBERTa-base”
pre-trained model, which was trained on five
datasets (BookCorpus, English Wikipedia, CC-
NEWS, OpenWebText, Stories) (Liu et al., 2019).
The dataset that was used in the process to fine-tune
the AnonCAT de-identification models has been in-

dependently validated and approved for ongoing
usage as part of a de-identification pipeline for on-
going research studies at University College Lon-
don Hospital. This dataset was generated through
two rounds of annotation sessions, focusing on 10
critical Personally Identifiable Information (PII)
concepts in accordance with the Health Insurance
Portability and Accountability Act (HIPPA) guid-
ance on de-identification and privacy rules. This
dataset consists of 560 documents in which the
10 PII concepts were manually annotated. The
AnonCAT model achieved >0.95 F1 across all PII
categories.

4.1.2 Attack Dataset

The attack model is randomly initialised, so no
dataset is used in the pre-training step of the attack
model. The dataset for the “fine-tuning” step of the
attribute inference attack is from the 2014 i2b2 /
UTHealth shared task of natural language (Stubbs
and Uzuner, 2015; Stubbs et al., 2015). One track
of the shared task focuses on a set of 1304 lon-
gitudinal medical records describing 296 patients,
where the task is de-identification for longitudinal
clinical records. This corpus has since been used
commonly in de-identification tasks as a gold stan-
dard dataset.
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4.2 Experimental Setup

The following hyper-parameters are set for each
model created for a fair comparison between them.
The models are trained for 64 epochs, with a batch
size of 8. The learning rate is set to 5e-5 and the
weight decay is set to 0.01. Due to the length of
some documents and multiple names that exist in
most documents, a maximum window size of 200
has been chosen. This window size is empirically
chosen based on the expected best performance so
multiple entities don’t have identical text entered
into the model and to avoid some documents being
too long to fit all text. In these experiments, the
only de-identified attributes predicted across all
models are patient names.

Tab.1 shows a textual example of a training sam-
ple. When generating predictions outside of the
training set, the label is not provided. The model
also only performs backpropagation on the label
tokens during training. Some files have multiple
occurrences of patient names, along with different
variants of the patient’s name (i.e., "John Doe",
"John", "Mr. Doe" all being present within the
same document). In the interest of fairness, these
variants have been altered to the full name as the
ground truth label.

4.2.1 White-Box Attack
The white-box attack model has access to 771 files
where patient names are available and labelled. We
perform an 80/20 train/test split to have 616 train-
ing files and 155 test files. We split at the file level
to avoid poisoning the model with ground truth la-
bels from the test dataset in the training step. With
our split of 771 files we have 1079 training samples,
and 236 testing samples.

4.2.2 Black-Box Attack
If the model weights are not exposed and access to
the victim model is limited via an API a white-box
attack is impossible. In this case a model extrac-
tion attack is performed on the black-box API, this
will generate a model where the attribute inference
attack can instead be performed on this generated
model. Fig. 3 demonstrates the process used in a
model extraction attack to generate labels that will
be used to generate labels for a training dataset.

To generate a model for the black-box attack,
we need a textual dataset that can be used to query
the API to obtain labelled data. This dataset must
still have names present in the dataset. “n2c2”
has hosted multiple clinical challenges in the past,

Figure 3: The workflow of a model extraction attack
to be used when white-box access to the model is not
available and only prediction labels are returned to the
attacker. This will be used to create a model which
will then be used as part of an attribute inference attack.
Queries are fed to the black-box API, where predictions
are paired with their corresponding queries to make
input and label pairs.

and two challenges still have names in the dataset
(Uzuner et al., 2011, 2010b,a). After querying the
API with these samples, the generated labels will
be used as ground-truth labels to pair with their
respective texts. These pairs will be used to train
another AnonCAT model.

4.2.3 Differential Privacy Models

The AnonCAT model is a RoBERTa transformer
model, trained via the masked language model
method. To fine-tune the model with differential
privacy (DP), we employed dp-transformers (Yu
et al., 2021)2, which provides a high-level inter-
face for conducting DP-related operations such as
adding a noise multiplier and clipping gradients at
the lower level of the training loop.

Three variants of the DP model were fine-tuned,
where the target epsilon (privacy budget) is set to
0.1, 2 and 8. All other configurable parameters are
constant throughout the three training rounds to
ensure a fair comparison. We observed that as the
epsilon values decreased (with an increased level
of privacy), the utility of the model degraded on
the basis of the evaluation metrics.

Tab. 2 shows the performance of multiple models
used with varying levels of privacy. As the privacy
budget decreases, more noise is introduced to the
model weights during training and is considered to
have increased privacy at the cost of model utility.
In real-world usage of DP models, values of epsilon
above 1 are considered to be insufficiently private,
while values below 1 are considered safer.

2https://github.com/microsoft/dp-transformers
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Prefix "<s> Predict the name of the person in the following text: </s>"
De-identified text "<s> ...seeing your patient Mr in followup for episodes of dyspnea... </s>"

Suffix "<s> Name of the person is: </s><s>
Label John Doe</s>

Table 1: A textual example of what is passed to the model during a training step. The sample will be in the order of;
prefix, de-identified text, suffix, and label. The model only learns from predicting tokens that occur in the label,
previous tokens in the input are ignored. When using the model outside of training, text is generated after the final
<s> token in the suffix.

Model Precision Recall F1
No privacy 0.965 0.989 0.976
epsilon 8 0.760 0.781 0.769
epsilon 2 0.760 0.784 0.770

epsilon 0.1 0.636 0.699 0.653

Table 2: Performance metrics of models with varying
privacy budgets. Generally, a lower epsilon results in in-
creased privacy, at the cost of performance. An epsilon
lower than 1 is generally considered "suitably private".

4.3 Model Evaluation

Evaluation loss isn’t a suitable metric for evaluat-
ing model performance; in a forward step tokens
are generated given a perfect ground truth of pre-
ceding tokens. Later tokens will be poisoned by
earlier predictions, being replaced by the ground
truth. To fairly evaluate the models ability to in-
fer names, names should be generated given a test
sample with personal information removed. Our
generation method as described in Sec. 3.3.1 is
used. Two metrics are measured to evaluate the
performance of a model. A binary classification
metric, and a sliding Hamming distance. The bi-
nary classification metric is derived from seeing if
the true label is a sublist of the predicted tokens.
The Hamming distance will be formed via a slid-
ing window; with the ground truth being compared
to all consecutive sublists of the predicted tokens.
Examples of this are provided in Tab. 3.

These metrics were chosen manually through ex-
periments that generate text using the model. Often,
the model and generation method would not priori-
tise generating an end-of-string token. This would
often result in repeating tokens after a name has
been fully predicted. On other occasions, the cor-
rect full entity would be predicted part way through
a generated prediction. The sliding Hamming dis-
tance is included for partial predictions of names.

4.4 Results

4.4.1 Top n Samples
Generating specific token sequences is inherently
challenging, as there are many potential labels at
each step, and later labels depend on preceding
predictions, which can propagate and amplify un-
certainty. As potential attackers will not know the
names of potential victims during attacks, they
could generate multiple names to increase their
chances of success.

Fig. 4a and Fig. 4d show the performance of var-
ious values of the n most likely names inferred by a
white-box attack model. Smaller values of n are al-
ways subsets of larger values, so an increase in the
number of most likely predictions can only result
in an increase or equal predictive performance.

Both the Hamming distance and the binary clas-
sification performance show a similar pattern of
performance, between all values of n. Perfor-
mance peaks at the 22nd epoch, and decreases and
plateaus. This may be a sign of over-fitting from
the model. A deviation in later epochs shows in-
creases in binary classification performance that
is not matched in the average sliding Hamming
distance.

4.4.2 White-Box vs Black-Box
We contrast the performance of a white-box model
attack versus a black-box model attack. The black-
box model has been generated via a model extrac-
tion attack as explained in Sec. 4.2.2. The source
model is the same as the model used in the white-
box attack. Fig. 4b and Fig. 4e compare the per-
formance of a black-box and white-box name in-
ference attack. In this experiment n is set to 5 for
both models.

Both Hamming distance and binary classifica-
tion performance show that the white-box attack
model outperforms the black-box attack model at
inferring names from de-identified text, as should
be expected. Although binary classification does
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Prediction Tokenised Binary Hamming Distance
"John Doe" [610, 28484] 1 0

"John Doe Doe Doe" [610, 28484, 28484, 28484] 1 0
"Jane Doe" [7343, 28484] 0 0.5

Table 3: Examples of predictions for the ground truth label "John Doe". Metrics are generated during evaluation of
name inference models. The tokens ids from a generated name are compared to the ground truth label tokens ids.
There are two methods of evaluation - a binary evaluation and a hamming distance. The binary classification checks
if the ground truth list of tokens is a sublist of the generated set. The hamming distance metric creates a rolling
window over the predicted text, and returns the largest hamming distance value normalised by the length of the
label.
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(a) Top-n performance in binary
classification for correctly infer-
ring names from de-identified text.

0 10 20 30 40 50 60
Epochs

0.00

0.01

0.02

0.03

0.04

M
et

ri
c 

Va
lu

e
Test Set Classification Performance

White Box
Black Box

(b) Comparison of binary classifica-
tion performance between black-box and
white-box name inference attacks (n=5).
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(c) Comparison of binary classification
performance of models with varying lev-
els of privacy (defined by “epsilon“) and
a baseline model (n=5).
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(d) Top-n average sliding Ham-
ming distance for correctly in-
ferring names from de-identified
text.
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(e) Average sliding Hamming distance for
name inference from de-identified text
using white-box and black-box models
(n=5).
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(f) Comparison of average sliding Ham-
ming distance across models with varying
privacy levels (defined by Epsilon) and a
baseline model (n=5).

Figure 4: Performance metrics comparing predictions of names between various models. Fig.4a and Fig.4d show
the attack performance when returning the models n most likely names as generated by the attack model from a
single model with no additional privacy considerations.

not have a large performance gap, the Hamming
distance shows a larger difference.

4.4.3 Differential Privacy
We compare three models that employ differential
privacy, where the privacy parameter, epsilon, is set
to 0.1, 2, 8. A lower epsilon results in a more "pri-
vate" model. We also compare this with attacking
a model with no differential privacy as a baseline
comparison. In this experiment n is set to 5 for all
models.

Fig. 4c and Fig. 4f show the performance of mul-
tiple name inference attacks on models with vary-
ing levels of privacy. The baseline model outper-
forms all the models in which DP is deployed. Fur-
thermore, as epsilon decreases (and privacy should
increase), the predictive performance of the mod-
els is also degraded. This also shows a trade-off
balance between varying levels of epsilon and the
desired performance.
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5 Conclusion

We have demonstrated the “named inference at-
tack”, an attribute inference attack that focuses on
generating the names that were used as part of the
training process. We demonstrated our attack on
de-identification models trained using “AnonCAT”,
showing that we can predict approximately 2% of
names from an attack dataset when using only the
most likely generated label. Finally, we compared
the performance of the attack with models with dif-
fering levels of privacy, such as a black-box attack
or differential privacy.

Various works have presented different methods
of inference attacks on machine learning models
(Chen et al., 2021; He et al., 2022; Yeom et al.,
2018). All of these works show a small, but poten-
tially significant, data leakage. The same has been
demonstrated in this work, with perhaps the most
sensitive attribute - names.

When only the most likely prediction is gen-
erated, name inference attacks perform similarly
(~2%) to other works that attempt to infer sensi-
tive attributes in similar masked language models
(Jagannatha et al., 2021).

Although generating multiple predictions for a
single input is not standard practice in traditional
machine learning models, this approach can be
particularly useful in attribute inference attacks.
By generating more names for a single input, the
model’s performance improves, potentially increas-
ing the risk of sensitive attribute disclosure. This
may also show that generating text via a causal lan-
guage model is a difficult task compared to other
tasks where output labels are limited.

This type of attack is measured in terms of ab-
solute leakage. Conventionally, leakage is mea-
sured in relative terms compared to random guess-
ing (Guo et al., 2023; Song and Mittal, 2021; Feng
et al., 2022). The attribute space for the type of
attack demonstrated here has too many possibili-
ties. Random guessing can be assumed to have a
performance of 0%, and thus absolute performance
is a suitable metric.

Consensus on an acceptable level of informa-
tion leakage may be difficult to reach. Although
any level of leakage is not ideal, different fields
may have different tolerances for privacy leakage.
Ultimately, acceptable leakage is contextually de-
fined by the interaction of technical limits, risk
assessments, regulatory requirements, and specific
downstream use.

Whilst there is no direct ’acceptable’ level of
leakage or privacy, the UK’s Information Commis-
sioner’s Office has previously suggested in corre-
spondence that 95% accuracy of the de-id model
itself would be acceptable given that these models
are being deployed into environments with many
additional security and privacy constraints. Hospi-
tals such as University College London Hospitals
are using these guidelines as part of their informa-
tion governance.

There is a minor improvement in privacy dur-
ing the black-box attack compared to a white-box
attack using the binary classification metric. The
rolling hamming distance shows greater privacy
provided by limiting access to model weights.

Differential privacy shows a trade-off between
model utility and privacy. As inference attack per-
formance degrades in line with privacy budget in-
crease, the predictive performance decreases when
attempting to de-identify text. The small differ-
ences in attack model performance between differ-
ent budgets may indicate that the inherent difficulty
of inference attacks on masked language models
may only require a smaller allocation of a privacy
budget compared to other models.

Consideration should be given to the goals and
objectives of potential attackers, especially in fields
such as healthcare, where there is low tolerance for
information leakage. Little has been formalised
about hypothetical attackers conducting inference
attacks, and less about real-world attackers per-
forming real attacks. Are they seeking to infer as
much private information as possible or targeting
specific individuals? Are their motivations finan-
cial, political, or something else?

This work can validate models and APIs, en-
abling their secure external exposure while using
real-world data. By understanding the risk of shar-
ing data and models, information governance teams
can define tolerable thresholds of privacy risk, facil-
itating access to resources for fields such as health-
care and research.

In our experiments, we assume that the attack
training data follows a distribution similar to the
victim model’s data. Although this assumption can-
not be guaranteed, it provides some security, as
an information leakage ceiling of 2− 8% reduces
the confidence of potential attackers. Moreover, if
a large-scale attack were to take place, it would
be difficult for such an attack to isolate the true
positives from the false positive results. However,
further attacks that target both true and false posi-
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tives may achieve some success.
Future work could explore vulnerabilities be-

yond names, such as addresses, ages, and other
sensitive attributes that may also be inferable. Iden-
tifying these risks is critical to protecting privacy
and equipping policy makers to make informed
decisions.

This work has focused on inferring names that
have been used in the process of training AnonCAT;
where the pre-training step is a masked language
model. Other models can be explored in future
work, such as generative language models, which
have become more prevalent as conversational AIs
become more common.

For a fully secure environment, we recommend
that red-team inference attacks not be the sole focus
of security considerations. This approach should be
used in conjunction with other measures to ensure
both model and data privacy. AnonCAT is deployed
within secure data environments and enhanced with
additional security measures, such as restrictive
access controls and active monitoring of access and
usage.

5.1 Limitations
The data used to train victim models comes from
hospitals based in the United Kingdom, where the
inference attack models data are from n2c2, which
is predominantly a US based dataset. Clinical texts
may come from different distributions. Future work
could investigate differences in the geographic dis-
tributions of clinical texts.

Name inference attacks only focus on names,
as opposed to all potential personality identifiable
data. Other types of attributes may be better suited
to different model architectures (such as a regres-
sion head for numbers like age).

Finally, the attack model has been trained only
for transformer model architectures. This work can-
not indicate whether these types of attack models
can generalise to other architectures.
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A Standard AnonCAT Model

Figure 5: A standard AnonCAT model that would be
used for identifying sensitive personal entities within
text.
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