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Abstract
Data Augmentation (DA) and Contrastive
Learning (CL) are widely used in NLP, but
their potential for NER has not yet been
investigated in detail. Existing work is
mostly limited to zero- and few-shot sce-
narios where improvements over the base-
line are easy to obtain. In this paper, we
address this research gap by presenting a
systematic evaluation of DA for NER on
small, medium-sized and large datasets with
coarse and fine-grained labels. We report
results for a) DA only, b) DA in combination
with supervised contrastive learning, and c)
CL with transfer learning. Our results show
that DA on its own fails to improve results
over the baseline and that supervised CL
works better on larger datasets while con-
trastive transfer learning (CTL) is beneficial
if the target dataset is very small. Finally,
we investigate how contrastive learning af-
fects the learned representations, based on
dimensionality reduction and visualisation
techniques, and show that CL mostly helps
to separate named entities (NEs) from non-
entities.

1 Introduction
Named Entity Recognition (NER) has been widely
studied in NLP and has many applications in the
computational social sciences and the digital hu-
manities. Many of these applications, however,
require the adaptation to new languages or genres
for which no or only small amounts of annotated
data are available. A major disadvantage of super-
vised NER systems is their dependence on large
and representative datasets for training (Li et al.,
2022b). Consequently, the scarcity of labelled data
has become one of the major challenges impeding
the performance of NER systems, especially in
highly specialised domains.

Data Augmentation (DA) seems like a com-
pelling solution to address this problem. By ap-
plying transformations to the data, new training in-
stances can be generated, thus reducing the amount
of manually annotated data needed to train the
model (Perez and Wang, 2017). Many studies have
applied DA to text classification tasks, summarisa-
tion, or question answering (Li et al., 2022a; Pellicer
et al., 2023), with a focus on low-resource scenar-
ios. We are not aware of any studies that report
improved results for DA over strong baselines, such
as transformers, for medium to large data sizes.

Furthermore, there is a lack of research on DA
for token-level tasks such as NER, where the inte-
gration of DA presents a unique challenge. Several
DA techniques apply transformations directly to
tokens, thus changing their contextual information.
As a consequence, this process may inadvertently
modify the associated entity labels, disrupting the
correspondence between tokens and their intended
NEs (Dai and Adel, 2020). This challenge under-
scores the necessity of developing augmentation
strategies that preserve the entity labels while en-
hancing the diversity and robustness of the training
data for improved NER model performance.

Another promising approach to improve model
performance is contrastive learning (CL), where
the model learns to position representations of
instances from the same class closer together in
the embedding space while representations for data
points that belong to different classes are pushed
further apart. CL can be used on its own but can
also be combined with DA and transfer learning.

In the paper, we address the question of which of
the techniques described are effective in improving
results for NER on small, medium-sized and large
datasets.1 Our main contributions include:

• a systematic evaluation of DA, CL and transfer
learning for NER,

1Our source code is openly available at https://codebe
rg.org/noelchia/NER-Aug
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• an adaptation of supervised contrastive learn-
ing for token-level tasks, and

• a visual analysis of the learned representations.

2 Related Work

2.1 Data Augmentation for NER
Only a few studies have applied DA techniques to
NER, focussing mostly on low-resource settings.
One possible reason for this is that DA reduces
overfitting and thus improves the generalisability of
the model. Since overfitting is most common and
severe for small datasets, we can expect the greatest
benefit of DA in this context.

Dai and Adel (2020) explore simple data aug-
mentations such as label-wise token replacement,
synonym replacement, mention replacement and
shuffle the order of tokens within segments on data
from the biomedical and materials science domain.
Their transformer-based tagger obtains improve-
ments only for small dataset sizes (≤ 500 instances)
but not when training on the full data. Ding et al.
(2020) introduce an approach dubbed DAGA where
they generate training examples for NER and other
token-level NLP tasks using language models. In-
stead of producing unlabelled text, they generate
new labelled training examples.

Zhou et al. (2022) propose Masked Entity Lan-
guage Modelling (MELM) where they train a lan-
guage model to generate NEs, conditioned on a
masked sentence with NE tags. The main differ-
ence between DAGA and MELM is that DAGA
generates the entire sentence, while MELM uses
pre-existing instances and only replaces existing
NEs by masking them and generating a new en-
tity of the same class. Both approaches have been
evaluated in low-resource scenarios.

Instead of low-resource NER, Chen et al. (2021)
focus on DA for cross-domain NER, using an ap-
proach that learns textual patterns and transforms
the text from a high-resource to a low-resource
domain. based on denoising reconstruction, de-
transforming reconstruction and domain classifica-
tion. Cai et al. (2023) leverage graph propagation
to create new data points, based on the relation-
ship between labelled data and unlabelled natural
texts, and evaluate their method in low-resource
and cross-domain settings.

Zhang et al. (2022) develop two data augmenta-
tion methods for a BART based generative NER
model. Theirs is the only work we are aware of that

addresses the problem of DA in in-domain settings
with medium and large data sizes.

2.2 Contrastive Learning for NER

Contrastive learning (CL) is a discriminative ma-
chine learning technique that aims to create similar
representations for data points that belong to the
same class while pushing samples from different
classes further apart in distributional space (Kumar
et al., 2022). CL can be used in (semi)-supervised
and unsupervised settings and is very popular be-
cause it allows the application of self-supervised
learning to tasks that were previously only possible
in supervised environments (Le-Khac et al., 2020;
Liu et al., 2023). However, only few papers apply
CL to NER, and most of these focus on few-shot
learning.

Huang et al. (2022) introduce COPNER, a
method to create prototypical tokens that repre-
sent each class. During contrastive training, the
token representing the class forms positive pairs
with NE tokens from that class while class tokens
paired with words from other classes are considered
as negative pairs. He et al. (2023) use a similar
idea to develop a template-free prompting method
for few-shot NER. Using external knowledge like
textual descriptions of entity types, they generate
anchors to represent the entity type. These anchors
are then appended to the end of the input sentence.
The authors use CL to train the encoder to pro-
duce representations of words that are similar to
the corresponding entity type.

Das et al. (2022) use contrastive learning to
train a model dubbed CONTaiNER, which models
the distribution of token classes using Gaussian
Embeddings. Tokens from the same class are
considered as positive pairs, and all other valid
pairs are assumed to be negative. Li et al. (2023)
also use Gaussian embeddings, but add a cross-
domain attention layer based on HaloNet (Vaswani
et al., 2021). Si et al. (2022) propose Span-based
Contrastive Learning with Retrieval Augmented
Inference (SCL-RAI). Their model focusses on NEs
that have been mislabelled as negative instances by
the system.

All of the papers above either focus on few-shot
scenarios or train their CL method on small data
sizes of less than 5,000 instances.
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3 Experimental Settings
The last section has shown that there is a severe
lack of research regarding the effectiveness of DA
and CL for NER in scenarios where ample training
data is available. We address this gap by providing
a systematic investigation of both techniques in
different settings and comparing their impact in
isolation and in combination with transfer learning.

Datasets We select three different-sized English
datasets with coarse and fine-grained entity type
distinctions. CoNLL 2003 (Tjong Kim Sang and
De Meulder, 2003) is the smallest dataset with 14
thousand training examples consisting of 301 thou-
sand tokens, encoding four NE types only (Person,
Location, Organisation, Miscellaneous). The sec-
ond dataset, OntoNotes Release 5.0 (Weischedel
et al., 2013), is medium sized with 82 thousand
instances, over 2 million tokens and encodes 18 dif-
ferent NE types. The largest dataset is Few-NERD
(Ding et al., 2021) with more than 131 thousand
sentences, 4.6 million tokens and 66 fine-grained
NE types. The fine-grained NE types are further
grouped into 8 coarse-grained NE types. We use the
original train, dev and test splits for CoNLL 2003
and Few-NERD. The authors of OntoNotes Release
5.0 did not release the dataset with predefined train,
dev and test splits, so the splits suggested in Pradhan
et al. (2013) were used.

Baseline Model We chose RoBERTa (Liu
et al., 2019) as our baseline model, as it
yields competetive results at reasonable train-
ing costs. Our implementation uses the
RobertaForTokenClassification architecture
from the Huggingface Transformers library (Wolf
et al., 2020) which adds one additional linear layer
on top of RoBERTa.

3.1 Data Augmentation Methods
We adapt three common approaches to data aug-
mentation for NER, namely round-trip translation,
paraphrasing and masking.2

Round-Trip Translation Sennrich et al. (2016)
proposed to augment monolingual training data
with automatic backtranslations to increase the size
of the data. Inspired by this, we performed round-
trip translation, where we translate a sentence into
another language and then back to the original

2More detailed information on the different DA techniques
and settings, including the number of augmented instances for
each method and dataset, are provided in appendix A.1.

language create a different sentence. We check
the round-trip translated output by string matching
every NE in the original sample to the augmented
sample. If all NEs are found, then the entities are
labelled based on the assumption that all string
matches represent the same NE, and all other words
are not NEs. The neural machine translation model
chosen is No Language Left Behind (NLLB) (NLLB
Team et al., 2022) and we use translations to/from
German. We also experimented with French and
Zulu, with very similar results.

For a task like NER that is sensitive to token-
level changes, round-trip translation might result
in missing or modified NE labels. Hence, checks
are performed to ensure that all NE tokens are
preserved before adding the augmented data to the
training set (for details, see appendix A.1).

Paraphrasing We use T5 (Raffel et al., 2020)
to generate paraphrases for our data (also see ap-
pendix A.2). The model has been fine-tuned by
Vorobev and Kuznetsov (2023b) on the ChatGPT
paraphrases dataset, which includes the Quora Ques-
tion Pairs (QQP) (Iyer et al., 2017), the Stanford
Question Answering Dataset (SQuAD) version 2.0
(Rajpurkar et al., 2018) and the CNN / DailyMail
Dataset (Hermann et al., 2015). ChatGPT was used
to create five paraphrases for each example in the
three datasets to train the T5 model.

Masking Inspired by Shen et al. (2020), we ran-
domly mask tokens to produce augmented data.
Masking aims to reduce overfitting by forcing the
model to learn to predict NEs even when the token
or its context is masked. We add a consistency loss
to the loss function to encourage the model to make
similar predictions for both the original and masked
instances (Eq. 1 below).

L = Lce (𝒙, 𝒚) + Lce (𝒙masked, 𝒚) + LKL (𝒙, 𝒙masked) (1)

Lce denotes the cross-entropy loss, and LKL
the Kullback-Leibler (KL) divergence loss. For
each example 𝒙 with target labels 𝒚, an augmented
sample 𝒙masked will be generated, where every token
in 𝒙masked will have a 15% probability of being
replaced by a [MASK] token (also see appendix A.3
for more details).

3.2 Supervised Contrastive Learning for NER
Khosla et al. (2020) propose the supervised con-
trastive (SupCon) loss for computer vision, a su-
pervised variation of contrastive learning that also
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makes use of labelled images of the same class
as additional positive pairs. This approach allows
us to integrate contrastive learning into the down-
stream task, thus reducing the time requirements
for task-specific fine-tuning after the CL step.

We adapt supervised contrastive learning for
NER by considering each contextualised token
embedding generated by RoBERTa as a training
example and add two fully connected layers to
the model. The objective of this training step is
to maximise the similarity of the contextualised
representations for tokens that belong to the same
NE type, and to minimise the similarity otherwise.
After the contrastive learning step, we add a new
fully connected layer to the model and perform
task-specific fine-tuning.

Adapting the SupCon loss for NER Tian et al.
(2023) show that SupCon is similar to calculating
the cross-entropy loss. Let 𝑖 ∈ 𝐼 := {1, 2, ..., 𝑁} be
the index of a sample, and 𝑎 ∈ 𝐴(𝑖) := 𝐼 \ {𝑖} be the
index of a different sample. 𝒙𝑖 is a training example
with its corresponding label 𝑦𝑖, and is mapped to
projection 𝒛𝑖 by the contrastive model. 𝜏 ∈ ℝ+ is
a scalar temperature variable. First, a contrastive
categorical distribution 𝒒𝑖 is constructed to describe
how closely 𝒛𝑖 matches 𝒛 𝑗 for 𝑗 ∈ 𝐴(𝑖) (see Eq. 2).

𝑞𝑖, 𝑗 =
exp(𝒛𝑖 · 𝒛 𝑗/𝜏)∑

𝑎∈𝐴(𝑖) exp(𝒛𝑖 · 𝒛𝑎/𝜏) (2)

If there is at least one element in 𝐴(𝑖), then
the weighing term of the contrastive loss can be
calculated similarly to the cross entropy ground-
truth categorical distribution 𝒑𝑖 as shown in Eq. 3
where the indicator function 𝟙match(𝑖, 𝑗) indicates
whether there is a match (𝑦𝑖 = 𝑦 𝑗).

𝑝𝑖, 𝑗 =
𝟙match(𝑖, 𝑗)∑

𝑎∈𝐴(𝑖) 𝟙match(𝑖, 𝑎) (3)

The supervised contrastive loss is the cross en-
tropy between the ground-truth distribution 𝒑𝑖 and
the contrastive distribution 𝒒𝑖 , as shown in Eq. 4.

L =
∑︁
𝑖∈𝐼

𝐻 ( 𝒑𝑖 , 𝒒𝑖) = −
∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

𝑝𝑖, 𝑗 log 𝑞𝑖, 𝑗 (4)

We implement the loss function in Eq. 4 for
contrastive learning for NER. The projection head
used for supervised learning consists of a hidden
layer with ReLU activation before the final linear
projection, as Chen et al. (2020) showed that this

performs better than the single linear projection
layer used in some contrastive learning models.

3.2.1 Contrastive Learning with DA
We test combinations of DA and CL, using masking
(see section 3.1). This augmentation was chosen
because of its computational efficiency, requiring
only a random number generator to select words for
random masking. In contrast, round-trip translation
and paraphrasing both require a separate model to
generate the input, making it difficult to perform
the augmentation during training.

3.2.2 Contrastive Transfer Learning
Experiments on contrastive learning in other do-
mains, such as computer vision (Chen et al., 2020),
suggest that the representations produced by CL
tend to be highly adaptable across different tasks
and domains. We will test the hypothesis that the
representations produced by training on one NER
dataset can be applied to another NER dataset to
improve the model’s performance.

This could be useful for practical applications, es-
pecially for cases where only a small set of labelled
data is available. By first performing contrastive
learning on a larger dataset and then fine-tuning
the learned representations on the smaller dataset,
better performance could be achieved. This might
be an alternative to data augmentation or could
be used in combination with data augmentation to
further improve results. To assess the effectiveness
of CTL for NER and explore how different dataset
properties affect the results, we test all six possible
combinations of datasets.

4 Results
Data Augmentation We first look at the results
for the three DA methods, i.e., round-trip translation,
paraphrasing and masking (Table 1). All results are
averaged over five runs, with the standard deviation
(stdev) shown in subscript. Statistically significant
improvements over the baseline are underlined.

As shown in Table 1, the three data augmen-
tation methods mostly fail to produce statistically
significant improvements. Paraphrasing is the worst
performer, often producing similar or sometimes
even worse results than the baseline. One reason
for this lack of improvement might be that the T5
model used for paraphrasing is trained on similar
data as RoBERTa, so the paraphrased results rep-
resent a distribution of the data that RoBERTa has
already seen during pre-training. Hence, the model
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Dataset Size (Sentences) 100 500 1000 5000 Full

CoNLL-2003 (4 NE types) Mean F1 Score% ± STDEV

Baseline 83.32± 0.36 88.23 ± 0.60 89.84 ± 0.46 91.15 ± 0.23 91.98 ± 0.43
DA Translate 83.66 ± 0.81 88.40 ± 0.45 90.01 ± 0.36 91.38 ± 0.36 92.23 ± 0.39
DA Paraphrase 83.37 ± 0.65 88.21 ± 0.47 89.81 ± 0.52 91.22 ± 0.32 92.19 ± 0.61
DA Mask 80.83 ± 0.38 88.47 ± 0.33 90.48 ± 0.33 91.34 ± 0.30 92.47 ± 0.37
CL 82.52 ± 0.77 88.86 ± 0.49 90.06 ± 0.26 91.53 ± 0.30 92.49 ± 0.29
DA Mask + CL 80.90 ± 0.58 88.12 ± 0.59 89.95 ± 0.39 91.56 ± 0.38 92.20 ± 0.26

OntoNotes v5 (18 NE types) Mean F1 Score% ± STDEV

Baseline 66.01 ± 1.58 77.90 ± 0.55 82.21 ± 0.32 85.58 ± 0.42 89.28 ± 0.25
DA Translate 66.03 ± 0.73 77.37 ± 0.50 81.63 ± 0.53 85.24 ± 0.41 89.21 ± 0.33
DA Paraphrase 66.02 ± 1.16 77.28 ± 0.66 81.58 ± 0.55 84.97 ± 0.30 88.34 ± 0.41
DA Mask 60.65 ± 0.99 77.26 ± 0.51 82.16 ± 0.33 85.80 ± 0.45 88.83 ± 0.74
CL 65.82 ± 0.79 78.71 ± 0.33 82.42 ± 0.32 86.51 ± 0.46 89.76 ± 0.25
DA Mask + CL 65.89 ± 1.52 78.76 ± 0.56 82.12 ± 0.37 86.02 ± 0.39 89.65 ± 0.55

Few-NERD (66 NE types) Mean F1 Score% ± STDEV

Baseline 38.77 ± 0.82 54.07 ± 0.89 58.17 ± 0.67 62.09 ± 0.41 67.90 ± 0.59
DA Translate 38.22 ± 1.69 54.27 ± 0.37 57.93 ± 0.38 62.42 ± 0.41 67.95 ± 0.70
DA Paraphrase 38.87 ± 0.72 54.16 ± 0.53 57.95 ± 0.33 62.36 ± 0.41 67.42 ± 0.97
DA Mask 35.85 ± 0.64 52.89 ± 0.57 56.66 ± 0.41 62.01 ± 0.30 63.72 ± 0.87
CL 38.46 ± 0.70 54.93 ± 0.63 58.85 ± 0.43 63.04 ± 0.34 68.65 ± 0.24
DA Mask + CL 36.84 ± 0.86 53.15 ± 0.45 57.36 ± 0.32 62.37 ± 0.56 68.62 ± 0.23

Table 1: Mean F1 scores over five runs for every data augmentation/contrastive training and dataset size
combination. Underlined results show statistically significant increases over the baseline (Student’s t-test,
𝛼 = 5%).

struggles to learn new generalisable information
from the examples, and this is reflected in the lack
of improvement in the results.

Round-trip translation performs slightly better,
but the improvements are also not statistically signif-
icant. Both paraphrasing and round-trip translation
generate augmentations with tokens that are not
NEs as we apply string matching between the NEs
in the original data and the augmented examples to
ensure that the labels are still valid. This means that
our augmentations provide the model with different
contexts for known NEs but do not actually show the
model new NEs. The lack of improvement raises
the question whether a more successful approach
would present the model with augmented data that
includes new NEs. This, however, is difficult to
perform automatically without the risk of changing
the NE type.

Masking, on the other hand, can be applied to
both NEs and context tokens. However, the results
are mixed and do not allow us to draw reliable
conclusions. While we see statistically significant
improvements for the CoNLL data on the full dataset
and on a sample of 1000 sentences, no significant
improvements were obtained on the other sample
sizes or on the OntoNotes and FewNERD data.

A possible explanation could be that while mask-

ing reduces the chances of overfitting, it also in-
creases the difficulty of the task as the model now
needs to guess the NE of the masked tokens. There-
fore, the technique might be better suited to easier
problems with a high risk of overfitting, such as
datasets with fewer NE types like CoNLL with its
four coarse NE classes.

Contrastive Learning CL shows the most con-
sistent results. At dataset sizes of above 5,000,
we see statistically significant improvements for all
three datasets. While data augmentation methods
tend to work better on smaller datasets, our results
show that contrastive learning needs more data to be
beneficial. Instead of providing the model with new
instances, contrastive learning improves the repre-
sentations produced by the model. To learn robust
and generalisable representations, large datasets are
necessary to avoid overfitting.

Combining DA and CL As both approaches
seem complementary, we also test the combination
of DA and CL, using masking for data augmentation
(Table 1, Mask + CL). While the model occasion-
ally produces statistically significant results, the
improvements are rather small. This does not nec-
essarily mean that combining contrastive learning
with data augmentation does not work in general.
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Dataset Size (Sentences) 100 500 1000 5000 Full

CoNLL-2003 (4 NE types) Mean F1 Score% ± STDEV

Baseline 83.32 ± 0.36 88.23 ± 0.60 89.84 ± 0.46 91.15 ± 0.23 91.98 ± 0.43
CL only 82.52 ± 0.77 88.86 ± 0.49 90.06 ± 0.26 91.53 ± 0.30 92.49 ± 0.29
CTL + OntoNotes 83.75 ± 1.23 87.91 ± 0.44 89.43 ± 0.21 91.23 ± 0.14 92.19 ± 0.32
CTL + Few-NERD (coarse) 85.46 ± 0.39 89.23 ± 0.39 90.16 ± 0.20 91.39 ± 0.21 92.35 ± 0.36
CTL + Few-NERD (fine) 85.26 ± 0.65 89.02 ± 0.66 90.67 ± 0.21 91.68 ± 0.25 92.15 ± 0.28

OntoNotes v5 (18 NE types) Mean F1 Score% ± STDEV

Baseline 66.01 ± 1.58 77.90 ± 0.55 82.21 ± 0.32 85.58 ± 0.42 89.28 ± 0.25
CL only 65.82 ± 0.79 78.71 ± 0.33 82.42 ± 0.32 86.51 ± 0.46 89.76 ± 0.25
CTL + CoNLL 65.73 ± 1.67 78.58 ± 0.42 82.39 ± 0.81 85.71 ± 0.27 89.28 ± 0.23
CTL + Few-NERD (coarse) 68.47 ± 2.44 79.64 ± 0.16 83.07 ± 0.01 86.14 ± 0.44 88.87 ± 0.29
CTL + Few-NERD (fine) 67.55 ± 0.88 79.66 ± 0.63 83.17 ± 0.22 86.23 ± 0.55 89.48 ± 0.27

Few-NERD (66 NE types) Mean F1 Score% ± STDEV

Baseline 38.77 ± 0.82 54.07 ± 0.89 58.17 ± 0.67 62.09 ± 0.41 67.90 ± 0.59
CL only 38.46 ± 0.70 54.93 ± 0.63 58.85 ± 0.43 63.04 ± 0.34 68.65 ± 0.24
CTL + CoNLL 36.34 ± 0.61 54.45 ± 0.30 58.43 ± 0.41 62.45 ± 0.20 68.26 ± 0.28
CTL + OntoNotes 37.79 ± 1.58 54.79 ± 0.67 58.32 ± 0.34 62.57 ± 0.24 68.33 ± 0.21

Table 2: Mean F1 scores over five runs with and without contrastive training for different dataset sizes.
The underlined results are statistically significant increases over the baseline (𝛼 = 5%). Few-NERD
(coarse) uses the 8 coarse-grained labels, Few-NERD (fine) refers to the 66 fine-grained NE types.

More work is needed to explore data augmentations
for NER to answer that question.

Contrastive Transfer Learning Table 2 shows
results for CTL for all possible dataset combina-
tions. We observe two clear trends. First, CTL
works better when the target data is small. This
is not surprising, given that there is more room
for improvement when the baseline is low. The
second observation is that CL needs sufficiently
large source data to work well. This also makes
sense as a larger transfer learning dataset allows the
model to learn more useful representations of the
data for the downstream task.

To investigate the impact of the number of entity
types in the contrastive training set, we report results
for two different settings. In the first setting, we use
the eight coarse-grained NE types in Few-NERD
that have some overlap with the entity inventory
in CoNLL and OntoNotes,3 the second setting
includes Few-NERD’s 66 fine-grained NE types.

Results show that the coarse-grained entity labels
only yield statistically significant improvements
when the target training data is small (500 or less
sentences) but fail to improve results for larger
fine-tuning datasets with 1,000 or more sentences.
This indicates that CL has learned more useful
representations from the fine-grained information

3The coarse-grained entity types are Person, Location,
Organization, Art, Building, Product, Event, Miscella-
neous.

in the transfer data which is somewhat surprising,
given that the coarse-grained entity types overlap
with the labels in the respective target data.

5 Analysis and Visualisation
To better understand the effect of CL, we visu-
alise the learned representations before and af-
ter the CL step. As we cannot directly plot the
768-dimensional word embeddings produced by
RoBERTa on a two-dimensional graph, we apply di-
mensionality reduction techniques in order to obtain
informative two-dimensional representations.

A popular dimensionality reduction technique is
principal component analysis (PCA), which tries to
reduce the dimensionality by choosing the linear
combination of variables that explain the variance
in the data (Jolliffe and Cadima, 2016). While PCA
is quite efficient, it can only be applied when all
components are linear. A method that can perform
non-linear dimensionality reduction is t-SNE (van
der Maaten and Hinton, 2008). However, t-SNE
still has a high computational cost compared to
PCA, especially when dealing with large datasets
of high dimensionality. To resolve this problem,
we use a combination of PCA and t-SNE for di-
mensionality reduction. We first apply PCA to
reduce the dimensionality of the word embeddings
from 768 to 50. Then, t-SNE is used to reduce
the dimensions from 50 to two (see appendix B for
more details).
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No entity
Person
Organisation
Location
Miscellaneous

(a) Contextual token embeddings before contrastive training.

(b) Contextual token embeddings after contrastive training.

Figure 1: Visualisation of CoNLL 2003 token embeddings using a combination of PCA and t-SNE for
dimensionality reduction.

Figure 1 shows the visualisations of the embed-
dings for the CoNLL dataset, using CL only. Results
for OntoNotes and FewNERD are similar, and can
be found in appendix C. For all three datasets, the
separation between non-entities and NEs is greater
than the separation of the representations for neigh-
bouring NE classes. While a possible reason for
this could simply be that the difference between

NEs and non-entities is greater and therefore easier
to learn, a more likely reason is the distribution of
NEs and non-entities in the data where the latter
significantly outnumber the former. In CL, this
means that the model can minimise the loss by in-
creasing the difference between the non-entities and
NEs even if this comes at the expense of decreasing
the difference between two different NE classes.
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Hence, the lack of separation between the different
NE classes can most probably be explained by the
class imbalance in the data.

6 Discussion
While we found no evidence that the proposed data
augmentations are effective, related work has shown
that DA can be beneficial in low-resource scenarios
(Dai and Adel, 2020; Ding et al., 2020; Cai et al.,
2023). We also observed consistent increases in
results for CL for datasets with sizes of at least 5,000
sentences. Our best results for a RoBERTa-base
model with CL on OntoNotes (89.75% F1) are only
slightly below the ones reported for much larger
models (cf., 89.76% F1 for BART-large (Yan et al.,
2021) and 90.42% F1 for a T5-base model with DA
(Zhang et al., 2022)). These results are promising,
given the severe lack of methods for improving the
performance on larger datasets, as DA has only
been successful when applied in low-resource and
few-shot scenarios (Dai and Adel, 2020; Ding et al.,
2020; Zhou et al., 2022; Cai et al., 2023), and the
same also applies to work on contrastve learning
for NER.

Our experiments failed to show that CL works
for smaller datasets. However, when combined
with transfer learning, the results are improved.
CTL works best when the fine-tuning data size is
small, making it a good complement to CL without
transfer learning. Figure 2 summarises our results,
showing which method might work best in different
scenarios.

While the improvements we obtained are small,
they are still important given that increasing the
performance of a model that is already performing
quite well tends to be much harder than improving
the performance of a poorly performing model. In
addition, data augmentation and CL can be com-
bined, as often done in related fields like computer
vision (Chen et al., 2020; He et al., 2020). This
might be a promising avenue for future work on
developing CL methods that work well for smaller
datasets. Our experiments demonstrate that com-
bining DA and CL is possible (see Mask + CL in
Table 1) but might require more sophisticated data
augmentation techniques to improve results.

Addressing Data Imbalance in CL for NER In
section 5, we showed that a major problem for apply-
ing CL to NER is the data imbalance as the majority
of the token labels are non-entities. One approach
to address this problem could include a modifca-

Size of
train dataset

Suitable transfer
learning dataset

Suitable transfer
learning dataset

Contrastive learning
+ transfer learning

Contrastive
learningData Augmentation

Small Medium

Large

No Yes Yes No

Figure 2: Recommendations for selecting the best
approach for different-sized datasets.

tion of the CL loss function to account for the
imbalance (Cao et al., 2019; Fernando and Tsokos,
2022; Wang et al., 2020; Rezaei-Dastjerdehei et al.,
2020). Assuming that equation (4) is used for the
loss function, a modified loss function that includes
weights is shown in equation (5), where 𝑤𝑖 ∈ ℝ+ is
the weight for class 𝑖.

L = −
∑︁
𝑖∈𝐼

𝑤𝑖

∑︁
𝑗∈𝐽

𝑝𝑖, 𝑗 log 𝑞𝑖, 𝑗 (5)

There are many ways to set𝑤𝑖 , but one possibility
is to set it to the ratio of the frequency of non-
entities to the frequency of the class. This is shown
in equation (6), where 𝑛𝑖 is the frequency of class 𝑖
and 𝑛𝑂 is the frequency of the non-entity class.

𝑤𝑖 =
𝑛𝑂
𝑛𝑖

(6)

This scales the loss function so that different
classes can have different weights which might
help encourage the model to differentiate between
various types of NEs. There are many alternatives
for the loss and weight functions, and the functions
proposed above might not be optimal. Development
and testing of a weighted loss function will be left
to future work.

7 Conclusion
We presented a systematic investigation of the effect
of DA, CL, and CTL for NER. Our main results
can be summarised as follows. First, while DA has
been shown to be effective in low-resource scenarios
(specifically for pre-transformer-based taggers), we
failed to demostrate an improvement in results in our
experiments. CL, on the other hand, can effectively
improve results over a strong RoBERTa baseline
when medium to large datasets are available for fine-
tuning, but has a weaker performance on smaller
datasets. For small dataset sizes, contrastive transfer
learning is the most promising approach but requires
the existence of suitable data for transfer learning.
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We hope that the insights from our experiments
will foster more work on DA and CL for NER es-
pecially for medium and large datasets. To address
the problem of data imbalance for NER, where the
majority of the labels are non-NEs, we proposed a
modification to the loss function, which we plan to
explore in future work.
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Appendices

A Details for Data Augmentation
Table 3 shows how the different DA techniques
affect the size of the training data in our experiments.
Please note that the dataset size for Masking and
CL always remains constant.

A.1 Consistency Checks for Round-Trip
Translation

We check the round-trip translated output by string
matching every named entity in the original sample
to the augmented sample. If all named entities
are found, then the entities are labelled based on
the assumption that all string matches represent
the same named entity, and all other words are not
named entities. The neural machine translation
model chosen is No Language Left Behind (NLLB)
(NLLB Team et al., 2022) and we use round-trip
translation to/from German. We also experimented
with French and Zulu, with very similar results.

A.2 Paraphrasing
The model used for paraphrasing is T5 (Raffel et al.,
2020). To generate the augmented sentence, “para-
phrase: ” is prepended to each original example and
given to the T5 model as input. The model has been
fine-tuned by Vorobev and Kuznetsov (Vorobev and
Kuznetsov, 2023b) on the ChatGPT paraphrases
dataset (Vorobev and Kuznetsov, 2023a), which
uses the Quora Question Pairs (QQP) dataset (Iyer
et al., 2017), Stanford Question Answering Dataset
(SQuAD) version 2.0 (Rajpurkar et al., 2018) and
the CNN / DailyMail Dataset (Hermann et al., 2015).
ChatGPT was used to create five paraphrases for
each example in the three datasets to train the T5
model.

A.3 Masking
The masking rate is selected based on the design
of BERT, which uses the same masking rate for
its mask language modelling training. However,
this masking method is not exactly the same as
that performed by BERT, which only replaces the
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Dataset Size Original 100 500 1000 5000 Full

Round-Trip Translation via German

CoNLL-2003 (4 NE types) 14,041 158 785 1,587 7,966 22,348
OntoNotes (18 NE types) 82,122 167 872 1,714 8,638 141,314
Few-NERD (66 NE types) 131,767 165 837 1,689 8,394 219,969

Paraphrasing

CoNLL-2003 (4 NE types) 14,041 177 898 1,801 9,051 25,310
OntoNotes (18 NE types) 82,122 177 896 1,782 8,911 146,041
Few-NERD (66 NE types) 131,767 173 909 1,791 9,056 238,500

Table 3: Number of augmented instances used for training for the different DA techniques ( round-trip
translation, paraphrasing) and dataset sizes (100, 500, 1,000, 5,000, full dataset).

chosen token with [MASK] 80% of the time. There
is a 10% chance the token will be replaced by a
random token and a remaining 10% chance the
token will remain unchanged. This is not done
because the initial tests show that replacing with
the [MASK] token is already a complicated enough
task, and the addition of random tokens might cause
the model to perform slightly worse.

B Visualising Word Embeddings with
PCA and t-SNE

A problem faced when creating the scatter plots
after dimensionality reduction is that every word
in the test set becomes a point on the plot, so
there is a huge number of points found on the
plot. This causes the points in the plot to overlap
and block each other, making the plot difficult to
read. Increasing the transparency of the points
and making them slightly smaller was sufficient to
make the CoNLL 2003 plot readable. However, a
random sample of 50,000 points needed to be taken
from the OntoNotes v5 and Few-NERD test set,
because these sets were much bigger. The sampling
was only done right before plotting to avoid any
information loss when performing PCA or t-SNE.

C Visualisations for OntoNotes and
FewNERD

The OntoNotes v5 and Few-NERD datasets contain
18 and 66 entity classes respectively. This makes it
impossible to find different colours that have good
contrast for every entity class, and on the scatter
plot, it is difficult to tell so many classes apart. To
solve this problem, only five named entity types
will have a unique colour, and the rest are grouped
together as “other entities”. One of the five selected
has a good F1 score after supervised fine-tuning,
and another has very poor scores. These two classes

ensure that the best and worst-case scenarios are
shown in the plot. The remaining three entity types
are randomly selected to give a more representative
picture of the rest of the entity types.
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No entity
Geopolitical
Time
Percentage
Cardinal
Events
Other entities

(a) Contextual token embeddings before contrastive training.

(b) Contextual token embeddings after contrastive training.

Figure 3: OntoNotes v5 token embeddings using a combination of PCA and t-SNE for dimensionality
reduction.
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No entity
Athlete
Election
Politician
Education
God
Other entities

(a) Contextual token embeddings before contrastive training.

(b) Contextual token embeddings after contrastive training.

Figure 4: Few-NERD token embeddings using a combination of PCA and t-SNE for dimensionality
reduction.
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