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Abstract
In this paper, we experiment with the ef-
fect of different levels of detailedness or
granularity — understood as i) the num-
ber of classes, and ii) the classes’ se-
mantic depth in the sense of hypernym
and hyponym relations — of the anno-
tation of Personally Identifiable Informa-
tion (PII) on automatic detection and la-
beling of such information. We fine-tune
a Swedish BERT model on a corpus of
Swedish learner essays annotated with a
total of six PII tagsets at varying levels of
granularity. We also investigate whether
the presence of grammatical and lexical
correction annotation in the tokens and
class prevalence have an effect on pre-
dictions. We observe that the fewer total
categories there are, the better the over-
all results are, but having a more diverse
annotation facilitates fewer misclassifica-
tions for tokens containing correction an-
notation. We also note that the classes’
internal diversity has an effect on label-
ing. We conclude from the results that
while labeling based on the detailed anno-
tation is difficult because of the number of
classes, it is likely that models trained on
such annotation rely more on the semantic
content captured by contextual word em-
beddings rather than just the form of the
tokens, making them more robust against
nonstandard language.

1 Introduction

Personal information is ubiquitous in many text
genres, posing a unique challenge for those seek-
ing to create and share corpora. While access to
collections of texts is highly desirable from the
perspective of researchers in fields such as lin-
guistics, Natural Language Processing (NLP), or

digital humanities, the potential presence of clues
indicating the identity of the writer or other nat-
ural persons makes them fall under the General
Data Protection Regulation (GDPR, Official Jour-
nal of the European Union, 2016). The GDPR it-
self suggests potential solutions to the problem:
de-identification methods such as anonymization
— the “[c]omplete and irreversible removal [...]
of any information that, directly or indirectly, may
lead to a subject’s data being identified” — or
pseudonymization, the “[p]rocess of replacing di-
rect identifiers with pseudonyms or coded values,”
for which there must exist a mapping between the
original data and the pseudonyms, which is se-
curely stored separately from the pseudonymized
texts (Lison et al., 2021).

Both of these privacy-preserving procedures
presuppose a stage where the Personally Identi-
fiable Information (PII) found in the data is de-
tected. While this can be done manually, it is
time-consuming. While automatic approaches for
both anonymization and pseudonymization have
been proposed (Lison et al., 2021), Szawerna et al.
(2024a) show that there appears to be very little
uniformity in how researchers and corpus creators
choose to classify PIIs. The taxonomies range in
terms of granularity or detailedness, understood as
the number of classes that PIIs are divided into and
their semantic depth in terms of hypernym and hy-
ponym relations (as in WordNet (Miller, 1995)).
For example, Pilán et al. (2022) utilize only one la-
bel, PERSON, to refer to elements such as names,
surnames, nicknames, usernames, etc., which can
be differentiated in other corpora (e.g. Volodina
et al. 2016, 2019; Eder et al. 2020; Alfalahi et al.
2012). Very little work has been done on deter-
mining what level of granularity of PII annotation
is the most suitable for subsequent removal or re-
placement of personal information.

It is worth noting that while the term detec-
tion often includes labeling in other research on
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General category Corresponding detailed categories

personal name
firstname male, firstname female, firstname unknown,
initials, middlename, surname

institution school, work, other institution

geographic
area, city, geo, country, place, region, street nr,
zip code, foreign

transportation transport name, transport nr
age age digits, age string
date date digits, day, month digit, month word, year

other
phone nr, email, url, personid nr, account nr, license nr,
other nr seq, extra, prof, edu, fam, sensitive, gen, def, pl

Table 1: General and detailed categories in the SWELL PII taxonomy. Tags that can be combined with
other categories and therefore were not included in the experiments are crossed out.

PII

personal name age

surname, age string,
. . . age digits

firstname male

Level 1

Level 2

Level 3

Figure 1: Hierarchical ontological structure of PII
categories on the example of selected SWELL cat-
egories.

this topic, we choose to differentiate between the
two: PII detection is the process of determining
whether a text span constitutes a piece of Person-
ally Identifiable Information, while PII labeling
is assigning a PII span a specific class which de-
scribes the type of PII it is (this procedure often,
by default, detects and assigns a specific PII class
at the same time).

In this paper, we set out to investigate what the
effect of the class granularity on PII detection and
labeling in the learner essay domain. We run our
experiments on a set of Swedish texts that are PII-
annotated at varying levels of detailedness. A re-
lated notion is that of the categories’ ontological
structure. As shown in Figure 1, the categories
used in this experiment can be hierarchically ar-
ranged from the most general (level 1) to the most
specific (level 3). Simultaneously, e.g. level 2 cat-
egories are semantically broader (include more se-
mantically varied elements) than the more specific
level 3 categories. How varied the contents of a
category are could have an impact on how easy

it is to automatically detect. While we make an
initial assumption that having a larger number of
more specific labels means that they will be less
internally diverse, labels in one tagset are not nec-
essarily equally internally coherent.

In addition, we are curious to see how various
factors pertaining to the class divisions (e.g. the
class’s frequency) or the word tokens themselves
(e.g. being ungrammatical) influence the perfor-
mance. While improvement in terms of PII de-
tection on the data with more specific annotation
relative to the general one has been previously ob-
served (Sierro et al., 2024), we expect multi-class
classification to be more prone to error.

2 Prior Research

Data for research or training language models
needs to be free from personal information to pro-
tect those who generate it, and the work on au-
tomatic de-identification methods, especially for
texts belonging to domains other than medical or
legal, has gained much traction in the recent years
(Lison et al., 2021).

Much research has gone into testing what kinds
of models perform best for PII detection or la-
beling. Eder et al. (2022) evaluate 9 differ-
ent model architectures and embedding combina-
tions on the PII-annotated corpus of German e-
mails, CODE ALLTAG, reaching the best perfor-
mance with a Transformer-based architecture and
embeddings, optionally combined with noncon-
textual word embeddings. Papadopoulou et al.
(2022, 2023) successfully utilize a combination of
a generic Named Entity Recognition (NER) model
with a gazetteer to detect and classify PIIs in En-
glish (the TAB CORPUS and a set of annotated
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Wikipedia biographies) and employ privacy risk
estimation methods to determine whether a span
should be anonymized or not. Grancharova and
Dalianis (2021) frame the closely related task of
Protected Health Information (PHI) detection as
a Named Entity Recognition and Classification
(NERC) task and obtain good results on it us-
ing two BERT-type language models on Swedish
medical data from the STOCKHOLM EPR PHI
CORPUS. Szawerna et al. (2024b) also use models
of this kind to detect PIIs in the SWELL corpus, a
collection of learner essays in Swedish. Notably,
they forego the labeling step, differentiating only
between PII and non-PII tokens.

It is worth noting that all of the previously men-
tioned PII or PHI detection or labeling studies uti-
lized different data, and only the texts used by Pa-
padopoulou et al. (2022, 2023) — representing a
vastly different domain and a more general tagset
than the texts we work with — are openly avail-
able with the original PIIs in place. Additionally,
all of the papers employed different categories for
the labeling task. As Szawerna et al. (2024a) point
out, differences between PII taxonomies employed
in the de-identification of corpora can be quite
considerable, not only in terms of class granular-
ity but also class overlap. This may be motivated
by the specific characteristics of the de-identified
domains or the end goal: taxonomies used for
pseudonymization seem to feature more classes
than those intended for anonymization, likely be-
cause the class of the PII is later used to gener-
ate a suitable pseudonym. This leads to the results
not being fully comparable. The TAB CORPUS

features fewer, semantically more general classes
(grouping together many different concepts into
one category); it also lexical or grammatical cor-
rection annotation1. This makes it unsuitable for
addressing our research questions without a con-
siderable amount of time going into manual rean-
notation.

However, it remains unclear how and to what
extent the types of classes used in personal infor-
mation detection affect the detection step itself. In
Szawerna et al. (2024a) we consider a more de-
tailed taxonomy more favorable, but we do not test
that. We do, however, point out that what is per-

1This kind of annotation indicates that a token is in some
way at odds with the standard for a given language, e.g. it is
misspelled, the wrong word is used, the wrong grammatical
form is used, or it is a part of a grammatical construction that
is unacceptable from the standard point of view.

sonal is context-dependent and may vary between
domains, so the choice of the labels can also de-
pend on the domain. To the best of our knowledge,
the only study that investigated whether a more di-
verse class division facilitates better PII detection
is the one by Sierro et al. (2024). In this case,
the authors adapted the TAB CORPUS by auto-
matically translating it into Spanish and projecting
the PII categories back into the text. They later
re-annotated the corpus with refined, less ambigu-
ous classes, leading to an increase in the number
of classes. Notably, they also discard the MISC
class, which is used to annotate very semantically
diverse elements. They note an increase in perfor-
mance on the dataset annotated using the refined
tagset, which could be due to the new tagset be-
ing easier for their models to train on, but also due
to manual re-annotation being more reliable than
projection, and some information not being as re-
vealing after translation.

3 Materials and Methods

3.1 Data
The data used in our experiments comes from
the SWELL-PILOT (480 texts) and SWELL-GOLD

corpora (502 texts) (Volodina et al., 2016, 2019;
Språkbanken Text, 2024b,a), consisting of essays
written by adult learners of Swedish as a second
language (L2) at varying proficiency levels, with
varied essay genres and topics. We chose to work
with this data mainly because it is already PII-
annotated with a hierarchical PII tagset and be-
cause its subset, SWELL-GOLD, features correc-
tion annotation which denotes e.g. grammatical
variation in the text. The correction annotation
was only used in evaluation, and our models were
never overtly given that information.

While the released versions of the SWELL cor-
pora2 are pseudonymized, we utilize the texts
in their original form with the unaltered PIIs in
place. We preserve the aforementioned annotation
of what spans contain personal information and of
what kind. This annotation is done following the
SWELL taxonomy (Megyesi et al., 2018), which
consists of 38 types of PIIs (it also includes func-
tional or morphosyntactic tags which we disregard
for the sake of this experiment). Every PII token
gets assigned an appropriate class and a number
used for coreference resolution, which also helps

2SWELL access can be requested at https://sunet.
artologik.net/gu/swell
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Class Bs Is Total
firstname male 234 0 234
firstname female 289 0 289
firstname unknown 49 0 49

initials 0 0 0
middlename 1 0 1
surname 49 2 51
school 44 25 69
work 2 0 2

other institution 65 24 89
area 0 0 0
city 564 23 587
geo 17 0 17

country 400 1 401
place 93 19 112
region 37 2 39

street nr 21 0 21
zip code 7 2 9

transport name 5 1 6
transport nr 14 0 14
age digits 82 0 82
age string 12 0 12
date digits 30 14 44

day 27 0 27
month digit 9 0 9
month word 46 0 46

year 53 0 53
phone nr 7 0 7
email 10 0 10
url 0 0 0

personid nr 0 0 0
account nr 0 0 0
license nr 0 0 0
other nr seq 169 1 170

extra 37 3 40
prof 12 2 14
edu 6 1 7
fam 464 3 467

sensitive 256 114 370

Table 2: Class counts for the detailed PII classes.

Class Bs Is Total
personal name 622 2 624
institution 111 49 160
geographic 1139 47 1186

transportation 19 1 20
age 94 0 94
date 165 14 179
other 961 124 1085

Table 3: Class counts for the general PII classes.

to define the edges of a PII span. These PII cat-
egories can be grouped into 7 general classes (as
shown in Table 1). Therefore, the data can have
the original SWELL classes (Specific), the over-
arching SWELL categories (General), or an even
more general binary distinction whether the ele-
ment is personal or not can be made (Basic; this
corresponds more to a task of PII detection). It is
worth noting that not all of the detailed SWELL
classes are present in the data, and some were
just theorized by the tagset creators to be possi-
ble. Many of the classes are also unlikely to span
more than one token. The annotation can be mod-
ified to follow the inside-outside-beginning (IOB)
schema or not include the distinction between be-
ginning and inside (though the non-PII tokens are
still marked as O in that case). This yields six dif-
ferent sets of classes that can be tested (henceforth
Specific IOB, Specific, corresponding to Level 3
in Figure 1; General IOB, General, correspond-
ing to Level 2; Basic IOB, Basic, corresponding
to Level 1; see also Appendix A for a practical ex-
ample).

When constructing our samples, we want to in-
clude as much context as possible, as we believe
that the personal nature of a text span is context-
dependent. Many of the essays exceed the maxi-
mum input size allowed by the BERT model that
we are using.3 We therefore split such essays into
several chunks. Such a chunk has a maximum size
of 512 BERT sub-word tokens. We ensure that our
data consists of equally many samples containing
at least one token belonging to a PII category as
samples without any and that chunks of the same
essay always appear in the same data split. This
yields a collection of samples with 217,430 non-
PII tokens and 3,348 PII tokens (3,111 B-tokens
and 237 I-tokens). The exact counts for the Spe-
cific and General class sets can be found in Table 2
and Table 3, respectively. It is worth noting that
some classes in the detailed set are not present in
the data at all, and are only theoretically permitted
by the taxonomy. Having considered discarding
some of the data to balance the classes, we have
decided against that, since our dataset is small as
is, and we are curious to see how the prevalence of
certain PII classes influences their labeling.

3Unfortunately, Longformer or a similar model is not
available for Swedish.
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Annotation type Precision Recall F1 F2
Specific IOB 0.794 ± 0.028 0.709 ± 0.059 0.748 ± 0.042 0.724 ± 0.052
Specific 0.867 ± 0.020 0.733 ± 0.053 0.793 ± 0.036 0.756 ± 0.047
General IOB 0.788 ± 0.049 0.770 ± 0.061 0.770 ± 0.043 0.770 ± 0.053
General 0.858 ± 0.026 0.803 ± 0.059 0.828 ± 0.037 0.813 ± 0.050
Basic IOB 0.842 ± 0.021 0.796 ± 0.050 0.808 ± 0.037 0.800 ± 0.045
Basic 0.857 ± 0.019 0.817 ± 0.045 0.836 ± 0.028 0.824 ± 0.038

Table 4: Mean results ± standard deviation over the runs evaluated as detection (whether the token was
detected as any PII class). Bold indicates the overall best scores. Italicized elements in bold are the best
scores if the basic type of annotation were disregarded.

Annotation type Precision Recall F1 F2
Specific IOB 0.497 ± 0.090 0.539 ± 0.083 0.498 ± 0.086 0.519 ± 0.085
Specific 0.591 ± 0.051 0.569 ± 0.062 0.550 ± 0.065 0.558 ± 0.063
General IOB 0.719 ± 0.041 0.727 ± 0.057 0.714 ± 0.049 0.720 ± 0.054
General 0.806 ± 0.039 0.761 ± 0.062 0.770 ± 0.053 0.763 ± 0.059
Basic IOB 0.842 ± 0.021 0.796 ± 0.050 0.808 ± 0.037 0.800 ± 0.045
Basic 0.857 ± 0.019 0.817 ± 0.045 0.836 ± 0.028 0.824 ± 0.038

Table 5: Mean results ± standard deviation over the runs evaluated as labeling (whether the token was
assigned the right class). Bold indicates the overall best scores. Italicized elements in bold are the best
scores if the basic type of annotation were disregarded.

3.2 Model and Code

We take the model from Szawerna et al. (2024b)
that reports the best results, the Swedish BERT
developed by the National Library of Swe-
den4(Malmsten et al., 2020), which is based on
the BERT architecture (Devlin et al., 2019), with
a regular cross-entropy loss. This is confirmed by
our own preliminary testing. Due to the model’s
relatively small size and short fine-tuning time, it
is possible to conduct cross-validation.

In order to fine-tune KB-BERT we utilize
the code for token classification5 included in
the Transformers library together with the model
hosted on HuggingFace (Wolf et al., 2020). This
code makes use of HuggingFace’s Trainer class to
fine-tune a BERT model for classification by dis-
carding its head and replacing it with a new clas-
sification head, which is what is trained for the
classification task at hand, while other pre-trained
knowledge does not get altered. The only notable
change that we make to the default settings of this
classification set-up is decreasing the batch size to
8. For each of our 6 sets of data (which differ

4KB/bert-base-swedish-cased, henceforth KB-
BERT.

5https://github.com/huggingface/trans
formers/tree/main/examples/legacy/toke
n-classification

by annotation type) we conduct a 10-fold cross-
validation.

For the rest of the preprocessing and evaluation
we expand the code provided by Szawerna et al.
(2024b) for working with SWELL data. 6

3.3 Evaluation

For each of the runs, we obtain predictions on the
held-out fold. We report the mean and the standard
deviation across the 10 separate runs for each type
of data. Due to the overwhelming prevalence of
the non-PII tokens and following the example of
e.g. Grancharova and Dalianis (2021), we report
the means and standard deviations of the weighted
averages of precision, recall, F1, and F27 across all
of the PII classes (excluding the scores for non-PII
tokens). Consequently, precision reflects the mod-
els’ ability to avoid falsely flagging a word token
as some PII class, whereas recall illustrates how
well PII tokens can be detected instead of slipping
through the cracks. The rationale behind reporting
an F2 score is that it gives more weight to recall,
and Berg and Dalianis (2020) consider recall to be
a more important measure (as it reflects how many
PII tokens were actually detected, which is a pri-

6https://github.com/mormor-karl/the-d
evils-in-the-details

7F2 = (1 + 22) ∗ precision∗recall
(22∗precision)+recall
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Annotation type
Correction
annotated

Misclassified
Correction-annotated

and misclassified
% of misclassified tokens

that are correction-annotated
Specific IOB 14014 405 47 11.61%
Specific 14014 407 52 12.78%
General IOB 14014 334 64 19.16%
General 14014 294 64 21.77%
Basic IOB 14014 277 67 24.19%
Basic 14014 255 65 25.49%

Table 6: Counts of the correction-annotated tokens, tokens misclassified during testing (in the labeling
task), and the overlap of the two groups per type of PII annotation. Note that the number of correction-
annotated tokens does not change across the PII annotation types and that these results concern only the
data from SWELL-GOLD, as SWELL-PILOT does not include correction annotations.

ority).
However, we want to highlight that a high pre-

cision score is important as well, as avoiding flag-
ging innocuous tokens as PII is essential for pre-
serving as much of the original text as possible,
which affects its later usability in linguistic re-
search or NLP applications. Additionally, we eval-
uate the results both in terms of labeling – whether
a token was assigned the correct class – and detec-
tion – whether the token was correctly identified
as non-PII or any of the PII classes. In the case
of the basic-type annotation, these two evaluations
are equivalent.

We conduct further analysis, the purpose of
which is to study two aspects of label selection: (i)
whether grammatical and lexical divergence from
the standard has an effect on the labeling of per-
sonal information, (ii) how the number of labels
used and the depth of their semantics affects the
labeling. We approximate the former by analyzing
the raw counts of correction-annotated tokens that
were misclassified and what percentage of all mis-
classified tokens they constitute within each anno-
tation type.

4 Results

The mean detection results and the standard devi-
ation over the runs are presented in Table 4. The
same is shown for labeling in Table 5.

Both tables show that the IOB-type annotation
appears to be more difficult to predict. This is
likely due to relatively few PIIs spanning more
than one token, leading to the classifiers having
more issues determining those boundaries; in our
case both the IOB component and the class label
have to match for a token to be counted as cor-
rectly classified. Yet another aspect worth men-

tioning is that in many cases (firstname male,
month word, etc.) the original SWELL an-
notation is intended to describe only one token,
whereas other classes (e.g. school) are likely
to consist of more than one token (see Table 2 and
Table 3). This means that the effect of the IOB
annotation is negligible for most classes.

When it comes to PII detection (Table 4), two
different kinds of annotation excel in different
metrics. Using the Specific annotation leads to the
best precision. However, in terms of recall and the
F-scores, the Basic annotation performs better.

In the labeling task, the basic type of annotation
excels in all evaluation metrics. In the case of Ba-
sic annotation, detection and labeling are the same.
If we consider the types of annotation where these
two tasks are different, then the runs with the best
recall, F1, and F2 for detection are the ones fine-
tuned on the general type of annotation. In the
case of labeling, these runs would be the best on all
of the evaluation metrics. This partly contradicts
the findings of Sierro et al. (2024), who report that
more detailed classes facilitate better PII detection
and labeling. However, the detailed classes in their
experiment were refined based on what they found
to be ambiguous in the original tagset. In our case,
we utilized an existing hierarchical tagset. The dif-
ference in granularity between General and Spe-
cific classes is also much larger, as Sierro et al.
(2024) split the original classes into at most 2 new
classes, while in our data one General class can
correspond to as many as 12 Specific classes.

We can only examine the interplay between the
identification of PIIs and the tokens that were la-
beled for grammatical or lexical errors in different
tagsets (Table 6) on the basis of SWELL-GOLD,
as SWELL-PILOT does not include any correc-
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Figure 2: Per class prediction accuracy for the
General and General IOB annotations (I and B is
merged). The points illustrate the classes’ raw fre-
quencies.

tion annotation. The correction annotations were
not visible to the classifier during training, and
instead we use them to identify the tokens that
were judged to belong to a grammatically or lexi-
cally non-standard span. What appears to be influ-
enced by the annotation type is the number of to-
tal misclassifications, the percentage of those that
consists of correction-annotated tokens, and the
raw counts of correction-annotated misclassified
tokens. It is clear that the more diverse types of an-
notation lead to more misclassifications in general;
however, there is a reverse trend when it comes
to what percent of the misclassified tokens is also
correction-annotated. It follows that more diverse
annotation is less affected by errors than more gen-
eral annotation. This could mean that the poorer
performance noted for more detailed annotation
is caused by the multi-class classification during
labeling being inherently more difficult given the
number of classes, but that the models learn to
connect the more specific tokens better with the
word embeddings and their contexts that represent
the semantics of the text to determine that the span
is a part of some PII. This is also partly reflected
in the major improvement of the scores when the
predictions are reinterpreted from labeling into de-
tection (as the scores for Specific and Specific IOB
then jump by 15 to 30 percentage points).

Figure 2 and Figure 3 show the per-class accu-
racy (disregarding the I and B distinction). Points
indicating the number of instances of the respec-

Figure 3: Per class prediction accuracy for the
Specific and Specific IOB annotations (I and B is
merged). The points illustrate the classes’ raw fre-
quencies.

tive class in the data are overlaid atop the accuracy
bar charts.

Figure 2 shows these statistics for the Gen-
eral and General IOB tagsets. For some of the
classes, prevalence in the data correlates with
accuracy – nearly 1200 tokens belong to the
geographic class, which has high accuracy,
while institution, with around 200 tokens,
shows worse results and the extremely infrequent
transportation class practically never gets
correctly predicted. However, there are classes
that diverge from this trend: despite having al-
most as many instances as geographic, other
has noticeably lower accuracy, implying that they
are difficult to predict. Less frequent classes like
personal name, date, and age achieve high
accuracy scores despite not being as numerous as
some other classes, indicating that they are easier
to predict.

A similar phenomenon can be observed in Fig-
ure 3, which represents the Specific and Spe-
cific IOB tagsets. Classes like city, fam, and
country, have high frequency and high accu-
racy. Many of the infrequent classes practically
never get correctly predicted, and classes with
intermediate frequency, like firstname male
or other nr seq have mediocre accuracy.
Once again there are also frequent classes with
low accuracy (sensitive) and less frequent
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classes with high accuracy (e.g. age digits,
month words) — which, once again, suggests
that some classes can be easy or difficult to predict
regardless of their frequency.

These results suggest that while having many
examples helps the models to learn to predict a
given class, some classes are much easier or much
more difficult to predict than others. The perfor-
mance of some classes is high because of their
high frequency in the dataset, whereas some other
classes are easy to predict despite not being all that
frequent. It therefore appears that it is not only
class frequency, but also class semantics that in-
fluence the accuracy of predictions, with frequent
classes and classes with little internal variation in
meaning performing better.

This might also explain why Sierro et al. (2024)
observed an improvement with a larger number of
classes, as their increase in the number of classes
happened once they split (and subsequently nar-
rowed down the semantics of) vague classes and
disregarded the MISC class, their equivalent of our
sensitive or other. This confirms that iden-
tifying semantically distinct classes for annotation
is crucial for the success of the annotation scheme
and its application in classification tasks. Such la-
beling requires a good understanding and knowl-
edge of the domain.

While the results show what kind of annotation
facilitates the best detection or labeling, the re-
sults of the experiments do not allow us to iden-
tify the overall best type of PII annotation, as this
depends on the subsequent steps. For example, if
the final corpus should contain more specific la-
bels for anonymized spans, then it may be worth
to split the process into detection followed by la-
beling, as detection outperforms labeling at this
level of tagset detail; there are some results from
other tasks which may suggest that such a sep-
aration could be beneficial, e.g. Park and Fung
(2017). Another related observation is that PII en-
tities tend not to appear directly adjacent to other
PII elements belonging to the same class, which
suggests that such boundaries (i.e. IOB-type an-
notation) need not be included, but it may vary for
different labels and domains.

5 Conclusions

We have compared the performance of KB-BERT-
based classifiers on detecting and classifying Per-
sonally Identifiable Information distinguished by a

different number of classes and the semantic depth
or specificity of these classes. We have found
that for PII detection, Basic, non-IOB annotation
yields the best results. When it comes to labeling,
more specific classes do not ensure better results,
possibly due to some of those classes being under-
represented, since frequency does appear to play
some role in how well various classes are detected.
An IOB-style annotation also results in a decrease
in performance versus not differentiating between
beginnings and insides of spans.

We have also found that models fine-tuned on
more basic annotation tend to misclassify words
that are misspelled, misplaced, or syntactically in-
correct more often than models fine-tuned with
more specific classes. We have also observed that
it is not only class imbalance and a low frequency
of a number of the classes, but also the classes’
semantics that influence the accuracy of the pre-
dictions. Semantically less coherent or less con-
strained classes make it much more difficult for the
models to make correct predictions, pointing to the
need for well-defined classes. This emphasizes the
role of understanding the domain for which the an-
notation scheme is designed and raises an impor-
tant issue concerning the cross-domain transfer of
annotation schemes as different classes will have
different frequencies and semantics across these
classes.

While the choice of PII taxonomy is likely to
depend on the needs of the specific case, the re-
sults suggest that using over-detailed classes for
automatic PII detection and labeling may not lead
to optimal performance, at least not without a large
dataset for the model to learn from. The same ap-
plies to the differentiating between the beginning
and the inside of a PII span in IOB-type annota-
tion, which does not lead to better performance,
and therefore should only be included if required
in the specific case.

In these experiments we have shown what kinds
of annotation facilitate PII detection and labeling,
the final choice also depends on the subsequent
task, such as generating pseudonyms or removing
PII spans. As long as the classes are required by
the subsequent steps in a pipeline (e.g. pseudonym
generation) or desired in the final version of the
text (e.g. as placeholders in the anonymized text),
there is a need for a more detailed annotation than
the basic one utilized in our experiment. This also
signals a need for investigating whether the label-
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ing step can be separated from the detection step,
and how the performance of such a setup compares
to classifying the PIIs in a single step.

The overt class imbalance (including the lack of
any PIIs of certain kinds of Specific labeling in the
data) highlights the need for well-curated training
datasets that feature a sufficient number of PIIs of
each kind, either by collecting more data or adjust-
ing the annotation; alternatively, one could also
opt to combine machine learning and rule-based
detection methods (many of the absent Specific
classes, such as account nr, could be more eas-
ily identified using e.g. regular expressions).

6 Future Work

To strengthen our results, these methods should be
applied to larger amounts of training data, poten-
tially resolving issues pertaining to some of the
classes being very difficult for our models to learn
to predict due to their low frequency. Since we
also observe that the semantic vagueness of certain
classes is problematic for the models, it would be
interesting to split those classes into more coher-
ent subclasses and examine what effect that has
– however, this requires manual re-annotation of
those tokens. Equally, we would like to see how
these results compare for different domains where
labels have different distributions in the text or are
entirely different.

The question related to the variability of data
(here in terms of non-standard spelling in the form
of grammatical errors but also other variability
such as unconstrained communication) and its in-
teraction with the selected annotation scheme is
also open for further exploration. An alternative
route would be trying to utilize synthetic data, and,
especially, comparing the performance of models
trained on larger amounts of synthetic data with
models that were only trained on a smaller cor-
pus of authentic data. An intermediate step would
be augmenting the training data using e.g. man-
ually or automatically pseudonymized versions of
the same texts.

It can also be worth exploring whether the same
trends occur when using other BERT-type mod-
els for this task — although KB-BERT has been
shown to perform the best on PII detection in
Swedish texts, perhaps other models do not show
the same trends as it does in these experiments.

We also aim to construct PII detection and PII
labeling models which we plan to release without

any privacy risks. Comparing an approach where
we separate detection and labeling versus where
they are combined in a single step is also an inter-
esting path. Since more granular tagsets seem to
be used for pseudonym generation in many cases,
we consider it worth exploring alternative meth-
ods for pseudonym generation that are not as de-
pendent on the PII taxonomy used, e.g. using lan-
guage models.
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Limitations

One major limitation in our experiments is the
relatively small amount of training data. How-
ever, the particular hierarchical PII taxonomy that
we analyze is only used in the SWELL corpora,
and SWELL-GOLD’s correction annotation sets it
apart from other corpora with hierarchical annota-
tion, such as CODE ALLTAG (Eder et al., 2020).
Unfortunately, SWELL-PILOT is not correction-
annotated, meaning that we can only conduct cer-
tain result analyses on a subset of our data.

Despite the small amount of data, a qualitative
analysis of the errors made by the models was
deemed to be beyond the scope, as it would re-
quire a manual inspection of almost 1000 texts in
six different annotation versions.
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Since it takes a considerable amount of time to
train a BERT-based classifier, we trained on 6 dif-
ferent kinds of annotation, we limited ourselves to
10 runs per annotation type, which does not satisfy
the requirements of applying statistical tests on the
overall performance results.

Ethical Considerations

Since the data that we use to fine-tune our mod-
els includes Personally Identifiable Information, it
cannot be openly shared. We choose not to share
our models to avoid any risks of leakage of per-
sonal information. However, we provide the code
(see subsection 3.2) from which the results can be
generated provided one has access to the data in
the appropriate SWELL format.
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A Appendix

Example (1), shows what all the annotation
schemes used in this paper look like on sample
text. The annotation schemes a-f correspond to the
Specific IOB, Specific, General IOB, General, Ba-
sic IOB, and Basic annotations, respectively.

(1) a. My
O

name
O

is
O

Maria
B-firstname female

.
O

I
O

come
O

from
O

Wroclaw
B-city

(
O

that
O

is
O

in
O

Poland
B-country

)
O

.
O

I
O

work
O

at
O

the
O

University
B-work

of
I-work

Gothenburg
I-work

.
O

b. My
O

name
O

is
O

Maria
firstname female

.
O

I
O

come
O

from
O

Wroclaw
city

(
O

that
O

is
O

in
O

Poland
country

)
O

.
O

I
O

work
O

at
O

the
O

University
work

of
work

Gothenburg
work

.
O

c. My
O

name
O

is
O

Maria
B-personal name

.
O

I
O

come
O

from
O

Wroclaw
B-geographic

(
O

that
O

is
O

in
O

Poland
B-geographic

)
O

.
O

I
O

work
O

at
O

the
O

University
B-institution

of
I-institution

Gothenburg
I-institution

.
O

d. My
O

name
O

is
O

Maria
personal name

.
O

I
O

come
O

from
O

Wroclaw
geographic

(
O

that
O

is
O

in
O

Poland
geographic

)
O

.
O

I
O

work
O

at
O

the
O

University
institution

of
institution

Gothenburg
institution

.
O

e. My
O

name
O

is
O

Maria
B

.
O

I
O

come
O

from
O

Wroclaw
B

(
O

that
O

is
O

in
O

Poland
B

)
O

.
O

I
O

work
O

at
O

the
O

University
B

of
I

Gothenburg
I

.
O

f. My
O

name
O

is
O

Maria
S

.
O

I
O

come
O

from
O

Wroclaw
S

(
O

that
O

is
O

in
O

Poland
S

)
O

.
O

I
O

work
O

at
O

the
O

University
S

of
S

Gothenburg
S

.
O
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