Prompt Engineering Enhances Faroese MT, but Only Humans Can Tell
Barbara Scalvini, Annika Simonsen, Iben Nyholm Debess, Hafsteinn Einarsson
Abstract
This study evaluates GPT-4’s English-to-Faroese translation capabilities, comparing it with multilingual models on FLORES-200 and Sprotin datasets. We propose a prompt optimization strategy using Semantic Textual Similarity (STS) to improve translation quality. Human evaluation confirms the effectiveness of STS-based few-shot example selection, though automated metrics fail to capture these improvements. Our findings advance LLM applications for low-resource language translation while highlighting the need for better evaluation methods in this context.- Anthology ID:
- 2025.nodalida-1.63
- Volume:
- Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies (NoDaLiDa/Baltic-HLT 2025)
- Month:
- march
- Year:
- 2025
- Address:
- Tallinn, Estonia
- Editors:
- Richard Johansson, Sara Stymne
- Venue:
- NoDaLiDa
- SIG:
- Publisher:
- University of Tartu Library
- Note:
- Pages:
- 622–633
- Language:
- URL:
- https://preview.aclanthology.org/Ingest-2025-COMPUTEL/2025.nodalida-1.63/
- DOI:
- Cite (ACL):
- Barbara Scalvini, Annika Simonsen, Iben Nyholm Debess, and Hafsteinn Einarsson. 2025. Prompt Engineering Enhances Faroese MT, but Only Humans Can Tell. In Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies (NoDaLiDa/Baltic-HLT 2025), pages 622–633, Tallinn, Estonia. University of Tartu Library.
- Cite (Informal):
- Prompt Engineering Enhances Faroese MT, but Only Humans Can Tell (Scalvini et al., NoDaLiDa 2025)
- PDF:
- https://preview.aclanthology.org/Ingest-2025-COMPUTEL/2025.nodalida-1.63.pdf