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Abstract

This paper explores retrieval with sen-
tence embeddings by fine-tuning sentence-
transformer models for classification while
preserving their ability to capture seman-
tic similarity. To evaluate this balance, we
introduce two opposing metrics – polarity
score and semantic similarity score – that
measure the model’s capacity to separate
classes and retain semantic relationships
between sentences. We propose a system
that augments supervised datasets with con-
trastive pairs and triplets, training models
under various configurations and evaluat-
ing their performance on top-k sentence
retrieval. Experiments on two binary classi-
fication tasks demonstrate that reducing the
margin parameter of loss functions greatly
mitigates the trade-off between the metrics.
These findings suggest that a single fine-
tuned model can effectively handle joint
classification and retrieval tasks, particu-
larly in low-resource settings, without rely-
ing on multiple specialized models.

1 Introduction

Tasks like text classification and semantic textual
similarity (STS) are helpful for various applica-
tions, including retrieval through clustering, zero-
shot categorization (Yin et al., 2019), and efficient
few-shot classification with limited data (Tunstall
et al., 2022). Traditionally, models addressing these
tasks ranged from rule-based systems to deep learn-
ing architectures (Tai et al., 2015; Minaee et al.,
2021; Li et al., 2022), with recent transformer-
based models dominating the field (Joulin et al.,
2017; Howard and Ruder, 2018; Devlin et al., 2019;
Raffel et al., 2020). However, optimizing sentence
embeddings for multiple objectives remains a chal-
lenge. In this work, we investigate the hypothesis

that training sentence-transformer models with two
opposing objectives – semantic similarity and po-
larity – enables models that can be fine-tuned for
downstream tasks while preserving their ability to
capture semantic similarity. We argue that this
approach is beneficial for obtaining more nuanced
embeddings, e.g., for domain-specific classification
and clustering, especially supporting low-resource
settings with a single model capable of both. To
evaluate the performance of our models on these
dual objectives, we introduce two metrics:

Polarity Score (P) measures the model’s clas-
sification performance by assessing how well it
predicts sentence polarity (e.g., positive vs. neg-
ative sentiment). The higher the score, the more
accurately the model distinguishes between classes.

Semantic Similarity Score (S) quantifies how
well the model retains semantic relationships be-
tween sentences by comparing the cosine similar-
ity of sentence embeddings generated by our fine-
tuned model to a reference model.

Both metrics are described in detail in Section 3.1.
Experiments are conducted on (1) SST-2, Stanford
Sentiment Treebank (Socher et al., 2013), a binary
sentiment dataset, and (2) A dataset with sarcas-
tic news headlines (Misra and Arora, 2023). We
opted for binary datasets to efficiently verify the
importance of the margin in contrastive learning.
The remainder of this paper is structured as fol-
lows: Section 2 discusses related work. Section 3
introduces the datasets, data generation, metrics,
models, and training details. Section 4 presents
experimental results and Section 5 discussions. Fi-
nally, conclusions and plans for future work are in
Section 6.
Code for the system is available on GitHub.1

1https://github.com/tollefj/
margins-contrastive
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2 Related Work

Related research is based mainly on developments
within word and sentence embeddings. Commonly
used embedding techniques include word2vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014), and ELMo (Peters et al., 2018). In the
realm of sentence embeddings, early methods in-
volved concatenation and aggregation of word em-
beddings to produce a sentence representation (Le
and Mikolov, 2014; Joulin et al., 2017). However,
more recent research has focused on developing
specialized models to encode sentence represen-
tations, as exemplified by systems like InferSent
(Conneau et al., 2017), universal sentence encoder
(Yang et al., 2020), sentence-transformers (SBERT)
(Reimers and Gurevych, 2019) and SimCSE (Gao
et al., 2022). SBERT is trained using a pre-trained
BERT model to learn the representations of a given
sentence. While techniques and setups vary, an
example of a training procedure is by providing
triplets forming (anchor sentence, positive, nega-
tive), where the model attempts to maximize the
distance between the anchor and the negative (dis-
similar sentence), while minimizing the distance
between the anchor and the positive (similar) sen-
tence. This methodology provided efficient mod-
els for STS (Agirre et al., 2013; Reimers and
Gurevych, 2019; Gao et al., 2022; Tunstall et al.,
2022; Li et al., 2023; Wang et al., 2024). Several
datasets and benchmarks have been published for
STS since the SemEval shared task (Agirre et al.,
2013), including the STS Benchmark (Cer et al.,
2017), SICK (Marelli et al., 2014), and BIOSSES
(Soğancıoğlu et al., 2017), all of which are now
found in the Massive Text Embedding Benchmark
(MTEB) (Muennighoff et al., 2022). Transformer
models have excelled at the task, as is shown in
the tables on HuggingFace’s leaderboard for the
evaluation.2 At the time of experiments, the GTE
(Li et al., 2023) and E5 (Wang et al., 2024) series
of models were of particular interest given their
strong performance to size ratio.

3 Methods and Data

This section includes information on datasets, eval-
uation metrics, baseline models, loss functions,
example generation, and the fine-tuning pipeline.
We mainly use two data sources for evaluation,
although the provided system is generalizable to

2https://huggingface.co/spaces/mteb/
leaderboard

any data source for binary classification. Figure 1
shows an overview of system components.

SST-2 The Stanford Sentiment Treebank (Socher
et al., 2013) is widely used for binary classifi-
cation tasks and is implemented in the GLUE
benchmark (Wang et al., 2019). It consists of a
train/test/validation split with 67,349/1821/872
samples respectively. However, the labels for the
test split are hidden and can only be evaluated by
submissions to GLUE.3 We use the validation split
for presented results.

Sarcastic Headlines The “News Headlines
Dataset for Sarcasm Detection” (Misra and
Arora, 2023) contains 28,619 news headlines
from HuffPost (non-sarcastic) and The Onion
(sarcastic). Misra and Arora claims this to
guarantee high-quality labels. The data is split in
a 90:10 train/test ratio with a deterministic seed (0).

Additionally, results for the best-performing
fine-tuning configuration are presented using the
SentEval toolkit (Conneau and Kiela, 2018) on
movie reviews, product reviews, subjectivity status,
opinion-polarity, question-type classification, and
paraphrase detection in Section 4.1.

3.1 Evaluation
For a given sentence s, the model M retrieves the
k most similar sentences, denoted as sM1 , . . . , sMk ,
based on the cosine similarity from a query sen-
tence. The retrieved sentences are evaluated on two
criteria: polarity and semantic similarity.

Polarity Score (P)
To evaluate if the model predicts sentences with the
same polarity as the input, we compute a weighted
average polarity score over the k predictions based
on the polarity of s, P(s). Formally, the polarity
score is defined as:

PM (s) :=
k∑

i=1

wi · pol
(
sMi

)
where

pol
(
sMi

)
:=

{
1 if pols = polsMi ,

0 otherwise.

(1)

To account for ranking in the top-k, we choose a
linear discounting strategy, scaling the i-th weight:

wi :=
2(k + 1− i)

k(k + 1)
.

3https://gluebenchmark.com/leaderboard
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Embedding
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SST2, Sarcasm
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- Triplets
- Contrastive
- MultipleNegatives

Dropout to normalize data sizes

Sentence
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Figure 1: High-level system components of example generation and training. Sentences in the datasets
are embedded and stored in an index, where k are retrieved to generate similarity-based examples
corresponding to the loss functions. A dropout is added as generation varies between, e.g., triplets and
contrastive pairs. Finally, a model is trained for each loss function and margin configuration.

A score near one indicates that most predictions
share the input’s polarity.

Semantic Similarity Score (S)
The Semantic Similarity Score measures the cosine
similarity between the predicted sentences from
model M and the baseline model R. Given xi as
the embedding for sentence si, the cosine similarity
is defined as:

cos sim(s1, s2) :=
x1 · x2

||x1|| · ||x2||

The semantic similarity score SM (s) for model M
is then:

SM (s) :=
k∑

i=1

wi · cos simR

(
s, sMi

)
(2)

The weights wi are reused from the polarity
score. A similarity score close to the reference
model’s score SR(s) indicates that the predictions
remain semantically aligned with the input sen-
tence.

3.2 Baseline Models
The models in Table 1 are selected based on popu-
larity and performance versus size. Data is sourced
from the MTEB leaderboard (Muennighoff et al.,

2022). We select the commonly used sentence-
transformer model, all-MiniLM-L6-v2 (Reimers
and Gurevych, 2019) – referred to as MiniLM-
6, along with the better performing models GTE-
base/small (Li et al., 2023) and the E5-small-v2
(Wang et al., 2024). Retrieval performance is eval-
uated by constructing two embedding sets: target
embeddings derived from the test set and source em-
beddings sampled from the training set. The source
embeddings are chosen to be five times the size of
the test set, providing an adequate evaluation pool
while limiting the number of comparisons. For ex-
ample, if the test set contains 1,000 sentences, the
source set will contain 5,000 sentences randomly
sampled from the training data.

From the sampled data, we compare retrieval
performance to the top-k retrieved sentences by
adjusting k, as shown in Figure 2. Increasing k
slightly decreases performance, as larger retrieval
sets are more likely to include less relevant sen-
tences. However, we wish to keep a relatively high
amount of retrieved sentences to identify model
improvements (e.g., a higher fraction of returned
sentences should be relevant). Based on these ob-
servations, we select k = 16 as a practical value.
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Model Size Embedding STSBenchmark SST-2 Sarcastic

MB dimension reported avg P S P S
E5-small-v2 130 768 85.95 81.523.7 85.51.7 71.421.2 83.41.5
GTE-base 220 768 85.73 80.422.6 83.71.4 67.420.7 81.41.6
GTE-small 70 384 85.57 77.822.2 84.81.4 66.820.6 82.51.6
MiniLM-6 90 384 82.03 63.021.9 46.67.4 63.820.2 42.35.6

Table 1: Sentence-transformer baseline model selection and performance (k = 16) for polarity (P) and
semantic similarity (S) on SST-2 and sarcastic headlines. Standard deviation subscripted.
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Figure 2: Baseline models with average perfor-
mance across both datasets when retrieving the k
nearest matches. Solid lines: P , dotted lines: S .

3.3 Contrastive Loss Functions
To assess the embedding quality, models are trained
with different loss function configurations im-
plemented in the Sentence-Transformers library
(Reimers and Gurevych, 2019). However, not all
losses can support our constraints of multiple ob-
jectives, and we constrain this study to Triplet-
Loss (Schroff et al., 2015), MultipleNegatives-
RankingLoss (Henderson et al., 2017), OnlineCon-
trastiveLoss and ContrastiveLoss (Hadsell et al.,
2006). These require different inputs related to
how the model assesses the similarity between in-
put sentences.

TripletLoss consists of triplets of sentences
(A,P,N) where A is the anchor, P is similar to
the anchor, and N is dissimilar. We set the P to the
corresponding positive example (1) in binary clas-
sification and N to the negative example (0). The
loss becomes, with Ex denoting the embedding:
max(|EA − EP | − |EA − EN | + λ, 0), where λ

is the margin, specifying the minimum separation
between A and N .

MultipleNegativesRankingLoss consists of sen-
tence pairs, assuming (ai, pi) pairs as positive and
(ai, pj) pairs for i ̸= j as negatives. It calculates
the loss by minimizing the negative log-likelihood
for softmax-normalized scores, encouraging pos-
itive pairs to have higher similarity scores than
negative pairs.

(Online)ContrastiveLoss consists of {0, 1}-
labelled tuples (Anchor,Sentence) where the label
indicates whether |EA − ES | is to be maximized,
indicating dissimilarity (0) or minimized, indicat-
ing similarity (1). In the online variant, the loss
is only calculated for strictly positive or negative
pairs, reported to perform better (Tunstall et al.,
2022). The margin parameter λ controls how far
dissimilar pairs must be separated. To study the
models’ behavior, we select a range of margin val-
ues for each compatible loss function (Table 2).

Loss function λ margin λ default
Triplet {0.01, 0.1, 1.0, 5.0, 7.5, 10} 5.0
Multiple Neg. – –
Contrastive {0.1, 0.25, 0.5, 0.75, 1.0} 0.5
Online Con. {0.1, 0.25, 0.5, 0.75, 1.0} 0.5

Table 2: Loss functions with margin selections.
Default values are highlighted.

3.4 Example generation

As the classification datasets are not labeled for
similarity, we use a reference model to generate
contrastive samples of varying formats, correspond-
ing to each input type: (1) Triplet, (2) Contrastive,
and (3) MultipleNegatives, referred to as example
generation. For each (sentence, label) pair in the
data, the k nearest neighbors of each polarity are
computed, requiring a minimum cosine similarity
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threshold of ≥ 0.5. These examples are then com-
bined according to the selection of loss functions,
e.g., with a TripletLoss requiring (anchor, similar,
dissimilar). As the different data types will gener-
ate varying numbers of sentence pairs and triplets,
the generation pipeline includes a dropout to nor-
malize data samples. Table 3 shows an example of
generated data.

Loss type Contrastive Example

Triplet
Anchor: Totally unexpected directions
Similar+Same polarity: Dramatically moving
Similar+Opposite polarity: Utterly misplaced

Multiple
Negatives

Anchor: Good vibes
Similar+Same polarity: Awesome energy

Contrastive

Anchor: A movie that deserves recommendation
Similar: Effort to watch this movie
Label: 0 (increase distance → less similar)
Anchor: Bad jokes, most at women’s expense
Similar: Dumb gags, anatomical humor
Label: 1 (reduce distance → more similar)

Table 3: Examples of contrastive and polarized
samples for different loss types.

4 Experiments and Results

The results are based on fine-tuning and continu-
ous evaluation of the baseline models in different
setups for loss functions and corresponding param-
eters. Based on similar research on fine-tuning
embeddings (Gao et al., 2022), models are trained
for five epochs.

Suitable sample sizes The first experiment stud-
ies the impact of training samples, limited to the
range [50, 100000]. Despite the reported effective-
ness of few-shot learning for sentence-transformers
(Tunstall et al., 2022), we observe improvements in
polarity when increasing the sample size far beyond
the scope of few-shot learning. Table 4 illustrates
this behavior, aggregated across all models and
loss configurations. Observe the increasing gap
between the min and max scores for S, while the
mean is reduced. This is what we aim to reduce
through joint fine-tuning.

Training details Based on findings from Table 4,
the sample size is set to 50, 000 to reduce compute
time due to the limited improvements from 50,000
to 100,000. Experiments on the loss functions with
their λ margins are then performed on both datasets.
Models are trained for 5 epochs with a batch size
of 64 and a learning rate of 3×10−5, set to retrieve
k = 16 sentences for evaluation.

P S
N Meanstd Min Max Meanstd Min Max

50 75.77.5 63.0 81.5 75.116.6 46.6 85.5
500 75.77.5 63.0 81.5 75.116.6 46.6 85.5

2,000 75.77.5 62.9 81.7 75.116.6 46.6 85.5
5,000 76.37.7 63.1 83.1 75.116.6 46.5 85.5

10,000 78.08.3 63.2 87.3 74.916.8 45.7 85.4
20,000 81.58.7 61.8 89.2 73.018.3 36.4 84.9
50,000 86.26.4 68.0 92.5 70.221.3 29.6 84.7

100,000 88.94.0 72.2 93.4 69.322.3 29.0 84.6

Table 4: Aggregated scores across all configura-
tions for different sample sizes after 5 epochs on
the SST-2 dataset.

4.1 Results
Tables 5 and 6 show the polarity and semantic sim-
ilarity scores obtained after the continued training
with N = 50,000 samples. The “Reference” refers
to each respective model before training. The tables
showcase the impact of the different loss functions
and their λ margins.

SetFit (Tunstall et al., 2022) is included, using
the default Cosine Similarity loss. Figure 3 shows
the best loss configuration for the strongest model
e5-small. We observe an improvement in polarity
at a minor cost of semantic similarity for several
configurations. The TripletLoss, with smaller mar-
gins, shows consistently high performance for both
metrics.

Additionally, we provide an evaluation using the
established SentEval toolkit (Conneau and Kiela,
2018) on out-of-domain data. Table 7 shows the re-
sults with TripletLoss using a margin of λ = 0.10
and the results using SetFit (Tunstall et al., 2022),
trained with 50, 000 generated contrastive sam-
ples. Note how the fine-tuning approach yields
higher scores, especially for the MR (Movie Re-
views), CR (product reviews), and SST-2. The
joint training also transfers well to tasks like SUBJ
(subjective/objective classification), while some-
what lower scores are found on TREC (question-
answering). The score increase aligns well with
results in Tables 5 and 6, comparing SetFit to the
highlighted TripletLoss λ = 0.10.

5 Discussion

Most model configurations adjusted the embed-
dings towards correct polarity upon fine-tuning.
However, the minilm-6 falls short of its semantic
similarity capabilities, while the remaining models
seem to learn both tasks, with only minor differ-
ences between the configurations.
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Loss λ e5-small gte-base gte-small minilm-6

sarcastic sst2 sarcastic sst2 sarcastic sst2 sarcastic sst2

Reference - 71.421.2 81.523.7 67.420.7 80.422.6 66.820.6 77.822.2 63.720.2 63.021.9
SetFit (Cosine) - 85.225.4 86.224.2 82.126.8 85.625.5 82.825.4 84.225.9 79.527.0 77.929.0
Contrastive 0.10 88.824.3 89.523.2 86.925.6 89.224.1 81.927.0 88.025.6 75.925.6 68.024.9
Contrastive 0.25 89.325.1 90.723.2 88.226.1 90.025.0 84.326.9 88.826.1 76.826.4 72.426.9
Contrastive 0.50 89.825.6 91.223.8 88.826.5 90.325.3 86.827.5 89.127.1 77.827.2 75.127.8
Contrastive 0.75 89.925.1 91.623.6 88.926.6 90.625.1 87.727.3 89.526.9 79.027.7 77.328.6
Contrastive 1.00 89.825.5 91.224.3 88.726.7 90.725.1 87.827.0 89.626.8 80.328.1 78.428.9
MultipleNeg - 73.622.2 80.822.4 73.122.4 81.823.5 72.022.6 80.623.4 69.022.0 69.423.1
OnlineContr 0.10 89.624.7 90.423.7 87.425.8 89.524.2 82.627.0 88.225.8 78.926.0 70.826.5
OnlineContr 0.25 90.025.2 91.523.8 88.226.4 90.225.4 84.427.3 88.926.7 78.926.4 74.627.8
OnlineContr 0.50 89.725.9 91.624.4 88.227.3 90.626.0 86.027.6 89.327.2 79.026.9 76.527.9
OnlineContr 0.75 89.526.5 91.724.5 88.627.4 90.825.6 87.227.9 89.227.6 80.027.4 77.528.2
OnlineContr 1.00 89.626.6 91.725.0 88.327.3 90.726.0 87.527.7 89.627.5 80.527.8 78.428.7
Triplet 0.01 90.225.6 91.525.1 82.525.7 90.324.9 84.025.5 89.126.2 78.524.5 76.926.9
Triplet 0.10 90.626.3 91.925.0 89.727.1 91.225.6 88.427.2 89.927.0 83.526.9 80.628.6
Triplet 1.00 90.125.7 90.923.5 88.426.6 90.624.9 87.427.0 88.625.7 84.128.6 83.231.1
Triplet 5.00 88.225.1 89.323.4 86.526.8 90.125.1 84.926.5 88.226.1 81.527.7 81.330.1
Triplet 7.50 88.225.4 89.623.1 86.627.0 90.125.0 84.826.4 88.225.9 81.427.8 81.530.1
Triplet 10.00 88.125.1 89.622.9 86.826.6 90.224.9 84.826.8 88.126.2 81.627.8 81.230.4

Table 5: Polarity scores for all loss configurations after 5 epochs with N = 50,000 samples, retrieving
k = 16 sentences. MultipleNegatives remain close to the reference model, while larger impacts are seen
from Triplet- and Contrastive losses. The highest scoring data/model pairs are boldfaced. The most
suitable loss configuration, Triplet λ = 0.10 is marked in green. Reference models are marked blue.

Loss λ e5-small gte-base gte-small minilm-6

sarcastic sst2 sarcastic sst2 sarcastic sst2 sarcastic sst2

Reference - 83.41.5 85.51.7 81.41.6 83.71.4 82.51.6 84.81.4 42.35.6 46.67.4
SetFit (Cosine) - 78.52.1 81.62.1 75.63.0 79.91.8 75.62.5 80.71.8 17.85.6 27.16.9
Contrastive 0.10 79.42.0 83.32.0 75.02.4 81.01.8 78.72.1 82.11.8 25.66.6 34.87.2
Contrastive 0.25 79.72.0 83.71.9 76.22.4 81.41.8 79.02.1 82.61.7 26.66.6 34.56.8
Contrastive 0.50 79.72.0 83.81.9 76.92.4 81.61.7 79.12.1 82.81.6 27.16.6 34.26.7
Contrastive 0.75 79.82.0 83.81.9 76.52.6 81.51.7 78.72.3 82.71.6 27.16.5 34.16.6
Contrastive 1.00 79.82.0 83.71.9 76.52.7 81.31.7 78.12.5 82.41.6 27.86.5 33.96.6
MultipleNeg - 82.51.6 84.71.8 80.41.8 82.51.6 81.61.8 83.91.6 39.96.1 43.57.8
OnlineContr 0.10 80.11.9 83.81.9 75.62.3 81.21.8 79.22.0 82.51.7 25.46.7 33.27.1
OnlineContr 0.25 80.51.9 84.11.9 77.12.3 81.71.8 79.71.9 82.91.7 27.16.6 33.06.9
OnlineContr 0.50 80.61.9 84.11.9 77.82.3 82.01.6 79.92.0 83.01.6 28.36.5 33.97.0
OnlineContr 0.75 80.61.9 84.01.9 77.52.5 81.91.6 79.42.2 82.91.6 28.56.5 34.57.0
OnlineContr 1.00 80.61.9 84.01.9 77.42.6 81.71.6 78.92.3 82.71.6 29.26.4 35.07.0
Triplet 0.01 81.21.8 83.82.0 78.02.4 81.91.7 79.92.0 83.01.7 25.86.2 33.97.3
Triplet 0.10 81.31.7 83.71.9 78.12.3 81.91.7 79.92.1 83.01.6 30.56.1 35.27.3
Triplet 1.00 79.22.1 82.82.1 76.32.9 80.31.8 77.22.6 81.31.6 23.76.0 30.57.0
Triplet 5.00 78.32.1 81.82.1 74.62.7 79.91.8 75.82.7 80.61.7 20.65.9 29.67.0
Triplet 7.50 78.42.1 81.82.1 74.72.7 79.91.8 75.72.7 80.61.7 20.45.9 29.57.0
Triplet 10.00 78.32.1 81.82.1 74.72.7 80.01.8 75.72.7 80.71.7 20.55.9 29.67.0

Table 6: Semantic similarity scores for all loss configurations after 5 epochs with N = 50,000 samples,
retrieving k = 16 sentences. MultipleNegative ranking loss, although seemingly performing strongly on
the task, does so due to minimal adaptation to the new training samples and is on par with the reference
model. This can be confirmed by inspecting the results for P in Table 5. As such, the two highest scores
for each data/model pair are boldfaced. The most suitable loss configuration, Triplet λ = 0.10 is marked
in green. Reference models are marked blue.
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Figure 3: Best configurations per loss for the E5 Small model. Left: polarity, right: semantic similarity.
TripletLoss outperforms the other alternatives. MultipleNegativesRankingLoss is insufficient due to its
inability to be adjusted towards polarity.

Type Model Data MR CR SUBJ MPQA SST2 TREC MRPC avg

Tripletλ0.10 gte-base sst2 89.31 89.27 92.91 85.95 93.19 80.80 73.33 85.50
Tripletλ0.10 gte-base sarcastic 84.33 88.82 92.82 88.04 90.83 88.40 68.52 85.01
Tripletλ0.10 e5-small sst2 88.95 88.98 91.06 86.28 93.41 79.80 74.55 84.97
Tripletλ0.10 gte-small sst2 87.72 89.59 90.85 86.86 91.38 79.00 73.39 84.83
SetFit gte-base sst2 84.30 88.85 90.91 86.08 89.18 86.00 72.52 84.27
SetFit e5-small sst2 85.43 85.16 86.58 83.93 91.05 88.00 69.39 82.18
SetFit gte-base sarcastic 81.61 86.52 90.01 87.50 88.69 86.00 66.55 81.92
Tripletλ0.10 gte-small sarcastic 80.51 83.52 90.17 86.11 87.59 84.60 66.49 81.84
SetFit e5-small sarcastic 82.69 83.97 90.65 86.80 88.80 90.20 66.49 81.62
Tripletλ0.10 minilm-6 sst2 81.21 84.53 87.43 84.76 86.49 81.20 70.78 81.53
Tripletλ0.10 e5-small sarcastic 82.40 76.27 90.47 85.75 89.95 71.40 66.49 78.81
Tripletλ0.10 minilm-6 sarcastic 71.20 66.44 86.57 79.63 80.94 74.40 66.49 74.61

Table 7: Performance on the SentEval benchmark, comparing TripletLoss with a margin of λ = 0.10 to
SetFit with the same base models fine-tuned on sarcastic news headlines and sst-2. Sorted by average
score. The highest scores for each metric are boldfaced.

Loss function analysis TripletLoss stands out as
the best-performing loss function, especially when
using smaller margin values (λ ∈ {0.01, 0.10}),
strongly outperforming the default value of 5.0.
For the ContrastiveLoss configurations, the default
λ value of 0.5 seems well suited for the tasks,
with minimal changes for different margins. Multi-

pleNegativesRankingLoss is an outlier in both re-
sults, perhaps due to poor example generation for
this particular loss function. This loss treats sen-
tences from distinct sentence pairs as dissimilar.
As there are multiple generated pairs with the same
anchor, this could result in contradictory examples.
This problem does not arise for any of the other
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loss functions.
Relations between distinct training examples (re-

garding polarity and semantic similarity) severely
restrict example generation, and this process can
be tweaked by studying the threshold for counting
something as similar in more detail. The remaining
loss functions have separate example generation
implementations with control over the λ param-
eter that defines the margin between similar and
dissimilar sentences. Interestingly, independent of
the loss function, this value does not necessarily
correlate with good model performance. For dis-
tinguishing polarity, higher λ values result in only
slightly improved scores for ContrastiveLoss. For
TripletLoss, the opposite is true, contradicting the
intuition that the margin between two embeddings
in vector space should be separated more rather
than less.

Issues on Comparisons Comparing models of
different loss functions is challenging due to the
different data formats, as we cannot guarantee fair
comparison when the inputs are unequal – e.g.,
comparing a triplet to a pair – for the different loss
functions. Unlike typical research on loss functions,
we did not consider the loss values obtained during
training or evaluation, as we find these uninforma-
tive in this context, i.e., balancing two possibly
opposing objectives. However, we argue that our
suggested metrics in Section 3.1 are reasonable and
intuitive and can likely be used for further studies
on sentence embeddings.

6 Conclusion and Future Work

This paper has explored the potential of encoding
polarity into sentence embeddings while retaining
semantic similarity, done by fine-tuning models
on data generated to suit the objectives of vari-
ous sentence-transformers loss functions. We in-
troduced two metrics to evaluate our results: the
Polarity Score P and Semantic Similarity Score
S. We found that the e5-small and gte models
perform well on all evaluations. In Tables 5 and
6, the fine-tuned configurations greatly improve
polarity scores while maintaining the semantic
representation when evaluated on the generated
datasets. For e5-small, performance on the sar-
castic dataset shows great improvement in P , in-
creasing by 26.9% (from 71.4 to 90.6), while S
decreases by 2.5% (from 83.4 to 81.3). Similarly,
on the sst2 dataset, P improves by 12.8% (from
81.5 to 91.9), and decreases by 2.1% in S (from

85.5 to 83.7). Furthermore, the TripletLoss, espe-
cially for lower λ margins, e.g., λ = 0.10, strongly
outperformed other configurations and has the po-
tential to yield an efficient and high-performing
model for multi-task retrieval, even outside of do-
mains tested in this work, as the findings are mostly
consistent between the evaluations.

Regarding future work, there are several paths
for improvement:

• The suggested model configuration allows us
to experiment with a broader range of tasks
and datasets paired with our fine-tuning ap-
proach.

• The example generation process can be ex-
tended to support multiclass inputs by one-
vs-rest and other methods to manage multiple
classes with a system designed for contrasting
two samples.

• Although our proposed metrics are a first step
in assessing multiple objectives in this context,
combining them better to represent the drift
of the original semantic similarity remains an
open question.

7 Limitations

The most prominent limitation is the number of
domains implemented in the system, which is cur-
rently limited to sentiment analysis and sarcasm.
Massive evaluations for multiple domains would
make it difficult to present and analyze in detail. By
reducing the number of loss configurations, more
datasets can be evaluated and studied in detail, such
as by limiting training to single margin values per
loss function. The presented configuration requires
544 models to be trained per dataset. Another
limitation is the definition and approximation of
semantic similarity through the defined training
pipelines. As described in the example generation
procedure (Section 3.4), data points are separated
on similarity by a frozen reference model. We still,
however, see improvements in general semantic ca-
pabilities in the comparisons with current models,
but an effort for labeling the already existing clas-
sification datasets for semantic similarity would be
required for more reliable results.

8 Ethical Considerations

The datasets and pre-trained sentence-transformer
models used are publicly available. However, the
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system’s use for automatic retrieval may raise ethi-
cal concerns, particularly in public-facing applica-
tions. Furthermore, the Sarcastic News Headlines
dataset references names of individuals and com-
panies, requiring careful handling of personally
identifiable data to prevent unintended harm.

CO2 Emissions Experiments were conducted us-
ing a private infrastructure in Norway, which has a
carbon efficiency of 0.024 kgCO2eq/kWh accord-
ing to https://app.electricitymaps.com/. A
cumulative of 140 hours of computation was per-
formed with an RTX 4090 averaging 270W. Total
emissions are estimated to be 0.907 kgCO2eq. Es-
timations were conducted using the MachineLearn-
ing Impact calculator presented in (Lacoste et al.,
2019).

9 Reproducibility

All code is available on GitHub.4 Results and cor-
responding tables and figures are programmatically
generated for efficient replication. Sampling opera-
tions are fully deterministic.
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