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Abstract
Large language models (LLMs) have demon-
strated remarkable capabilities in natural lan-
guage processing, yet their effectiveness in
handling historical languages remains largely
unexplored. This study examines the perfor-
mance of open-source LLMs in part-of-speech
(POS) tagging for Old Occitan, a historical
language characterized by non-standardized
orthography and significant diachronic vari-
ation. Through comparative analysis of two
distinct corpora—hagiographical and medical
texts—we evaluate how current models han-
dle the inherent challenges of processing a
low-resource historical language. Our findings
demonstrate critical limitations in LLM perfor-
mance when confronted with extreme ortho-
graphic and syntactic variability. We provide
detailed error analysis and specific recommen-
dations for improving model performance in
historical language processing. This research
advances our understanding of LLM capabili-
ties in challenging linguistic contexts while of-
fering practical insights for both computational
linguistics and historical language studies.

1 Introduction

Old Occitan, also known as Old Provençal, was
widely spoken from the 11th to the 16th century
across southern France, northeastern Spain, and
northwestern Italy (cf. Fig. 1(a)). This language
played a pivotal role in shaping both Romance
linguistics and medieval European literature, par-
ticularly through its renowned troubadour tradi-
tion. However, computational analysis and digital
preservation of Old Occitan face significant chal-
lenges, primarily due to the limited availability of
digitized manuscripts and annotated corpora com-
pared to contemporary medieval languages such
as Old French (Scrivner and Kübler, 2012). A
key obstacle in processing Old Occitan texts is
their pronounced orthographic variation, as illus-
trated in Figure 1(b) through the term abeurador

(a) Map of the Occitan-speaking region in southern France, north-
eastern Spain, and northwestern Italy.

(b) Graphical variations in spelling, exemplified by the term abeu-
rador, highlighting the challenges posed by non-standardized
orthography.

Figure 1: (a) Geographic distribution of Old Occitan
with its principal dialect zones (Sibille, 2024). (b) Or-
thographic diversity in Old Occitan texts, as evidenced
by multiple graphical variants of the same term, illus-
trating inherent challenges for modern LLMs.

(’watering place’), which exhibits substantial re-
gional and textual variations in spelling. These
variations, while historically significant, present
particular challenges for automated text processing
tasks such as Part-of-Speech (POS) tagging, which
is the focus of the present work.

The imperative for accurate POS tagging in low-
resource languages like Old Occitan extends be-
yond mere technical curiosity. POS tagging is a
foundational step in numerous natural language
processing (NLP) applications, from syntactic pars-
ing and information extraction to more advanced

334

mailto:matthias.schoeffel@badw.de


tasks in digital humanities. For historical lan-
guages, reliable tagging is critical not only for
linguistic analysis but also for reconstructing the
evolution of language, understanding regional vari-
ation, and supporting interdisciplinary research
that bridges history and computational methods.
Moreover, the performance of large language mod-
els (LLM) on such texts offers insights into the
adaptability of modern models when confronted
with non-standardized data – a challenge that re-
mains largely unaddressed in contemporary NLP
research.

In this study, we systematically evaluate a range
of LLMs using various prompting strategies – (a)
zero-shot, (b) few-shot, and (c) leveraging elabo-
rate instructions – on a corpus comprising 91,953
tokens. Beyond a mere exploration of current capa-
bilities, our work elucidates key factors influencing
model performance and offers a rigorous error anal-
ysis and practical recommendations to mitigate the
effects of input modifications and enhance POS
tagging accuracy.
Research Questions: Our study addresses the fol-
lowing research questions: RQ1: How effectively
can current LLMs perform POS tagging on Old
Occitan texts, given the challenges posed by non-
standardized orthography and sparse annotated re-
sources? (§5.1) RQ2: Which prompting strategy
– (a) zero-shot, (b) few-shot, and (c) leveraging
elaborate instructions – yields the most robust per-
formance on this low-resource, historical language?
(§5.2) RQ3: Which specific error patterns and
model biases emerge during POS tagging, and how
can these insights inform practical improvements?
(§6 and §7). By answering these questions, we aim
to bridge the gap between modern NLP techniques
and the nuanced demands of historical linguistics.
Contributions: We summarize our contributions
as follows:

1. We provide the first comprehensive evaluation
of multiple LLMs for POS tagging on Old
Occitan texts, establishing a robust baseline
for historical Romance languages.

2. We systematically compare concrete prompt-
ing strategies, including (a) zero-shot, (b) few-
shot, and (c) leveraging elaborate instructions,
to adapt LLMs to the irregularities of non-
standardized historical data.

3. We perform a detailed error analysis to un-
cover model-specific biases and limitations,
offering targeted recommendations to improve

POS tagging performance on low-resource
texts.

4. We release a novel POS Tagging dataset for
Old Occitan, along with our code and experi-
mental results, to facilitate future research in
historical NLP.1

2 Related work

POS tagging for low-resource languages presents
unique challenges that have gained increasing at-
tention in computational linguistics. Several ap-
proaches have emerged to address data scarcity
in these settings, with varying degrees of success.
Cardenas et al. (2019) proposed a grounded unsu-
pervised universal POS tagger for low-resource lan-
guages, framing tagging as a clustering problem fol-
lowed by decipherment-based grounding. This ap-
proach requires no labeled training data and demon-
strates reasonable performance across diverse lan-
guages. Building on this work, Plank et al. (2018)
demonstrated that integrating conventional lexical
information can significantly improve neural cross-
lingual POS tagging, suggesting that even small
amounts of symbolic lexical resources can be valu-
able when gold-standard corpora are unavailable.
However, Kann et al. (2020) challenged the effec-
tiveness of weakly supervised approaches for truly
low-resource languages. Their evaluation across 15
typologically diverse languages revealed that state-
of-the-art weakly supervised POS taggers perform
significantly worse under realistic resource con-
straints than previously reported, with accuracy be-
low 50% for most languages. This skepticism is fur-
ther supported by Moeller et al. (2021), who found
that the presence or absence of POS tags does not
significantly impact performance in morphological
learning tasks, with some cases showing improved
performance when POS tags were removed. For
endangered languages specifically, Anastasopou-
los et al. (2018) evaluated POS tagging techniques
on Griko, achieving 72.9% accuracy through com-
bined semi-supervised methods and cross-lingual
transfer. Similarly, Gore and Khatavkar (2022)
demonstrated success with the endangered Indian
tribal language Katkari, achieving 86.84% accu-
racy using Hidden Markov Models and the Viterbi
algorithm, suggesting that traditional statistical ap-
proaches remain viable for low-resource scenarios.
Recent work has focused particularly on languages
with dialectal variation. The creation of CorpusAr-

1https://github.com/msch38/occ_pos_tagging
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ièja by Poujade et al. (2024) provides a valuable re-
source for Occitan, containing 41,000 tokens with
POS tags and handling both dialectal and spelling
variations. Building on this, Hopton and Aepli
(2024) demonstrated that large multilingual models
can effectively handle dialectal variation in Occi-
tan without requiring spelling normalization, par-
ticularly when fine-tuned for POS tagging. More
recently, there have been efforts to ramp up the
availability of resources for Old Occitan, including
the creation of a digital version of the Old Occitan
dictionary 2at the Bavarian Academy of Sciences.
Building on handwritten resources, Garces Arias
et al. (2023) tackled automatic transcription, com-
bining a custom-trained Swin image encoder with
a BERT-based text decoder to enhance digitization
of Old Occitan spelling variations.

3 Data

Our benchmark comprises two corpora drawn from
distinct domains: a hagiographical text and a medi-
cal treatise. The former is represented by the Vida
de Sant Honorat, while the latter is embodied by
On surgery and instruments by Abū l-Qāsim al-
H. alaf al-Zahrāwı̄ (Albucasis).

For the hagiographical corpus, the primary
source is the manuscript Nouvelle Acquisi-
tion Française 6195 (NAF6195, also known as
manuscript M of the Vida de Sant Honorat), pre-
served at the Bibliothèque Nationale de France.
Dated to the 14th century and originating from
Provence, this manuscript was first digitised follow-
ing an archival visit. Its contents were then semi-
automatically transcribed using a handwritten text
recognition model specifically developed for Old
Occitan scripts (Wiedner, 2023) and subsequently
subjected to rigorous manual revision. A pre-
annotation step was performed with a modern Oc-
citan part-of-speech tagger (Poujade, In progress),
after which manual corrections were again applied.
The final corpus comprises 44,044 tokens and, to
our knowledge, has not previously underpinned
any extant editions of the Vida de Sant Honorat.
A notable linguistic feature of this text is the pres-
ence of graphical variants that markedly diverge
from those catalogued in the DOM (79,840 entries,
38,861 unique lemmas, and 40,979 graphical vari-
ants as of February 2025), as detailed in Table 1.

In contrast, the medical corpus is derived from

2DOM: Dictionnaire de l’occitan médiéval
http://www.dom-en-ligne.de/

On surgery and instruments by Albucasis. Origi-
nally composed in Arabic as one volume of the
thirty-volume medical encyclopedia commonly
known as al-Tasrif and dating from the late 10th
century, the text encompasses nearly 57 chapters
and 42,099 word tokens. It was later translated into
Latin by Gerard of Cremona at the Toledo School
of Translators (circa 1180 AD) and subsequently
into vernaculars, including Old French (mid-13th
century) and Old Occitan (second quarter of the
14th century). For our purposes, we employed an
existing electronic version of the Old Occitan edi-
tion (Elsheikh, 1992), originally compiled by P.T.
Ricketts, converted to TEI format by Dominique
Billy, and released in 2015 under a Creative Com-
mons licence (CC BY-NC-SA 4.0). This edition
is based on the manuscript preserved in the Bib-
liothèque de l’Université (Montpellier), Faculté de
médecine, 95. The treatise is distinguished by its
specialised technical vocabulary spanning surgery,
anatomy, pharmacy, botany, and zoology, and it in-
tegrates a mosaic of linguistic influences, including
Arabic, Latin, Greek, and vernacular elements. For
instance, the Arabic term taxmir (connoting ‘ble-
pharoplasty’)—derived from tašmir—is attested in
several graphical variants (e.g. atactini, ataxmir,
tactimi, tactinir, taxanir).

Both texts were manually annotated following
the Universal Dependencies framework3. The an-
notation scheme was constrained to 15 part-of-
speech categories (ADJ, ADP, ADV, AUX, CCONJ,
DET, INTJ, NOUN, NUM, PRON, PROPN,
PUNCT, SCONJ, VERB, and X) owing to the ab-
sence of the PART and SYM classes in both cor-
pora. Figure 2 illustrates the part-of-speech distri-
butions across the two texts.

New NAF6195 entry Available DOM entries

homps (engl. ‘man’) ome, om, omen, omne, hom, home
primpce (engl. ‘prince’) prince, princep, princip, princer
penedensia (engl. ‘penitence’) penedensa, pendensa, pentensa
ompnipotent (engl. ‘allmighty’) omnipotent, omnipoten

Table 1: Graphical variants vs. known (DOM) entries.

3.1 Models and Hardware

In this study, we evaluated eight distinct mod-
els. Our set comprises the COLaF model (Clérice,
2020; Manjavacas et al., 2019; Nédey et al., 2024;
Miletic et al., 2019) – a dedicated POS tagger
trained on modern Occitan – alongside seven open-

3https://universaldependencies.org/u/pos/
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Model Old Occitan Occitan French Spanish Italian Portuguese Romanian Arabic English
COLaF ✓

Phi4-14B ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mistral-7B ✓

Mistral-Nemo-12B ✓ ✓ ✓ ✓ ✓

Gemma2-9B ✓

Mixtral-8x7B ✓ ✓ ✓ ✓

Aya-8B ✓ ✓ ✓ ✓ ✓ ✓ ✓

Qwen2.5-14B ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Language support across seven open-source instruction-tuned models and COLaF, a dedicated model for
POS tagging of modern Occitan.

Figure 2: Distribution of Part-of-Speech (POS) tags for Albucasis (blue) and Vida de Sant Honorat (red).

source instruct models that exhibit varying levels
of support for Romance languages (Tab. 2). Specif-
ically, the instruct models include Phi4-14B (Ab-
din et al., 2024), Mistral-7B-Instruct-v0.2, Mistral-
Nemo-12B, Mixtral-8x7B (Jiang et al., 2023),
Gemma2-9B (Gemma-Team et al., 2024), Aya-8B
(Aryabumi et al., 2024), and Qwen2.5-14B (Qwen-
Team et al., 2025). Our experiments were con-
ducted employing an NVIDIA Tesla V100-16 GB.

4 Experimental setup

4.1 Prompting strategies

We explore three prompting strategies, each in-
creasing in contextual detail and specificity. The
simplest approach, Zero-shot, directly instructs the
model to assign Universal Dependencies Part-of-
Speech tags to each word—without any additional
context or expert framing. In Prompt A, the in-
structions are enhanced by explicitly positioning
the model as a Medieval Occitan language expert.
This prompt emphasizes strict token-by-token pro-
cessing, ensuring that punctuation is preserved and

that the order of words remains unchanged. Finally,
Prompt B builds upon the previous strategies by
incorporating rich linguistic context. It provides
explicit examples of spelling variations characteris-
tic of Medieval Occitan (such as variations in the
spelling of common words), guiding the model to
account for these variations during analysis. Table
5 in Appendix B provides a detailed description.

4.2 Metrics

To evaluate the performance of LLMs in POS tag-
ging for Old Occitan, we focus on widely-used
metrics: Accuracy, Precision, Recall and F1-score.
Further, we measure the ratio of correctly POS-
tagged phrases. A detailed overview on the metrics
is provided in Appendix A.

5 Results

Our extensive evaluation of POS tagging in Old
Occitan was performed using two datasets with
distinct characteristics. The NAF6195 dataset is an-
notated from a challenging, non-standardized script
with 28% unknown vocabulary, whereas Albucasis,
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Figure 3: Accuracy heatmap for models and prompting strategies. Results on the left correspond to the NAF6195
dataset and on the right to Albucasis.

Figure 4: Accuracy distribution across different prompting strategies and datasets. Results on the left correspond to
the NAF6195 dataset and on the right to Albucasis.

a publicly available resource, exhibits a slightly
lower rate of unknown tokens (25%). Tables 6
and 7 (Appendix C) provide a comprehensive sum-
mary of POS tagging performance for a diverse set
of models and prompting strategies.

5.1 Comparative Performance Across
Datasets

Overall, the models achieve higher absolute perfor-
mance on Albucasis compared to NAF6195. For
example, the COLaF baseline, which does not uti-
lize prompting, registers an accuracy of 0.80 on
Albucasis compared to 0.66 on NAF6195. Similar

trends are observed across micro-averaged Preci-
sion, Recall, and F1-score. This divergence is likely
attributable to the increased orthographic variabil-
ity and a larger proportion of unknown vocabulary
in NAF6195. Figure 3 further highlights this dis-
crepancy by visualizing the distribution of accuracy
scores, revealing a broader spread and lower central
tendency for NAF6195.

5.2 Influence of Prompting Strategies

Three prompting configurations were examined:
Zero-shot, Prompt A, and Prompt B. In the
NAF6195 dataset, a progressive increase in me-
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POS Class Accuracy Precision Recall F1-score

NAF6195 Albucasis NAF6195 Albucasis NAF6195 Albucasis

ADJ 0.60 0.60 0.49 0.58 0.53 0.59 0.50
ADP 0.79 0.86 0.95 0.79 0.74 0.81 0.83
ADV 0.51 0.53 0.51 0.38 0.53 0.42 0.51
AUX 0.58 0.41 0.49 0.91 0.71 0.39 0.55
CCONJ 0.77 0.94 0.95 0.62 0.79 0.74 0.85
DET 0.78 0.59 0.72 0.71 0.79 0.63 0.75
INTJ 0.11 0.00 0.11 0.06 0.27 0.00 0.13
NOUN 0.83 0.77 0.84 0.76 0.80 0.76 0.81
NUM 0.69 0.47 0.61 0.39 0.75 0.39 0.65
PRON 0.47 0.57 0.71 0.40 0.46 0.46 0.53
PROPN 0.48 0.42 0.12 0.45 0.59 0.42 0.10
PUNCT 0.99 0.72 0.99 0.59 0.58 0.56 0.70
SCONJ 0.64 0.37 0.60 0.68 0.61 0.43 0.57
VERB 0.65 0.81 0.75 0.68 0.57 0.71 0.64
X 0.03 – 0.01 – 0.02 – 0.01

Table 3: Aggregated performance on UD POS tagging classes across datasets, models, and prompting strategies.
The highest scores are highlighted in green , while lowest scores are highlighted in red .

dian accuracy is evident from Zero-shot (0.65) to
Prompt B (up to 0.68 for some models), yet the
associated variance also increases markedly (cf.
Figure 4). This suggests that while Prompt B can
boost performance, it does so at the cost of reli-
ability. Conversely, in the Albucasis dataset, de-
spite an overall high variability across prompting
configurations, Prompt A emerges as the more bal-
anced strategy. The data in Figure 5 indicate that
competitive results are attained by combinations
such as Phi4-14B in both Zero-shot and Prompt
A modes, COLaF’s baseline performance, as well
as Qwen2.5-14B and Gemma2 when used with
Prompt B. These observations underscore that the
optimal prompting strategy is highly contingent on
dataset-specific properties.

5.3 POS Class-Level Insights

A more granular analysis is provided by the perfor-
mance metrics on the POS-Tagging class level (cf.
Table 3). High-frequency tags such as NOUN and
VERB are consistently identified with accuracies of
0.83 and 0.65, respectively, and benefit from robust
micro-averaged scores. In contrast, low-frequency
tags such as INTJ yield extremely low accuracies
(0.11 on NAF6195) and F1-scores that frequently
approach zero, indicating a systemic difficulty in
recognizing these classes. Moreover, classes like
AUX and PROPN exhibit considerable discrepan-
cies between macro- and micro-averaged metrics,
hinting at a performance imbalance where errors in
infrequent classes are overshadowed by successes
in common ones.

5.4 Model Size and Sensitivity Effects
Our study also examines the effect of model scale
on tagging performance. Models with larger param-
eter counts, such as Phi4-14B (14 billion param-
eters), generally outperform smaller counterparts
like Aya-8B (8 billion parameters) across several
metrics. Nonetheless, this relationship is moder-
ated by the choice of prompting strategy as well
as the supported languages (as illustrated in Table
2). Sensitivity analyses (cf. Figures 6 and 7 in
Appendix D) reveal that models including Mistral-
7B, Mistral-Nemo-12B, and Aya-8B display height-
ened responsiveness to the selected prompting con-
figuration, leading to pronounced fluctuations in
accuracy and F1-score. Finally, the fact that the
mixture-of-experts model, Mixtral-8x7B, does not
outperform other competing architectures is an in-
dicator that size alone is not a determinant for en-
hanced POS tagging accuracy.

5.5 Interplay Between Model Architecture
and Data Characteristics

A deeper dive into the inter-model performance
comparison reveals that models pre-trained on re-
lated high-resource languages (e.g., French, Span-
ish) exhibit improved robustness when applied to
Old Occitan. This is particularly evident in the
performance of Phi4-14B and COLaF, which not
only deliver competitive results in the Zero-shot
setup but also maintain stability when prompted.
The variability seen in models like Mistral-7B, es-
pecially with Prompt B in the NAF6195 dataset,
suggests that the underlying architecture and pre-
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(a) Accuracy vs. Prompting for the NAF6195 dataset. (b) Accuracy vs. Prompting for the Albucasis dataset.

Figure 5: Accuracy across phrases vs. choice of prompting strategies for the NAF6195 and Albucasis datasets.

training corpus substantially influence model be-
havior in low-resource settings. Trends depicted in
Figures 8 and 9 (Appendix E) further corroborate
that both model and dataset characteristics jointly
determine performance.

6 Error Analysis

In this section, we elucidate underlying causes of
misclassifications and identify trends that could
inform future improvements.

6.1 POS Class-Specific Error Dynamics

The analysis of Table 3 reveals a marked dispar-
ity in performance across different POS classes.
High-frequency classes such as NOUN and ADP
generally yield high precision and recall; how-
ever, classes like INTJ and AUX exhibit critical
shortcomings. For instance, the INTJ category in
NAF6195 shows an accuracy of merely 0.11, with
Precision and Recall values that fail to reach op-
erational thresholds. Such underperformance is
indicative of the insufficient representation of these
classes during training, compounded by their in-
herent linguistic ambiguity. Additionally, classes
like PROPN display a stark contrast between the
two datasets—where Albucasis records a preci-
sion as low as 0.12 compared to a higher value in
NAF6195—suggesting that contextual or corpus-
specific factors play a predominant role in POS
class classification.

6.2 Dataset-Specific Error Patterns

The divergence in error profiles between NAF6195
and Albucasis is noteworthy. The NAF6195
dataset’s challenging orthographic variations lead
to lower overall scores, particularly affecting tags
that rely on morphological subtleties (e.g., ADJ,

ADV). The higher proportion of unknown vocab-
ulary in NAF6195 exacerbates misclassification
rates, as evidenced by lower Recall and F1-scores
across multiple classes. Conversely, while Albu-
casis exhibits a generally higher baseline perfor-
mance, its variability remains high; this is partic-
ularly evident when contrasting the more stable
outcomes from Prompt A with the erratic perfor-
mance of Prompt B. Such dataset-specific discrep-
ancies might indicate the necessity for tailored pre-
processing and normalization strategies.

6.3 Cross-lingual transfer and input
modifications

A striking outcome of our analysis is that the
best-performing model, Phi4, achieves superior
POS tagging accuracy despite modifying the in-
put text more frequently and occasionally omit-
ting certain words. In contrast, Mistral—although
it tends to preserve the input text more faith-
fully—consistently exhibits lower accuracy. Phi4
has been trained on multilingual corpora, and our
results (Table 4) suggest that it leverages its expo-
sure to Romance languages (including modern Oc-
citan) more effectively, indicating a case of Cross-
lingual Transfer Learning (CLTL). Intuitively, one
might expect that higher rates of textual modifica-
tion or omission would yield poor performance;
however, the behavior of Phi4 indicates that strate-
gic alterations, informed by multilingual training
data, can result in accurate classifications. An il-
lustrative example is the term ancian (English: el-
derly), which Mistral retains in its original form but
misclassifies, whereas Phi4 transforms it into an-
cià (from Catalan) and correctly classifies it. This
underscores the potential of CLTL, together with
prompt engineering strategies that minimize omis-
sions, such as Zero-shot and Prompt A.
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Dataset Model Prompt Average Levenshtein Proportion Changed Proportion Missing Average Accuracy

NAF6195

Mistral-7B
Zero-shot 0,97 0,06 0,02 0,65
Prompt A 0,97 0,05 0,02 0,63
Prompt B 0,96 0,07 0,03 0,59

Phi4-14B
Zero-shot 0,91 0,15 0,07 0,75
Prompt A 0,84 0,23 0,13 0,75
Prompt B 0,87 0,20 0,11 0,73

Albucasis

Mistral-7B
Zero-shot 0,94 0,10 0,05 0,70
Prompt A 0,94 0,11 0,05 0,71
Prompt B 0,91 0,13 0,08 0,72

Phi4-14B
Zero-shot 0,90 0,15 0,08 0,84
Prompt A 0,87 0,19 0,11 0,82
Prompt B 0,86 0,20 0,12 0,80

Table 4: Comparison of Phi4-14B and Mistral-7B in terms of the ratio of changes of original input text, the ratio of
omissions, and average accuracy, across the NAF6195 and Albucasis datasets.

6.4 Impact of Prompting Variability on
Errors

The choice of prompting strategy considerably af-
fects error propagation. In the NAF6195 dataset,
while Prompt B occasionally produces higher me-
dian accuracies, it also results in a larger spread of
errors, as seen in the increased variance of accuracy
(Figure 8). This instability is less pronounced in
Zero-shot and Prompt A configurations, which con-
sistently produce more reliable outputs. In models
with higher sensitivity—specifically Mistral-7B,
Mistral-Nemo-12B, and Aya-8B—errors are fur-
ther magnified when suboptimal prompting is em-
ployed. The analysis thus suggests that a careful
balance must be struck between leveraging the po-
tential gains of a targeted prompt and maintaining
overall model robustness.

6.5 Error Propagation Across Model
Architectures

Our sensitivity analysis, as depicted in Figures 6
and 7, indicates that the propagation of errors is not
uniformly distributed across model architectures.
Larger models such as Phi4-14B tend to contain er-
rors within lower-frequency POS classes, whereas
smaller or more sensitive models show a broader
dispersion of misclassifications. The inherent vari-
ability in performance, particularly under Prompt
B conditions, suggests that model architecture and
pre-training corpus composition are critical deter-
minants of error propagation in low-resource lan-
guage processing.

7 Practical Recommendations

Drawing on the detailed results and error analyses,
we propose several recommendations to optimize
POS tagging in Old Occitan. Our suggestions ad-

dress model selection, pre-processing strategies,
and the tuning of prompting configurations.

7.1 Pre-processing and CLTL

To address the challenges posed by non-standard
orthography and high rates of unknown vocabu-
lary, solutions such as integrating pre-processing
pipelines might be considered. Techniques such as
orthographic normalization, vocabulary expansion
using external resources like the DOM (Diction-
naire de l’Occitan Mediéval), and context-aware
tokenization are recommended. Further, we ob-
serve that models that are exposed to languages of
the same family tend to exhibit higher robustness
toward spelling and prompting variations. These
steps might reduce error rates in classes that re-
quire subtle morphological distinctions and im-
prove overall tagging performance.

7.2 Optimizing Prompting Strategies

The data clearly indicate that the choice of prompt-
ing strategy influences model outcomes substan-
tially. For datasets with high orthographic variabil-
ity, such as NAF6195, while Prompt B can offer
higher median accuracy, its increased variance ne-
cessitates cautious deployment. In contrast, Prompt
A has demonstrated a better balance between per-
formance and stability in Albucasis. Practitioners
are advised to experiment with multiple prompting
configurations during development and to select
the one that offers the best trade-off between ac-
curacy and consistency. Furthermore, automated
prompt tuning and cross-validation across multi-
ple runs can help in identifying the most robust
configuration for a given dataset.
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7.3 Model Selection and Configuration
For practitioners aiming to deploy robust POS tag-
ging systems, our findings recommend prioritizing
models that demonstrate consistent performance
across both Zero-shot and prompted configurations.
Models like Phi4-14B and COLaF exhibit superior
performance and stability, making them prime can-
didates for further refinement. Given that larger
models tend to perform better but may incur higher
computational costs, the choice should balance re-
source availability with performance needs. Sen-
sitivity analyses further suggest avoiding overly
sensitive models, such as Mistral-7B and Aya-8B,
unless ensemble methods or targeted fine-tuning
strategies are employed to mitigate their variability.

8 Conclusion

This study provides the first systematic evaluation
of LLMs for POS tagging in Old Occitan, a highly
non-standardized and low-resource historical lan-
guage. Our findings reveal that while larger models
demonstrate some ability to generalize, all tested
LLMs struggle with morphological and syntactic
inconsistencies due to the lack of training data in
similar linguistic contexts. Prompting strategies
such as few-shot learning show potential for im-
proving tagging accuracy, yet challenges remain in
fine-tuning models for historical text understand-
ing. Furthermore, our error analysis highlights
specific areas where LLMs perform poorly, such
as handling orthographic variation and a low de-
gree of cross-lingual transfer learning. The insights
gained from this work pave the way for further re-
search in historical NLP, emphasizing the need for
better-prepared training datasets and refined evalu-
ation methodologies tailored to non-standardized
languages. In future work, we plan to extend our
analysis to other low-resource languages, includ-
ing Old French and Medieval Latin, and evaluate
the effect of fine-tuning and choice of decoding
strategies over the POS tagging quality.

Limitations

While this study offers valuable insights into the
application of modern natural language processing
techniques to historical, low-resource languages,
several limitations must be acknowledged.
Firstly, the analysis is based on a dataset comprised
solely of archival Old Occitan texts. Despite consid-
erable efforts to expand the corpus of Old Occitan
material (Garces Arias et al., 2025), the inherent

scarcity of such sources inevitably constrains the
generalisability of our findings.
Secondly, our evaluation was restricted to eight
open-source models. Consequently, the per-
formance and potential of additional architec-
tures—and notably, proprietary models—remain to
be assessed.
Thirdly, our choice of open-source models was ad-
ditionally limited due to the hardware requirements.
Larger models like Llama 3.3 could therefore not
be investigated.
Fourthly, although three prompting strategies of
progressively increasing complexity were explored,
alternative prompting designs merit further inves-
tigation. In particular, the impacts of varying tok-
enization procedures and the potential benefits of
fine-tuning with dedicated Old Occitan corpora are
avenues for future research.
Finally, the influence of decoding strategies on the
quality of part-of-speech tagging predictions was
not fully explored, representing an additional di-
mension for subsequent studies.

Ethics Statement

This work involves the use of publicly available
datasets and does not involve human subjects or
any personally identifiable information. We declare
that we have no conflicts of interest that could po-
tentially influence the outcomes, interpretations, or
conclusions of this research. All funding sources
supporting this study are acknowledged in the ac-
knowledgments section. We have made our best
effort to document our methodology, experiments,
and results accurately and are committed to shar-
ing our code, data, and other relevant resources to
foster reproducibility and further advancements in
research.

Acknowledgments

We would like to express our sincere gratitude to
Viola Baltzer and Verena Harrer for their valuable
assistance in preparing and annotating our datasets.
Matthias Aßenmacher was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation) under the National Research Data In-
frastructure – NFDI 27/1 - 460037581. Addition-
ally, we thank the Leibniz-Rechenzentrum der Bay-
erischen Akademie der Wissenschaften (LRZ) for
providing computational resources essential for this
research.

342



References
Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien

Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J. Hewett, Mojan Javaheripi, Piero
Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li,
Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric
Price, Gustavo de Rosa, Olli Saarikivi, Adil Salim,
Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli
Yu, Cyril Zhang, and Yi Zhang. 2024. Phi-4 technical
report. Preprint, arXiv:2412.08905.

Antonios Anastasopoulos, Maria B. Lekakou, Josep
Quer, Eleni Zimianiti, Justin DeBenedetto, and David
Chiang. 2018. Part-of-speech tagging on an endan-
gered language: a parallel griko-italian resource. In
International Conference on Computational Linguis-
tics.

Viraat Aryabumi, John Dang, Dwarak Talupuru,
Saurabh Dash, David Cairuz, Hangyu Lin, Bharat
Venkitesh, Madeline Smith, Jon Ander Campos,
Yi Chern Tan, Kelly Marchisio, Max Bartolo, Se-
bastian Ruder, Acyr Locatelli, Julia Kreutzer, Nick
Frosst, Aidan Gomez, Phil Blunsom, Marzieh Fadaee,
Ahmet Üstün, and Sara Hooker. 2024. Aya 23:
Open weight releases to further multilingual progress.
Preprint, arXiv:2405.15032.

Ronald Cardenas, Ying Lin, Heng Ji, and Jonathan May.
2019. A grounded unsupervised universal part-of-
speech tagger for low-resource languages. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 2428–2439, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Thibault Clérice. 2020. Pie extended, an extension for
pie with pre-processing and post-processing.

Mahmoud Salem Elsheikh, editor. 1992. Abū’l Qāsim
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Appendix

A Metrics

Accuracy Accuracy measures the proportion of correctly predicted POS tags over the total number of
tags:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP , TN , FP , and FN represent true positives, true negatives, false positives, and false negatives,
respectively.

Precision Precision evaluates the proportion of correctly predicted POS tags among all predicted
instances of a given tag:

Precision =
TP

TP + FP
(2)

Recall Recall measures the proportion of correctly predicted POS tags out of all actual instances of that
tag:

Recall =
TP

TP + FN
(3)

F1-score The F1-score provides a balance between precision and recall and is defined as:

F1-score = 2× Precision × Recall
Precision + Recall

(4)

Averaging in a Multiclass Setting Given that POS tagging is a multiclass task, the evaluation metrics
are computed using different averaging strategies:

• Micro Averaging: This method aggregates the contributions of all classes by summing the individual
true positives, false positives, and false negatives across all classes. The metrics are then computed
from these global counts. As a result, micro averaging is particularly sensitive to the performance on
frequent classes.

• Macro Averaging: In this approach, the metric is computed independently for each class, and the
final score is obtained by taking the arithmetic mean of these per-class metrics. This gives equal
weight to each class, thus emphasizing performance on both common and rare classes.

• Weighted Averaging: Here, each class’s metric is weighted by its support (i.e., the number of true
instances). The overall metric is computed as a weighted average of the individual class scores,
thereby reflecting the class distribution in the dataset.

RCPTP: Ratio of Correctly POS-Tagged Phrases This metric measures the proportion of phrases
without POS Tagging errors:

RCPTP =
Number of correct phrases
Total number of phrases

(5)

This metric provides insights into how well LLMs refine and improve initial POS tagging predictions.
Note that the term sentence or phrase is highly ambiguous; we find many different definitions ranging
from purely pragmatical or semantical approaches to graphical or intonational definitions (Mieszkowski,
2019). For the purpose of this paper, we employed a syntactical definition based on punctuation: all words
between two periods are seen as belonging to one phrase.
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B Prompting Strategies

Prompting Strategy Prompt
Zero-shot Analyze the provided text and assign to each word Universal Dependencies Part-

of-Speech tags: “ADJ", “ADP", “ADV", “AUX", “CCONJ", “DET", “INTJ",
“NOUN", “NUM", “PRON", “PROPN", “PUNCT", “SCONJ", “VERB", “X".
Return the results as a JSON array of objects, each containing only the ’word’
and ’upos’ keys. The output must be only the JSON array without any additional
text, explanations, or formatting.

Prompt A You are a Medieval Occitan language expert. Analyze the provided text and as-
sign to each word Universal Dependencies Part-of-Speech tags: “ADJ", “ADP",

“ADV", “AUX", “CCONJ", “DET", “INTJ", “NOUN", “NUM", “PRON",
“PROPN", “PUNCT", “SCONJ", “VERB", “X". Do not add or remove punctua-
tion or tokens. Ensure to process token by token. Ensure that the order of words
in the text is kept for the output. Return the results as a JSON array of objects,
each containing only the ’word’ and ’upos’ keys. The output must be only the
JSON array without any additional text, explanations, or formatting. Ensure
that the JSON array is properly closed.

Prompt B You are a medieval Occitan language expert specializing in linguistic analysis.
This language is related to Catalan and Latin. In this text there is a high variety
of spelling variations having the same meaning
This is an example for spelling variation:
homps, ome, om, omen, omne, hom, home.
Another example is:
acayson, achaison, acheison, acheson, aqueison, caiso, caison, cason, cayson,
chaizo, queison or gaug, gauc, gautz, jau, jauvi.
Your task is to analyze the given text and assign Universal Dependencies Part-
of-Speech (UD POS) tags to each word.
Return the results as a JSON array of objects, each containing only the ’word’
and ’upos’ keys.
Ensure that the JSON array is properly formatted and closed.
The output must be only the JSON array without any additional text, explana-
tions, or formatting

Table 5: Comparison of different prompting strategies for UD POS tagging.
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C Dataset POS Tagging performance

Model Accuracy Precision Recall F1-score

micro macro wavg micro macro wavg micro macro wavg

COLaF 0.66 0.66 0.60 0.67 0.66 0.61 0.66 0.66 0.58 0.65

Phi4-14B (Zero-shot) 0.75 0.75 0.65 0.77 0.75 0.68 0.75 0.75 0.66 0.75
Phi4-14B (Prompt A) 0.75 0.75 0.64 0.76 0.75 0.67 0.75 0.75 0.64 0.74
Phi4-14B (Prompt B) 0.73 0.73 0.63 0.75 0.73 0.62 0.61 0.73 0.61 0.73

Mistral-7B (Zero-shot) 0.65 0.65 0.55 0.67 0.65 0.58 0.65 0.65 0.56 0.65
Mistral-7B (Prompt A) 0.63 0.63 0.55 0.67 0.63 0.56 0.63 0.63 0.54 0.64
Mistral-7B (Prompt B) 0.59 0.59 0.48 0.62 0.59 0.47 0.59 0.59 0.41 0.59

Mistral-Nemo-12B (Zero-shot) 0.66 0.66 0.53 0.71 0.66 0.59 0.66 0.66 0.51 0.67
Mistral-Nemo-12B (Prompt A) 0.69 0.69 0.60 0.73 0.69 0.69 0.68 0.69 0.58 0.69
Mistral-Nemo-12B (Prompt B) 0.68 0.68 0.54 0.71 0.68 0.60 0.68 0.68 0.51 0.68

Gemma2-9B (Zero-shot) 0.65 0.65 0.50 0.68 0.65 0.55 0.65 0.65 0.48 0.65
Gemma2-9B (Prompt A) 0.68 0.68 0.55 0.70 0.68 0.58 0.67 0.68 0.55 0.68
Gemma2-9B (Prompt B) 0.70 0.70 0.65 0.72 0.70 0.60 0.70 0.70 0.60 0.69

Mixtral-8x7B (Zero-shot) 0.65 0.65 0.60 0.69 0.65 0.56 0.65 0.65 0.56 0.66
Mixtral-8x7B (Prompt A) 0.67 0.67 0.56 0.70 0.67 0.57 0.67 0.67 0.55 0.68
Mixtral-8x7B (Prompt B) 0.67 0.67 0.59 0.70 0.67 0.57 0.67 0.67 0.57 0.68

Aya-8B (Zero-shot) 0.60 0.60 0.50 0.67 0.60 0.46 0.60 0.60 0.44 0.62
Aya-8B (Prompt A) 0.61 0.61 0.53 0.66 0.61 0.56 0.61 0.61 0.52 0.62
Aya-8B (Prompt B) 0.57 0.57 0.52 0.65 0.57 0.52 0.57 0.57 0.49 0.58

Qwen2.5-14B (Zero-shot) 0.66 0.66 0.60 0.72 0.66 0.59 0.66 0.66 0.56 0.67
Qwen2.5-14B (Prompt A) 0.70 0.70 0.63 0.75 0.70 0.64 0.70 0.70 0.61 0.71
Qwen2.5-14B (Prompt B) 0.72 0.72 0.65 0.75 0.72 0.61 0.72 0.72 0.61 0.71

Table 6: Average scores across all models for the NAF6195 dataset. The highest scores are highlighted in green ,

while lowest scores are highlighted in red .

Model Accuracy Precision Recall F1-score

micro macro wavg micro macro wavg micro macro wavg

COLaF 0.80 0.80 0.61 0.81 0.80 0.65 0.80 0.80 0.61 0.80

Phi4-14B (Zero-shot) 0.84 0.84 0.67 0.87 0.84 0.77 0.84 0.84 0.69 0.85
Phi4-14B (Prompt A) 0.82 0.82 0.67 0.85 0.82 0.74 0.82 0.82 0.67 0.83
Phi4-14B (Prompt B) 0.80 0.80 0.65 0.82 0.80 0.73 0.80 0.80 0.66 0.80

Mistral-7B (Zero-shot) 0.70 0.70 0.57 0.75 0.70 0.63 0.70 0.70 0.55 0.70
Mistral-7B (Prompt A) 0.71 0.71 0.55 0.76 0.71 0.64 0.71 0.71 0.54 0.72
Mistral-7B (Prompt B) 0.72 0.72 0.63 0.77 0.72 0.58 0.72 0.72 0.56 0.73

Mistral-Nemo-12B (Zero-shot) 0.71 0.71 0.57 0.75 0.71 0.68 0.71 0.71 0.58 0.72
Mistral-Nemo-12B (Prompt A) 0.76 0.76 0.62 0.82 0.76 0.66 0.76 0.76 0.57 0.76
Mistral-Nemo-12B (Prompt B) 0.67 0.67 0.54 0.74 0.67 0.65 0.67 0.66 0.56 0.68

Gemma2-9B (Zero-shot) 0.72 0.72 0.55 0.75 0.72 0.56 0.72 0.72 0.51 0.71
Gemma2-9B (Prompt A) 0.75 0.75 0.57 0.78 0.75 0.62 0.75 0.75 0.55 0.74
Gemma2-9B (Prompt B) 0.73 0.73 0.66 0.77 0.73 0.60 0.73 0.73 0.59 0.71

Mixtral-8x7B (Zero-shot) 0.75 0.75 0.59 0.77 0.74 0.63 0.75 0.75 0.58 0.75
Mixtral-8x7B (Prompt A) 0.78 0.78 0.60 0.79 0.78 0.65 0.78 0.78 0.60 0.78
Mixtral-8x7B (Prompt B) 0.79 0.79 0.66 0.80 0.79 0.68 0.79 0.79 0.66 0.79

Aya-8B (Zero-shot) 0.69 0.69 0.49 0.76 0.69 0.57 0.69 0.69 0.48 0.71
Aya-8B (Prompt A) 0.71 0.71 0.57 0.79 0.71 0.67 0.71 0.71 0.56 0.73
Aya-8B (Prompt B) 0.75 0.75 0.60 0.81 0.75 0.66 0.75 0.75 0.57 0.75

Qwen2.5-14B (Zero-shot) 0.79 0.79 0.64 0.86 0.79 0.75 0.79 0.86 0.79 0.82
Qwen2.5-14B (Prompt A) 0.77 0.77 0.60 0.84 0.77 0.73 0.77 0.77 0.59 0.79
Qwen2.5-14B (Prompt B) 0.79 0.79 0.68 0.81 0.79 0.75 0.79 0.79 0.68 0.79

Table 7: Average scores across all models for the Albucasis dataset. The highest scores are highlighted in green ,

while lowest scores are highlighted in red .
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D Model sensitivity

Figure 6: Range of accuracy (Max - Min) per model across prompts.

Figure 7: Range of F1-score (Max - Min) per model across prompts.
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E Further results

Figure 8: Accuracy behavior vs. choice of prompting strategies.

Figure 9: F1-score behavior vs. choice of prompting strategies.
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