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Abstract

Knowledge Graph Embedding (KGE) methods
are widely used to map entities and relations
from knowledge graphs (KGs) into continuous
vector spaces, enabling non-classical reasoning
over knowledge structures. Despite their effec-
tiveness, the uncertainty of KGE methods has
not been extensively studied in the literature.
This gap poses significant challenges, partic-
ularly when deploying KGE models in high-
stakes domains like medicine, where reliability
and risk assessment are critical. This disserta-
tion seeks to investigate various types of uncer-
tainty in KGE methods and explore strategies to
quantify, mitigate, and reason under uncertainty
effectively. The outcomes of this research will
contribute to enhancing the reliability of KGE
methods, providing greater confidence in their
use beyond benchmark datasets, and support-
ing their application in real-world, high-stakes
domains.

1 Introduction

Knowledge graphs (KGs) encode factual knowl-
edge about real-world entities and their relation-
ships, represented as triples <head entity, predicate,
tail entity>. These structures provide semantically
rich information, playing a crucial role in advanc-
ing intelligent systems (Lenat and Feigenbaum,
2000). Ontologies and logic rules, as standard
knowledge representation formalisms, are com-
monly used to reason about the semantics in KGs
(Hogan et al., 2021). However, management and
updating of rules can be cumbersome and the inher-
ently symbolic nature of such systems complicates
their integration with machine learning tasks.

Knowledge graph embedding (KGE) methods
map entities and predicates into numerical vec-
tors (a.k.a embeddings), providing non-classical
reasoning capability by exploiting similarities and
analogies over knowledge structure (Wang et al.,
2017; Zhu et al., 2024a). While KGE methods have

demonstrated effectiveness in various downstream
tasks, including triple classification (Socher et al.,
2013), link prediction (Bordes et al., 2013; Nickel
et al., 2011) and recommendation (Liu et al., 2019),
the uncertainty of KGE methods remains largely
under-explored.

Handling uncertainty in KGE methods is critical
because KGE models often encounter significant
uncertainty in their predictions (predictive uncer-
tainty) (Zhu et al., 2024a,b). This predictive uncer-
tainty can stem from several procedures throughout
the KGE pipeline shown in Figure 1. During KG
construction, noise and errors may arise from in-
consistent or ambiguous data aggregated from mul-
tiple sources (Zhou et al., 2022), or from inaccurate
automated knowledge extraction processes (Zhou
et al., 2021). Additionally, some knowledge is in-
herently uncertain, such as molecular interactions,
which are random process by nature (Szklarczyk
et al., 2016). This uncertainty, associated with KGs
before training the KGE model, is referred to as
knowledge uncertainty. Furthermore, algorithmic
uncertainty can emerge during model development,
caused by randomness and variability in the KGE
training process.

Understanding and dealing with these types of
uncertainty is especially critical in high-stakes do-
mains such as medicine, where reliable predictions
and robust risk assessment are imperative. De-
spite the relevance, research on uncertainty in KGE
methods remains limited. For instance, studies by
He et al. (2015); Xiao et al. (2015); Wang et al.
(2022) model algorithmic uncertainty and predic-
tive uncertainty using probabilistic embeddings.
While these approaches have improved overall ac-
curacy, the quality of the modeled uncertainty has
not been systematically studied. Moreover, these
methods often demand additional parameters, incur
high computational costs due to the need for cal-
culating distance between probability distribution,
and are challenging to adapt to other KGE methods
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Figure 1: This figure illustrates the three key stages in the KGE pipeline and their associated uncertainties: (1)
Knowledge Uncertainty arises during knowledge graph construction due to noise, errors, and inherent randomness
in the knowledge sources; (2) Algorithmic Uncertainty is introduced during KGE development through randomized
initialization, batch sampling, and negative sampling, leading to variations in the resulting models; and (3) Predictive
Uncertainty, which occurs in the deployment of a pre-trained KGE model, refers to the model’s confidence in its
predictions for a given query.

without substantial modifications.
To address these gaps, this dissertation plans

to systematically explore various types of uncer-
tainty in KGE methods and aim to propose model-
agnostic and easy-to-implement approaches to deal
with uncertainty. The remainder of this disserta-
tion proposal is structured as follows: Section 2
provides an overview of KGE methods and related
work relevant to this research. Section 3 details the
research questions and the proposed methodologies
to address them. Section 4 concludes the proposal
and outlines the anticipated contributions.

2 Background

2.1 Knowledge Graph Embedding

A KG G is a labelled directed graph, which can be
viewed as a set of triples T ⊆ E ×R× E , where
E is the set of entities, and R is the set of pred-
icates. An entity represents a real-world object.
Often the labels of entities and predicates are cho-
sen to be URIs or IRIs (Internationalised Resource
Identifiers). The elements in G are called triples
and denoted as ⟨h, r, t⟩, where h ∈ E is the subject,
r ∈ R is the predicate, and t ∈ E is the object.

A KGE model Mθ : E × R × E → R assigns
a score to each triple, measuring the plausibility
that the triple holds. Concretely, there are three key

components of a KGE model: embedding mapping,
score function and embedding training (Cao et al.,
2022).

Embedding Mapping. In the embedding map-
ping process, entities and predicates are mapped
into vector representations. For example, TransE
(Bordes et al., 2013) map them into Euclidean
space, while others map them into alternative math-
ematical spaces, such as complex space (Sun et al.,
2019) or hyperbolic space (Balazevic et al., 2019;
Xiong et al., 2022). Let h, r and t denote the vector
representation of entities and predicates in a triple.

Score Function. The score function, denoted
as s(h, r, t), then calculates a plausibility score
for the triple based on the vector representations.
For example, the translation-based scoring func-
tion s(h, r, t) = −||h + r − t||1/2 is widely used
to measure the plausibility that a triple is positive
(Bordes et al., 2013). More scoring functions are
summarized in Table 1.

Embedding Training. The parameters θ are
learned to let Mθ assign higher plausibility scores
to positive triples (real facts) while assigning lower
plausibility scores to negative triples (false facts).
Training begins with random initialization of θ and
then minimizes a loss function, such as margin-
based ranking loss (Bordes et al., 2013) or cross-
entropy loss (Nickel et al., 2011; Dettmers et al.,
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Score Function s(⟨h, r, t⟩)
TransE (Bordes et al., 2013) −||h+ r− t||1/2

RotatE (Sun et al., 2019) −||h ◦ r− t||p
RESCAL (Nickel et al., 2011) hTMrt
DistMult (Yang et al., 2015) hTdiag(r)t

ComplEx (Trouillon et al., 2016) Re(hTdiag(r)t)

ConvE (Dettmers et al., 2018) f(vec(f([h; r] ∗ ω))W)t

Table 1: The score function of KGE models, where ◦
denotes Hadamard product. · refers to conjugate for
complex vectors in ComplEx, and 2D reshaping for real
vectors in ConvE. ∗ is operator for 2D convolution. ω is
the filters and W is the parameters for 2D convolutional
layer.

2018). Since ground truth negative triples are typ-
ically unavailable in KGs, they are generated by
corrupting positive triples during training. A com-
mon approach involves replacing the head or tail
entity in an observed triple with a random entity
sampled from E .

2.2 Downstream Tasks and Evaluation
The quality of learned embeddings is commonly
assessed through two primary tasks: triple classi-
fication and link prediction (Bordes et al., 2013),
with their performance measured using specific
evaluation metrics.

Triple Classification. The goal of triple classifi-
cation is to determine whether a given triple is true
or false. The model uses the learned embeddings
to compute plausibility scores and classify triples
accordingly. Performance is evaluated using stan-
dard binary classification metrics, such as accuracy,
precision, recall, and F1 score.

Link Prediction. Link prediction is essentially
a ranking task aimed at answering a given query,
such as ⟨h, r, ?⟩ or ⟨?, r, t⟩. The model ranks poten-
tial triples ⟨h, r, e⟩ or ⟨e, r, t⟩, where e ∈ E , based
on their plausibility scores. Positive triples are ex-
pected to rank higher than negative ones. Ranking-
based metrics are used to evaluate performance:

• Mean Rank (MR): The average rank of the
true entity in the model’s predictions.

• Mean Reciprocal Rank (MRR): The average
reciprocal rank of the true entity.

• Hits@K: The proportion of test triples where
the true entity is ranked within the top-K pre-
dictions.

Beyond these tasks, KG embeddings are used
to answer more complex queries (He et al., 2023,

2024a,b).

2.3 Related Work
Several works embed entities and relations from de-
terministic KGs as probabilistic distributions rather
than single numerical vectors to model uncertainty
in the embeddings (He et al., 2015; Xiao et al.,
2015; Wang et al., 2022). These methods typically
learn distribution parameters by minimizing the
KL-divergence between the probability distribu-
tion of the difference between head and tail entities
and that of the relation, adhering to the transla-
tional paradigm of KGE models. While this line of
work captures both algorithmic and predictive un-
certainty through prior and posterior distributions
in the vector representations, the evaluation primar-
ily focuses on accuracy, leaving the quality of the
uncertainty modeling largely unexplored. To the
best of our knowledge, Loconte et al. (2023) is the
only study that evaluates uncertainty quality using
calibration diagrams and empirical calibration er-
ror, as detailed in Loconte et al. (2023, Appendix
F.5.3).

Other approaches represent knowledge uncer-
tainty by associating facts or axioms with a con-
fidence score or probability (Chen et al., 2019,
2021b,a; Zhu et al., 2023, 2024c). These methods
aim to learn embeddings that incorporate both KG
structure and input data uncertainty. For instance,
UKGE (Chen et al., 2019) extends DistMult (Yang
et al., 2014) by predicting confidence scores for
facts. It computes the plausibility of triples as the
product of embedding vectors and maps this plau-
sibility to a confidence score in the range [0, 1]. To
enrich the training data, UKGE employs probabilis-
tic soft logic to infer confidence scores for a sub-
set of unseen triples. Subsequent work enhances
these methods through improved negative sampling
strategies via semi-supervised learning (Chen et al.,
2021b) and by increasing the robustness and ex-
pressiveness of UKGE using entity representations
as boxes and affine transformations for relations
(Chen et al., 2021a).

Explicit studies on predictive uncertainty in
triple classification have also been conducted. Re-
search by Tabacof and Costabello (2020) and
Safavi et al. (2020a) applies off-the-shelf calibra-
tion techniques, such as Platt scaling and isotonic
regression, to KGE models. These techniques con-
vert uncalibrated plausibility scores into probabili-
ties by minimizing the negative log-likelihood on a
validation set. However, these approaches are sen-
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sitive to the quality of the validation set and lack
formal guarantees for the generated probabilities.

3 Research Questions

The primary objective of this dissertation is to sys-
tematically investigate various types of uncertainty
in KGE methods and to develop model-agnostic
approaches for effectively managing them. Specifi-
cally, this work focuses on the following research
questions:

RQ1: For the reducible component of predic-
tive uncertainty caused by algorithmic uncer-
tainty, how can we effectively reduce it?

RQ2: For the irreducible component of predic-
tive uncertainty, how can we reliably quantify
it with statistical guarantees?

RQ3: When knowledge uncertainty is explic-
itly present in the input KGs, how can KGE
methods effectively and efficiently reason un-
der such uncertainty?

In this section, I will elaborate on each research
question, introduce sub-research questions, outline
tentative solutions, and describe the preliminary
results or the expected contributions for each.

3.1 Reducing Uncertainty
The training process for KGE models, described in
Section 2.1, introduces randomness through vari-
ous sources, such as randomized embedding initial-
ization, randomized sequences of training triples,
and randomized negative sampling. Due to the
non-convex nature of the training process, identical
configurations (including the training KG, KGE
algorithm, and hyperparameters) can result in dif-
ferent KGE models that converge to different local
minima.

Among the possible KGE models trained under
the same configuration, some may achieve simi-
lar accuracy on the training KG but differ signif-
icantly in their vector representations of entities
and predicates, capturing distinct patterns. This
phenomenon, known as model multiplicity in ma-
chine learning (Breiman, 2001; Marx et al., 2020;
Black et al., 2022b,a), poses a significant obstacle
to reliably training models that behave as expected
during deployment (D’Amour et al., 2022). An
extreme example involves two models with both
50% accuracy but mutually contradictory predic-
tions on the validation set, which creates challenges

for model selection. Randomly selecting models
based on accuracy alone fails to justify decision-
making, especially in high-stakes domains such as
loan approval or medical diagnosis (Black et al.,
2022b).

Model multiplicity is a specific form of algo-
rithmic uncertainty that contributes to predictive
uncertainty by producing conflicting predictions
under identical training configurations. To better
understand and address model multiplicity in KGE
methods, this research investigates the following
sub-questions:

• RQ1.1: How can model multiplicity in KGE
methods be formally defined?

• RQ1.2: How can model multiplicity in KGE
methods be measured?

• RQ1.3: What are the key factors influencing
model multiplicity in KGE methods?

• RQ1.4: How can model multiplicity in KGE
methods be alleviated to reduce predictive un-
certainty?

Although model multiplicity is known to be ubiq-
uitous in gradient-based optimization (D’Amour
et al., 2022), we explore strategies to mitigate
the predictive uncertainty it induces. A promis-
ing approach involves ensembling models trained
with different random seeds. Such ensembles, in-
spired by voting methods from social choice theory
(Brandt et al., 2016), can combine predictions to
reduce the impact of single model’s error, thereby
effectively reducing predictive uncertainty (Black
et al., 2022a; Potyka et al., 2024).

Our preliminary results in (Zhu et al., 2024a)
contribute in the following aspects:

• Development of suitable evaluation metrics to
quantify and analyze model multiplicity in the
context of KGE methods.

• Theoretical insights into model multiplicity in
KGE methods.

• Design of a novel ensemble-based strategy
to effectively reduce predictive uncertainty
caused by model multiplicity.

3.2 Quantifying Uncertainty
Once a KGE model is deployed, the reliability of
its predictions becomes a critical concern. Current
KGE models generate plausibility scores for triples,
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which are used to differentiate positive triples from
negative ones. However, these scores lack prob-
abilistic interpretation and do not reflect the true
likelihood of a triple being correct (Tabacof and
Costabello, 2019; Safavi et al., 2020b).

Previous studies (Tabacof and Costabello, 2019;
Safavi et al., 2020b) have attempted to calibrate
these plausibility scores using techniques that con-
vert them into probabilities. However, this calibra-
tion relies on high-quality negative triples in the
validation set, which are often unavailable. Fur-
thermore, the calibration process, which minimizes
negative log-likelihood on the validation set, is sen-
sitive to the distribution of validation triples and
offers no theoretical guarantees for the calibrated
probabilities. Consequently, practitioners lack a
reliable framework to assess when predictions can
be trusted.

To address this issue, the following sub-
questions are explored:

• RQ2.1: Can the uncertainty of KGE methods
be quantified without relying on ground-truth
negative triples?

• RQ2.2: Is it possible to provide statistical
guarantees for the quantified uncertainty?

Conformal prediction (Vovk et al., 2005), a gen-
eral framework for generating prediction sets that
include the ground truth with predefined proba-
bilistic guarantees, is a good candidate to provide
statistically rigorous uncertainty estimates.

In Zhu et al. (2024b), we first assess whether the
assumptions of conformal prediction, particularly
the exchangeability of triples between the training
and test sets, are satisfied in the context of KGE.
We then establish theoretical guarantees for the
coverage probability and empirically verify them
through comprehensive evaluations.

The contributions of this work include:

• Development of a novel uncertainty quantifi-
cation methods with statistical guarantees.

• An efficient implementation of the approach.

3.3 Reasoning under Uncertainty
Most existing KGE methods assume deterministic
KGs as input, where every fact is treated as un-
equivocally true. However, real-world knowledge
is often uncertain due to noise, acquisition errors,
or the uncertain nature of knowledge itself. Rea-
soning under such knowledge uncertainty remains
an under-explored area.

Recent studies (Chen et al., 2019, 2021b,a) have
extended KGE methods to uncertain KGs by mod-
ifying the loss function and incorporating proba-
bilistic reasoning techniques such as probabilistic
soft logic (Chen et al., 2019) and semi-supervised
learning (Chen et al., 2021b). However, these ap-
proaches produce only point estimates for predic-
tions, failing to capture the inherent variance asso-
ciated with uncertainty.

Given the complexity of modeling determinis-
tic KGs, reasoning under knowledge uncertainty
presents additional challenges in capturing the un-
certainty associated with triples. This motivates the
following research questions:

• RQ3.1: What is the variance in predictions
made by existing uncertain KGE methods
when the training process is repeated?

• RQ3.2: How can prediction intervals be es-
timated to reliably reflect the uncertainty of
predictions instead of relying solely on point
estimates?

Conformal prediction, also commonly used for
regression task to provide prediction intervals with
guarantees (Vovk et al., 2005; Lei et al., 2018), is
planed to be applied to develop an approach for rea-
soning under knowledge uncertainty with reliable
uncertainty estimates. The expected contributions
are as follows:

• Systematical analysis of the variance of point
estimates produced by existing uncertain KGE
methods.

• Development of a novel uncertain KGE ap-
proach with reliable uncertainty estimates.

4 Conclusion

In summary, this research seeks to address the criti-
cal yet underexplored challenge of uncertainty in
KGE methods. By investigating knowledge, algo-
rithmic, and predictive uncertainty, the dissertation
aims to enhance the reliability of KGE methods,
particularly in high-stakes applications. The antic-
ipated contributions include novel methodologies
and theoretical insights for reducing, quantifying
and reasoning under uncertainty. These advance-
ments will not only bridge significant gaps in cur-
rent research but also support the deployment of
more reliable KGE systems in real-world scenarios.
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