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Abstract

Large Vision Language Models (LVLMs) often
suffer from object hallucination, which under-
mines their reliability. Surprisingly, we find
that simple object-based visual prompting—
overlaying visual cues (e.g., bounding box,
circle) on images—can significantly mitigate
such hallucination; however, different visual
prompts (VPs) vary in effectiveness. To address
this, we propose Black-Box Visual Prompt
Engineering (BBVPE), a framework to iden-
tify optimal VPs that enhance LVLM responses
without needing access to model internals. Our
approach employs a pool of candidate VPs and
trains a router model to dynamically select the
most effective VP for a given input image. This
black-box approach is model-agnostic, making
it applicable to both open-source and propri-
etary LVLMs. Evaluations on benchmarks such
as POPE and CHAIR demonstrate that BBVPE
effectively reduces object hallucination.

1 Introduction

LVLMs (Tong et al., 2024; Bai et al., 2023) demon-
strate impressive capabilities but often suffer from
object hallucination, where they describe objects
not present in the image. Addressing this issue
is vital for real-world deployment, particularly in
critical areas like healthcare and assistive technolo-
gies (Hu et al., 2024; Xu et al., 2024).

Existing methods try to mitigate object hallu-
cination by collecting datasets (Lu et al., 2024),
re-training or fine-tuning (Zhao et al., 2023), modi-
fying decoding methods (Leng et al., 2023; Favero
et al., 2024; Woo et al., 2024a,b), or using costly
feedback loops (Lee et al., 2023). However, they
often require access to model internals (e.g., atten-
tion, logits), making them impractical for propri-
etary LVLMs (OpenAI, 2024; Anthropic, 2024).

*Work done during an internship at Amazon.
BCorresponding author.

A promising yet under-explored direction is vi-
sual prompting, which overlays visual cues like
bounding boxes or circles on images to guide
model outputs (Yao et al., 2024; Shtedritski et al.,
2023; Yang et al., 2023b,c,a). While visual prompt-
ing has shown potential in improving visual ground-
ing (Yang et al., 2023c,a), its role in reducing object
hallucination remains unclear. This raises two key
questions: (Q1) Can visual prompting mitigate ob-
ject hallucination in LVLMs? (Q2) If so, can we
systematically learn the optimal VPs?

Our preliminary experiments show that simple
object-based VPs can significantly reduce object
hallucination. Interestingly, their effectiveness
varies across images and is particularly notable
in an Oracle scenario, where the best-performing
VP for each image is assumed to be known. This
finding effectively answers Q1 (see Fig. 1) and sug-
gests the need for a systematic method to identify
the optimal VP for each image.

To answer Q2, we introduce BBVPE, a novel
framework designed to systematically identify and
apply optimal VPs to reduce object hallucination
in LVLMs. Our approach treats LVLMs as "black
boxes", relying solely on input-output pairs with-
out modifying the model itself. The framework
has three key components: (1) a pool of predefined
VPs, (2) a scoring function to evaluate the effective-
ness of each prompt, and (3) a router model that
dynamically selects the best prompt based on ob-
served input-output behavior. Our method requires
no access to model internals, making it applicable
to both open-source and proprietary LVLMs.

Our key contributions are: 1) We find that Oracle
VPs exist for images given an LVLM, which, when
identified, can greatly reduce object hallucination.
2) We propose a novel framework, BBVPE, for
systematically identifying these optimal VPs. 3) In
standard benchmarks like POPE and CHAIR, our
approach significantly reduces object hallucination
in both open-source and proprietary LVLMs.
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Figure 1: Motivation. (left) An LVLM misidentifies a zebra as a horse, demonstrating object hallucination. Various VPs elicit
different responses, but their effectiveness depends on the specific characteristics of the image. To remove randomness and
solely see the impact of visual prompting, all responses are generated using greedy decoding. (right) While most VPs yield
comparable performances, an Oracle—which adaptively applies the best-performing VP per image—dramatically boosts results.

2 Related Work

Hallucinations in LVLMs. Efforts to address hal-
lucination in LVLMs (Dai et al., 2023; Liu et al.,
2023c,b) have focused on three primary areas: (i)
Data. Improving data quality is a key to reduc-
ing hallucinations (Wang et al., 2023), using nega-
tive (Liu et al., 2023a) and counterfactual data (Yu
et al., 2023), as well as dataset cleansing to re-
duce noise and errors (Yue et al., 2024). (ii) Train-
ing. Training-based methods (Jiang et al., 2023;
Zhai et al., 2023) utilize supervision from external
datasets (Chen et al., 2023), reinforcement learning
or preference optimization (Zhao et al., 2023; Gun-
jal et al., 2024) to better align model outputs with
visual content. (iii) Decoding. Decoding-based
methods (Leng et al., 2023; Favero et al., 2024;
Woo et al., 2024b,a) refine generation by incorpo-
rating additional guidance into the output probabil-
ity distribution. Alternatively, post-hoc correction
methods (Lee et al., 2023; Wu et al., 2024; Yin
et al., 2023) iteratively improve responses through
self-feedback loops to identify and correct errors.
Most of these approaches assume a white-box set-
ting with access to model internals (e.g., data, pa-
rameters, prediction logits). In contrast, our work
addresses hallucinations in black-box scenarios.

Automated Prompt Engineering. Prompt engi-
neering refines input prompts (x) to yield better
outputs (y∗) without modifying model parameters
(θ). While traditionally a manual process, APE
automates this refinement and has been widely ap-
plied in LLMs (Shin et al., 2020; Zhou et al., 2022;
Pryzant et al., 2023) to improve text prompts. In the
vision-language domain, research has also focused
on optimizing textual prompts for CLIP (Liu et al.,

2024a) or text-to-image diffusion models (Mañas
et al., 2024; Liu et al., 2024b). With LLMs evolve
into multimodal system, capable of handling both
text and visual data, APE’s application to visual in-
puts is still largely unexplored. To our knowledge,
this work is the first to extend APE to visual inputs,
aiming to reduce hallucinations in LVLMs.

3 Black-Box Visual Prompt Engineering

Applying prompt engineering to the visual domain
is challenging due to the vast combinatorial com-
plexity of image space. Also, direct optimization
over pixel values risks distorting the semantic con-
tent of the images. To circumvent this, we use a
discrete selection approach, choosing from a pre-
defined VPs that enhance images without altering
their original meaning. A lightweight router model
selects the most suitable VP, which is then applied
before input to LVLMs, reducing hallucinations.
Our black-box approach mitigates hallucinations
without accessing internal LVLM values (e.g., at-
tention, logits), making it compatible with propri-
etary models. An overview is shown in Fig. 2.
Oracle. The Oracle represents an ideal scenario
where the optimal VP for each image is known
during evaluation, setting an upper bound on per-
formance (see Fig. 1 right). It is equivalent to adap-
tively selecting the VP with minimal hallucination
per image. Our goal is to train the router model to
approximate this behavior.
Object localization. To identify relevant objects
within an image I , we first utilize an object local-
ization model L. The model detects and outputs a
set of object coordinates O = {o1, o2, . . . , om}.
Visual prompt pool. We define a pool of candi-
date VPs P = {p1, p2, . . . , pn}, which includes
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Figure 2: Overview. (left) BBVPE utilizes a VP router and object localizer to mitigate object hallucinations in LVLMs. VP
router dynamically selects the optimal VP for a given image. (right) During its training phase, a set of images with various VPs
and a series of object-related questions are posed to the LVLMs. The question set includes both objects that are present and
not present in the image. LVLM responses are then evaluated based on accuracy. The VP router predicts scores for each VP,
optimizing the selection process to identify the most effective prompt for a given image.

visual markers like circles and arrows. Each VP
pi ∈ P modifies the image I by highlighting local-
ized objects O, producing Ipi . The image-text pair
(Ipi , T ), where T is a textual prompt, is then fed
into the LVLM M to produce a response.
Quantifying object hallucination. To evaluate
a model’s robustness to object hallucination, we
define a scoring function S that measures response
accuracy regarding object presence:

S =
|correct responses|

|total presence questions| (1)

Dataset construction. For a given image I , the
optimal VP p∗ is chosen to maximize S:

p∗ = argmax
pi∈P

S (M (Ipi , T )) (2)

To ensure uniqueness, cases where multiple VPs
achieve the highest score are excluded. This results
in a training dataset Dtrain that maps images to
unique optimal prompts, including the option of
not applying any VP:

Dtrain =
{(

Ij , p
∗
j

)
| unique p∗j

}
(3)

Training a router model. The router model Rθ is
trained on Dtrain to predict the optimal VP p∗ for a
given image I . It assigns a score ŝpi to each VP:

ŝpi = Rθ (I, pi) (4)

These scores are converted into probabilities via
softmax:

P̂ (pi | I) =
exp(ŝpi)∑

pj∈P exp(ŝpj )
(5)

The router model is trained using cross-entropy
loss between the predicted probability distribution
P̂ (pi | I) and the one-hot encoded ground-truth
optimal VP p∗:

L = −
∑

pi∈P
1pi=p∗ log P̂ (pi | I) (6)

The trained router model enables efficient VP se-
lection without directly querying the LVLM.
LVLM inference. At inference, the trained router
model Rθ predicts the optimal VP p̂:

p̂ = argmax
pi∈P

ŝpi (7)

Applying p̂ to the localized objects O in I produces
Ip̂, which, along with the textual prompt T , is fed
into LVLM M to obtain a response with reduced
object hallucination.

4 Experiments

In all tables, baseline refers to not using visual
prompting. We compare our approach against three
baselines: (1) selecting random VP for each image,
(2) consistently using a fixed best VP that delivers
the highest overall performance for the model, and
(3) an Oracle that adaptively selects the optimal
VP per image. Responses are generated via greedy
decoding to eliminate randomness.1

Evaluation setup. We evaluate using POPE (Li
et al., 2023) and CHAIR (Rohrbach et al., 2018)
on the COCO (Lin et al., 2014) val split. POPE
assesses hallucination by asking binary Yes/No
1Implementation details are in Appendix A.
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Open-source LVLMs Proprietary LVLMs

Setup Methods LLaVA 1.5 InstructBLIP GPT-4o Claude-3.0-Sonnet

Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑ Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑ Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑ Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑
R

an
do

m

baseline 89.60 88.77 90.67 89.71 90.23 92.95 87.07 89.91 87.33 97.95 76.27 85.76 79.93 98.18 61.00 75.25
random VP 89.46 89.07 89.95 89.51 89.75 91.76 87.35 89.50 87.02 96.63 76.75 85.53 78.91 97.74 59.18 73.71
best VP† 90.40 90.67 90.07 90.37 89.97 91.89 87.67 89.73 88.07 98.47 77.33 86.63 80.10 97.78 61.60 75.58

BBVPE 91.37 91.97 91.40 91.42 91.50 90.47 91.44 90.95 88.83 98.71 78.26 87.31 80.84 97.43 63.49 76.88

Oracle 93.99 95.13 94.69 93.94 94.04 97.16 92.46 93.44 93.50 99.47 87.48 93.09 85.87 99.27 72.27 83.64

Po
pu

la
r

baseline 86.20 83.23 90.67 86.79 83.43 81.17 87.07 84.01 86.03 94.56 76.47 84.56 78.43 93.56 61.07 73.90
random VP 86.20 83.68 89.96 86.70 83.12 80.54 87.35 83.80 85.26 92.38 76.91 83.92 77.48 93.24 59.24 72.44
best VP† 86.70 84.38 90.07 87.13 84.13 81.88 87.67 84.67 86.37 94.31 77.40 85.02 78.70 93.90 61.60 74.40

BBVPE 87.23 85.97 90.20 88.03 84.57 82.41 88.71 85.44 87.33 95.31 79.22 86.52 79.67 94.90 62.42 75.30

Oracle 91.97 92.81 94.69 92.38 88.52 89.65 92.46 89.06 92.57 98.04 86.87 92.12 84.87 96.78 72.13 82.66

A
dv

er
sa

ri
al

baseline 79.73 74.40 90.67 81.73 80.73 77.28 87.07 81.88 85.50 93.33 76.47 84.06 77.13 89.82 61.20 72.80
random VP 79.56 74.48 89.95 81.49 79.87 75.99 87.35 81.27 84.49 90.76 76.85 83.20 75.90 88.83 59.25 71.07

best VP† 80.30 75.35 90.07 82.05 80.20 76.28 87.67 81.58 85.73 93.07 77.00 84.28 76.90 88.76 61.60 72.73

BBVPE 81.33 75.84 91.77 83.05 81.23 77.33 88.49 82.53 86.00 92.19 78.67 84.89 78.00 88.89 61.54 72.73

Oracle 85.62 84.23 94.69 87.25 85.72 85.98 92.46 86.80 91.90 96.94 86.53 91.44 83.53 94.36 71.33 81.25

Table 1: Results on POPE benchmark. Our approach consistently outperforms baselines; yet, there is still a large gap compared
to Oracle. † Best VPs are: ‘reverse blur’ for LLaVA and InstructBLIP, ‘crop’ for GPT-4o and Claude-3.0-Sonnet.

Open-source LMMs Proprietary LMMs

Methods LLaVA 1.5 InstructBLIP GPT-4o Claude-3.0

CHS↓ CHI↓ CHS↓ CHI↓ CHS↓ CHI↓ CHS↓ CHI↓
baseline 62.8 18.1 53.6 14.7 44.9 8.0 38.5 12.1
random VP 61.7 18.4 53.7 15.8 45.2 8.0 39.0 13.9
best VP† 56.3 17.0 48.5 14.4 36.5 5.9 33.9 11.4

BBVPE 46.3 14.9 41.5 12.5 32.0 4.9 31.7 10.7

Oracle 27.7 6.4 18.5 3.8 8.4 1.3 7.4 2.0

Table 2: Results on CHAIR benchmark. Black-Box VPE significantly
reduces hallucinations in image descriptions. † Best VPs are: ‘center
point’ for LLaVA and InstructBLIP, ‘reverse blur’ for GPT-4o, and
‘arrow’ for Claude-3.0-Sonnet.

Methods LLaVA 1.5

Acc ↑ Det ↑ Com ↑ Rel ↑ Rob ↑ Total ↑
baseline 7.08 6.63 6.67 7.35 7.51 35.24
random VP 6.38 6.21 6.25 6.85 6.84 32.52
best VP† 6.53 6.30 6.34 6.92 6.92 33.00

BBVPE 7.24 6.86 6.95 7.63 7.70 36.38

Oracle 7.59 7.27 7.30 8.03 8.10 38.29

Table 3: Comprehensive image description eval-
uation by GPT-4o. LLaVA is assessed based on
5 criteria: Accuracy, Detail, Comprehensiveness,
Relevance, and Robustness. † The best VP is
‘center point’.

questions like "Is there a [object] in the image?"
across various prompt setups (Random, Popular,
and Adversarial). CHAIR measures the ratio of
hallucinated objects in image descriptions, with
two variants: CHS (per sentence) and CHI (per
object), where lower scores indicate fewer hallu-
cinations. Additionally, we use GPT-4o (OpenAI,
2024) for a more comprehensive evaluation.2

Model instantiation. While our framework is
generic, we instantiate the components as follows:
• Object Localizer L: SAM 2 (Ravi et al., 2024).
• VP Router Rθ: Frozen CLIP vision en-

coder (Radford et al., 2021) with a trainable MLP.
• LVLMs M: We use two open-source models

(LLaVA-1.5, InstructBLIP) and two proprietary
models (GPT-4o, Claude-3.0-Sonnet).

During router training, all other model components
are kept frozen.

4.1 Evaluation Results
POPE benchmark. Table 1 shows BBVPE consis-
tently outperforms baselines across most metrics,
prompt setups, and LVLMs. While random VP may
not improve results over baseline (No VP applied),
best VP generally performs better. BBVPE further
2More details about evaluation setup are in Appendix B.

enhances performance by properly routing the op-
timal VP for each image, though a gap remains to
Oracle, suggesting room for improvement.

CHAIR benchmark. As shown in Table 2, BB-
VPE significantly reduces object hallucinations in
image descriptions at both instance (CHI ) and sen-
tence (CHS) levels across all LVLMs, though still
below Oracle performance. While random VP of-
ten underperforms baseline, best VP consistently
improves results, with BBVPE further enhancing
performance.

GPT-4o evaluation. Table 3 shows GPT-4o’s
evaluation of image descriptions from LLaVA 1.5,
scored from 0 to 10. GPT-4o receives the image
and the generated descriptions, scoring each based
on 5 criteria.3 While naive visual prompting (ran-
dom VP, best VP) degrade performance, BBVPE
effectively improves scores. Notably, applying a
fixed best VP to all images performs even worse
than using no VP (baseline), but BBVPE outper-
forms both by optimally selecting VPs per image.

4.2 Key Observations

(1) Different LVLMs favor different VPs. For ex-
ample, ‘reverse blur’ and ‘crop’ generally

3Details on GPT-4o instruction are in Appendix C.
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Methods Latency
(ms/token) TFLOPs e

Baseline (LLaVA-1.5) 43.664 9.726 -
+ VCD (Liu et al., 2023a) 111.392 19.452 ✗
+ M3ID (Favero et al., 2024) 84.49 19.452 ✗
+ RITUAL (Woo et al., 2024a) 88.582 19.452 ✗
+ AvisC (Woo et al., 2024b) 88.127 19.452 ✗
+ OPERA (Huang et al., 2023) 159.615 48.628 ✗
+ VOLCANO (Lee et al., 2023) 202.122 42.794 ✗
+ BBVPE (Ours) 65.505 16.968 ✓

Table 4: Comparison of methods on latency, TFLOPs, and
applicability to black-box LVLMs (e). All runs use a single
NVIDIA A100 40GB GPU.

work well for LLaVA 1.5 (Fig. 1 (Right)).
(2) Surprisingly, proprietary LVLMs underperform
compared to open-source LVLMs on POPE in
terms of Accuracy and F1 score (Table 1). Propri-
etary LVLMs are cautious to say "yes"—indicated
by high precision but low recall. It suggests a con-
servative response strategy, likely due to policy
restrictions aimed at minimizing false positives.
(3) No single VP achieves optimal results across all
LVLMs and metrics; the best VP varies by model
and metric. (Tables 1 to 3)
(4) Learning an effective routing of VPs can signif-
icantly reduce hallucinations (Tables 1 to 3).

4.3 Analysis

Computational cost. We analyze the latency
and computational overhead (TFLOPs) of recent
methods for object hallucination mitigation in Ta-
ble 4. VCD (Liu et al., 2023a), M3ID (Favero
et al., 2024), RITUAL (Woo et al., 2024a), and
AvisC (Woo et al., 2024b) require two forward
passes, while OPERA (Huang et al., 2023) uses
beam search with rollbacks, and VOLCANO (Lee
et al., 2023) performs critique-revise-decide steps,
needing three forward passes. BBVPE introduces
some additional latency due to the use of an ob-
ject localizer (e.g., SAM2) and VP router (e.g.,
CLIP+MLP). However, it is significantly more effi-
cient than other methods. Unlike others relying on
model internals (e.g., weights, logits), BBVPE op-
erates in a black-box manner, making it applicable
to both open-source and proprietary models.

Cross-dataset evaluation on POPE-GQA bench-
mark. Table 5 shows the results on POPE bench-
mark using GQA dataset. The overall performance
trends are similar to the LLaVA-1.5 results in Ta-
ble 1. Notably, the VP router trained on COCO
performs effective VP selection even on unseen
datasets like GQA, outperforming a fixed best VP
and achieving results comparable to a VP router
trained and tested on GQA. This demonstrates BB-

Methods
(Model: LLaVA-1.5)

Random Popular Adversarial

Acc. F1 Acc. F1 Acc. F1

baseline 81.23 83.16 72.43 77.31 69.07 75.37
random VP 80.97 82.95 72.07 77.00 68.70 74.94
best VP (reverse blur) 82.10 83.99 73.27 78.02 69.43 75.43

BBVPE (train dataset → test dataset)
GQA → GQA 83.47 84.89 74.37 78.56 71.73 76.87
COCO → GQA 82.73 84.17 73.83 78.28 70.30 75.90

Oracle 92.93 93.05 82.27 84.00 76.87 80.21

Table 5: Results on POPE benchmark using GQA
dataset (Hudson and Manning, 2019). Here, we also com-
pare with cross-dataset evaluation setup (COCO → GQA).

Figure 3: Impact of different VPs on image description
generation. Different VPs produce varied results, but not
all are equally effective. All responses are generated using
greedy decoding to eliminate randomness and focus solely on
the influence of visual prompting.

VPE’s potential for cross-dataset generalization.

Visual prompting for image description genera-
tion. Fig. 3 analyzes the impact of VPs on image
descriptions. While certain VPs, such as Bound-
ing Box and Reverse Blur, enable the model to
accurately identify existing items, others introduce
errors by mentioning additional pastries or multiple
donuts. This again confirms the variability in VPs’
effectiveness and underscores the importance of
selecting the right VP to mitigate hallucination.

5 Conclusion

In this work, we proposed BBVPE framework to
systematically identify optimal VPs that mitigate
object hallucinations in LVLMs. Our findings con-
firm that: (A1) carefully curated visual prompting
can effectively reduce hallucinations in LVLMs,
and (A2) optimal VPs can be systematically learned
in a black-box setup. By dynamically selecting the
most suitable VP from a predefined pool, guided
by a trained router model based on LVLM prefer-
ences, our framework significantly enhances the
performance of both open-source and proprietary
LVLMs on hallucination benchmarks.
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Limitations & Future Work

(1) Our current approach primarily focuses on nat-
ural images and does not extend to abstract and
synthetic figures, such as those used in document
VQA (Mathew et al., 2021), science VQA (Lu et al.,
2022), or math VQA (Lu et al., 2023). The current
design of our method may not be directly appli-
cable to these synthetic images, which typically
exhibit different visual characteristics.
(2) We currently use bounding box-based prompts
from the Segment Anything Model (Kirillov
et al., 2023). Transitioning to fine-grained, mask-
based VPs could potentially enhance performance,
as demonstrated in recent studies (Yang et al.,
2023a,b).
(3) Our router model currently considers only im-
age features and does not incorporate the question
context. Our preliminary experiments suggest that
incorporating question context could further im-
prove results, pointing toward future work on ex-
ploring question-aware visual prompting.
(4) To simplify optimization, we focus on object-
level visual prompting, but extending to patch-
based or pixel-based VPs could potentially provide
a richer set of design space.
(5) Exploring the synergy between visual and tex-
tual prompt optimization remains an open research
direction that may offer valuable insights.
(6) While our method is specifically designed to
address object hallucination, exploring how VP
and our framework perform in addressing attribute
and relation hallucination remains an intriguing
challenge that we leave for future work.
(7) Object localization matters. We observed that
better localization, such as using ground truth ob-
ject coordinates, leads to improved results in our
preliminary results.
(8) During router model training, we observed
sensitivity to hyperparameters and occasional con-
vergence instability, sometimes leading to overfit-
ting. This highlights the subtle learning signal from
LVLM preferences over VPs, requiring a carefully
designed training process.
Despite these limitations, to the best of our knowl-
edge, our study is the first black-box approach for
mitigating object hallucination in LVLMs. We
hope that our initial investigation into automated
visual prompt engineering and black-box strate-
gies inspires further research into broader vision-
language challenges beyond object hallucination.

Ethical Considerations

In our current method, we use a predefined pool of
VPs and have not observed any jail-breaking phe-
nomena with visual prompting. However, we are
uncertain whether more fine-grained visual prompt
engineering, such as using diffusion models, could
lead to adversarial attacks or jail-breaking scenar-
ios. Rigorous testing is needed to ensure the robust-
ness and safety of this approach. Further research
should address these considerations, if present, and
focus on identifying and mitigating potential risks
associated with VP misuse.
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Appendix

A Implementation Details

We use a frozen CLIP-ViT-L/14@336px4 model
with a trainable MLP head as our VP router. The
router is trained on the COCO dataset (Lin et al.,
2014) training split, where each image is paired
with 6 questions: 3 positive (about objects present
in the image) and 3 negative (about objects not
present in the image), following the POPE proto-
col (Li et al., 2023). Each VP router is individually
trained for each LVLM, as the preference for VPs
varies across models, and we observed that these
preferences do not transfer between models. The
training configuration is outlined below.

config value
image size 336×336
optimizer AdamW
learning rate 1e-4
loss function cross entropy loss
training epochs 20

Table 6: Training configurations for the router model.

For the object localizer, we use Segment Anything
Model 2 (sam2-hiera-large)5. For LVLMs, we
use two open-source models, LLaVA-1.5-7b6 and
InstructBLIP-vicuna-7b7, and two proprietary mod-
els, GPT-4o (gpt-4o-2024-08-06)8 and Claude-
3.0-Sonnet (claude-3-sonnet-20240229)9.

B More Details on Evaluation Setup

Benchmarks. We evaluate object hallucinations
in LVLMs through discriminative and descriptive
tasks on the COCO (Lin et al., 2014) validation
split, using the POPE and CHAIR benchmarks,
respectively.

(1) POPE (Li et al., 2023) frames hallucination
assessment as a binary classification task, asking
yes/no questions about the presence of both real
and nonexistent objects in an image (e.g., “Is there
a/an [OBJECT] in the image?”). Questions for real
objects are randomly selected from the actual ob-
jects present in the image. There are three prompt
setups for selecting nonexistent objects:
4
https://huggingface.co/openai/clip-vit-large-patch14-336

5
https://huggingface.co/facebook/sam2-hiera-large

6
https://huggingface.co/liuhaotian/llava-v1.5-7b

7
https://huggingface.co/Salesforce/instructblip-vicuna-7b

8
https://platform.openai.com/docs/models

9
https://docs.anthropic.com/en/docs/about-claude/models

• Random: Nonexistent objects are randomly se-
lected from all object categories.

• Popular: Nonexistent objects are chosen from
top-k most frequent objects in the dataset.

• Adversarial: Objects are chosen based on fre-
quent co-occurrences with actual objects but are
absent from the image.

We use Accuracy, Precision, Recall, and F1 score
as evaluation metrics. Accuracy reflects the propor-
tion of correctly answered questions. Precision and
Recall indicate the correctness of “Yes” and “No”
answers, respectively. F1 score is a harmonic mean
of Precision and Recall.
(2) CHAIR (Rohrbach et al., 2018) evaluates the
proportion of words in captions that correspond to
actual objects in an image, based on ground-truth
captions and object annotations. The metric has
two variants:

• Per-sentence (CHS): Proportion of sentences con-
taining hallucinated objects, calculated as CHS =
|# sentences with hallucinated objects|

|# all sentences| .

• Per-instance (CHI ): Proportion of hallucinated
objects relative to all mentioned objects, calcu-
lated as CHI = |# hallucinated objects|

|# all objects mentioned| .

Captions are generated with the prompt, “Please
describe this image in detail.” for evaluation.

C Instruction for GPT-4o Evaluation

Fig. 4 shows the instruction given to GPT-4o for
evaluating 8 textual image descriptions of an image,
based on 5 criteria: Accuracy, Detail, Comprehen-
siveness, Relevance, and Robustness. Each crite-
rion is scored on a scale from 1 to 10, with higher
scores reflecting better performance. Total scores
are calculated for each description to evaluate their
overall quality.
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Image Description Quality Assessment using GPT-4o

<SYSTEM_MESSAGE>
You are an expert in image description evaluation. Your task is to assess how well textual
descriptions capture the detailed visual information of images.

<INSTRUCTION>
Compare and evaluate the following 8 descriptions of the provided image.

Descriptions:
{description 1}
{description 2}
...
{description 7}
{description 8}

For each description, rate a score on a scale of 1 to 10, where a higher score indicates better
performance, for each of the 5 criteria:
1. Accuracy: How precisely does the description reflect the actual objects, details, and
attributes (such as color, shape, and number of objects) visible in the image?
2. Detail: How thoroughly does the description capture visual details of the objects, including
finer elements like positions, relative sizes, and relationships?
3. Comprehensiveness: How well does the description cover all key elements of the image, without
omitting important objects or details?
4. Relevance: Does the description focus on significant and pertinent details from the image. The
score decreases if the description includes unnecessary or unrelated information that distracts
from the core details of the image.
5. Robustness: Does the description avoid mentioning any objects or attributes that are not
present in the image? Descriptions without any false information score higher. If nonexistent
elements are included, the score decreases.

Only provide the numerical scores for each criterion and the total score, formatted as follows:
1. Accuracy: score1 | score2 | score3 | score4 | score5 | score6 | score7 | score8
2. Detail: score1 | score2 | score3 | score4 | score5 | score6 | score7 | score8
3. Comprehensiveness: score1 | score2 | score3 | score4 | score5 | score6 | score7 | score8
4. Relevance: score1 | score2 | score3 | score4 | score5 | score6 | score7 | score8
5. Robustness: score1 | score2 | score3 | score4 | score5 | score6 | score7 | score8
Total Score: total1 | total2 | total3 | total4 | total5 | total6 | total7 | total8

Figure 4: GPT-4o evaluation instruction.
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